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ABSTRACT
Mobile users may experience short disruptions and premature call
terminations (not just) when moving while engaged in a (multime-
dia) conversation. While much emphasis is put on enabling seam-
less mobility, recovery in case of (temporary) service failures has
received little attention. In this paper, we explore the technical as-
pects of disconnection tolerance mechanisms for SIP-based mobile
communications. We present standards-compliant detection and re-
covery mechanisms, provide a brief experimental evaluation based
upon packet traces, and report on our prototype implementation.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Internetworking;
D.4.4 [Operating Systems]: Communications Management

General Terms
Design, Reliability, Experimentation

Keywords
Disconnection tolerance, SIP, Mobility, Multimedia

1. INTRODUCTION
IP-based voice and multimedia communication is widespread in

use in the Internet, with the Session Initiation Protocol (SIP) [27]
being the dominant open signaling protocol today. Typical deploy-
ment scenarios in the Internet assume mostly stationary users—at
home, in the office, in a hotel, or in a public hot-spot. For such
wireless SIP communication, e.g., using IEEE 802.11, network ca-
pacity and QoS mechanisms for voice prioritization (e.g., [13, 32])
have been investigated. But also mechanisms for SIP-based node
mobility have been proposed at the link, IP, and application layer
(e.g., [30, 8]). In addition to the open Internet, closed networks
such as the 3GPP Internet Multimedia Subsystem (IMS) support
node mobility using a combination of mechanisms at different lay-
ers, within a single link layer technology as well as across different
physical networks and service providers. In this paper, we focus on
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the general Internet case, but the concepts presented can be adapted
to work in the 3GPP context as well.

Mobility mechanisms seek to minimize the handoff delay when
moving from one network point of attachment to the next in order
to provide seamless communications without noticeable increasing
packet delays or losses. The implicit assumption is that there will
be a next point of attachment to perform the handoff to without
service disruption. As experience tells us, e.g., when driving on a
highway or riding on a train, this assumption does not necessarily
hold. Even if handoffs to other points of attachments are in princi-
ple seamless, mobile phone calls may easily experience temporary
outages, e.g., due to changes in the radio conditions. Or they may
get disconnected altogether, e.g., because of incomplete coverage
or a saturated “next” base station or wireless access point. The
same applies to packet data services and thus equally to IP-based
multimedia services.

Dealing with these kinds of disconnections is left to the users:
they may re-dial and, if successful after one or more attempts, run
a “user-to-user protocol” to mutually synchronize on the last heard
statements of the conversation prior to the disconnection. Typically,
it is the turn of the user who experienced the disconnection to wait
until the device reports that network coverage is available again
and invokes the next communication attempt (but, of course, both
users will often try in parallel). Alternatively, or if they cannot get
through, they give up, wait for a longer period of time to retry, or
revert to voice mail or text messaging.

This entire procedure appears cumbersome and unnecessary. In
this paper, we propose a set of mechanisms to detect such discon-
nections and deal with them as far as possible in an automated
fashion. We do not make any assumptions about the underlying
link layers and where the disconnection occurs but simply use end-
to-end mechanisms at the transport layer and above. In section
2, we briefly review the basic SIP signaling which we build upon
and review related work on mobility for SIP and on disconnection
tolerance in general in section 3. We introduce our disconnection
models and present our mechanisms for disconnection-tolerant SIP
(DT-SIP) in section 4. We finally provide a first experimental analy-
sis based upon packet traces and report on our prototype implemen-
tation in section 5. We conclude this paper with a brief assessment
in section 6.

2. SIP CALL SIGNALING
SIP [27] is a protocol for creating, modifying and terminating

sessions between two user agents (UAs) which are identified by
their respective SIP URIs. For rendezvous purposes, SIP defines
a variety of logical functions: UAs register the mapping of their
persistent URI (Address-of-Record, AoR) to the contact addresses
of one or more devices with a registrar. This mapping can be



retrieved from a location server function which is usually con-
sulted by SIP proxy and redirect servers. Proxies forward incoming
SIP requests on behalf of the originator towards the target whereas
redirect servers simply return the next hop contact address to the
originator which then re-submits the retargeted request. A typical
SIP server implementation combines registrar, location, and redi-
rect/proxy server functions and may offer additional services for
media handling such as a UA for gatewaying to other networks and
media server functions for announcements and voice mail. For two
random users interacting, (at least) one SIP server will be involved
on each side (see figure 1 top), yielding the typical SIP “trapezoid”.

As depicted in figure 1, each SIP UA uses a REGISTER mes-
sage to bind its AoR to its current contact address (i.e., IP address
and port number) which is confirmed by a 200 OK from the reg-
istrar.1 During the registration handshake, the validity timeout for
the registration is negotiated; the UA must refresh its registration
before this timeout expires to remain reachable. The UA will also
re-register whenever its local address changes.
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Figure 1: Basic SIP signaling

In a very basic dialog setup, the originator sends an INVITE mes-
sage (via its and the remote proxy) to the target UA which usually
first indicates that the user is alerted (180 Ringing) and responds
with a 200 OK when the user accepts the call, which is confirmed
by an ACK.2 The two SIP proxies may decide to remain in the SIP
signaling path of a dialog by performing record-routing or may let
subsequent SIP messages flow directly between the UAs. During
the course of a normal SIP dialog, no further SIP messages are ex-
changed until the dialog is terminated by a BYE message sent by

1For simplicity of the presentation, we do not discuss the authenti-
cation mechanisms which would usually be applied.
2The 100 Trying messages are hop-by-hop confirmations of the
message receipt and just shown for completeness. We do not dis-
cuss call setup failures.

either UA, again confirmed by a 200 OK. A SIP dialog is uniquely
identified by a set of headers (simplified: To:, From:, and Call-Id:),
so that incoming requests can be matched to an existing dialog.

The INVITE transaction effects state creation at both UAs and
(as part of this) causes the media exchange in the dialog to com-
mence; the inverse happens as result of a BYE transaction. SIP
itself does not define any applications to be used in the context of
a dialog, but provides a mechanism (using the Session Description
Protocol, SDP, [11]) to configure arbitrary media sessions during
the offer-answer exchange, a two-way handshake of SDP messages,
typically piggybacked on an INVITE and a 200 OK. The session
negotiation includes parameters such as codecs, codec parameters,
and particularly the transport addresses for the media streams. If
the addresses of one node change, e.g., due to mobility, or if an-
other reconfiguration of a media session shall take place, the offer-
answer exchange is repeated, typically by means of a re-INVITE.
Real-time media streams are usually carried in RTP [29] packets
sent over UDP; RTCP messages sent in roughly regular interval ac-
company the media streams to report transmission characteristics
and reception statistics.

SIP messages may be exchanged via UDP, TCP, and SCTP, op-
tionally with an additional security layer (e.g., TLS) on top. SIP
state is independent of the lower layer and hence transport connec-
tions may be torn down and re-established without affecting a SIP
dialog.

3. RELATED WORK
Two areas of related work are particularly relevant to our re-

search presented in this paper: mobility support for SIP and dis-
ruption tolerance for mobile communications.

3.1 SIP and Mobility
A variety of mechanisms have been proposed to achieve node

mobility with SIP. Basic link layer mechanisms (e.g., handoffs be-
tween WLAN APs or cellular base stations) are basically trans-
parent to the IP layer and above, yet careful engineering may be
required to achieve seamless handovers [8]. Mobile IP [23] paired
with numerous optimizations to reduce the impact of handoffs (e.g.,
[14, 12, 33]) may support mobility at the IP layer transparent to the
applications.

SIP has built-in support for basic user mobility via its dynamic
user registration and rendezvous mechanism as well as through re-
INVITEs. In addition, many approaches have been investigated to
allow user mobility during ongoing session with SIP (of which we
can review only a few). The entire spectrum of pre-call and mid-
call mobility for SIP and RTP has been discussed in [30], where
the authors also discuss the limitations of mobile IP. An operator
architecture for vertical handover of SIP dialogs across different
networks is discussed in [36].

Achieving seamless multimedia session mobility with SIP re-
quires efficient operation of the entire handover process: a mobile
node needs to locate the attachment point, become authorized, ob-
tain an IP address (e.g., via DHCP), among others [21]. Optimiza-
tions for this process have been suggested to use multiple radios
(so that no or only few packets are lost) [24], to realize soft handoff
techniques with support from the base stations redirecting packets
so that these do not get lost [1], and to integrate SIP and mobile IP
mechanisms [35]. Finally, fast handover mechanisms relying only
on application layer signaling have been proposed [8] which avoids
the otherwise potentially complex interdependencies and handles
most aspects without network support in the application.

The above mechanisms seek to address changing a mobile node’s
point of attachment to the network with minimal disruptions for



the real-time service. But all of them assume that there will be
a next attachment point available so that SIP calls will simply be
disrupted (and terminate) if this is not the case. In the remainder of
this paper, we present a complementary mechanism that becomes
active as soon as seamless mobility fails.

3.2 Delay-/Disruption-tolerant Networking
Dealing with or preventing mobility-incurred disruptions in com-

munications for mobile nodes has been investigated in numerous
research activities which address a wide range of technical issues:
from dealing with dynamically changing IP addresses when switch-
ing the network point of attachment (e.g., using Migratory TCP
[34] or the Host Identity Protocol, HIP [16]) to preventing dis-
connections due to TCP timeouts [10, 3] to (proxy-based) archi-
tectures to support legacy and novel applications in disconnection-
prone mobile environments. The latter include the MOCCA archi-
tecture as developed for mobile Internet access from cars in the
FleetNet project [2], the Drive-thru Internet architecture and its
Persistent Connection Management Protocol (PCMP) [19], and the
DHARMA project architecture for mobile and nomadic computing
[15].

While the above approaches primarily address the failure of a
single link close to the mobile node (in most cases the last hop), the
research field of Delay-tolerant Networking (DTN) [9] approaches
communication in challenging networking environments with a more
encompassing scope.3 Challenges may include, e.g., long com-
munication delays, low data rates, high error rates, (frequent) pre-
dictable or unpredictable disconnections, and/or only short connec-
tivity periods. These challenges generally lead to an environment
in which end-to-end paths may not exist and end-to-end interac-
tions may take extended periods of time to complete. To cope with
such conditions, DTN exclusively relies on message-based asyn-
chronous communications, the messages being exchanged follow-
ing the store-carry-and-forward paradigm. While originally devel-
oped for space communications, DTN finds its application in sensor
networks and in mobile communications including mobile ad-hoc
and infrastructure-based networks.

The aforementioned approaches to handling disconnections are
primarily applicable to elastic—i.e., sufficiently delay-tolerant—
applications. This includes applications where a temporary inter-
ruption of the data transfer, while likely annoying to the user, still
does not impact the usefulness of the received media. It may take
longer to send or receive an email, retrieve a web page, or synchro-
nize a distributed calender, but the result will finally be correct.
In contrast, interactive real-time media as exchange inside a SIP
call suffer from disruptions so that the aforementioned approaches,
which trade timeliness off for reliability are not immediately appli-
cable [18].

4. DISCONNECTION-TOLERANT SIP
As discussed above, a SIP dialog comprises two UAs which

may be connected via arbitrary access networks to the Internet—or
which may operate in an ad-hoc environment without any Internet
access. While SIP servers (or peer-to-peer nodes) may facilitate
dialog establishment, they are not necessarily part of any subse-
quent call signaling so that any disconnection handling has to be
performed by the UAs.

Link or path failures may occur anywhere in the network. In
particular, neither of the UAs’ access links needs to be impacted so
3The Delay-tolerant Networking Research Group (DTNRG) in the
Internet Research Task Force (IRTF), http://www.dtnrg.org/, de-
fines protocol specifications for DTN-based communications such
as [5, 31].

that detection and recovery mechanisms cannot rely on link layer
indications from the local interfaces.4 The consequences of a link
or path failure may differ: Considering figure 1, from node A’s per-
spective, the path the other UA may be impaired and/or the path
towards its own SIP server X. Node B may be affected by a dif-
ferent failure at the same time, i.e., (partly) overlapping with A’s
disconnection. For a real-time conversation between A and B, the
reason for, the location, and the number of failures is not relevant;
however, the resulting duration is. We provide a rough classifica-
tion into three categories:

• Short audio disruptions last a couple of seconds (e.g., less
than 15 s) and the SIP dialog remains established. Hence, no
call signaling recovery mechanisms are needed. However, a
short disruption leads to noticeable audio loss which should
be recovered.

• Middle: Call interruptions occur if the disconnection lasts
longer than a (provider-defined) threshold (e.g., 15 s) which
causes the dialog to be terminated. Obviously, audio data
gets lost and the users are informed about the dropped call.
If the connectivity is re-established within an acceptable re-
connection period5 (e.g., 60 s), we consider automatic recon-
nection of the SIP dialog and recovery of the lost audio to be
useful.

• Long disconnections lead to call termination and connectiv-
ity is not re-gained within the reconnection period so that no
automated re-establishment should occur. In such a case, the
synchronous conversation can be automatically turned into
an asynchronous interaction (similar to voice mail) without
requiring explicit action by the users.

To assist users in case of disconnections, the communication
within a SIP dialog needs to be monitored by the UAs and the latter
must be prepared at any time to invoke the corresponding recovery
actions. Invocation must work incrementally as they cannot tell up
front how long a failure will persist.

4.1 Connectivity Loss Detection
The first step towards disconnection-tolerant SIP is detecting the

loss of connectivity. A SIP UA has typically (a) a SIP signaling
relationship directly to the peer or indirectly via a SIP server and (b)
an RTP-based media stream (we assume audio only). In addition,
as noted above, link layer indications may speed up the detection
of link (non-)availability at the last hop.

4.1.1 SIP-based Detection
In a simple SIP call, the involved UAs do not perform any SIP

transactions beyond the initial INVITE and the final BYE so that
the basic SIP signaling cannot be relied upon. As the transport
connection used for signaling has no relevance to the SIP state ma-
chine, relying on lower layer keep-alive mechanisms is also ques-
tionable. Even if re-INVITEs are necessary, e.g., to re-configure
transport addresses used with Interactive Connectivity Establish-
ment (ICE) [25], see below, these cannot be predicted and would
rather occur at the beginning of a session. Only SIP session timers
[7] can be used to generate SIP messages in regular and predictable
intervals. However, SIP servers have a say in the timer intervals
and may prevent too short timeout values. Timeout values in the

4Nevertheless, such hints may be useful for optimizations, e.g., to
efficiently decide when to attempt a recovery.
5Before the users mentally switch to another task.



order of minutes are, however, unsuitable for efficient disconnec-
tion detection.

Finally, note that the SIP signaling path may follow an over-
lay and thus a different path than the media stream. Therefore,
the (non-)availability of the signaling path does not allow inferring
the status of the media path. In summary, we consider SIP sig-
naling unsuitable for the purpose of disconnection detection and
rely on the media session(s) instead. However, the SIP signaling
and particularly the SDP-based media configuration provide con-
text information—e.g., whether a call is placed on hold (and thus
media streams are paused) and if silence suppression is enabled for
the chosen codec—which are relevant for properly interpreting the
media streams.

4.1.2 Media-based Detection
SIP audio calls use RTP sessions for the media exchange. An

RTP session consists of the RTP-based media stream and an asso-
ciated RTCP-based control channel. Furthermore, if NAT traversal
techniques are employed, additional STUN [26] control messages
may be multiplexed on both the RTP and the RTCP channels:

• RTP: During an audio conversation, both nodes send contin-
uous audio streams as a sequence of RTP packets. However,
if silence suppression is enabled, this packet stream is only
generated while the respective user is talking. Depending on
the codec, specific silence packets may occasionally be sent
during silence periods (e.g., once per second) to allow the re-
ceiver to fill in background noise. If no silence suppression
is used (which the receiver can only detect heuristically) or if
silence packets are sent (which can be inferred from the SDP
codec parameters), monitoring the media stream for gaps in
the otherwise regular and frequent packet reception is the
most efficient cue that a disconnection occurred: as audio and
silence packets are sent frequently6, loss of connectivity may
be detected within a few seconds (already accounting for IP
packet loss). However, in the general case, a continuous re-
ception of media packets cannot be guaranteed (e.g., when
using the G.711 PCM audio codec with silence suppression
but without the comfort noise according to RFC 3389 [37]).
Therefore, additional mechanisms are needed.

• RTCP: RTCP packets are exchanged between the endpoints
to report transmission and reception statistics and allow mon-
itoring the path quality. RTCP packets are sent independently
of silence suppression and a call put on hold. Therefore, the
absence of several consecutive expected RTCP packets can
be taken as an indication of a media path failure. In a two-
party call, RTCP packets are sent in deterministically calcu-
lated intervals Td so that they use 2.5% of the session band-
width per peer, dithered between 0.5 × Td and 1.5 × Td.
With Td ≥ 5 s, this usually yields a maximum distance of
22.5 s for consecutive RTCP intervals. This defines failure
detection latency for RTCP monitoring if three missed RTCP
packets are taken as the threshold. The RTCP interval can be
decreased by using a different RTP profile [22] which elim-
inates the 5 s minimum: to about 3 s for an 8 kbps media
stream (assuming 80 byte RTCP packets) and even further
by explicitly allowing for a higher RTCP bitrate [4], so that
the detection latency can be reduced.7

6Note that for some silence suppression mechanism, the interval is
implementation specific [37] and may thus not be easy to predict.
7One major issue is still missing RTCP support in various SIP
clients.

• STUN: Both RTP and RTCP communication may require
STUN packets to be exchanged for NAT traversal to detect
the externally visible transport addresses and to maintain the
NAT bindings alive (during silence periods). When used
stand-alone STUN may operate between an endpoint and a
STUN server (the latter of which is usually run by the SIP
service provider) so that these STUN exchanges do not re-
late to the end-to-end media path. However, if ICE [25] is
used (which can be observed from the SDP offer/answer ex-
change), STUN packets are also sent between the two peers
as continuous connectivity checks and to maintain NAT bind-
ings active even during silence periods. STUN packets reg-
ularly exchanged between the peers thus support disconnec-
tion detection on both the RTP and RTCP channels and, for
RTP, particularly irrespective of the chosen codec and the si-
lence suppression behavior.

The above considerations can be summarized in the resulting de-
tection algorithm depicted in figure 2. The detection algorithm
relies on three independent detectors, two of which are enabled
or disabled depending on negotiation during the offer/answer ex-
change: if a codec is negotiated together with a suitable comfort
noise payload or a comfort-noise supporting codec is chosen (e.g.,
G.729), RTP-based detection is enabled and if ICE is negotiated,
STUN tracking is enabled. In addition, the RTCP channel is moni-
tored and if RTCP packets are received from the peer, RTCP-based
detection is activated. If none of the mechanisms is enabled—e.g.,
for a G.711 call without comfort noise to a non-RTP-compliant peer
which does not support RTCP—the disconnection detection is dis-
abled.

Initialize
RTCP=off  Silence=off ICE=off

RTCP received? Comfort noise
Negotiated? ICE used?

RTCP missed
for 3 consecutive
times?

No RTP received
for 3 intervals
between comfort
noise packets?

No RTP or STUN
packets received
for 3 x the STUN
keepalive interval?

Disconnection detected!Connectivity ok

Yes: enable Yes: enable Yes: enable

No Yes

Figure 2: Disconnection detection algorithm

Once a disconnection is detected, its duration is monitored and
the actions for the respective duration class are taken as discussed in
the following subsection. To detect regaining connectivity, RTCP
packets continue to be sent while disconnected and may be aug-
mented by STUN probe packets or RTP no-op packets if STUN is
not available: as soon as packets are received again, the failure is
over. Disconnections and regaining connectivity may be indicated
to the user by audible signals.



4.1.3 Detection Accuracy and False Positives
The three detection mechanisms work passively and are comple-

mentary. The observable incoming packet flows—RTP (media vs.
silence), RTCP, and STUN—exhibit different characteristics as dis-
cussed above, so that 1) the detectors operate at different timescales
and 2) have different susceptibility to packet losses. Therefore, if
multiple detectors are active, one detector may indicate a discon-
nection event while another one does not (yet). In general, RTP-
based detection has the finest granularity (as long as audio packets
are sent) whereas the relative reactivity of silence-, STUN-, and
RTCP-based detection may vary depending on the precise media
stream configuration. With this in mind, we suggest the following
resolution mechanism:

Whenever RTP-based detection is enabled, it takes precedence
and is used to infer disconnection events. Regardless of whether or
not RTP-based detection is enabled: even if other detectors suggest
a disconnection, such an event is ignored as long as RTP packets
or silence packets continue to be received. This matches the se-
mantics of a conversation: as long as the user hears something, the
call should continue. Only if no RTP packets (media or silence) are
received, STUN- or RTCP-based detection events are considered.
In this case, both are treated equal and the first indication is han-
dled as a disconnection event. This procedure should prevent false
positives due to detectors contradicting each other.

However, false positives are still possible if the detectors are too
sensitive given the conditions of the underlying network paths. Par-
ticularly RTP-based detection can allow for fairly fine-grained tun-
ing as many packets may arrive per second under normal circum-
stances. A careful trade-off needs to be found between, on one
hand, not unnecessarily extending the period of uncertainty (while
the user continues to speak) and, on the other hand, prematurely in-
voking repair mechanisms which may then disturb more by further
interrupting the conversation than they help. While upper bounds
representing a user’s patience are probably needed (should both
users agree?), adaptive timeout calculation mechanisms are prob-
ably needed within this bound (see also section 5.1). We leave
further considerations on dynamic adaptation for future study.

Finally, note that all three detectors presented above implicitly
assume symmetric connectivity and infer from a interruption of
packet reception that their own media transmission is affected, too.
Since our aim is support of conversational media, this assumption
appears justified.

4.2 Handling Disconnections
Disconnections lead to a loss of segments of a voice conversation

and may lead to call termination. According to the above classifi-
cation, we choose to:

1. Record the audio sent by each endpoint so that it can be de-
livered after the disconnection is over; this is independent of
the type of disconnection.

2. Recover the audio saved before; the mechanisms chosen vary
depending on the duration of the outage.

Dealing with disconnections has to be progressive since, at the
time a path failure is detected, it is unknown how long it will persist
and hence which measures need to be taken. Because detection
naturally incurs some delay, basic recovery measures need to be
taken pro-actively in all calls. The recovery method chosen is then
depending on the duration of the disconnection.

4.2.1 Pro-active Audio Recording
We record the audio data for the outgoing media stream in addi-

tion to generating the RTP packets of the encoded audio. Because
of the basic RTCP detection latency of some 20 s, we use a ring
buffer for 30 s of audio and also maintain sequence number and
timestamp information along with the media. The extra space al-
lows conveying more context information. This recording can grow
up to two minutes to cover the case that the local user wants to con-
tinue speaking even after the call disconnection has been signaled.

The recorded audio can be streamed as a sequence of RTP pack-
ets, to a human in an ongoing SIP session or to a voice mail box.
Or it can be delivered in a single message, e.g., to be used as an
email attachment or as an instant message.

4.2.2 Recovery Mechanisms
The recovery capabilities and the resulting disruption observed

by the user differ depending on the disconnection duration.
Short disconnections are handled by replaying the RTP stream as

soon as the connectivity is re-gained (figure 3). Each client starts at
a suitable point of the recording, being conservative since it cannot
know that the peer received (the latter may discard older duplicates
based upon the RTP sequence numbers). For short and quickly
detected disruptions, this results essentially in a few seconds of si-
lence, followed by the continuation of the previously heard sen-
tence. During playback, the speech continues to be recorded and
played back subsequently; the resulting delay is reduced over time
by removing silence periods. We assume that users will notice the
silence (and latest the disconnection signal), finish their sentence,
and do not continue speaking much longer until recovery has suc-
ceeded.
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Figure 3: RTP-based recovery

Call interruptions are handled slightly differently because the
media channel is lost and the call and media channel need to be
re-established. Assume that user B got disconnected (figure 4):
After disruption detection and (local) call termination, both UAs



attempt to re-establish the call using SIP INVITE messages.8 Once
this succeeds, the recorded voice is played back after an indication
tone and, subsequently, the users can continue their conversation.
The recovering UA should always be the one who established the
original call in order to maintain the charging characteristics of the
original call. If charging is not an issue, both UAs should try to
recover and use randomized timers and a tie-breaking mechanism
to deal with the possibility that accidentally two dialogs in opposite
directions get established simultaneously (see section 4.2.3).
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Figure 4: SIP-based recovery

Call terminations occurs if the automated re-establishment fails
for a certain period of time. In this case, a UA indicates this to the
user and allows the user to record additional voice and transforms
the entire recording into a voice mail—subject to the user’s con-
sent. The UA which stays connected can either send an INVITE
and play the media stream via RTP to the voice mail server. Or the
UA may open a messaging session with an instant message store of
user B and deliver the voice contents as an instant message—which
gets delivered to B once its UA becomes reachable again. If the
user does not stay connected, it has to wait until connectivity is re-
gained and then send the voice mail using either option. RTP-based
streaming has the advantage that this approach will work with ar-
bitrary SIP servers supporting voice mail. However, the streaming
may take more time (and is thus, again, potentially prone to further
disconnections). And the UA may need to explicitly indicate its
preference to talk to voice mail using SIP Caller Preferences [28]
(so that the other user is not alerted again).

Given suitable UAs, the originally synchronous voice commu-
nication could be continued in an asynchronous fashion, similarly
to a walkie-talkie or push-to-talk application, except with poten-

8If the dialog still exists at the remote peer, the Replaces: header
can be used to indicate substitution of a previous dialog and thus
avoid ringing the phone again. Preferably, however, a semantically
distinct Recovery: header should be used which allows the receiver
UA to handle the call accordingly.

tially longer delays between interactions—using voice messaging
in analogy to instant text messaging [20]. User interface controls
could allow users easily to transition back to synchronous commu-
nication if a need arises.

4.2.3 Backwards Compatibility
If only one of the UAs supports the extensions described above,

the automatic session re-establishment will still work (yet the other
UA may “ring”), but media recording and replay will only work in
one direction. It may be awkward for the user of the non-extended
UA to answer the phone and immediately hear the continuation of
a previous voice call. Hence, it seems sensible to have a capability
indication exchanged during the INVITE transaction so that the au-
tomatically recovering UA can insert some delay (and maybe an an-
nouncement) before continuing playback. Such a capability is also
useful to decide whether or not session re-establishment should be
attempted at all and which node has to become active for SIP-based
recovery.

For this purpose, the aforementioned Recovery header with two
values can be included in every INVITE message and the corre-
sponding 200 OK response. For any dialog setup initiated by a
user, the first value is “false”, for automated recovery, it is “true”.
The second value indicates a random 32-bit value as a tiebreaker.
In case of simultaneous dialog re-establishment, the dialog from
the entity with the larger value will remain active. In case a UA
does not want to actively recover, it indicates this by using a value
of zero in the original call.

5. EXPERIMENTAL VALIDATION
We have evaluated our design in two complementary ways: We

have performed a first set of packet-based measurements passively
observing (in UMTS) and actively causing (in WLAN) variable
path performance including disconnections and analyzed the be-
havior of our algorithms based upon the resulting reception char-
acteristics. And we have implemented a prototype integrating the
DT-SIP functionality into a SIP UA.

5.1 Packet Trace Analysis
All the mechanisms introduced above rely on timeouts for de-

tecting disconnections. To understand the effectiveness of our algo-
rithms, we provide an analysis of the packet loss, delay, and packet
inter-arrival characteristics for RTP traffic in two different scenar-
ios. From the spacing between successively received packets, we
can understand where our algorithms would perceive a connectiv-
ity loss (assuming certain delay parameters) and gain insights into
proper (possibly adaptive) parameterization. For this purpose, we
collected traces for UMTS data communication9 to a mobile user
on a train and WLAN traces to a pedestrian user in our lab.

We carried out six measurements using a UMTS data connec-
tion while aboard an Intercity train of Finnish Rail (VR) between
Helsinki and Tampere in both directions. We used a server in our
lab as the fixed endpoint and an IBM T41p laptop running Windows
XP—connected to UMTS via Bluetooth and a Nokia E70 mobile
phone—as the mobile node. A VPN tunnel was needed 10 and set
up between the mobile node and the University of Bremen, so that
we obtained a relatively long Internet path (about 30 hops).

The fixed node generated a steady stream RTP/RTCP packets
using rtpsend [17]. The media stream consisted of 52 byte RTP

9Assuming that non-3GPP users would (be forced to) run VoIP ap-
plications using the data channel.

10Otherwise UDP traffic was apparently filtered and not a single
RTP packet was received in either direction.



packets (12 bytes header + 40 bytes payload) sent every 20 ms re-
sulting in an application data rate of some 20 kbit/s and 100 byte
RTCP packets sent once per second resulting in a data rate 800 bit/s
(modestly above the 2.5% fraction targeted for RTCP). The incom-
ing packets were recorded at the mobile node using rtpspy [17].
Offline processing used scripting to produce the results (visualized
using gnuplot). Based upon these measurements, we investigate the
effectiveness of our RTP-based and RTCP-based detection mecha-
nisms below.11

The measurements were mostly taken while the train was mov-
ing but also included stops in train stations along the way. Out of
the six runs, only runs 1 and 2 lasted as long as expected and were
manually terminated after some 15 minutes. For the other four runs,
UMTS connectivity broke earlier, yielding trace durations between
60 s and 6 min. Durations and the RTP packet count are indicated
in figure 9 below.

Figures 5 and 6 show the packet arrival characteristics for runs
1 and 2: the light shaded areas indicate the per-packet RTP delays,
the crosses indicate RTCP delays, and the vertical bars the length of
loss runs (at log scale) for RTP packets sent at a rate of 50 packets/s.
Both delays are measured relative to the first received packet. For
both runs, we observe quite some variation in delay (up to some
13 s) and repeated loss runs of several 100 packets (equivalent to
several seconds). We also observe that losses equally affect RTP
and RTCP packets (as expected if both share the same VPN tunnel).
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Figure 5: Packet arrival characteristics for UMTS run 1

For timeout-based detection, the inter-arrival delay of packets is
the primary indicator when our detectors would kick in. Further-
more, the (increasing) per-packet delay may be an early indicator
as may be the packet reception frequency. The latter two, how-
ever, depend on queuing delays along the path and may or may
not be directly correlated with upcoming outages. Figures 7 and 8
show the per-packet delay for RTP (again relative to the first packet
received) as the light-shaded area and the packet inter-arrival de-
lays as crosses. Both figures show many gradual and steep delay
increases due to queuing (which may or may not be caused by a
worsening wireless link requiring more retransmissions) where the
inter-arrival delays remain relatively low, packets keep flowing, and
no connectivity loss occurs.

11Note that RTCP is representative also for detection based upon
STUN or silence packets as the packet transmission frequency may
be roughly similar.
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Figure 6: Packet arrival characteristics for UMTS run 2
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Figure 7: Per packet and inter-arrival delays for UMTS run 1

Assuming adaptive applications on the endpoints (and sufficiently
patient users), detection mechanisms should hence rely on frequent
packet samplings (as provided only in the RTP stream). If silence
suppression is enabled or STUN or RTCP-based detection are in
use, their timeouts should be chosen carefully (and may need to be
dynamically adapted according to the observed jitter) in order to
avoid false positives arising simply due to significant propagation
delay variations. It seems preferable to have the user manually ter-
minate a deteriorating call when she find it unbearable rather than
invoking recovery procedures too early.12

Figures 9 and 10 show the complementary cumulative distribu-
tion functions for inter-packet arrival times for RTP (log-log scale)
and RTCP packets (log scale).13 For the RTP traces, we observe

12Experience from experiments with real users is required to de-
termine what is acceptable in a real conversation. An analysis of
skype conversations has found that the RTT has only little impact
on the user satisfactions (hence, longer delay would be acceptable)
where jitter and bit rate are dominant (hence, delay variations are
not acceptable) [6].

13For the RTP packets in our six runs, the curve does not start at
1 as many of the packets arrive in “batches” with less than 10 ms
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Figure 8: Per packet and inter-arrival delays for UMTS run 2

that 0.065–0.3% of adjacent packets are more than one second apart
(dashed lines in the figure). Even for the lowest value (run 2), this
yields a mean of one occurrence every 1,500 packets (=30 s) and
hence a timeout of 1 s occurred 27 times in our longest trace; for
run 1, we obtain about 0.13% and 47 timeouts. RTCP-based mech-
anisms using three successive missing packets as indicator (RTCP
sent at 1 s intervals) result in 36 detections for run 1 and 21 detec-
tions in run 2. A slightly lower detection rate for RTCP is expected
since occasional short-term outages are not covered by this mecha-
nism.
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Figure 9: Inter-arrival times of RTP packets

To determine whether the two detection mechanisms operate in
line with each other, we run a combined algorithm over all the
traces and observe at which point in time the RTP- and RTCP-
based detectors notice a disconnection. Table 1 summarizes the
number of detections per method. We observed that in most cases,
both detection mechanisms agree and that, naturally, RTP provides
faster outage detection (which also explains the generally higher
number of events). However, we observed one event in runs 4 and

inter-arrival time despite their transmission spacing of 20 ms.
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Figure 10: Inter-arrival times of RTCP packets

six events in run 6 in which three successive RTCP packets got
lost, but RTP packets continued to flow—which emphasizes that
the mechanisms should be applied together. Finally, not all of the
disconnection events reported by the RTP detector were real dis-
connections, as can be seen from the lower RTCP reporting rate.
This calls for a cautious choice of the timeouts. As noted earlier,
which timeouts to apply before declaring a disconnection and take
a repair action (and how to adapt these timeouts to the networking
conditions) is subject to future study.

Test run 1 2 3 4 5 6
RTP-based detection 47 27 10 3 11 20
RTCP-based detection 36 21 6 3 6 20

Table 1: Number of detected connection loss events

We have also performed a first WLAN experiment in the lab to
collect and analyze packet traces as above. We have set up a dedi-
cated access point and used a fixed local node to generate an RTP
packet stream to a laptop serving as a mobile node (using the same
rtpsend and rtpspy setup as above, but 68.8 kbit/s as RTP data rate
with 160 bytes audio payloads). Our experimental WLAN was un-
loaded but there was interference from production WLANs spread
throughout the building. We walked through the corridors in our
building starting close to the access point until the connectivity was
lost and returned in order to re-gain connectivity. We repeated this
experiment five times and applied our detection algorithms to the
resulting RTP trace files. As expected, we find much less varia-
tion of delay and inter-arrival times in a WLAN, typically less than
a hundred milliseconds and some 10–20 ms, respectively. These
values increase significantly as we move closer to the edge of the
coverage area of our WLAN, reaching up to 1 s and 2 s, respec-
tively. Under these conditions, the RTP-based detection mechanism
worked reliably and no false positives were observed.

5.2 Prototype Implementation
We have done a proof-of-concept implementation which is based

upon the RTP/RTCP-based detection mechanism and supports all
three recovery steps described above. We build on the SIP com-
municator open source implementation14. The SIP communicator

14https://sip-communicator.dev.java.net/



can be subdivided into three major modules: the SIP module, the
media module and the GUI module. The SIP module provides all
functions of SIP signaling: it processes all of the SIP requests and
responses, and keeps the state of the session transactions.

The multimedia functions are implemented in the media mod-
ule, currently restricted to voice. The voice data flow is depicted
in figure 11. The entire process of handling voice data is imple-
mented in this module, including recording voice data to and re-
trieving recordings from the local file system. The media module
also manages RTP sessions. The network failure detection mecha-
nism is implemented on top of the RTP session management. Usu-
ally, the SDP would be considered part the SIP signaling. In this
implementation, however, SDP messages are parsed by the media
module to simplify the interfaces between different modules. The
SIP module pushes the entire SDP messages to the media module
which has the best knowledge to understand the SDP message and
format and act upon it. This also simplifies extending the detection
to cover silence suppression and ICE in the future.Implementation 

 

 
 

Figure 1 Voice data flow 
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Figure 11: Implementation overview

The GUI module is the implementation of user interfaces. All of
the GUI components are based on swing components. In addition,
a sound alert component is also implemented in the GUI module.
We have not yet implemented additional user interface elements
provide enhanced control to the users to deal with disconnections
and voice messaging.

To test the implementation of the disconnection-tolerant SIP (DT-
SIP) client, we use a small SIP network comprising a SIP Express
Router (SER) running on a Linux PC with an additional voice mail
server module to store the voice mail from SIP clients. None of
these components has been modified specifically for our experi-
ments. Two DT-SIP clients are running on two independent ma-
chines as users A and B.

We have experimented with the three above disconnection sce-
narios. In the first scenario, client A calls clients B, and then we
switch off the network interface of client A for 3 seconds in the
middle of the call. After the network connection of client A is re-
covered, both clients A and B hear the delayed voice from each
other. If both keep on talking to each other, the voice data contin-
ues to have a large delay which dependent to the connectivity loss
duration—the implementation of silence compression is still ongo-
ing. We observed that this recovery mechanism fails if either SIP
client changed its IP address after the network recovery because
the implementation assumes that the old RTP session will be con-

tinued. In case of such a failure, either or both nodes observe a pro-
longed outage period which will lead to a session re-establishment
(second scenario) to rebuild the entire RTP session.

In the second scenario, we cause a longer path failure in the net-
work and recover the connection after it. Both clients are trying
to contact each other in randomized intervals after detecting the
network break. In this scenario, either client A or client B will be
called as soon as network is recovered. After the call is rebuilt, both
clients are staring to replay the recorded voice. While the recovery
works fine, we have yet to implement the user interface controls to
allow users to switch off the auto-callback function or disable the
playback after automated re-dial.

For the the third scenario we disconnect client A for a long period
of time. Again, both clients try to contact each other but without
success. In this case, client B reaches the voice mail server first
because its connectivity remained. Client A connects to the voice
mail server only after a long period without connectivity but can
finally deliver the voice mail. While there is currently no interactive
or automated retrieval of voice messages in the user interface, the
basic voice mail retrieval functionality through an explicit call or a
separate web interface proves the core functionality to work.

Finally, we have repeated the WLAN walking experiment in our
lab described in the end of the previous subsection: we ran our
prototype implementation on the mobile node and used Ethereal
to monitor the wireless traffic to and from our mobile node. We
moved out of WLAN coverage and returned repeatedly causing
short and middle disconnection durations—as determined from the
Ethereal traces. The voice conversation in the SIP dialog was re-
covered without additional SIP signaling for short durations of up
to 15 s and by using automated SIP call re-establishment for longer
disconnections.

6. CONCLUSION
In this paper, we have addressed the—largely neglected—case

when seamless mobility with ongoing multimedia sessions fails
and recovery is usually left to the users. We have proposed end-
to-end disconnection detection mechanisms that do not make any
assumptions about the location of failures and do not rely on link
or network layer indications. We have proposed three recovery
schemes to deal with outages of different durations, the use of
which is basically customizable by the end user. All our mecha-
nisms can be implemented using standard-compliant SIP and RTP.
Yet, we propose one optional minor extension to SIP for dealing
with non-DT-SIP peers and use standardized RTP and RTCP ex-
tensions to improve detection efficiency.

We have performed a first validation using RTP/RTCP measure-
ments over UMTS and WLAN to assess the basic feasibility of
the detection mechanisms. We have also provided a prototype im-
plementation of the basic functionality, which clearly shows that
the technical aspects of disconnection handling are well addressed.
Our experiments have confirmed that further work is needed to
properly address the usability aspects, ranging from adaptive time-
out mechanisms to determining acceptable upper bounds for time-
outs to silence compression to UI cues about disconnections to sup-
port for managing disconnected calls to an efficient integration of
asynchronous and synchronous communication.
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