
Flexible QoS Provisioning for SIP Telephony over
DVB-RCS Satellite Networks
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Abstract— DVB-RCS satellite networks pose a challenging
environment for IP telephony due to the link conditions of long
delays and low bandwidth as well as the diversity of network
scenarios. We have designed an architecture for providing flex-
ible QoS provisioning under these conditions. The architecture
addresses flow detection, admission control and user notification
in this heterogeneous environment where it is not always possible
to take active part in call signaling and endpoint cooperation
cannot be relied upon. We have developed and tested a prototype
implementation of parts of the architecture which indicated that
scalability will not be limited by processing speed or memory
usage up to the data rates encountered in satellite links.

I. INTRODUCTION

Prioritization of interactive, real-time traffic flows over other
types of traffic is often crucial for ensuring the flawless
operation of IP telephony (voice over IP, VoIP) applications.
Without prioritization, other traffic competing for the same
transmission resources may lead to increasing queuing delays
and packet losses for UDP-based real-time flows. This is espe-
cially important in networks with challenging links conditions,
such as long delays and low bandwidth. DVB-RCS is one
concrete link layer technology that exhibits such conditions.

DVB-RCS is an ETSI standard for providing a return
channel via satellite, typically used in conjunction with DVB-
S forward channels. It defines PHY and MAC layer mecha-
nisms including capacity requests and resource allocation. The
mapping of application layer QoS requirements onto the PHY
and MAC layer mechanisms is still an open research problem.
Higher layer issues of the DVB-RCS architecture are handled
by an independent, non-profit organization SatLabs. SatLabs
has addressed the issue of higher layer QoS requirements
by developing a mapping strategy between DiffServ Per-
Hop Behaviors (PHB) and lower layer capacity request and
resource allocation mechanisms [1], [2]. This mapping serves
as a basis for the architecture presented in this paper, allowing
a design based on the standard DiffServ mechanisms.

While numerous solutions exist for prioritizing IP packets
in order to provide different levels of QoS (see section III), a
complete architecture for implementing QoS over DVB-RCS
links has not been proposed.

The IST FP 6 project VIVALDI addresses this gap still
existing between the QoS requirements of VoIP applications
and the lower layer DVB-RCS mechanisms by developing
an architecture for providing QoS to (SIP-based) VoIP calls
in DVB-RCS networks. This paper presents a high level
architecture designed in the VIVALDI project in order to

address the identification of critical flows (e.g., SIP and RTP),
call admission control and user notification. Section II presents
the target scenarios and the resulting requirements and section
III selected related work on QoS. Section IV introduces the
VIVALDI architecture, a prototype implementation of which
is presented in section V. Section VI reviews our findings and
hints at future work.

Fig. 1. Network layout

II. SCENARIOS AND REQUIREMENTS

A. Usage Scenarios

The basic usage scenarios can be subdivided into three cases
depending on who provides the IP telephony service and where
the VoIP server(s) are located as shown in Figure 1. Each
scenario imposes different requirements on the architecture.

1) The satellite service provider is also the VoIP service
provider and operator of the VoIP server. In this case, the
VoIP service comes bundled with the satellite Internet service
and the operator controls all the network elements.

2) The VoIP service is offered by a separate service provider
that operates the server in their own network. An example
of this case is a consumer who purchases satellite Internet
access from a satellite service provider and VoIP service from
a dedicated VoIP service provider.

3) The VoIP service is run by the end-user’s organization
and the VoIP servers are distributed to the end-user’s remote
locations or centralized in a data-center. A typical example
of this case is a corporation that connects remote sites to the
head office through satellite links.



In case 1, the VoIP service and the VIVALDI architecture
are both operated by the same entity. This allows having
elements of the VIVALDI architecture take an active part in
the signaling which is a prerequisite for deterministic operation
and allows the architecture’s admission control process to have
explicit control over the call setup procedure.

In cases 2 and 3, the VoIP service and the VIVALDI
architecture are operated by separate entities so that it is not
possible to define architectural elements involved in the call
signaling. The satellite service provider is merely a bitpipe.
As explicit control of the call setup procedure is not possible
in these cases, nor can cooperation by the end-points be relied
upon, a probabilistic approach is required.

B. Requirements

The core requirements of the VIVALDI architecture are
derived from the need to support all the above scenarios:

1) Probabilistic detection of real-time flows. The prob-
abilistic approach to flow detection attempts to associate
packets with flows based only on the information gathered by
inspecting the packets. As this approach does not rely on being
able to take active part in the call signaling process it can be
used even in scenarios 2 and 3. The probabilistic approach may
attempt to detect signaling messages that precede the media
flows (e.g., SIP INVITE messages if not encrypted) or to detect
media flows directly (e.g., RTP).

2) Deterministic detection of real-time flows. Determin-
istic detection of flows is possible when the architecture takes
active part in the call signaling process and therefore has
explicit knowledge about the established calls. Scenario 1 is
the only case where deterministic detection is feasible.

3) Call Admission Control (CAC). The DiffServ archi-
tecture only delivers higher QoS to traffic classes inside the
DiffServ domain, not to individual flows. A CAC procedure
is required to admit or deny the entry of individual flows into
the traffic classes in such a way that the desired QoS level
can be reached without negatively impacting the QoS level
of previously admitted flows. Beyond this basic requirement,
different scenarios might include further variables that affect
the CAC procedure (e.g., pre-paid calling credits).

4) Indication of busy conditions. During congestion peri-
ods some of the flows cannot be admitted to the higher QoS
classes. This appears to the end-users as lower than expected
perceived quality. Under these conditions the VIVALDI ar-
chitecture should be able to prevent the call from being set
up (deterministic approach) or to signal the end-user that the
lower than expected perceived quality is caused by congestion
(probabilistic approach).

III. RELATED WORK

We can distingush two different approaches for explicitly
prioritizing selected packets in IP networks:1 (1) With inte-
grated services [3], signaling is used to reserve resources [4],
[5] for a particular flow which is confirmed or rejected by

1We deliberately exclude any detailed discussion of queuing and forwarding
schemes part of any QoS-enabled router.

the network. Routers identify IPv4 flows by the quintuple
of source and destination address and port and the protocol
id and then treat them according to their reservations. (2)
With differentiated services [6], traffic flows are assigned to
diffserv classes (typically but not necessarily by the source)
and marked using the corresponding DiffServ Code Point
(DSCP) in the TOS bits in the IP header. Routers handle
packets according to their DSCPs: they may perform relative
prioritization among the classes or limit the available resources
per class and unmark packets exceeding service level agree-
ments, treating them as best effort traffic. DiffServ does not
give guarantees and does not provide explicit feedback to a
source about the (un)availability of resources.

It is usually the endpoint’s responsibility to obtain the
necessary resources or determine which DSCPs to use. Both
types of mechanisms can be integrated with SIP signaling:
explicit resource reservations are supported by means of the
QoS precondition framework [7], [8], whereas DSCPs can be
signaled using recent SDP extensions [9].

Numerous architectures for QoS-enabled IP telephony have
been designed based upon these basic building blocks, often
for largely closed networks, such as the PacketCable DCS
architecture [10], [11], 3GPP IMS [12], or TISPAN’s use
of IMS for the fixed network [13], where often the network
and the IP telephony service provider are identical.2 If not
all parts of the network are under service provider control
(e.g., when an ISP interfaces to a customer’s private network),
provider-controlled devices—referred to as Session Border
Controller (SBC) [14]—are used for policy enforcement on
packet forwarding, e.g., to improve or degrade QoS of flows.

In the above cases, it is either the endpoints’ or the service
providers’ responsibility to determine the (un)availability of
resources for a call and accept or reject the call—which is
achievable as the relevant devices are under common control.
In a heterogenous environment like VIVALDI, where different
deployment scenarios may co-exist, unknown equipment may
be used on the telephony service provider and user side, and
even different telephony signaling protocols may be used,
these properties do no longer hold.

IV. VIVALDI ARCHITECTURE

Figure 2 shows the layout of the VIVALDI architecture
designed to support the various usage scenarios and their
combined requirements. The architecture is based upon di-
viding the required functionality into separate elements with
clean interfaces and by adding elements supporting the over-
all operation. Furthermore, the performance-critical parts are
separated from other functions. This is done to promote low
coupling and high cohesion, which in turn allows for robust
and extensible implementations.

Probabilistic flow detection (1) is fulfilled by the flow
modules, deterministic flow detection (2) is done in the Sig-
naling Server, CAC (3) is handled by the Admission Control
Unit and busy condition signaling (4) is the responsibility of

2Similar architectures may be found in closed corporate networks.



the Pushback Signaling Unit. Further elements were added
to support centralized configuration (Configuration Source),
and to simplify Flow Module management and the interfaces
(Module Controller).

The layout describes logical boundaries for implementa-
tions. The elements can be implemented separately and even
run on separate hardware connected via fast links. However,
implementations do not have to strictly follow this separation
and all the elements can be implemented in the same network
element if required.

Instances of the architecture are deployed independently on
both sides of the satellite link (see Figure 1) and process
the data before it enters the satellite segment. Only the Flow
Modules must lay directly on the path taken by the traffic
entering the satellite segment. All other elements can be placed
elsewhere as long as they are connected via low delay links.

Fig. 2. Architecture overview

A. Flow Modules

Flow Modules are the lowest level functional elements.
They are located in the data path and directly manipulate the IP
packets. The Flow Modules behave as detectors and actuators.
The detector functionality is implemented by an arbitrary
heuristic capable of probabilistically detecting the beginning
of new flows and the termination of existing flows (thus
addressing requirement 1). The bandwidth usage of individual
flows must also be continuously measured. The Flow Modules
are also capable of acting as actuators by manipulating the
DSCP values in the IP headers and optionally by dropping
certain packets in order to perform simple traffic shaping
(e.g., when a flow exceeds its bandwidth allocation), thereby
supporting requirements 1 and 2. Flow Modules continuously
act as detectors but only act as actuators when instructed to
do so by the Module Controller.

Implementations of the Flow Modules may range from
simple port-number-based detection to RTP header detection
to SIP signaling interception and even to detection based on
statistical models (e.g., when trying to detect encrypted media
flows based on their statistical characteristics). We envision
jointly operating specialized flow module implementations,
each optimized for different detection tasks.

Flow Modules are the most performance critical elements of
the architecture as they are required to process and manipulate
all the IP packets at line speeds. This leads to a critical trade-
off decision between detection accuracy and processing speed.

B. Module Controller

The Module Controller is responsible for all communica-
tions with the Flow Modules, for soliciting admission control
decisions for new flows, and for storing flow states including
addresses, UDP port numbers, responsible modules, and the
decisions concerning the flows. All the Flow Modules com-
municate with the Module Controller via unicast IPC.

The primary function of the Module Controller is to control
which flow module is the actuator for a given flow. It is
possible that multiple Flow Modules of different type detect
the same flow. Therefore, in order to avoid unpredictable
behavior due to multiple Flow Modules interfering with each
other, the Module Controller will instruct one of the flow
modules to handle flow. This decision can be changed at any
time in order to have a different Flow Module take over the
responsibility for a flow (e.g., in case of Flow Module failures).

The decision logic for the choice of the responsible Flow
Module in the case of probabilistically detected flows can
be arbitrary, but is limited by two factors: 1) the Module
Controller has no knowledge about the specific capabilities
of any module (e.g. the protocol that the module detects)
unless it is statically configured, and 2) the Module Con-
troller’s information about each flow is limited (IP addresses,
UDP port numbers, and bandwidth usage). In the case of a
deterministically detected flow, the Module Controller should
be preconfigured to always select the same Flow Module with
known capabilities.

C. Admission Control Unit

The Admission Control Unit (ACU) holds the logic required
for making admission control decisions. In practice this means
deciding which flows are admitted to higher QoS classes and
which ones are given only basic best-effort service.

The main responsibility of the ACU is to ensure that the
higher QoS classes are not saturated. This may be done by an
arbitrary CAC algorithm that tracks the resource usage and the
overall resource allocation, and decides to admit or deny new
flows into the DiffServ QoS classes. The decisions are made
when new flows are detected or when the characteristics (e.g.,
bandwidth usage) of existing flows change.

The information in the ACU (which flows have been given
higher QoS at what point in time) can also be used for
providing Call Detail Records for billing, efficiency measure-
ments, quality monitoring, and similar purposes. And the ACU
algorithm may be designed to support nomadic and prepaid
services if desired.

D. Pushback Signaling Unit

The Pushback Signaling Unit (PSU) is an optional unit that
can be used to provide feedback to the users about the current
resource usage status and the admission control decisions in



order to fill the requirement 4. Since the information required
by the PSU is contained in the ACU the two are connected
directly. The ACU will inform the PSU of all its decisions
(e.g., the admission of a new flow) as well as periodically
announce the overall state of resource usage.

The range of possible PSU functions is large. For example,
it could be used to control an indicator light or a small client
application based on the current resource status, or in a more
complex case, to implement a presence server that users can
add to their VoIP client’s user list or to which the VoIP server
could subscribe to. However, pushback signaling is always
limited by the fact that, unless specifically configured, the
PSU has no knowledge which functionality is available on
the endpoints.

E. Signaling Server

The Signaling Server in the VIVALDI architecture refers to
a standard server for a given signaling protocol (such as SIP
or H.323) with additional logic added for communicating with
the ACU. It is an optional element that can be used when a
high level of control over the service is desired (scenario 1).
This is achieved by having the Signaling Server take active
part in the call setup signaling, with the ability to explicitly
get information about the flows (requirement 2). Furthermore,
if the admission of the flows is rejected, the Signaling Server
may explicitly signal this to the users and stop or delay the
call setup process, thus also acting as a PSU (requirement 4).

F. Configuration Source

The Configuration Source is a central location for main-
taining all the configuration information required by the Flow
Modules. The configuration data contains mandatory informa-
tion such as policy decisions (e.g., which DSCP is used for
detected flows before a decision is available), as well as static,
module specific configuration information such as the known
protocol ports which a port based detection Flow Module
should track. The configuration information will be pushed
to the Flow Modules enabling automatic configuration of new
Flow Modules.

G. Interactions between the Elements

The Flow Modules, the Module Controller and the Ad-
mission Control Unit all maintain state information about the
active flows. The flow modules need the flow state in order to
make quick decisions for each packet. The Module Controller
needs to maintain flow information in order to track which
Flow Modules are responsible for which flows, and to keep
track of the decisions made by the Admission Control Unit.
The Admission Control Unit needs flow state in order to track
the resource usage and to make decisions about admitting or
denying new flows. In the deterministic case, the signaling
server will also hold state about the active flows.

In all inter-element interactions the flow states are abstracted
to a 5-tuple of source and destination IP addresses and UDP
ports and the measured bandwidth usage. UDP ports are as-
sumed since real-time media transmission protocols typically

use UDP. If support for other transport protocols is required,
the flow state abstraction can be extended to include a protocol
indicator (e.g., the protocol number). Furthermore, support
for multiple flows multiplexed within a single transport layer
connection can be added by including a flow identifier.

Although the state information in the different architectural
elements is not identical (for example, the Admission Control
Unit does not need the same amount of detail as the Flow
Modules), the states should be held consistent between all the
elements. Therefore, the state information should be modified
at the same time in all the elements. However, only rough
state consistency is required (in the order of seconds) which
allows the frequency of inter-element signaling to be orders of
magnitude lower than the packet frequency of the underlying
media flows. This can be reduced further by aggregating
multiple flow state information units into a single message.

Each architectural element that needs information about the
flow states maintains a flow state table that contains all the
relevant state information about the known flows. The entries
in the flow state tables are soft-state; entries are removed from
the table after certain time-period unless they are refreshed
by an incoming message. We have developed a UDP-based
protocol for each of the interfaces shown in fig. 2 to facilitate
the exchange of state information.

The state refreshes (as well as the initial detection messages)
are triggered from different sources depending on whether the
flow is detected probabilistically or deterministically. In the
case of probabilistically detected flows, the Flow Modules are
responsible for the initiation of the refresh message; whereas
in the case of deterministically detected flows the ACU is
responsible for initiating the refreshes.

V. IMPLEMENTATION AND VALIDATION

We have developed a prototype implementation for valida-
tion purposes covering admission control, probabilistic flow
detection, and centralized configuration; the deterministic ap-
proach is not included in the initial prototype but we are
presently investigating using third-party SIP servers and a
standardized admission interface. We implemented the pro-
totype as three separate applications: Admission Control Unit,
Module Controller with a Configuration Source, and a Flow
Module.

We have tested the prototype implementation on a Linux-
based desktop machine with multiple Ethernet interfaces and
enough resources so that processing speed did not become a
bottleneck. Test loads in the order of a hundred simultaneous
calls were generated with a dedicated traffic generator.

The prototype implementation includes a Flow Module
containing an RTP detection state machine. The RTP detection
mechanism resulted in the first packet of a new RTP flow being
missed, the second and third packets were detected but an
admission control decision from the ACU was not available,
and from the fourth packet onwards the flow was detected and
an admission control decision from the ACU was available.
This detection pattern is independent of the offered load, but
does depend on the communication delay between the ACU,



Module Controller and the Flow Modules. In the typical case
of 20 ms of voice data per IP packet, the results imply that
the first 20 ms of a new call will not receive higher QoS, the
following 40 ms will receive QoS based on a static policy
decision and from 60 ms onwards the QoS will depend on
the admission control decision. This is unlikely to lead to
noticeable clipping and will also not have a severe impact
on the jitter reporting by the receiver.

The additional processing done by the prototype increased
the average jitter of the RTP flows by less than 1 ms and the
average delay of all packets by no more than 0.1 ms. The initial
testing also indicates that the architecture is reasonably scal-
able, with the prototype implementation capable of processing
at least 16,000 packets per second (average total processing
time per packet of 0.06 ms). Significantly shorter processing
times are likely to be achievable through more optimized
implementations. But even our prototype would be able to
support more than 100 simultaneous flows at 50 packets/s
(i.e., 20 ms intervals) at a total data rate of some 1–6 Mbit/s
depending on the codec.3

The architecture appears also scalable in terms of the
signaling traffic between the architectural elements. The total
combined inter-element signaling traffic was 1 KB/s for 20
simultaneous calls, 1.7 KB/s for 40 simultaneous calls and
thus would also scale to hundreds of calls. As the prototype
was not highly optimized with respect to the inter-element
signaling traffic these figures can also be lowered with more
optimized implementations. We therefore foresee no problems
in covering a satellite link.

The impact of the architecture on the media flow transmis-
sion characteristics such as delay, jitter and packet loss were
deliberately left out of scope of the testing. These are entirely
dependent on the scheduling and queuing algorithms used
by the DiffServ enabled network elements which have been
extensively studied before. The impact of various scheduling
and queuing algorithms can be found, e.g., in [15], [16].

VI. CONCLUSION

This paper presented scenarios in the context of DVB-RCS
satellite networks that motivate the design of a flexible QoS
provisioning architecture for VoIP. The architecture presented
allows for the required flexibility in the implementations
needed to meet the requirements of the diverse scenarios and
the heterogeneous environment where end-point cooperation
cannot be relied upon.

Initial prototype testing results indicate that the architecture
meets the requirements in the areas of probabilistic flow detec-
tion and admission control. Furthermore, the results indicate
that the architecture can potentially be scaled beyond the
relatively low bandwidth environment of DVB-RCS networks.

3Probes from two links of the FUNET backbone in May 2006 have shown
that these figures are reasonable: on a 1 Gbit/s link (some 50% utilization)
some 80,000 packets/s were observed at an average size of some 700 bytes,
with a fraction of 2-5% being UDP traffic (less than than 7,000 UDP packets/s
with a mean size of some 300 bytes). Our prototype can support such a traffic
mix (some 16,000 packets) at satellite forward channel data rates of up to
100 Mbit/s both in terms of processing speed and memory requirements.

While the architecture was motivated by DVB-RCS satellite
networks and SIP telephony in particular, the concepts devel-
oped can be applied in other scenarios (e.g., prioritization of
traffic prior to entering a VPN) and for other types of real-time
media flows.

Further work is required in the area of pushback signaling
and interactions with VoIP security mechanisms. How the users
are informed about link congestion and admission control
decisions in the case of heterogeneous end-points is still
an open problem. Furthermore, various security mechanisms,
such as the use of VPN tunnels and encryption of signaling and
media flows, hide much of the information that could be used
for probabilistic flow detection. We will explore whether this
problem can be overcome by using statistical traffic analysis
for flow detection.
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