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The networking landscape in which modern protocols must operate is no longer just 
the static, homogeneous Internet. As the demand for ubiquitous connectivity grows, 
the Internet stretches out to increasingly diverse environments, such as mobile ad-
hoc networks. In these environments, certain assumptions that current Internet pro-
tocols rely on may not hold, thus making these protocols ine!cient or even useless. 
Delay-tolerant Networking (DTN) is one approach to solving the problems that arise 
in such settings. In this thesis, our "rst objective is to conceptualize the mechanisms 
needed to enable web access in a DTN environment. More speci"cally, the goal is to 
run the Hypertext Transfer Protocol (HTTP) on top of the DTN transport protocol 
(i.e., the bundle protocol).

In a DTN environment, where connectivity may be intermittent and transmission 
delays long, it is important to avoid unnecessary round-trips between the communi-
cating nodes. Consequently, HTTP is not directly applicable to DTN due to its con-
versational style of operation in which the resources of a web page are fetched one 
at a time. We adapt HTTP to the DTN environment by introducing the concept of 
resource bundling, which means that web resources are grouped together into larger 
aggregates in order to minimize the number of round-trips required to retrieve a 
web page.

The second objective of the thesis is to implement the resource bundling concept in 
a web server application. The server builds on two major open source software com-
ponents that handle the low-level bundle protocol operations and form the basis of 
the HTTP server logic. We integrate these pieces and extend them with the high-
level resource bundling logic to produce a native DTN web server. We also perform 
measurements on the server, verifying its adeptness for real-world deployment and 
proving that the resource bundling concept truly has a positive impact on the web 
browsing experience in challenged network environments.
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Verkkoympäristö, jossa modernit protokollat joutuvat toimimaan ei ole enää vain 
staattinen, homogeeninen Internet. Verkkopalvelujen kysynnän kasvaessa Internet 
levittäytyy entistä monimuotoisempiin ympäristöihin, kuten mobiileihin ad-hoc 
verkkoihin. Näissä ympäristöissä toimivat verkot eivät välttämättä täytä tiettyjä 
ehtoja, jotka ovat edellytyksenä nykyisten Internet-protokollien käytölle. Tällöin 
näiden protokollien käyttö voi olla vaikeaa tai jopa mahdotonta. Delay-tolerant 
Networking (DTN) on eräs lähestymistapa, jolla voidaan ratkaista kyseisiä ongelmia. 
Tämän diplomityön ensimmäinen tavoite on mahdollistaa WWW:n käyttö DTN-
ympäristöissä. Käytännössä tämä tarkoittaa HTTP-protokollan sovittamista DTN:n 
kuljetuskerrosprotokollan (”bundle protocol”) päälle.

DTN-ympäristössä yhteydet voivat olla katkonaisia ja tiedonsiirtoviiveet pitkiä, 
minkä vuoksi on tärkeää välttää turhaa edestakaista viestiliikennettä kommu-
nikoivien noodien välillä. Normaalisti HTTP toimii siten, että se hakee www-sivuun 
liittyvät resurssit yksitellen. Tämä nimenomaan aiheuttaa turhaa liikennettä, joten 
HTTP ei suoraan sovellu DTN-ympäristöön. Työssä määritellään käsite ”resource 
bundling”, jonka avulla HTTP voidaan sovittaa paremmin DTN-yhteensopivaksi. 
Perusidea on koostaa www-sivun resurssit yhteen pakettiin, jolloin sivun noutami-
seen tarvittavien edestakaisten protokollaviestien määrä saadaan minimoitua.

Työn toinen tavoite on toteuttaa www-palvelinohjelma, joka tukee työssä määritel-
tyä ”resource bundling”-konseptia. Palvelin pohjautuu kahteen vapaan lähdekoodin 
ohjelmakomponenttiin, jotka ovat vastuussa alemman tason protokollaoperaatioista 
sekä HTTP-palvelimen perustoiminnoista. Integroimalla nämä komponentit ja ke-
hittämällä resurssien käsittelyyn liittyvän korkeamman tason logiikan, työssä toteu-
tetaan natiivi DTN-pohjainen www-palvelin. Työssä myös suoritetaan mittauksia, 
joilla varmistetaan palvelimen soveltuvuus todelliseen käyttöympäristöön ja lisäksi 
todetaan, että suunniteltu konsepti todella parantaa WWW:n käyttömahdollisuuk-
sia haastavissa verkko-olosuhteissa.

Avainsanat: DTN, HTTP, bundle protocol, resource bundling, web server
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AA  Application Agent
AJAX  Asynchronous Javascript and XML
API  Application Programming Interface
ASCII  American Standard Code for Information Interchange
BPA  Bundle Protocol Agent
CLA  Convergence Layer Adapter
CRLF  Carriage Return, Line Feed
CSS  Cascading Style Sheets
DOM  Document Object Model
DoS  Denial-of-Service
DTN  Delay-Tolerant Network(ing)
DTNRG Delay-Tolerant Networking Research Group
EID  Endpoint Identi"er
HTML  Hypertext Markup Language
HTTP  Hypertext Transfer Protocol
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IP  Internet Protocol
IPN  Interplanetary Internet
MHTML MIME encapsulation of aggregate HTML documents
MIME  Multipurpose Internet Mail Extensions
S/MIME Secure/Multipurpose Internet Mail Extensions
SDNV  Self-Delimiting Numeric Value
SMTP  Simple Mail Transfer Protocol
SSL  Secure Sockets Layer
SSP  Scheme-Speci"c Part
TCP  Transmission Control Protocol
TLS  Transport Layer Security
UDP  User Datagram Protocol
URI  Uniform Resource Identi"er
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WLAN  Wireless Local Area Network
XHTML Extensible Hypertext Markup Language
XML  Extensible Markup Language
YAML  YAML Ain’t Markup Language



1 Introduction

Internet access has become ubiquitous in the past decade and this growth can only be 
expected to continue. We are no longer required to sit in front of a personal computer 
with a wired network connection to use the Internet. Instead we have mobile devices 
with the capability to access the Internet wirelessly and conveniently almost anywhere.

From a networking perspective, unconstrained mobile Internet access is problematic. 
The protocols that the Internet relies on were developed for a network that is more or 
less well-connected. These protocols assume that there is a continuous end-to-end path 
between the communicating nodes, and that the delays and error rates are relatively 
low. In a mobile network environment these assumptions often may not hold and con-
ventional protocols may perform poorly or fail completely.

Delay-tolerant networking (DTN) is an emerging research area that focuses on ena-
bling communications in di!cult and unpredictable network environments. The Delay-
Tolerant Networking Research Group (DTNRG) has developed a network architecture 
that is designed to work in situations where traditional protocols would fail: in net-
works with intermittent connectivity, long delays, high error rates and asymmetric 
data rates. A network conforming to the DTN architecture, often simply called a 
DTN, is an overlay network that can comprise multiple regional networks, each of 
which may use di#erent lower-layer technologies. Thus, the DTN overlay provides a 
common ground for applications that might not otherwise be able to communicate.

As Internet access becomes more and more common in increasingly diverse settings, 
the underlying networking landscape changes. It transforms from a relatively static, 
homogeneous environment to a dynamic, heterogeneous one. Such an environment 
calls for new architectural concepts and protocols, as the ones we currently have can-
not be e!ciently used. The DTN architecture is one possible solution to the problems 
arising from this evolution, and therefore, a possible future platform for many Internet 
applications – those existing today and those yet to be invented.
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1.1 Problem Statement

Web browsing is arguably the killer application of the Internet today, and in the fore-
seeable future. However, the Hypertext Transfer Protocol (HTTP), which is the proto-
col used for transporting web content on the Internet, has properties that make its 
deployment problematic in challenged network environments. These properties are re-
lated to both the underlying transport protocol – which most often is the Transmis-
sion Control Protocol (TCP) – and the way in which HTTP itself operates.

TCP cannot work unless there is an uninterrupted end-to-end path between the com-
municating nodes during the entire session. In mobile networks, for instance, topology 
changes cause frequent disruptions, thus breaking end-to-end connectivity. Setting up, 
maintaining and tearing down a TCP connection also involves sending numerous sig-
naling messages. In an error prone, high delay environment this kind of conversational 
protocol behavior is impractical, if not impossible.

HTTP is also a conversational protocol in the sense that retrieving a single web page 
often requires several round-trips from the client to the server. In networks with very 
long delays, this is obviously detrimental to the user experience. This behavior, how-
ever, is not inherent to the protocol but rather a consequence of how web pages are 
constructed: a web page typically consists of multiple resources and instead of retriev-
ing all of these at once, HTTP fetches them one-by-one.

In DTN, the transport protocol used in the overlay network to carry application data 
is called the bundle protocol and the protocol messages are called bundles.1  A bundle –
one of the most essential concepts in the DTN architecture – is an independent data 
unit of arbitrary size. Bundles are transported through the network by the bundle pro-
tocol using a set of mechanisms that can overcome possible delays and disruptions.

In this thesis, our aim is to enable DTN-based web browsing, i.e., make HTTP work 
on top of the DTN architecture. This problem needs to be approached from two per-
spectives [1]:

(1) Transport perspective, i.e., how to replace TCP with the DTN bundle proto-
col, while retaining necessary protocol features.

(2) Application perspective, i.e., how to make use of HTTP in a way that deals 
gracefully with disruptions and delays that inevitably occur in a DTN envi-
ronment.

1.2 Objectives and Scope

The objective of this thesis is twofold. The "rst objective is to tackle the issues (1) and 
(2) on a conceptual level; the second one is to implement them in a web server appli-
cation.
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Issue (1) is rather straightforward. The bundle protocol provides us with means of 
transmitting HTTP messages reliably through a network. The main issue to consider 
is addressing, i.e., how are HTTP addresses, which are found in the requests that a 
web browser generates, mapped to bundle layer addresses in order to route the mes-
sages to the correct destination. Carrying HTTP messages in bundles can be done 
trivially by just placing the message in the bundle payload. However, we will "nd out 
that this is not enough: in order to change the HTTP resource retrieval behavior from 
“one-by-one” to “all-at-once”, we must de"ne a way to aggregate multiple resources 
into a single bundle. We call this resource bundling. It is a fundamental concept when 
tackling issue (2).

Resource bundling means that instead of transporting web resources separately, i.e., 
one per application layer protocol message, we "nd relations between resources and 
bundle those resources that are related into a single message. This is the task of the 
web server: when it receives a request, it deduces the relations of the requested re-
source and creates the response bundle. This concept makes web browsing more DTN-
friendly: bundling resources together reduces the amount of messages sent through the 
network and it also implies that disruptions in connectivity can be better tolerated. 
This is due to the fact that because the client receives more data with each incoming 
message, it is more likely that the resource the client would want to request during a 
disruption has already been received.

Although the idea is simple, the problems that arise are manifold. The questions that 
we must consider include:

(1) How do we "nd out which resources are related in a meaningful way, i.e., 
which resources should go into a single bundle?

(2) If the each resource is not carried in a separate HTTP message, how do we 
retain the resource-speci"c metadata that the HTTP headers usually con-
tain?

(3) Do we create mechanisms to facilitate caching of content in intermediaries, 
which would be highly bene"cial in a DTN?

(4) How do we deal with resources that are not well suited for bundling, e.g. 
dynamic web pages that do not reside on the server’s disk but are created on 
the %y.

(5) How do we address security? Resource bundling implies that more burden 
will be put on the server which creates opportunities for, e.g., denial-of-
service attacks.

We limit the scope of this thesis by mostly omitting issues (4) and (5). These subjects 
are complex from both conceptual and practical perspectives. We discuss some of the 
problems involved with them but do not necessarily provide any solutions. Also, our 
focus is primarily on the server side – we do not address details concerning the client 
(i.e., a web browser).
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Finally, we implement a web server that has support for the designed HTTP bundling 
scheme. This serves as a validation of the ideas presented in the thesis and, hopefully, 
produces a useful piece of software. The idea is not to build a new web server from 
scratch – instead we extend an existing open source server. This way we get a tested, 
stable web server for free, and are able to fully concentrate on the bundle operation 
logic. 

There are no client applications that could be used with the server and implementing 
one is far beyond the scope of this thesis. However, we do implement a proxy applica-
tion that translates between HTTP and the bundle protocol, and supports the devised 
bundling scheme. With the proxy, a regular web browser can be used for testing our 
server. We also carry out a set of measurements to evaluate the server performance.

1.3 Related Work

The concepts presented in this thesis are largely based on the work by Ott and Kut-
scher in [1, 2]. They introduce the ideas of sending aggregates of HTTP resources in 
bundles and describing resource dependencies with metadata "les on the server. A 
similar approach to enabling communications under intermittent connectivity, based 
on proactive data retrieval (i.e., prefetching) and bundling, has been discussed in [3]. 
Web prefetching has also been a research subject outside the context of DTNs, e.g., 
[4, 5]. Prefetching schemes like this have been implemented, for example, in Mozilla-
based web browsers [6].

Wood and Holliday have taken a di#erent approach to enabling DTN-based web access   
[7]. They suggest using HTTP directly as a hop-by-hop store-and-forward protocol, 
without the bundle protocol layer. The draft also includes a mechanism for grouping 
resources into larger aggregates.

Caching in DTNs has been studied in [8, 9], with a focus on leveraging the DTN infra-
structure to create a massive distributed storage.

1.4 Outline

In this chapter, we have given a brief introduction to the topic and objectives of this 
thesis. In the following chapter, we discuss the concept of delay-tolerant networking 
and the DTNRG architecture in more detail. This discussion, along with the introduc-
tion of HTTP in chapter 3, equips us with the necessary theoretical background on 
which the contributions of the thesis work can be built. Further in chapter 3, we pre-
sent how HTTP-over-DTN works from the standpoint of a web server. We also brie%y 
discuss some related issues that are not within our primary focus but still relevant to 
the topic. In chapter 4, we introduce our implementation of the DTN-enabled web 
server. The concepts presented in earlier chapters are put into practice in the imple-
mentation. In chapter 5, we present the results of measurements performed on the 
server and discuss its viability for real-world deployment. Finally, the last chapter con-
cludes the thesis by reviewing what was done and pointing out potential directions for 
future development.
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2 Delay-tolerant Networking

A delay-tolerant network is an overlay on top of a number of diverse regional net-
works, including the Internet. Within a DTN, the regional networks may have varying 
connectivity, delay and loss characteristics, and may employ di#erent lower-layer tech-
nologies. The DTN overlay accommodates these di#erent network characteristics and 
provides a service that works regardless of the underlying network environment.

This chapter describes the DTN architecture and the relevant concepts related to it. 
We motivate the reasons for DTN, present the operation of the primary DTN protocol 
– the bundle protocol – in detail, and brie%y introduce the DTN2 reference implemen-
tation.

2.1 Motivation

The need for a delay-tolerant networking architecture stems from the fact that there 
are situations in which the existing Internet protocols do not work well, or may even 
fail completely. Protocols, such as the ubiquitous TCP, make certain assumptions 
about the characteristics of the underlying network: that an end-to-end path exists 
between the communicating nodes, that the maximum round-trip time between nodes 
is not excessive and that the data loss rate is low. When these assumptions hold true, 
the protocols perform well. When they do not, however, protocol performance can be 
severely degraded. Networks, that violate one or more of these assumptions, are called 
challenged networks. [10]

In today’s Internet, network access is usually based on high-bandwidth wireline links 
(with perhaps a single wireless hop from an end-node to a wireless access point), and 
the aforementioned assumptions are usually met. But if we consider, for example, in-
terplanetary communication it is clear that the network characteristics are completely 
di#erent.
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The transmission delays of data signals are ultimately limited by the speed of light. 
On Earth, where data is sent over fairly short distances, propagation delays are just 
fractions of a second, whereas in space, the delays may be several minutes or hours. At 
the speed of light, the round-trip propagation delay between Earth and Mars ranges 
from 8 minutes to over 40 minutes [11]. Clearly, in such an environment using a con-
versational protocol like TCP would be highly impractical.

Interplanetary communication is de"nitely not the only application where using the 
DTN architecture would be bene"cial; many examples of these situations can also be 
found on Earth. Mobile users will often experience disruptions in connectivity as they 
move through areas that fall within the range of an access point and other areas that 
do not. Protocols that rely on an end-to-end path being available for the duration of 
the communication session will fail in such circumstances.

Another bene"t of the DTN architecture is that it creates a common layer on top of 
di#erent regional networks. This allows applications to communicate across multiple, 
possibly heterogeneous regions by using the common overlay.

2.2 DTN Architecture

The DTN architecture is envisioned to solve the problems that prevent using existing 
Internet protocols in challenged networks. The basic premise of DTN is to introduce a 
new protocol layer, based on an abstraction of message switching, on top of the under-
lying networks’ transport layers. Cerf et al. provide a set of design principles for the 
Interplanetary Internet in [11]. These principles are realized in the DTN architecture 
and discussed brie%y below.

Bundles

In DTN, application data is carried in variable-length messages, called bundles. Bun-
dles are sent through the network using store-and-forward operations: nodes along the 
communication path hold bundles in persistent storage until the next hop becomes 
available. This means that an end-to-end path need not exist when the bundle is ini-
tially sent; instead, the bundle is opportunistically moved closer to the destination 
(according to some metric), hop-by-hop.

Actually, IP networks are also based on store-and-forward operation. However, there is 
an assumption that the packets will only be stored brie%y in the transmission queue. 
In DTN, nodes are expected to hold bundles in storage for longer periods of time while 
waiting for the opportunity to forward them. Typically, the stored bundles will survive 
system crashes and restarts. The DTN bundle protocol is discussed further in detail in 
section 2.3.

Endpoints Identi!ers and Registrations

All nodes in the DTN are identi"ed by a unique endpoint identi!er (EID), which con-
forms to the Uniform Resource Identi"er (URI) syntax as speci"ed in [12]. Typically, 
the mapping between DTN nodes and EIDs is one-to-one, but in the case of multicast 
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or anycast, an EID may refer to multiple DTN nodes. In other words, a single EID 
may point to one or more nodes, and a single node may have more than one EID. 
Every node must, however, be a member of at least one “singleton” endpoint, i.e., have 
a unique (singleton) EID. The following is an example of an EID:

dtn://host.dtn/path

The "rst part of the EID before the colon is the scheme name, followed by the scheme-
speci"c part (SSP). Currently, it is not clearly speci"ed how exactly the SSP should be 
used in conjunction with DTN [13].

A registration binds an application to an EID. When an application establishes a regis-
tration with a DTN node, it signals that it wishes to receive bundles sent to a particu-
lar EID. When the node receives bundles destined to the registered EID, they are 
handed over to the application that performed the registration.

DTN also incorporates the concept of late binding, which means that the mapping be-
tween a destination EID and its lower-layer address is not necessarily performed at the 
source node. This is in contrast to the name resolution process of the Internet, in 
which the destination IP address is determined at the source before data is sent. In 
DTN, the mapping may occur at the source, during transit or possibly at the destina-
tion. This is advantageous because the transit time of a bundle may exceed the valid-
ity time of a binding. Use of name-based routing with late binding may also reduce the 
amount administrative tra!c in the network. [14]

Priority Classes

The DTN architecture provides three di#erent priority classes for bundles: bulk, nor-
mal and expedited. The priorities are only relative to each other – bulk bundles are of 
lower priority than normal or expedited bundles – with no concrete guarantees in the 
quality of service. The di#erent classes only provide means to prioritize certain bundles 
over others, e.g., in a queue at a sending node.

Priorities are not required to (although they may) be enforced over di#erent sources, 
i.e., an expedited priority bundle from one source may not be delivered with better 
service than a normal priority bundle from another source.

Custody Transfers

In DTN, end-to-end reliability cannot be implemented at the transport layer because 
there might not be a single transport protocol operating end-to-end (or an end-to-end 
path might not exist at all). Instead, reliability must be implemented at the bundle 
layer.

DTN supports node-to-node retransmission by means of custody transfers, e#ectively 
creating hop-by-hop reliability. A custody transfer is initiated by the source applica-
tion. When it sends a bundle, it requests a custody transfer and starts a time-to-
acknowledge retransmission timer. If the next hop node accepts custody, it returns an 
acknowledgment to the sender. If no acknowledgment is returned before the retrans-
mission time expires, the sender retransmits the bundle. A custodian node must store 
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the bundle until another node accepts custody or the bundle’s time-to-live expires. 
The custody of the bundle traverses the network until the "nal destination is reached 
or the bundle is discarded. [15]

The custody transfer mechanism by itself does not guarantee end-to-end reliability. If 
the bundle gets lost along the way (e.g., due to time-to-live expiry), the source node 
will not be aware of it. To be sure that the bundle went through, the source must also 
request return receipt, so that a con"rmation is sent when the bundle reaches its in-
tended recipient.

Fragmentation

DTN supports fragmentation and reassembly of bundles in order to improve the e!-
ciency of transfers. Fragmentation allows the bundle protocol to fully utilize the avail-
able link capacity and to avoid retransmissions of partially sent bundles. [14]

There are two forms of DTN fragmentation: proactive and reactive. Proactive fragmen-
tation is performed when a DTN node knows in advance (or predicts) that sending 
multiple fragments, rather than a single large bundle, is more likely to succeed. For 
example, a node might know that a regularly occurring downstream contact is always 
of such a short duration that the entire bundle cannot be sent entirely. In this case the 
node would proactively fragment the bundle and transmit the fragments during con-
secutive contacts.

Reactive fragmentation occurs when a lower layer indicates that some of the transmit-
ted bytes were successfully transferred, but the entire bundle was not. The previous-
hop node may then retransmit the missing portion. With both fragmentation types, 
the fragments are only reassembled at the "nal destination. Bundle fragments may 
also be further fragmented along the way, either proactively or reactively. [16]

If an application wants to prevent fragmentation it can set a “do not fragment” %ag in 
the bundle. This may be useful, for example, when the integrity of a bundle is pro-
tected by a digital signature.

Routing

Currently, no routing protocol has been de"ned to be used in conjunction with the 
DTN bundle protocol. However, a number of protocols have been proposed and also 
implemented. Di#erent routing schemes have their respective strengths and weaknesses 
in particular application areas. The fact that there are currently no large-scale de-
ployments of DTN makes the evaluation of routing protocols di!cult. Simulations can 
easily lead to false conclusions as they can never entirely capture everything that is 
involved in a real-life deployment. [16]

There are two simple forms of routing that do not require a routing protocol of any 
kind: static routing and "ooding. In static routing, the routes are con"gured manually 
in each node before system startup. All nodes simply have a static list of other nodes 
to which they have a route and transmit data accordingly. Such a routing scheme is 
clearly not suitable for a real DTN environment where connections between nodes are 
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unstable. Static routing is mainly useful for experimentation and application develop-
ment in a controlled environment.

In %ooding, a node transmits incoming data to all links except the one from which the 
data arrived. Thus, the data is %ooded throughout the network and eventually reaches 
the destination. There must be some kind of a mechanism that detects loops, i.e., pre-
vents nodes from sending the same data over and over again. The obvious downside of 
%ooding is that it generates loads of unnecessary tra!c that consumes resources that 
may be scarce in a DTN (e.g., bandwidth, power, storage capacity). Routing informa-
tion does not propagate through the network in either static routing or %ooding, so no 
routing protocol is involved.

An example of an actual routing protocol is PRoPHET (Probabilistic Routing Proto-
col using History of Encounters and Transitivity). PRoPHET is based on epidemic 
routing which essentially is %ooding with some variations to reduce the overhead [17]. 
However, instead of assuming random movement of nodes in the (mobile ad hoc) net-
work, PRoPHET exploits observations made on the non-randomness of human mobil-
ity. Using these mobility patterns as the basis for routing decisions yields a probabilis-
tic routing scheme that, at least theoretically, performs better than random epidemic 
routing. [18]

Security

The DTN Security Overview document [19] presents a number of threats that the 
DTN security mechanisms are designed to counter. These threats include malicious 
resource consumption, denial-of-service attacks, and bundle con"dentiality and integ-
rity. Because scarcity of resources is typical for a DTN, attacks that are devised to 
exhaust resources are a serious concern. Only those DTN nodes authorized to send 
bundles should be able to do so. Unauthorized bundles should be caught early in order 
to prevent consumption of valuable resources. Con"dentiality and integrity of bundles 
must be ensured so that bundle contents cannot be read or changed while in transit. 
This requirement implies a need for key management, which is one of the open issues 
in DTN security [20].

DTN security is accomplished via the use of three independent security-speci"c bundle 
blocks, which may be used together to provide multiple bundle security services or 
independently of one another, depending on perceived security threats, mandated se-
curity requirements, and security policies that must be enforced [21].

The bundle authentication block (BAB) is used to assure the authenticity and integ-
rity of a bundle on a hop-by-hop basis. This allows nodes to discard bundles from un-
authorized sources. The payload security block (PSB) provides the same security serv-
ice on an end-to-end basis (from a “security-source” to a “security destination”, which 
may or may not be the actual bundle source and destination nodes). The con"dential-
ity block (CB) can be used to encrypt (parts of) a bundle. [20]

As with many other things in DTN, security is an on-going research topic with a num-
ber open issues.
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2.3 Bundle Protocol

The primary protocol used in DTN is called the bundle protocol. As we have men-
tioned earlier, a bundle is the basic, self-contained data unit in DTN – variable in size 
and contains all the data and signaling required to traverse the network. Bundles are 
transmitted through the DTN in a store-and-forward fashion where intermediate nodes 
may store bundles even for long periods of time.

The DTN protocol stack is shown in "gure 2.1. The bundle protocol operates on top of 
the transport layer which may be di#erent in the network regions that the DTN over-
lay spans. A bundle router is a node that forwards bundles to other nodes either 
within a single DTN region or between multiple regions. In the latter case the node is 
sometimes called a bundle gateway [15]. In the "gure, the left hand side depicts the 
Internet which uses the TCP/IP protocol suite. The right hand side is an arbitrary 
network that could use any lower layer protocols (provided that the transport layer is 
supported by the bundle protocol, i.e. a convergence layer adapter exists). The bundle 
overlay binds these di#erent lower layers together. The applications do not need to be 
aware of the transport layer; they only communicate with the bundle layer.

A bundle node is an entity that can send and receive bundles – typically, a process 
running on a general-purpose computer. Each bundle node has three conceptual com-
ponents ("gure 2.2): a bundle protocol agent, zero or more convergence layer adapters 
and an application agent. [21]

The bundle protocol agent (BPA) is the component that implements the bundle proto-
col. It has an interface through which the application agents (AA) can use the services 
of the bundle protocol. The BPA handles the low-level functions of processing bundles 
while the AA may concentrate on the application logic. A convergence layer adapter 
(CLA) sends and receives bundles on behalf of the BPA. It provides an interface for 
the BPA to a certain transport protocol, making the BPA independent of underlying 
layers. A bundle node may have several CLAs and thus it may utilize multiple trans-
port protocols.

Figure 2.1: DTN protocol stack
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Figure 2.2: The conceptual structure of a bundle node

Bundle Structure

Bundles consist of blocks, which are roughly equivalent to what other protocols usually 
call headers. Each bundle has a primary block, a number of extension blocks and a 
payload block. The primary block contains the information needed to deliver the bun-
dle to its destination, such as destination and custodian EIDs, creation timestamp and 
bundle lifetime. The application data (i.e., the payload) carried by the bundle is con-
tained in the payload block, which is always the last block in the bundle. A special 
case of payload data are administrative records which provide some features of the 
bundle protocol, namely, bundle status reports and custody signals [21].

All blocks other than the primary or payload blocks are called extension blocks. The 
bundle protocol itself does not specify any extension blocks – instead, as the name 
suggests, they provide a mechanism extend the bundle protocol to suit various needs. 
Consequently, all DTN nodes will not be able to process all extension blocks. The de-
fault behavior with unknown blocks is to just skip them, but the source node can spec-
ify additional rules for such cases by setting certain processing %ags in the block.

Many "elds in the bundle blocks use self-delimiting numeric values (SDNV). The 
SDNV encoding scheme turns non-negative numeric values into octets with 7 value 
bits. The most signi"cant bit of each octet is used to determine whether that octet is 
the last one (bit value 0) or not (bit value 1). The following is an example of encoding 
the hexadecimal value 1234 into SDNV.

1234 = 0001 0010 0011 0100   →   10100100 00110100

This scheme makes it possible to make the block "elds arbitrary in size and to encode 
short values e!ciently. The "eld values are commonly in the 0–32 bit range, so using 
SDNVs is justi"ed. For values longer than 56 bits, a simple “one length octet, then 
value octets” scheme is actually more e!cient than SDNV.

Convergence Layer Protocols

The bundle protocol can run on top of a variety of transport protocols, such as TCP. 
The mapping of the bundle protocol to lower layer protocols is performed by a conver-
gence layer adapter (which implements a convergence layer protocol). Thus, enabling 
DTN on top of a given transport protocol is a matter of developing a suitable CLA. 

Application Agent

Bundle Protocol Agent

Convergence Layer Adapter(s)
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The bundle protocol speci"cation [21] summarizes the services that a CLA must pro-
vide for the bundle protocol agent:

(1) Sending a bundle to all bundle nodes identi"ed by a given EID that are 
reachable via the convergence layer protocol.

(2) Delivering a bundle sent by a remote bundle node via the convergence layer 
protocol to the bundle protocol agent.

For reliable transport protocols (e.g., TCP), the convergence layer protocol may be 
fairly simple and just provide means for connection management and message delimit-
ing. For unreliable protocols (e.g., UDP), the convergence layer should implement its 
own mechanism for reliability. Conceptually, a convergence layer protocol is an appli-
cation layer protocol: it operates on top of the transport layer and utilizes transport 
layer mechanisms to provide a “bundle-enabled” interface for the higher-layer protocol 
(i.e., the bundle protocol).

A draft exists for the TCP convergence layer protocol (TCPCL) [22]. It de"nes the 
basic operations needed to enable TCP-based bundle transmission: connection setup 
and teardown, and bundle boundary marking. When establishing a TCPCL connec-
tion, a connection header is exchanged in order to set the connection-related parame-
ters and to recognize the bundle layer identities (i.e., singleton EIDs) of both nodes. 
Bundle data is sent in segments, each of which have a header containing the length of 
the segment and the byte range of the bundle data. The "rst and last segments for a 
single bundle are marked.

Optionally, the receiving node may send acknowledgments for arriving bundle data 
segments. This allows the sender to perform reactive fragmentation (i.e., send only the 
missing parts of a bundle) in case an interruption occurs. The receiver may also send a 
negative acknowledgment in order to force the sender to stop transmitting the current 
bundle. This is useful if the receiver knows that it already has that bundle – interrupt-
ing the transmission saves capacity for other bundles. Messages for keeping an idle 
connection alive and for tearing down a connection are also de"ned in TCPCL.

TCPCL has been implemented in the DTN2 reference implementation, along with a 
number of other convergence layer protocols.

2.4 DTN2 Reference Implementation

DTN2 is an implementation of the DTN architecture and bundle protocol, developed 
by the DTNRG. The goal of DTN2 is to provide a platform for researchers to experi-
ment with, and also to have production-grade code ready for real-world deployments 
[23].

DTN2 implements most aspects of the bundle protocol and evolves rapidly as things in 
the DTN research "eld progress. The current version includes support for TCP, UDP, 
Ethernet, Bluetooth and Sneakernet convergence layers.1  DTN2 is written in C++ and 
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includes a fairly simple API for writing applications that utilize the bundle protocol. 
There are also other implementations of the bundle protocol, e.g., RDTN [24], but 
these are generally not as mature as DTN2.

We use DTN2 as the bundle protocol agent in our implementation of a DTN-enabled 
web server. Our application does not depend on DTN2, though – any implementation 
of a BPA that provides the required services could be used.

2.5 Summary

In this chapter, we introduced the concept of delay-tolerant networking. A DTN is an 
overlay network that is designed to work in challenged network environments, includ-
ing those with intermittent connectivity, long delays and high error rates. Traditional 
Internet protocols, such as TCP, cannot work e!ciently, or at all, in these environ-
ments due to numerous reasons.

In DTN, application data is transmitted in variable-length messages called bundles. 
Bundles are carried through the network hop-by-hop so that intermediate nodes may 
store the bundles for long periods of time while waiting for the next-hop link to be-
come available. An end-to-end path is not a prerequisite for sending data.

The primary protocol used in DTN is the bundle protocol which operates on top of 
di#erent transport layer protocols by using di#erent convergence layer adapters. A 
DTN overlay running the bundle protocol may encompass multiple heterogeneous net-
works. The bundle protocol abstracts the underlying technologies and provides DTN 
applications a common layer to communicate with.

In DTN, it is important to avoid unnecessary round-trips in the network. The bundle 
protocol is designed to accommodate this fact – it keeps the amount of exchanged 
messages at a minimum. The applications that run on top of the bundle protocol 
should also aim to operate in this manner. HTTP, however, is a conversational proto-
col. This implies that it cannot be run over the bundle protocol trivially by just wrap-
ping HTTP messages in bundles. In the next chapter we discuss how HTTP could be 
adapted to a DTN environment to facilitate DTN-based web access.
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3 Bundling Web Content

Web browsing, as it works in today’s well-connected Internet, is not very well suited 
for challenged networks environments. Web pages typically contain multiple embedded 
resources, such as images and stylesheets. Regular HTTP-over-TCP will fetch these 
resources one-by-one, thus requiring several round-trips from the client to the server 
just to receive a single page. When round-trip delays are short, as they usually are in 
the Internet, everything works well. However, in a DTN environment where delays 
might be signi"cantly longer, it is clear that a di#erent approach is needed, as one-by-
one retrieval of resources would make web browsing a frustrating experience.

The basic idea of avoiding these unwanted round-trips is simple: instead of returning 
the resources for a web page in multiple consecutive responses, the resources can be 
bundled together and returned in a single response. In order to achieve this, we must 
de"ne how individual resources can be aggregated together into larger data structures, 
and how these structures are placed into bundles. We must also provide means for the 
server to identify resource dependencies so that in addition of knowing how to bundle 
resources, the server also knows what to bundle.

In this chapter we "rst present an overview of HTTP and brie%y discuss the distinc-
tion between static and dynamic web content. We tackle the issues related to resource 
bundling from transport and application layer perspectives, i.e., how web resources are 
transported over the DTN bundle protocol and what applications can do di#erently in 
order to adapt to the DTN environment. We also discuss caching and its signi"cance 
in DTN-based web browsing, and brie%y introduce a few select security issues. We 
mostly limit our discussion to static websites. The problems that arise with dynamic 
web content are explored in a separate section in this chapter.

19



3.1 Overview of HTTP

HTTP is the protocol used in the Internet to transport web content reliably from web 
servers to clients. HTTP follows the request/response paradigm in which the client 
(typically a web browser, often referred to as the user agent) sends requests to the 
server and receives responses generated by the server. HTTP is most often used on top 
of TCP, although it could be deployed on top of any reliable transport protocol.

Resources

A web resource is a source of arbitrary web content. Resources can be static "les on 
the web server’s "lesystem, such as HTML documents or images. Resources can also 
be web applications that generate content on demand based on some input parame-
ters. [25]

Each web resource has a name – a uniform resource locator (URL) – that uniquely 
identi"es the resource. URLs are a subset of URIs and follow the same syntactic rules. 
The di#erence between a URL and a URI is semantic: in addition to identifying a re-
source, a URL provides a means of locating the resource by describing its primary ac-
cess mechanism (e.g., its network location) [12]. Most URLs follow a standardized for-
mat of three main parts: the scheme (http:), the server address (e.g., www.netlab.tkk.!) 
and the resource location on the server (e.g., /tutkimus/projects.shtml) [25].

In this thesis, we typically use the term resource to refer to static "les. However, it 
should be kept in mind that the term also has a broader meaning.

Requests and Responses

HTTP transactions comprise requests sent from the client to the server, and responses 
sent from the server back to the client. The client is always the initiator of the trans-
action. To send a request, the client establishes a TCP connection to a particular port 
on the server host (port 80 by default). The server application listens to that port and 
waits for incoming requests. Upon receiving a request, the server processes it, gener-
ates an appropriate response and sends it back to the client.

Requests and responses may transfer an entity, which is HTTP parlance for the actual 
content that is being transferred, e.g., an HTML document.

Message Syntax

HTTP messages (requests and responses) contain three parts: a start line, a number of 
header lines, and a body. The start line and headers are lines of ASCII text, separated 
by CRLF end-of-line characters. The body is a chunk of text or binary data, and may 
also be empty. A blank line is used to separate the body from the headers. Thus, in 
the case of an empty body the message terminates with two CRLFs.

In request messages, the start line contains a method describing what operation the 
server should perform, a request URL on which to perform the method, and the 
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HTTP version that is used. All of these "elds are separated by a single blank space. 
The following is an example of an HTTP request message.

GET /tutkimus/projects.shtml HTTP/1.1
Host: www.netlab.tkk.fi
User-Agent: Mozilla/5.0 (Macintosh;U;Intel Mac OS X) Gecko/20071025 
Firefox/2.0.0.9
Accept: text/html;q=0.9,text/plain;q=0.8,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Response messages return the status of the requested operation back to the client 
along with any resulting data. The response start line contains the HTTP version, a 
numeric status code and a textual phrase corresponding to the code. The following is 
the response to the example request above, shown here without the message body.

HTTP/1.x 200 OK
Date: Fri, 07 Dec 2007 13:04:37 GMT
Server: Apache/1.3.33 Ben-SSL/1.55 (Unix) DAV/1.0.3 PHP/4.3.10
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

There are four types of header "elds in HTTP: general-headers, request-headers, 
response-headers and entity-headers. General-headers may appear in both requests and 
responses, but do not apply to the entity that is (possibly) being transferred. Request- 
and response-headers pass additional information about the respective message and its 
sender. Entity-headers contain metadata about the entity that is contained in the mes-
sage. When transporting web resources in DTN bundles, the resources might not be 
inside HTTP messages, but nevertheless this metadata must be preserved. We discuss 
this issue further in section 3.3.

Although the HTTP speci"cation states that a set of headers must always end in a 
blank line even if there is no message body, many implementations (historically) omit 
the "nal CRLF in the absence of a body. To interoperate with these noncompliant 
implementations, applications should accept messages that do not contain the "nal 
blank line.

Methods

There are a number of di#erent request commands, called HTTP methods, which ac-
company each request and tell the server what action to perform. The most common 
method is GET, which asks the server to return the resource speci"ed in the request.

HTTP methods may have the properties of being safe or idempotent. A safe method 
should not generate any side-e#ects on the server. In particular, GET and HEAD re-
quests should only be used for retrieving resources – they should never modify data on 

21



the server. In practice, however, GET requests are often used in violation of the safety 
requirement by using regular HTML links to perform operations with side-e#ects.

The property of idempotence means that any number of identical requests generate 
the same side-e#ects as a single request. In other words, ten idempotent requests have 
same e#ect as one request. All safe methods are inherently idempotent. Idempotent 
requests may be resent by the user agent without informing the user [26]. This is usu-
ally done if the server is unresponsive, and is a possible source of errors if safe meth-
ods are used for state-changing operations.

An HTTP response may be cacheable depending on the request method that was used. 
Responses to GET and HEAD requests can be, and typically are, cached. Responses 
to a POST request can only be cached if the response includes appropriate Cache-
Control or Expires header "elds. [26]

POST and PUT requests contain a message body because they provide data for the 
server to process. Requests with methods other than these do not contain a body. Ta-
ble 3.1 shows the most common HTTP methods and their properties [25].

Table 3.1: Common HTTP methods

Method Description Safe Idem-
potent

Cache-
able

GET Get a document from the server. Yes Yes Yes

HEAD Get the headers for a document from the server. Yes Yes Yes

POST Send data to the server for processing. No No Maybe

PUT Store the body of the request on the server. No Yes No

DELETE Remove a document from the server. No Yes No

TRACE Trace the request path to the server. Yes Yes No

Status Codes

All HTTP responses contain a status code that tells the client what happened with 
the request. There are numerous possibilities what the outcome of a request may be. It 
may be successful, yielding a 200 OK response, or it may be a redirection or an error. 

Status codes are returned in the "rst line of a response and they also include a human-
readable phrase describing the returned status. Only the numerical codes are used by 
applications; the phrases are included for convenience.

There are "ve di#erent classes of status codes, as listed below in table 3.2. Only a few 
codes in each class are de"ned by the current HTTP speci"cation. Future protocol 
versions are expected to de"ne more codes. If an application receives a status code 
that it does not recognize, it should treat it as a general member of the class whose 
range it falls into. [25]
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Table 3.2: HTTP status code classes

Range Defined range Category Example

100–199 100–101 Informational 100 Continue

200–299 200–206 Successful 200 OK

300–399 300–305 Redirection 301 Moved permanently

400–499 400–415 Client error 404 Not found

500–599 500–505 Server error 503 Service unavailable

Protocol Versions

Currently there are two versions of HTTP that are in widespread use: HTTP/1.0 and 
HTTP/1.1. Despite HTTP/1.0 being extremely successful, it has numerous shortcom-
ings that are addressed in HTTP/1.1. The key di#erences between the two protocol 
versions are discussed in detail in [27] and summarized below.

HTTP/1.0 provides a simple mechanism for caching with the Expires header and con-
ditional requests. HTTP/1.1 retains this basic design, but augments it with new fea-
tures and more careful speci"cation of existing ones. The Cache-Control header allows 
for more "ne-grained control over caching and mitigates problems related to clock 
skew which are caused by the absolute timestamps used in HTTP/1.0. Entity tags can 
be used to uniquely label resources in an unrestricted fashion which, along with new 
request headers, makes conditional requests more useful.

HTTP/1.1 introduces the concepts of persistent connections and pipelining of requests. 
In HTTP/1.0, the default operation is to make each request over a separate TCP con-
nection, incurring the costly connection setup overhead to each request. Short-lived 
connections also fail to utilize the full potential of TCP, being stuck in the slow start 
phase most of the time. Many HTTP/1.0 implementations use the Keep-Alive header – 
which is not a part of the original standard – to create persistent connections. This 
uno!cial, extended protocol is often referred to as HTTP/1.0+ [25]. In HTTP/1.1 
persistent connections are always used by default. If an application does not want to 
use persistent connections, it must explicitly inform the peer that the connection will 
not be reused.

Pipelining means that a client need not wait for a response for one request before 
sending another request on the same connection. The client may send all pending re-
quests at once, avoiding the need to wait for network round-trips.

HTTP/1.0 does not allow multiple host names to be bound to a single IP address, 
because the requests hold no notion of the destination host. In HTTP/1.1, all requests 
must contain the Host header which identi"es the host to which the request is des-
tined. Other improvements in HTTP/1.1 include, e.g., data fragmentation using 
chunked transfer-coding and re"ned content negotiation.
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Some servers send responses with the protocol version HTTP/1.x. This simply means 
that the server supports both versions of the protocol and the response can be inter-
preted as being either one. Typically the response will contain redundant headers that 
convey identical (or similar) information with the syntax inherent to the di#erent pro-
tocol versions, such as Keep-Alive and Connection.

3.2 Static and Dynamic Web Content

Web content can be roughly divided into two categories: static and dynamic. Static 
content can be characterized as being content that does not change often. When re-
questing a static resource, the response is always the same regardless of any input pa-
rameters, such as any data sent with a POST request, cookies or the time of the day. 
Typically static resources are "les on a disk – HTML pages, Cascading Style Sheet 
(CSS) "les, images – that only change when the website author manually modi"es or 
replaces them. Static websites are easy to work with in the sense that web servers can 
serve "les from the "lesystem very fast with minimal processing and "les can easily be 
cached.

In the early days of the Internet most websites were static. Today, however, the typical 
website is dynamic, which essentially means that the response to a given request varies 
based on some conditions. Often dynamic websites are database-backed and responses 
– and thus the content of the website as presented to a certain user – are dependent 
on the database state.

That said, there is an important distinction to make when de"ning what we consider 
to be a dynamic web page in the context of this thesis. Typically, a web page whose 
appearance or structure is modi"ed with client-side scripting is considered dynamic. 
Javascript is often used to alter the document object model (DOM) or the CSS prop-
erties of a web page to create interactivity. From our point of view, however, these 
pages are not dynamic. The interactivity is con"ned within the browser and does not 
involve the server. The server just sends static Javascript "les (or strings of Javascript 
code within an HTML document) to the client without any regards of how the content 
of the "le will be used.

On the other hand, client-side scripting may employ techniques that allow the browser 
to communicate with the server asynchronously between page loads. These techniques 
that use the formerly proprietary, nowadays standard, XmlHttpRequest Javascript 
object are usually referred to with the term AJAX (Asynchronous Javascript and 
XML). Web pages with AJAX functionality may send data to the server “behind the 
scenes” continuously. The responses from the server may be used to alter the displayed 
page, creating a high level of interactivity. These pages are a special case that must be 
considered separately as they pose additional problems related to bundling. We return 
to discuss this subject further in section 3.6.

24



3.3 Bundling HTTP Messages

From the transport perspective, the problem that must be solved is how to replace 
TCP with the bundle protocol. The trivial solution is to perform one-to-one mapping 
of HTTP message into bundles. For request messages this works "ne because sending 
out multiple requests at the same time is hardly ever needed.1  For responses, however, 
this approach is not acceptable because it does not address the issue of unnecessary 
round-trips. As we have previously stated, we want to aggregate multiple resources 
into a single response bundle in order to reduce the chattiness of HTTP.

Figures 3.1a and 3.1b illustrate this concept. Figure 3.1a shows the interaction be-
tween a client and a server when the client requests a page with regular HTTP-style 
operation. The page consists of three objects: index.html, styles.css and logo.png. In 
order to retrieve all of these, the client has to perform three requests. First the client 
requests index.html. Then, after parsing the HTML and discovering that there are two 
more embedded objects, the client requests styles.css and logo.png.

Figure 3.1b shows the retrieval of the same page when resource bundling is used. The 
clients sends the "rst request for index.html like in the previous case. When the server 
receives the request, it collects all the other resources that depend on the requested 
one (the details of this are discussed in the following section), wraps them into a single 
bundle and sends it back. Thus, with resource bundling we are able to reduce the 
amount of HTTP transactions from three to just one. The number of resources found 
on real web pages is typically much more than three (based on our website analysis, 
the results which are presented in chapter 5), which means that resource bundling will 
have a signi"cant impact on page retrieval time in high-delay environments.

Figure 3.1a: HTTP-style page retrieval Figure 3.1b: Page retrieval with bundling

Request: index.html

Response: index.html

Request: styles.css

Request: logo.png

Response: styles.css

Response: logo.png

Client	 	 	           Server

Request: index.html

Response: index.html,
styles.css, logo.png

Client	 	 	           Server
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In order to carry multiple resources in a single response bundle, we must devise an 
aggregation format for the resources. We present a number of requirements for this 
format:

(1) It must provide a way to indicate the URIs of the contained resources.

(2) It should preserve the necessary HTTP metadata; most importantly the en-
tity headers.

(3) It should be e!cient, i.e., it should not introduce excessive overhead.

Requirement (1) is obvious: the client must know what resources it received in order to 
reconstruct the web page. (2) refers to the resource-speci"c HTTP headers that are 
sent by the server. An example is the Expires header which tells when the resource 
should be considered stale. Unless this header is preserved, a local cache might serve 
resources that are no longer fresh and should instead be retrieved from the origin 
server. Another example is the Content-Location header – without it the client does 
not know how to interpret the "le and might, for example, display a text "le using a 
wrong character encoding. Requirement (3) is also rather self-evident: the aggregation 
format should not negate the bene"ts we get from bundling by bloating the amount of 
bytes that need to be transmitted.

With these requirements in mind, we have come up with two alternative formats. The 
"rst one is to use the MIME/Multipart-based structure known as MIME Encapsula-
tion of Aggregate HTML Documents (MHTML). This is the format Ott and Kutscher 
have proposed for this purpose in [1]. The other alternative is to simply pack a number 
of raw HTTP response messages inside a bundle, one after another. We implement 
MHTML aggregation in our web server application.

MHTML

MHTML is a MIME-based format originally designed for sending HTML documents 
over email. An MHTML message is a MIME/Multipart structure that contains a sin-
gle root HTML document and all its embedded resources. Each part of the structure 
contains one resource and carries a Content-Location header which provides the URI of 
that resource, allowing the client to reconstruct the web page after unpacking the 
MIME structure. [28]

Having been designed for the exact purpose of carrying complete web pages in a single 
data structure, MHTML seems like a good "t for resource bundling. MHTML also 
allows us to preserve the HTTP entity headers relatively easily. Some of the headers 
map directly to MIME headers and the ones that do not can be included as extension 
headers (i.e., pre"xed with “X-”). Thus, MHTML ful"lls requirements (1) and (2).

When MHTML is used for its intended purpose – sending data over email – the con-
tent it carries becomes subject to the restrictions of SMTP. Speci"cally, the data oc-
tets must be within the US-ASCII octet range (i.e., 7-bit) and line length may not 
exceed 1000 octets [29]. This restriction means that all binary content must be en-
coded. In this case, “binary” means anything that is not 7-bit, which covers essentially 
all web content (HTML documents – which appear as “text” "les – usually employ 8-
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bit or multibyte encodings, making them binary in this sense). For "les that are 
mostly composed of US-ASCII characters (e.g., ISO-8859-1 documents), the quoted-
printable encoding scheme can be used. Files with arbitrary byte sequences (e.g., im-
ages) must be encoded with the Base64 scheme. This encoding transforms the binary 
data into a text string that contains only US-ASCII characters, which results in about 
33% increase in data volume [30]. This much overhead would severely limit the useful-
ness of MHTML because, as we will see in chapter 5, binary data makes up the major-
ity of web content.

Fortunately, in our case the restrictions do not apply because we are not using SMTP 
transport. Binary content may be (optionally) tagged with Content-Transfer-Encoding: 
binary and included directly in the MHTML structure. Therefore, the overhead im-
posed by MHTML is insigni"cant and requirement (3) is also met.

Another point that should be taken into account is that HTTP responses carrying re-
sources in MHTML format should have meaningful Content-Type header value. In our 
implementation, we use message/rfc822 which is a generic content type that can be 
used with MIME messages [31]. It is conceivable that a more speci"c type, such as 
message/mhtml, could be used but from a practical point of view it makes no di#er-
ence.

Raw HTTP

An alternative to MTHML is to use no structured aggregation format at all. Instead, 
the bundle can be "lled with raw HTTP responses. The responses can be inserted into 
the bundle one after another so that "rst response is the one for the requested resource 
and the following ones for the embedded resources. The Content-Length header can be 
used to indicate resource boundaries so that the client can correctly extract the re-
sources.

With this approach there is no need to map the entity headers into another data 
structure. The HTTP responses in the bundle obviously contain all the resource-
related metadata since they are the very same responses that would be generated with 
a direct request. Resource URIs can be retained by using the HTTP Content-Location 
header (whose semantics di#er somewhat from its MHTML namesake).1  Since the 
overhead of this scheme is essentially zero, it seems that it satis"es our requirements.

However, there are both practical and conceptual problems with this solution. First, 
only one HTTP request hits the server but still it has to generate multiple responses. 
This implies that the server has to perform some kind of “internal” requests in order 
to create responses for the embedded resources. The details of how this could be im-
plemented are not relevant, but nevertheless it might be wasteful in terms of using up 
server capacity.

Second, there is a conceptual problem: how can a single HTTP request result in mul-
tiple responses? Even if the client receiving the responses knows how to deal with 
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them, and even if no standard is violated, the whole notion of generating an array of 
responses to a single request seems somehow %awed. Figures 3.2a and 3.2b below illus-
trate the two presented aggregation schemes.

Figure 3.2a: MHTML bundling Figure 3.2b: Raw HTTP bundling

Bundle Addressing

One issue in using the bundle protocol to carry HTTP messages concerns addressing. 
Web resources are identi"ed by URIs, such as http://www.server.com/index.html, in 
which the "rst part following the scheme name is the server address (www.server.com). 
When a client wants to retrieve this resource using regular HTTP-over-TCP, it per-
forms a DNS lookup to "nd out the IP address of the server and then sends the re-
quest to port 80 (unless otherwise speci"ed) on that address. The problem is in map-
ping these HTTP URIs to DTN endpoint identi"ers, i.e., determining the EID to 
which a bundled request should be sent.

The bundle protocol does not place restrictions on the URI scheme name – any con-
formant scheme (e.g., dtn:, http: or mailto:) may be used in an EID. The scheme name 
merely identi"es a set of rules that determine how the scheme-speci"c part should be 
interpreted [21]. The DTN2 reference implementation has adopted the convention of 
using the dtn: scheme for all EIDs (as it was proposed in earlier versions of the bundle 
protocol speci"cation). Individual applications are identi"ed by the SSP. However, it 
has been argued that application-speci"c URI schemes must be used in order to per-
form demultiplexing across di#erent applications [32]. According to this perspective, 
applications that send and receive bundled HTTP messages should use the http: 
scheme in their EIDs.

Since our web server implementation uses DTN2, we must use the dtn: scheme for all 
EIDs. We do, however, support the idea of using application-speci"c URI schemes. 
Once the DTN community reaches consensus regarding this issue, we expect DTN2 
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and other bundle protocol implementations to adopt it. In any case, whatever URI 
scheme is used has minimal impact on our application.

Another issue concerning EIDs discussed in [32] is how much application-speci"c in-
formation an EID should include. There are two basic alternatives for this (consider a 
bundle that contains a request for http://www.server.com/index.html): 

• The EID only identi"es the application and provides no additional informa-
tion about the resource. In this case, the destination EID for the bundle 
would be dtn://www.server.com or http://www.server.com, depending on 
whether application-speci"c scheme names are used.

• The EID includes additional information about the local resource – in the 
case of HTTP, the resource URI. Thus, the bundle destination EID would be 
dtn://www.server.com/index.html or http://www.server.com/index.html.

Our web server uses the former approach, i.e., the SSP of the EID is not used in any 
way when processing incoming bundles. We do not see any immediate bene"ts in using 
the EID to convey application context. What implications the di#erent approaches 
might have on routing is beyond the scope of this thesis.

3.4 Identifying Resource Dependencies

In order to be able to bundle resources, the server must have a way of identifying 
which resources should go together. There are two basic ways of doing this – the in-
formation may be explicitly provided to the server in a dependency !le, or the server 
may parse the source of an HTML document and infer the dependencies. These two 
approaches are not mutually exclusive and may be used to complement each other. We 
anticipate that parser based operation would commonly be used as a fallback mecha-
nism when the dependency information is not available.

Explicit Dependency Information

The "rst way of providing dependency information to the server is to put the informa-
tion into a "le on the server. Whenever the server receives a request it will read this 
dependency "le and see which other resources should be bundled along with the re-
quested one. The information may be in a single "le that describes the structure of the 
entire website or there might be one "le per resource giving the dependencies related 
to that particular resource. The dependency "le or "les could be handwritten by the 
website author or might be created by some tool, e.g., a content management system. 
The format of the dependency "le may be arbitrary but ideally it would be something 
that is easy for humans to edit in a text editor and easy for computers to parse.

The following is an example of a dependency "le in YAML, which is a simple data 
serialization format [33]. It is also the format we have implemented.
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*:
  - images/logo.png
- css/styles.css

/index.html:
  - images/frontpage.png
- scripts/widget.js

/information.html:
- brochure1.pdf
- brochure2.pdf

When the server gets a request for index.html, it checks the dependency "le and "nds 
that the "les images/frontpage.png and scripts/widget.js should also be bundled. The 
entry with an asterisk denotes that those resources are common to all pages in the 
website and should always be included in the bundle. Thus, the server would return 
"ve "les in the response – the one that was requested and four that were found from 
the dependency "le.

Implicit Dependency Information 

The other option for "nding resource dependencies is to have the server infer them 
from the requested "le. It is relatively easy to parse HTML documents and "nd the 
links to other resources, provided that the document is well-formed. For example, the 
following snippet contains a reference to an image "le.

<img src=”/images/logo.png” alt=”Company Logo”>

Upon encountering this in the HTML source, the parser would add /images/logo.png 
to the list of resources to bundle. Binary "les like images obviously cannot contain 
further references to other resources but CSS "les can (e.g., background images). 
Thus, the CSS "les linked to the requested resource must also be parsed. In fact, CSS 
"les may refer to other CSS "les using the @import statement, in which case the 
parser should work recursively through all of them. It is also possible that there are 
"le references embedded in Javascript code but trying to "nd those is not feasible be-
cause the reference might exist in an arbitrary form within the code.

External Dependencies

Web pages sometimes contain references to resources that reside on a di#erent server 
than the page itself. Web ads, for example, are typically located on the advertisers’ 
servers and are just referenced from the page displaying them. Another example is 
high-tra!c sites that use a cluster of servers to push static content in order to perform 
load-balancing. External dependencies pose problems to resource bundling because the 
server responsible for the requested web page does not possess the external resources 
and thus cannot include them directly into the bundle. We can think of a number of 
solutions for dealing with this problem. All these solutions, however, have their respec-
tive %aws.

The responsibility for retrieving the external resources may be given solely to the 
server receiving the initial request (server A in "gure 3.3). After determining the ex-

30



ternal dependencies, server A contacts the remote server B and retrieves the resources. 
When the transaction is completed, server A creates a response bundle and sends it 
back to the client.

Figure 3.3: Server-based retrieval of external resources

The advantage of this solution is that it requires no extra coordination and is totally 
transparent to the client. The downside is that it introduces latency. If the connection 
between servers A and B is slow, the response bundle will be seriously delayed. It also 
puts more burden on server A, forcing it to maintain state during the three-way trans-
action. This has an adverse e#ect on scalability and security: a stateful server will tie 
up resources for longer periods of time, thus providing an easy target for DoS attacks. 
Moreover, the server cannot know whether the external resources are of any value to 
the client – they might just be ads or other irrelevant items that are not essential 
when displaying the web page. If the server had this information, it might make deci-
sions on whether or not the potential delay is justi"ed.

Another option is to share the responsibility between the servers so that A requests 
the resources from B, but B pushes them back to the client ("gure 3.4). This solution 
requires specialized coordination between the nodes. The request from server A to B 
has to indicate that the response should not be returned to A, but should instead be 
sent to the client. Consequently, the client must be prepared to receive responses from 
multiple distinct servers. This way server A would be relieved of some of the burden as 
it would not have to maintain state. On the other hand, being able to command a 
server to send messages to any destination is a major security risk. Besides, the whole 
notion of asymmetrical transactions feels out of place with HTTP.

Figure 3.4: Asymmetrical retrieval of external resources
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The third alternative is to do nothing and have the client retrieve the external re-
sources. Upon receiving a request, server A bundles the resources that it itself has and 
omits the external ones. The client then requests the missing resources from server B 
after having parsed the HTML source. This is identical to regular HTTP-over-TCP 
operation.

Figure 3.5: Client-based retrieval of external resources

In a way, doing nothing defeats the purpose of resource bundling since the client has 
to make one or more subsequent requests in order to receive all the resources of a sin-
gle web page. If the external resources are not that important (e.g., advertisements), 
however, being able to display the part of the page that has already been received is 
clearly bene"cial. On the other hand, if the resources are an essential part of the page, 
they should be delivered to the client as quickly as possible. Obviously, the quickest 
way to get the resources from server B to the client also depends on the proximity of 
the nodes (in terms of delay).

3.5 Bundling the Right Resources

In the previous sections we have implied that the server always returns (or attempts to 
return) one whole web page in a single response bundle. In some situations it may be 
bene"cial to deviate from this and instead return either larger or smaller portions of a 
website in one bundle. For example, a moderately small website consisting of a number 
of linked pages could be bundled entirely. If the pages were mostly text, the resulting 
bundle would not be overly large. After receiving this bundle the client would have the 
entire website available for browsing regardless of connectivity disruptions thereafter.

Bundling Multiple Pages

Earlier we described the method of using a dependency "le to allow the server decide 
what resources should go into a single bundle. With this approach, the website author 
can make arbitrary resource dependencies – there is no requirement to include just one 
page in a bundle. The dependency "le may even be crafted so that the entire website 
is bundled when any one resource is requested. If parser based operation is used in-
stead of dependency "les, it is also possible to instruct the parser to follow links to a 
certain depth, thus creating larger bundles.

When would it be advantageous to extend the dependency hierarchy from one page to 
multiple pages? This is probably highly dependent on the website and the prevailing 
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network conditions, as the depth of the dependency hierarchy is a trade-o#. Bundling 
more at once implies that additional server-side processing is required and that the 
bundle size is larger, but it also gives the client better disruption-tolerance. On the 
other hand, sending a single page per bundle gets the data to the client faster but pre-
vents any o&ine browsing.

It is di!cult to lay down any hard and fast rules on what is the correct way to craft 
bundles in any given circumstances. However, it seems clear that in a high-delay envi-
ronment using up a few more server cycles to create a larger bundle is justi"ed be-
cause the network delay overshadows the server processing delay. Conversely, if the 
network delay is low it may not be reasonable to waste any more time on the server 
than absolutely necessary.

Semantic Fragmentation

In some circumstances, it might be bene"cial to do the opposite of what we previously 
described, i.e., instead of putting more resources into one bundle, it might make sense 
to split resources into multiple bundles. Some web pages are very large in terms of size 
– according to our analysis results, about 5% of popular web pages have more than 1 
megabyte of content on them, typically in the form of images. Creating and delivering 
a single bundle from such a page might lead to a substantial delay. Assuming that the 
network latency is not very high, it might be a good idea to split this one large bundle 
into multiple smaller bundles. Furthermore, this splitting should be performed in a 
meaningful way so that the "rst bundle that is sent, which is also the bundle that the 
client will probably receive "rst, should contain the most important resources. We call 
this concept semantic fragmentation.

How exactly semantic fragmentation should be performed is beyond the scope of this 
thesis. However, it is obvious that the "rst fragment (i.e., bundle) must contain the 
requested HTML document. It should also contain the stylesheet "les, if there are any, 
to allow the incomplete page render reasonably well. Beyond that it is up to the server 
to decide what resources it considers important.

We should also keep in mind what we are fundamentally trying to achieve: enhancing 
the end-user experience of web browsing. Web usability research has shown that in-
cremental page rendering is perceived faster than rendering everything at once, even if 
it takes objectively longer [34]. This is a point in favor of semantic fragmentation. 
Even if the time between the initial request and the "nal response is slightly longer, 
the fact that the user is given constant feedback on the page rendering progress makes 
up for it.

There is, however, one rather serious problem with this kind of asynchronous bundle 
transmission where requests and responses do not match one-to-one. If the server per-
forms semantic fragmentation and sends multiple bundles to the client, the client will 
not know how many bundles to expect. When it receives the "rst bundle and parses 
the HTML document, it will notice that there are resources that are missing. Nor-
mally, the right thing to do would be to send a new request for these missing re-
sources, but in this case, the client should not do that because the resources are actu-
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ally on their way. Thus, the "rst bundle should contain some kind of an indication 
that the response is split into several bundles.

Dynamically Adjusting Bundling Behavior

We have suggested that the optimal bundling strategy is dependent on the prevailing 
circumstances. Sometimes it might be bene"cial to create very large bundles that con-
tain whole websites, whereas other times it might be reasonable to split even a single 
page into smaller parts. To take this idea further, we conceive that there could be a 
mechanism that allowed the server to dynamically adjust the bundling strategy to 
achieve optimal performance in the given conditions.

For example, consider a web server that has a TCP interface for regular HTTP re-
quests and a DTN interface for bundled requests. The server could observe usage pat-
terns by examining the requests coming into the TCP interface (which we assume 
would receive much more tra!c than the DTN interface). This data could then be 
used to predict how a user will navigate through the site. Then, when the server re-
ceives a request through DTN, it could look at the data, guess what page the user will 
want to see next and include that in the bundle. Other metrics, such as round-trip 
time measurements using bundle timestamps, could also be used to "ne-tune bundling 
behavior. Again, the details of such mechanisms are beyond the scope of this thesis.

Avoiding Redundant Data Transfers

The server should always avoid sending resources that have already been sent in some 
earlier response bundle. Consider the following scenario: a user navigates to the front 
page of a website and receives a bundle that contains the HTML document for the 
page along with a number of other resources, many of which are common to all pages 
on the site (e.g., background images). The user clicks a link to move to another page 
on the site, causing the server to receive a new request for this page. As always, the 
server "nds the dependencies for the requested document, but in this case many of 
them were already sent in the previous response. If the server does not take this into 
account, it will send the same common resources over and over again.

Normally, with regular HTTP-over-TCP, these common resources are not requested 
again from the server because they are held in the browser cache. When subsequent 
pages refer to these resources they are retrieved from the cache. In our case, the 
browser cache does not help because the server has to make the decision on what 
should be included in the bundle before the browser receives the response and gets to 
inspect its cache.

One solution to this problem would be to have the server remember which resources it 
has sent to each client, but as we have mentioned before, stateful web servers are a 
bad idea. Fortunately, there is another simple solution: the Referer [sic] header. This 
HTTP request-header allows the client to specify, for the server's bene"t, the URI of 
the resource from which the requested URI was obtained (i.e., it tells the server where 
the client came from) [26]. Although it is not mandatory, most browsers seem to send 
this header with each request, unless including it is considered a security risk (e.g., 
when navigating to a non-secure page from a secure one).
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Whenever the server receives a request it can check if it contains a Referer header that 
indicates that the client has already navigated on the site. The server can then com-
pare the set of resources given by the referring URI to the ones given by the requested 
URI, and only send the ones that do not overlap. Since the Referer header is not man-
datory and can easily be forged, the server cannot rely on it being available or correct. 
It can be used to enhance the operation of the server, whereas its absence will just 
cause the server to revert to blindly bundling all, possibly redundant, dependencies.

It would also be possible to use cookies to track the pages the user has visited. This 
would allow for more "ne-grained control but would also add complexity to the server. 
Cookies can also be turned o# from the browser, so this is not an airtight solution.

3.6 Problems with Dynamic Content

Dynamic web pages do not exist as "les on the server – instead, they are created on 
the %y when a request hits the server. Typically, this involves a database from which 
data is pulled and used to create the page that goes into the response. The meaning of 
the term “dynamic web page” in itself is rather broad. In order to better grasp the 
subject, we can divide dynamic web pages into four categories:

(1) Pages that are created dynamically but not from on any volatile parameters. 
An example is a blog that holds the posts in a database. A request will cause 
data to be fetched and used to populate a template, but this process is not 
a#ected by any parameters.

(2) Pages that are created dynamically from some input parameters. An example 
is a search engine result page, whose content is entirely dependent on the 
search term supplied by the user.

(3) Pages that use Javascript in a way that has an impact on further requests 
issued by the browser. For example, Javascript might be used to insert a CSS 
link based on the result of browser detection.

(4) Pages that use Javascript to communicate with the server asynchronously 
between requests. An example is a search tool that shows “live” search re-
sults based on user input and re"nes the search as the user types in more 
letters.

Dynamic content that falls into category (1) is still suitable for bundling. If only a sin-
gle page is bundled, there is no problem at all – the server performs the actions needed 
to create the response and bundles it. If more than one page is to be bundled, the 
server will have to perform multiple “response cycles” in order to create all the pages 
that will be bundled. This, however, is doable because all the information required to 
create the pages is available on the server.

Content in category (2) is more problematic. If we consider the example of a search 
engine, it is obvious that the initial bundle that contains the page with the search "eld 
cannot also contain the search result page because the server cannot predict what 
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search term the user will type in. Thus, dynamic pages that depend on input parame-
ters are only suitable for single-page bundling.

Depending on the situation, web pages in category (3) may be more or less trouble-
some. Having "le references within Javascript code is not too problematic in itself. 
After all, the dependency "le can be used to label these "les as belonging to the re-
sponse bundle. However, the details of the Javascript code ultimately decide whether 
or not problems will occur. For example, if the purpose of the code is to insert a 
browser-speci"c CSS link, all of the possible CSS "les would have to be included in the 
bundle, even though only one of them would be used. Furthermore, if the parser is 
used for "nding resource dependencies, the references within Javascript code will be 
missed, resulting in additional requests from the browser.

Category (4) presents the worst problems. First, we should consider a bit of terminol-
ogy because the content in this category can often be viewed as web applications. The 
terms web page and website – which we have already used extensively in this document 
– are probably well known to the layman. A web page is single document comprising 
multiple resources, displayed in a browser window. A website is a collection of linked 
web pages. The term web application refers to something more complex: an applica-
tion that exposes its interface as web pages. Strictly speaking, a web application is 
nothing more than a regular collection of web pages. However, since the web pages 
that make up the web application are essentially a graphical user interface – not a 
means for displaying a simple piece of information – they usually o#er a high level of 
interactivity. HTML links on a web application may not be simple links to another 
resource, but instead may be used to trigger actions in the application back end, often 
through the use of asynchronous Javascript techniques (AJAX).

It is this asynchronous communication between the web page and the server that does 
not work in a DTN environment. With bundling, our aim is to minimize the amount 
of round-trips between the client and the server. AJAX-based web applications are 
exactly the opposite in this regard: they rely on being able to constantly perform 
transactions with the server in order to create a highly interactive user interface. It is 
possible to perform one-to-one mapping of AJAX requests into bundles, but network 
delays and disruptions would probably render the application unusable.

Although some web applications may be inherently unsuitable for DTNs, some simpler 
websites may be made more "tting for bundling by following the principles of graceful 
degradation (or progressive enhancement). These terms refer to the idea that a web 
page should be usable even if a certain technology is not available. Thus, if a web page 
utilizes Javascript and a user agent does not support it, the page should degrade 
gracefully and still remain accessible, although possibly with slightly reduced function-
ality. Progressive enhancement means essentially the same thing, though the term as-
serts more "rmly that complementary technologies should only be used to enhance the 
baseline user experience. In practice this means that if, for example, links are used for 
triggering AJAX actions, the same links should do something meaningful (with regular 
HTTP requests) for a user agent that has no Javascript support. By following these 
principles website authors can make their websites work better with bundling.
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Some technologies have been developed to allow web applications to work in o&ine 
mode [35, 36]. These are, however, specialized solutions that require additional infra-
structure software to work. Thus, they are not directly applicable to our purposes, and 
though they might contain ideas that are also relevant to what we are trying to 
achieve, we do not want to dig into this subject much further as it is not within the 
scope of this thesis.

3.7 Caching

Caching is an important concept in HTTP as it leads to a number of bene"ts. Caches 
reduce redundant data transfers and help clear out network bottlenecks. They also 
reduce load on origin servers and shorten distance-induced transmission delays. [25]

Caches can reside in many points along the communication path. Web servers that 
serve dynamic content often use caching to avoid recreating the requested page when 
it is not necessary. Di#erent nodes within the network may employ their own caches. A 
gateway node on the perimeter of an intranet might serve cached resources to the in-
ternal network. Finally, web browsers have their own caches that can often be used to 
completely avoid sending a request to the network. We consider two forms of caching –  
in intermediary DTN nodes and on the web server – and their applicability in the con-
text of this thesis.

Caching in Intermediaries

It has been suggested that a DTN could be used as a massive distributed storage, with 
each capable node acting as a cache. DTN nodes are expected to store bundles for 
longer periods of time and therefore must have a fairly large amount of storage capac-
ity. This capacity could be exploited for caching by having the nodes store the bundles 
even longer than what is necessary for DTN delivery – for the lifetime of the bundle’s 
application content. These caches could then respond to passing requests, provided 
that two conditions are met: the intermediate node is able to match the request to a 
cached resource and to determine whether the freshness requirements from the request 
are satis"ed. [8]

The authors of [8] propose an additional bundle block, Application-Hints, to convey 
information that is required to satisfy the aforementioned conditions. The information 
would contain a resource identi"er, an operation type, the lifetime of the contained 
resource and optional resource-speci"c parameters. How this idea could be speci"cally 
applied to HTTP-over-DTN is touched upon brie%y in [8, 9] – here we present these 
ideas, augmented with our own suggestions.

HTTP resources are identi"ed by URIs. Therefore, it is natural to use these as the 
identi"er in the Application-Hints bundle block. Now, consider a bundle that contains 
a single web page of 50 resources: one HTML document and 49 other resources. An 
interesting question is do we label each resource separately, or do we give the bundle 
some kind of a common identi"er. If we list the URIs of all the contained resources we 
end up with a bloated bundle block. However, if the resources are not labeled, the 
cache cannot reply to requests for these resources.
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The operation type, carried in the Application-Hints block, should indicate the general 
class of operation of the message contained in the bundle. It should tell, independent 
of the application protocol, whether the bundle contains a request, an error message or 
a response with a set of resources. In HTTP, request and response messages can be 
distinguished by the start line of the message. Furthermore, the type of the request 
(the HTTP method, e.g., GET) or the response (the status code, e.g., 200 OK) can be 
easily determined.

The most interesting bit of information with regard to caching is the resource lifetime. 
This refers to the application layer lifetime of a resource which, in the case of HTTP, 
is determined by the entity headers. The Expires and Cache-Control headers allow a 
cache to determine whether the resource can be considered fresh. The ETag and Last-
Modi!ed headers are used with conditional requests that to revalidate the freshness of 
a cached resource. Again, if we consider the bundle with 50 resources, we face a prob-
lem similar the one with URIs: do we include the lifetime information of all resources 
into the bundle extension block? If not, what do we put in there? What exactly de-
termines the lifetime of a bundle that contains resources with di#ering lifetimes?

This controversy seems to boil down to this question: do we view a bundle of resources 
as a single entity or as a set of multiple entities? If we take the former stance, we lose 
some of the bene"ts of caching, namely, the ability the respond with resources that are 
contained in the bundle but not explicitly labeled. Nevertheless, we feel that the right 
thing to do is to expose the bundle as a single entity and use the URI and lifetime 
information of the HTML resource, i.e., the requested resource for which the bundle 
was originally created. This way the size of the bundle extension block does not grow 
out of hand and the nodes acting as caches do not have to work so hard – a passing 
request has to be matched against one URI instead of 50. That said, further research 
directed towards HTTP caching in DTNs is clearly needed – especially since HTTP 
arguably makes up for the most important tra!c on the Internet.

Caching on the Server

With each incoming request, the DTN-enabled web server has to perform a great deal 
of work. If MHTML bundling is used, it has to extract the HTTP request from the 
bundle, parse it, gather all the relevant resources, wrap them into an MHTML struc-
ture and "nally send them back in a response bundle. All this consumes valuable 
server cycles and has a negative impact on scalability. In reality, it would not be neces-
sary to go through this whole process with every request. In fact, it is only necessary 
for the "rst request – after that the response bundle can be cached and all subsequent 
requests for the same resource can be satis"ed with the cached bundle. As we are only 
working with static resources, the cached bundles will not become stale too quickly.

As discussed above, the bundles should carry the information that facilitates caching 
in an extension block, but clearly there are open issues as to how exactly this should 
be done. Therefore, we do not implement a caching mechanism based on the 
Application-Hints block, but instead take a more pragmatic approach to the issue (see 
section 4.5 for details).
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3.8 Security Issues

We will not delve deep into the multitude of security issues that are related to our 
subject. The following will just brie%y present a few interesting points from two di#er-
ent perspectives.

Application Data Security

On the Internet, HTTP security is achieved by using a security protocol, either Trans-
port Layer Security (TLS) or its predecessor Secure Sockets Layer (SSL), above the 
TCP layer. TLS uses symmetric cryptography and secure hash functions to ensure 
privacy and data integrity [37]. The protocol operates by using a stateful end-to-end 
connection and therefore is unsuitable for HTTP-over-DTN. In DTN, we cannot rely 
on lower layer protocols for end-to-end security, and native bundle layer security 
mechanisms are still very much a work in progress [20]. Thus, we must use application 
layer mechanisms to achieve security.

Earlier we described how MHTML can be used as an aggregation format for web re-
sources. Since MHTML is a MIME-based format, it is natural that we utilize the stan-
dard MIME security system: S/MIME. This provides us with the following crypto-
graphic security services: authentication, message integrity and non-repudiation of ori-
gin (using digital signatures), and data con"dentiality (using encryption) [38]. An S/
MIME message in itself is a normal MIME-formatted structure that contains the 
original message (mutated by a cryptographic algorithm) along with security metadata 
(e.g., the digital signature). S/MIME is based on public key cryptography and so the 
usual complications associated with a public key infrastructure apply.

DTN Infrastructure Security

Considering the concepts presented in this thesis, we can see that a DTN-enabled web 
server has to do more work per-request than its plain HTTP counterpart. It has to 
gather multiple resources to a single response, possibly using some kind of an algo-
rithm to determine optimal bundling behavior. It might even need to fetch resources 
from external servers. The fact that one simple, cheap request can trigger the server to 
perform a great deal of work makes it susceptible to DoS attacks. 

This is related to a more general problem with DTNs. Since DTN nodes often have 
limited resources (bandwidth, computing power, battery capacity), all excess tra!c is 
harmful. Therefore, a malicious party can attack a DTN by simply injecting loads of 
bundles designed to set o# costly operations in the network nodes. 

One way to counter this would be to authenticate all bundles. This, however, is in 
con%ict with anonymous web access. Another solution would be to used trusted prox-
ies which would authenticate the user than then send requests on their behalf, thus 
preserving the anonymity of the user. These proxies could operate with either HTTP-
over-DTN or plain HTTP-over-TCP depending on the situation, and might also act as 
caches. [1]
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3.9 Summary

In this chapter, we have presented the conceptual work of the thesis. The basic prem-
ise is that in DTNs, web resources should be transfered in bundles that contain aggre-
gates of related resources instead of individual resources. This is done in order to re-
duce the number of round-trips between the client and the server.

Since bundles are used to carry multiple resources, there must be a suitable aggrega-
tion format for the resources. We de"ned a number of requirements for this format and 
suggested MHTML as a prime candidate for this purpose. Furthermore, we discussed 
how to implement mechanisms that allow the server to infer dependencies between 
resources, by either listing the dependencies explicitly or by having the server parse 
the source of an HTML document. With these concepts we have established a frame-
work on which we can build our implementation of a DTN-enabled web server.

We also discussed the possibility of using adaptive bundling algorithms to perform 
semantic fragmentation and the problems related to bundling dynamic web content. 
Finally, we talked about caching and security, which are important concepts in relation 
to not only web servers but also DTNs in general.

Theoretical work, such as that presented in this chapter, has little value until it is real-
ized in practice. In the following chapter, we take the concepts discussed here and use 
them as a basis for a concrete application.
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4 Implementation

After laying down the conceptual groundwork in the previous chapter, we now turn 
our attention to the implementation of the DTN-enabled web server. Our objective is 
to produce a fully functional server application that can be used for small-scale de-
ployments. The aim is not to create a commercial-grade application but rather a proof 
of concept verifying that the ideas presented in the previous chapter are reasonable 
and can be realized in practice. Therefore, we do not attempt to optimize the server 
for high performance and thus do not expect the server to perform very well under 
heavy load. Nevertheless, we do want to ensure that the performance stays on a rea-
sonable level and does not render the server useless.

In developing the server, the main focus is on keeping the code base small and simple. 
The primary means to achieve this goal is to use an existing open source web server as 
the basis of the implementation and leverage as much as possible from the existing 
code. The focus on simplicity is carried out through the development process. If there 
are two ways to achieve a certain feature, one of them e!cient but complex, the other 
slower but simple, we opt for the latter.

In this chapter, we "rst introduce technologies that form the basis of the implementa-
tion. We describe the application architecture and then discuss the major functional 
components of the server separately. The intention is to document the implementation 
with su!cient detail so that this text, the source code and its inline comments, and 
bit of object-oriented programming expertise will allow the reader to understand how 
the application works and how it could be further developed. Finally, we present the 
proxy application that was developed along with the server.

41



4.1 Background

The server uses a number of di#erent open source technologies as its building blocks. 
The following introduces these, omitting the DTN2 reference implementation which we 
have already discussed in chapter 2.

Ruby

The web server is built in the Ruby programming language. Ruby is an interpreted, 
object-oriented language that has had a strong niche following since its inception in 
1995, but is only now gaining more wide-spread popularity. The syntax of the lan-
guage resembles Perl and the object-oriented features are similar to those in Smalltalk. 
There are a number of reasons for this language choice, including the following.

• Ruby is very high-level language compared to C. With Ruby we can write 
less code that does a lot more.

• The standard library is extensive and provides us with most of the infra-
structure we need. For most everything else, third party libraries are readily 
available.

• Ruby is dynamic in the sense that all classes can be reopened and methods 
can be rede"ned. This makes extending existing applications convenient as 
we can easily overwrite just the relevant parts.

• There is a Ruby interface to the DTN2 library.

The biggest downside of using a high-level interpreted language is that it can never 
run as fast as compiled C code. Whether this performance penalty is acceptable or not 
depends on the application – for our needs Ruby is su!ciently fast. Another drawback 
is Ruby’s threading model which is based on user-space threads (i.e., green threads). 
This causes problems when a multithreaded Ruby application interacts with a low-
level program that uses blocking I/O (e.g., the DTN2 reference implementation).

DTN-Ruby

DTN-Ruby [39] is a set of Ruby bindings to the application library of DTN2. It pro-
vides an interface through which applications written in Ruby can utilize the functions 
of DTN2. Our application uses the DTN-Ruby bindings to send and receive bundles 
through DTN2. We have built an abstraction class on top of the direct bindings to 
make the interface more Ruby-like and to discourage C-style programming.

Mongrel

Mongrel [40] is an HTTP library and a web server written in Ruby. Instead of taking 
on the daunting task of building a web server from scratch, we use Mongrel as the ba-
sis of our implementation. Mongrel is based on a single-process, multithreaded archi-
tecture where a single main-thread accepts incoming connections and spawns new 
worker threads that handle the requests.
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Mongrel uses a strict HTTP/1.1 parser that – unlike with many other web servers – is 
based on whitelisting instead of blacklisting. This means that the parser rejects every-
thing except input that is strictly conformant to the HTTP/1.1 speci"cation. From a 
security perspective this is a very smart thing to do.

Mongrel implements HTTP/1.1 with a few notable exceptions: pipelining and persis-
tent connections. The author of Mongrel argues that these features were only poten-
tially useful years ago when making connection requests was expensive over phone 
lines, and that with modern networking equipment they actually place more load on 
the HTTP server, unnecessarily exhausting concurrent request processors [41]. Omit-
ting these features allows Mongrel to avoid extraneous complexity and also tackles a 
security issue that is related to Ruby’s limited I/O capabilities (namely, the fact that 
Ruby can only keep 1024 open "le descriptors at a time). Mongrel always sends a 
Connection: close header with each response, thus preventing persistent connections. 
This comes at the cost of having the extra round-trips associated with a TCP connec-
tion setup with each new request. In our case, however, this is not an issue because 
ideally page retrievals are handled with a single transaction and there is no need for 
subsequent requests.

Other External Libraries

The web server involves a few other external libraries. For generating MIME formatted 
messages we use the RubyMail library [42], which we have extended to provide direct 
support for MHTML. The server also includes a test suite developed using RSpec [43], 
which must be installed in order to run the tests.

4.2 Application Architecture

Our goal is to extend Mongrel so that it will be able to receive bundles, process the 
contained HTTP requests and send back bundled HTTP responses. The normal TCP-
based operation will remain intact, and so the "nal server will have two interfaces: one 
for TCP (identi"ed by an IP address and a port number) and one for bundles (identi-
"ed by an EID).

As we said earlier, Mongrel’s architecture is based on a single main-thread that listens 
to incoming connections and spawns new worker threads to handle requests. We ex-
tend this architecture by adding another listener-thread for bundles. Thus, the server 
can simultaneously receive requests from both interfaces. On the bundle interface, the 
HTTP request is "rst extracted from the bundle and then sent to the HTTP parser. 
Requests that come from the TCP interface yield normal HTTP responses that con-
tain at most one resource. For requests from the bundle interface, the process involves 
an additional step, in which all the relevant resources are aggregated into the response. 
Figure 4.1 shows an overview of the server architecture.
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Figure 4.1: High-level overview of the server architecture 

Extending Mongrel

Mongrel’s architecture is composed of four main classes: HttpServer, HttpRequest, 
HttpResponse and HttpHandler. The HttpServer class contains the core functionality 
that processes incoming HTTP requests and coordinates the other classes to complete 
them. The HttpRequest and HttpResponse classes are abstractions of HTTP requests 
and responses, used internally in the processing. HttpHandler contains the logic that 
does the actual work in creating the response. Request processing instructions can be 
de"ned by subclassing the HttpHandler class (as described below). The basic Mongrel 
request cycle goes as follows [41]:

(1) HttpServer accepts a new socket connection and parses the HTTP headers. 
The request is rejected at this point if the headers cannot not be parsed.

(2) A new HttpRequest object is created based on the parsed headers. If the re-
quest contains a body, it is stored into the object.

(3) The HttpRequest and a newly created HttpResponse are passed to HttpHan-
dler which does its processing and "lls in the response headers and body.

(4) HttpServer streams the response back to the client.

Mongrel provides a very good extension mechanism for creating custom request proc-
essing instructions. Each incoming request goes through a handler, which is a simple 
function that performs some operations based on the request and creates a response. 
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Custom handlers can be written simply by creating a class that inherits Mongrel’s 
HttpHandler and implements a single process method. This method receives the re-
quest as an HttpRequest object and writes the response into an HttpResponse object. 
Handlers can be chained so that a single request may pass through multiple handlers. 
Naturally, the order in which handlers are processed can be de"ned and handlers may 
also be applied only to certain request URIs.

For example, if we wanted to implement gzip HTTP compression, we could write a 
simple handler that performs the compression on the response body and adds the re-
quired Content-Encoding header. This handler could then be appended to the handler 
chain so that other handlers would be run "rst and the compression would be per-
formed just before sending the response back to the client.

The handler mechanism allows us to implement the higher-level logic of the bundle-
enabled server. The handler can take care of retrieving resources and formatting them 
into the response. For lower-level operations, i.e. sending and receiving bundles, this 
extension mechanism is not su!cient, and so we must rewrite some of Mongrel’s inter-
nal methods in order to implement the bundle operations.

One of the principles we have followed during the application development is that the 
internals of Mongrel should be a#ected as little as possible. This means we do not 
want to end up with a new fork of Mongrel by adding the bundle functionality, but 
rather a bolt-on that is nearly independent of the internal implementation of Mongrel. 
This has a number of bene"ts: if future versions of Mongrel change some implementa-
tion details, our application is more likely to survive those changes. Also, since Mon-
grel is a tried and true piece of software, leveraging it as much as possible is more 
likely to produce a stable application.

DTN-Ruby Binding Abstractions

The DTN-Ruby bindings provide a Ruby interface to the DTN2 functions. Since 
DTN2 is written in C++, using the interface directly tends to produce C-style code. 
DTN-Ruby includes a Ruby class that builds an abstraction on top of the direct bind-
ings in order to provide a Ruby-style interface. Based on this, we have taken the idea 
further and created set of classes that follow common Ruby conventions and expose a 
more native-feeling interface to DTN2.

For example, we use the standard object-oriented programming practice of raising ex-
ceptions to denote error conditions instead of relying on return values (e.g., 0 for suc-
cess and -1 for error). We have taken advantage of Ruby’s more sophisticated features, 
such as code blocks, and also tried to optimize for the common case – thus, sending 
and receiving bundles are very simple operations from the point of view of the applica-
tion using the interface.
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Class Structure

The server consists of four main modules – Mongrel, Dtn, Mhtml and Blunder 1  – each 
of which contains a number of classes. The modules are used to group the application 
into logical substructures. The modular architecture also facilitates reusability – for 
example, the DTN functionality could be used independently in another project be-
cause the module is not tightly coupled to the rest of the implementation. The most 
important classes and their main functions are presented in tables 4.1–4.4.

The Mongrel module contains fairly small amount of our code, only the extensions and 
modi"cations that are necessary to implement the bundle interface. The main class 
that runs the server, Mongrel::BundleHttpServer, is subclassed from the standard 
Mongrel::HttpServer.2  It overwrites only the parts that it has to and otherwise keeps 
the original implementation intact, thus following our development principles.

The DTN functionality is implemented in the Dtn module. The classes in this module 
abstract the direct DTN-Ruby API to an easy-to-use, object-oriented Ruby interface. 
The following code snippet is a simple contrived example that shows how the interface 
can be used to send bundles.

client = Dtn::Client.new(”dtn://source.dtn”)  # Create a client
bundle = Dtn::Bundle.new(”dtn://destination.dtn”) # Create a bundle
bundle.payload.data = ”Test payload content”  # Insert payload
client.send_bundle(bundle)    # Send the bundle

An important detail that helps us avoid making changes to Mongrel’s internal socket 
processing is the Dtn::DtnSocket class. This class builds an abstraction on top of a 
Dtn::Bundle object so that it looks and acts like a regular socket – the exposed inter-
face is identical but internally it just uses bu#ers for I/O. This allows Mongrel to 
process bundles in exactly the same way that it does with normal sockets.

The Blunder and Mhtml modules contain the high-level logic of the application. The 
methods in the Blunder::Resource class implement the dependency "le and parser-
based resource gathering operations. This class is never instantiated into objects; it 
only contains class methods that are used directly. The Mhtml::Message class extends 
the standard Rmail::Message by giving it MHTML-speci"c functionality and some 
convenience methods. Also, the binary encoding methods are implemented in the 
Mhtml module because, for some odd reason, Rmail only implements decoding.
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Table 4.1: Classes in module Mongrel

Class Description

BundleHttpServer Contains low-level methods that overwrite their counterparts in plain 
Mongrel. Creates the bundle interface and handles starting and stop-
ping the server.

Table 4.2: Classes in module Dtn

Class Description

Client An abstraction of a DTN client, i.e., an entity with an EID. Contains 
methods for registering the application to the DTN router, and sending 
and receiving bundles. 

Bundle Represents a bundle. Contains the bundle metadata (source and desti-
nation EIDs, priority, time-to-live value and other options) and the pay-
load.

MemPayload Represents a bundle payload that is kept in memory. Has methods for 
setting and retrieving the payload data. There are also two other 
classes, FilePayload and TempfilePayload, which are similar except that 
the payload data is kept in persistent or temporary files instead of 
memory.

DtnSocket Gives a socket-like interface to a bundle. With this abstraction, Mongrel 
can process bundles just like they were regular TCP sockets. Has buff-
ers which are used for read and write operations.

Table 4.3: Classes in module Blunder

Class Description

BundleHandler The HTTP handler for the server. Contains the process method that 
receives an HttpRequest object, performs the operations needed to 
fulfill the request, and returns an HttpResponse object.

Resource Contains methods that deal with gathering resources on the server. 
Implements dependency file based resource fetching, as well as parser 
based operation.

Cache Implements a simple caching mechanism for outgoing responses. 
Stores the responses and associated metadata on disk.

Table 4.4: Classes in module Mhtml

Class Description

Message Represents an MHTML message. Has methods for creating and pars-
ing MHTML formatted structures.
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Request Cycle

The following explains the steps that the server goes through when handling a request 
from the DTN interface.

(1) The listener-thread periodically calls the bundle reception method.1  Depend-
ing on whether a bundle was received, it either passes execution to another 
thread or spawns a new one and calls BundleHttpServer#process_bundle.2

(2) A new DtnSocket object is instantiated from the bundle and passed to Mon-
grel’s default process_client method.

(3) The DtnSocket object is processed like a normal socket: Mongrel reads 
chunks of data from it, passing them to the HTTP parser. If the request is 
valid, the parser creates a new HttpRequest object and passes it to the proc-
ess method in the BundleHandler class.

(4) BundleHandler#process performs validation of the request URI. First, it 
checks that the URI is legal (i.e., not outside the document root) and that 
the resource exists. If the URI is illegal, the processing ends and no response 
is returned. If the resource does not exist, a 404 Not Found error is sent. If 
the request URI is a directory, the check is performed against an index "le in 
that directory (index.html and index.htm by default).

(5) Cache check is performed; if a cached response is found and it has not ex-
pired, processing continues at step (9).

(6) The Resource.!nd method is called with the request URI.3  If the dependency 
"le is present, it is used to determine the dependencies. Otherwise, the 
parser is used (but only if the requested resource is an HTML "le). This 
produces a list of resources that should be included in the response bundle.

(7) The process method checks if the HTTP request contains a Referer header. If 
it does, Resource.!nd is called on the referring URI. This yields the resources 
that were sent in the previous response. These are removed from the set of 
resources obtained in step (6), so that no duplicates are sent.

(8) The list of resources is passed to the Resource.create_mhtml method, which 
loops through the list, sets the correct MIME headers and returns the "nal 
MHTML structure.

(9) The MHTML string is written to an HttpResponse object, which in turn 
streams the raw HTTP response to the output bu#er of DtnSocket.

(10) Finally, DtnSocket wraps the HTTP response into a bundle and sends it back 
to the client.
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4.3 Aggregation Format

The server implements MHTML-based resource aggregation as described in section 
3.3. The MHTML module is based on the RubyMail library, which includes tools for 
working with MIME messages. Since MTHML is a MIME-based format, we can use 
RubyMail instead of writing our own MIME implementation, although we have made 
some extensions to the library to make handling MHTML a bit more convenient. The 
following shows an example HTTP response that contains an MHTML formatted web 
page comprising one HTML document and one CSS "le. This what a response bundle 
leaving the web server might contain in its payload.

HTTP/1.1 200 OK
Connection: close
Date: Tue, 26 Feb 2008 10:41:38 GMT
Content-Type: message/rfc822
Content-Length: 2693

Mime-Version: 1.0
Content-Location: http://blunder.dtn
Content-Type: multipart/related; boundary="=-1204022498-1401-9568-2-="

--=-1204022498-1401-9568-2-=
Content-Location: index.html
Content-Type: text/html
X-Last-Modified: Tue, 26 Feb 2008 10:38:36 GMT
X-Cache-Control: max-age=2592000
X-Expires: Thu, 27 Mar 2008 10:41:38 GMT
X-ETag: "47c3ec2c-59c-28b6f0"

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
   "http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">
<head>
  <title>A Simple Web Page</title>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  <link rel="stylesheet" type="text/css" href="css/styles.css">
</head>
<body>
  <h1>Simple!</h1>
</body>
</html>
--=-1204022498-1401-9568-2-=
Content-Location: css/styles.css
Content-Type: text/css
X-Last-Modified: Tue, 23 Oct 2007 08:39:09 GMT
X-Cache-Control: max-age=2592000
X-Expires: Thu, 27 Mar 2008 10:41:38 GMT
X-ETag: "471db32d-25a-28b6f3"

body { margin: 20px; background: #333; }
h1 { font: 36px helvetica, sans-serif; color: maroon; }
--=-1204022498-1401-9568-2-=--
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The outermost part of the multipart structure has a Content-Location header that 
speci"es the base location of the web page (http://blunder.dtn in the example). All the 
other parts also have Content-Location headers which are relative to this base location 
(index.html and css/styles.css). These headers enable the client to identify the di#erent 
resources and reconstruct the page.

The Content-Type header is identical to its HTTP counterpart, providing the Internet 
media type of the resource. The example also shows that each part carries a number of 
extension headers (pre"xed with “X-”). These are the HTTP entity headers that carry 
additional resource metadata. Cache-Control and Expires are used by caches to deter-
mine if the resource is still fresh. Last-Modi!ed and ETag can be used with conditional 
requests to fetch a resource only if it has changed. Determining meaningful values for 
resource expiration is up to the server – our implementation does not attempt to do 
anything fancy, but instead just uses "xed values for Cache-Control and Expires. The 
value for Last-Modi!ed is obviously the point in time at which the "le was last 
changed and ETag is a unique identi"er formed by a combination of the "le’s modi"ca-
tion time, size and the "lesystem inode number.

By default, binary content is not encoded by the server; it is included in the MHTML 
as such (without a Content-Transfer-Encoding: binary header as it is not necessary). 
However, the implementation also o#ers the possibility to use quoted-printable and 
Base64 encodings on binary resources. Encoding must be used if, for whatever reason, 
an SMTP compliant message is required. In this case, anything that is not 7-bit (i.e., 
has data octets outside the US-ASCII range) is considered binary, which covers practi-
cally everything. If encoding is activated, "les with media type text/* are encoded us-
ing quoted-printable and everything else using Base64. The media type is determined 
solely by the "le extension. This kind of encoding scheme is very rudimentary and 
should be used with caution, although with the most common cases it does work cor-
rectly. The only way to reliably determine whether a "le is 7-bit is to scan the entire 
"le for out-of-range octets. We chose not to implement this because the operation 
might be too costly to be used in practice, and moreover, we cannot think of that 
many situations where content encoding would be necessary.

4.4 Finding Dependencies

In section 3.4 we presented two di#erent ways in which the server can determine re-
source dependencies. The "rst option is to provide the dependency information explic-
itly in a "le; the other one is to infer the dependencies directly from the requested 
HTML document by parsing the source.

Dependency File

Our implementation supports dependency "les in a YAML-based text format. YAML 
is a data serialization format that is designed to be easily mappable to common data 
types in programming languages, e.g., arrays and hashes. Using YAML for our pur-
poses is conceptually simple because the data representation in the text "le translates 
directly into data structures used in the implementation. The format is also relatively 
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easy to understand and modify even for a less savvy website author. Furthermore, 
Ruby has comprehensive YAML support in the standard library. The following is an 
example of a dependency "le.

*:
  - images/logo.png
- css/styles.css

/:
  - also: /index.html

/index.html:
  - images/frontpage.png
- scripts/widget.js

/information.html:
- brochure1.pdf
- brochure2.pdf
- info/*

The syntax of the dependency "le is rather self-evident: there is a number of request 
URIs (e.g., index.html) and for each of these a list of local resources. Thus, when a 
certain URI is requested, the resources listed under that URI are included in the bun-
dle. There are two special bits of syntax: the asterisk and the also keyword. The aster-
isk can be used in two ways. When it is used in place of the request URI (as in the 
"rst entry in the example) it simply denotes that the listed resources should be in-
cluded in all bundles regardless of the URI. Web pages often have some resources that 
are common to all pages; this syntax avoids having to repeat them for each entry. Ad-
ditionally, the asterisk can be used as a wildcard character to match multiple "les. The 
bottom row of the example means that all "les within the info directory (and its sub-
directories) should be added to the bundle.

The also keyword can be used to express that additional resources, from another entry 
in the dependency "le, should also be included. In the example, a request for the root 
of the website (i.e., / ) would return the same resources as a request for index.html. 
This special syntax is implemented for the sake of convenience; it also avoids unneces-
sary repetition in the dependency "le. One important detail related to the also syntax 
is that it can be used to construct circular references (i.e., two entries that have their 
also keywords pointing to each other), inadvertently or otherwise. This fact must be 
taken into account in the implementation – failure to break these circular references 
will lead to an instant server crash.

If the dependency "le does not have an entry for a given request URI, the server may 
just return that one resource (and possibly some common resources denoted by the 
asterisk), or it might use the parser on the requested "le, as described below.

Parser

The parser can be used in place of, or in addition to the dependency "le. It’s advan-
tage is that the manual labor associated with creating the dependency "le is elimi-
nated. However, using the parser consumes more server cycles and thus is slower. Be-
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sides, the parser is not perfect: it might miss some relevant resources and may also 
include unnecessary ones. For these reasons, the using the dependency "le as the pri-
mary mechanism for "nding dependencies is preferred.

The parser uses relatively simple regular expressions to perform its work, and conse-
quently, is guaranteed to work properly only on well-formed XHTML documents. The 
most important constraint is that attribute values must be quoted. In HTML, quotes 
can be omitted for values comprising certain characters, although this is considered 
bad practice [44]. We reckon that a simple, strict parser is su!cient for our purposes, 
although in a real production environment the parser should be able to deal with mal-
formed HTML documents which unfortunately are all but rare. Hpricot [45] is an ex-
cellent HTML parser written in Ruby that could be used for this.

The parser searches for img, link and script elements in the HTML source and picks 
up the values from the relevant attributes. Additionally, @import statements that are 
used within style elements to link to external CSS "les are identi"ed.

The parser does not attempt to "nd frame dependencies (i.e., frame elements in the 
HTML source). This would require support for recursive parsing because documents 
within frames may contain further frames ad in"nitum. Even though frames are still 
sometimes used, they are being phased out from the HTML standard due to their ad-
verse e#ect on usability and accessibility [46].

CSS "les are also parsed for image references (e.g., url(”/logo.png”)) and @import 
statements. The fact that CSS "les can refer to other CSS "les necessitates recursive 
parsing, which in turn makes it possible to create in"nite loops with circular refer-
ences. We return to discuss the parser operation further in section 5.3.

Referrer Checking

In order to avoid resending resources that have already been sent in an earlier re-
sponse bundle, the server performs referrer checking. The idea is to use the referring 
URI to "nd the resources that were sent in the previous response and compare these 
to the set of resources that the current request URI yields. The overlapping part of 
these two sets of resources need not be included in the response. 

This functionality is achieved by using the Referer HTTP request header, the value of 
which is the referring URI. As we have stated before, this header is not mandatory 
and therefore might not be present in a request. In this case, referrer checking is not 
performed.

The obvious downside to using this method is that it puts more load on the server. It 
essentially means that the server has to perform the resource searching operation twice 
per request. However, we suspect this is a smaller price to pay than sending the same 
resources over and over again.
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4.5 Caching

The server implements a simple "le-based caching mechanism. Creating a response 
bundle is an expensive operation: the server has to parse the dependency "le (or 
worse, the source of an HTML document), read the "les from disk and build the 
MHTML structure. By caching the responses, we can avoid going through this process 
with each incoming request. With proper mechanisms in place to determine the fresh-
ness of cached resources, caching should have a signi"cant positive impact on server 
performance.

When the server receives a request for the "rst time, it creates and sends the response 
as usual, but it also saves the created MHTML structure (i.e., the bundle payload) 
into a "le on disk. Along with the MHTML is also saved a piece of metadata: the Ex-
pires and ETag headers of the requested resource. When a subsequent request comes 
in, the server determines the freshness of the cached response by comparing the header 
values in the metadata to the current values (i.e., the current time and a recalculated 
entity tag). If the expiration time has not passed and the entity tags match, the 
cached response can be served.

It should be noted that this caching mechanism only validates the freshness of the re-
quested resource – i.e., the resource for which the response was created – and not the 
other associated resources that the MHTML structure contains. If, for example, a CSS 
"le that is a part of a cached response is modi"ed, this change will not invalidate the  
response. The Expires header is included in the metadata for this purpose: by setting a 
reasonable value for it, the cached responses will be periodically invalidated, thus al-
lowing the server to rebuild the cache with fresh content. Furthermore, cache freshness 
will hardly become a problem because the server is designed to serve static websites 
that do not change often, and when they do, the changes are done by the website 
author who can also manually empty the cache (by restarting the server).

It would also be possible to cache entire bundles instead of just bundle payloads. This 
would make things even more e!cient as it would avoid having to create a new bundle 
for each cached response. However, the decision to cache bundle payloads is purely 
pragmatic because this way we can implement the entire caching mechanism in the 
HTTP handler. Caching entire bundles would require implementing functionality out-
side the handler in the lower-level processing logic, thus creating unnecessary complex-
ity.

The implemented caching mechanism is a simple one with limited functionality. One of 
its drawbacks is that bundle contents are opaque to the bundle layer. Therefore, bun-
dles cannot be easily cached in intermediary nodes without application-level logic. 
Nevertheless, as we have mentioned, caching in DTNs is an active research topic. 
When standard conventions regarding the subject are established by the DTN com-
munity, we expect them to o#er potential for more e!cient caching.
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4.6 Proxy

The scope of the practical part of this thesis is limited to developing the server appli-
cation. However, a server alone is not very useful – a suitable client application is 
needed, if only for testing purposes. There are currently no web browsers with native 
DTN support. Instead of developing one, an easier approach is to create a proxy that 
wraps the outgoing HTTP tra!c into bundles. This way any regular web browser can 
be used for testing the server.

We have implemented a simple proxy application that sends and receives bundles on 
behalf of the browser. The proxy has a local cache – similar to the one on the server – 
that stores the resources extracted from response bundles. The browser communicates 
with the proxy in regular HTTP-over-TCP fashion, i.e., retrieving resources one-by-
one from the proxy cache. The following steps, along with the conceptual image in 
"gure 4.2, illustrate how DTN-proxy-based web access works.

(1) The web browser sends an HTTP request and starts waiting for the re-
sponse.

(2) The proxy intercepts the request and puts it into a bundle. The destination 
EID is obtained from the Host request header simply by taking the value and 
replacing the http: URI scheme with dtn:.

(3) The bundle is sent to the server through the DTN. The server processes the 
request and sends back the response.

(4) The proxy receives the response bundle, extracts the resources and stores 
them to the cache. The originally requested resource is streamed back to the 
browser.

(5) The browser parses the HTML source of the response and sends requests for 
the embedded resources.

(6) The embedded resources can now be served from the proxy cache.

The prerequisite for the "nal step – serving the embedded resources from the proxy 
cache – is that the server has been able to correctly identify all resources that belong 
to the page. If this is not the case, the proxy will have to issue further requests to the 
server. The proxy can be con"gured with a timeout period after which it returns a 504 
Gateway Timeout error if no response bundle has been received.

The HTTP interface of the proxy is also based on Mongrel. Apart from the cache, 
which a standalone module also used in the server, the whole processing logic of the 
proxy is implemented in a simple HTTP handler.

The proxy is an example of infrastructure software that will be needed if the DTN 
architecture becomes more widely deployed. This infrastructure will allow clients and 
servers, some of which are DTN-enabled and others which are not, to coexist and 
communicate with each other.
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Figure 4.2: Proxy-based DTN web access

4.7 Summary

In this chapter, we presented our web server implementation which puts the concepts 
presented in chapter 3 to practice. Thus, the completed application serves as a veri"-
cation of the ideas we have discussed in this thesis. The implementation is largely 
based on two supporting pieces of software: the DTN2 bundle protocol implementation 
and the Mongrel web server. Both of these are under development, and so we can ex-
pect that our application will also have to evolve in the future. We believe that the 
architecture of our implementation will allow this to happen without too much fric-
tion.

It is worth noting that currently the implementation only works on Unix based plat-
forms. Mongrel does support Windows, but DTN2 does not – therefore, our server 
cannot be run on Windows. This, however, is a relatively modest shortcoming since 
the server side is mostly dominated by Unix variants.

An important part of implementing something is evaluation: how well it works, does it 
serve the purpose it was created for, and what are its potential limitations? This will 
be the theme of the next chapter.
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5 Measurements and Analysis

After having implemented the web server, we are naturally interested in how it per-
forms in a real-life scenario. In order to "nd out, we carry out a set of basic measure-
ments in which we consider the server performance from various viewpoints. The aim 
of these measurements is not to produce extremely accurate and dependable data but 
rather to get a rough understanding of the level of performance and reveal any glaring 
mistakes. The HTML/CSS parser that the server uses to infer resources dependencies 
is a very important part of the server and therefore we devote a separate section to it.

This chapter begins with a brief digression from the main objectives of the thesis. We 
conduct an analysis of real-world websites to gain an understanding of the landscape 
in which web servers actually work. Then, we describe the details of our server meas-
urements and present the results. Lastly, we discuss the parser operation and its impli-
cations to the server performance.

5.1 Website Analysis

In chapter 3, we discussed how web resources can be aggregated into bundles to avoid 
unnecessary round-trips in DTN environments. We justi"ed the need for bundling by 
asserting that web pages typically consist of multiple resources. While this assumption 
is correct, we lack deeper knowledge of how typical websites are actually structured: 
how many resources usually make up a single page and what kind of resources are 
these? We conducted a small side study to "nd out answers to these questions.

Methodology

The analysis was conducted by gathering data from 500 websites, taken from a daily 
updated list of the most popular websites worldwide, the Global Top 500 by Alexa 
Internet [47]. The sites are diverse in terms of content, language and geographic loca-
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tion. The data was gathered by creating a script that invoked a web browser to se-
quentially visit the 500 websites. The browser was con"gured to use a proxy (Charles 
[48]) that recorded all network tra!c between the browser and the target servers. The 
raw data collected by the proxy was then parsed to a suitable format to produce the 
following results.

Upon processing the results we noticed that a large number (precisely, 61) of the web-
sites on the list were di#erent localizations of the Google search engine page. All of 
these pages are essentially identical, save for the language, and thus can be considered 
a single page. Therefore, we excluded all but one of the Google pages from the results 
and in doing so decreased the sample size from 500 websites to 440.

Results

Figures 5.1 and 5.2 show cumulative graphs of the web page sizes. Figure 5.1 depicts 
the size of the web page in terms of bytes, i.e., the total size of all resources combined. 
Figure 5.2 is similar except that it shows the number of "les comprising the web page 
instead of the byte size. Notice the logarithmic x-axis in both graphs.

The shapes of the two curves are similar because, obviously, the number of "les on a 
page and its size have a strong correlation: a large number of "les is likely to result in 
a large total byte size. The general shape of the curve shows that extreme cases are 
rare: the bulk of web pages are similar in terms of the measured quantities, as indi-
cated by the rapidly ascending middle section of the curve.

Table 5.1 below shows the percentiles from the 10th to the 100th for the graphs. For 
example, we can see that 50% of the websites included in the analysis are 253 kilo-
bytes or less in size. In other words, the median size is 253 kilobytes. Correspondingly, 
the median of the "le count is 53.

Table 5.1: 10–100th percentiles for the web page size in kilobytes the number of !les

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

KB 48 96 142 196 253 319 413 585 872 4227

Files 10 21 32 42 53 64 82 104 137 399

This table also con"rms the fact that extreme cases are rare. The largest web page is 
over 4 megabytes in 399 "les, while the 90th percentiles drop to 872 kilobytes and 137 
"les. It is perhaps a bit surprising that there are so few small web pages – the 10th 
percentile of "le count is as large as 10. This is doubtlessly due to the fact that the list 
only contains very popular, high volume sites. We suspect that personal websites and 
such often contain fewer resources but these are not represented in the sample.

Figures 5.3 and 5.4 show the relative abundance of di#erent "le types; the former one 
in terms of bytes and the latter in the number of "les. The "le type is determined from 
the Content-Type header sent by the server.
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Figures 5.1: Cumulative page size graph in terms of bytes

Figure 5.2: Cumulative page size in terms of the number of !les
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Figure 5.3: Breakdown of content types in terms of bytes

Figure 5.4: Breakdown of content types in terms of the number of !les
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Unsurprisingly, di#erent types of images are the largest group, constituting 72% of all 
"les. In terms of bytes, images make up 56% of the total amount. Flash content only 
accounts for 3% of "les, but 17% of bytes. This can be explained by the fact that 
Flash "les often contain animation or video that take up a lot of space. Another gen-
eral observation is that the infrastructure of a web page (i.e., HTML and CSS) typi-
cally makes up a rather small part of the total – the majority is media content.

Conclusions

Based on the results obtained in the analysis, we can conclude that a typical web page 
consists of about 50 resources. Fetching such a page with regular HTTP-over-TCP 
would require 50 round trips from the client to the server, although a number of these 
might occur in parallel. With resource bundling we can reduce the number of round 
trips ideally to just one. In a high-delay environment, where the network delay domi-
nates the additional latency introduced by the bundle layer, we can expect bundling to 
have a substantial positive impact on page retrieval performance.

5.2 Server Performance

When measuring the server performance, we are interested in two things: how much 
delay the bundle processing operations add to the server response cycle, and more im-
portantly, how big an impact does bundling have on the page retrieval latency experi-
enced by the user. The latter point is not so much a feature of the server as a charac-
teristic of the entire bundling concept described in this thesis. However, decent request 
processing speed on the server is a prerequisite for su!cient performance of the entire 
system.

An important performance feature of a web server is its ability to deal with concurrent 
requests, i.e., serve multiple clients simultaneously. Due to Ruby’s thread implementa-
tion, which is based on user-space threads, concurrency is a weak point in our imple-
mentation. However, as we have stated, our focus is not on optimizing the server per-
formance and therefore the concurrency issues are not a primary concern.

Furthermore, we are naturally interested in how the implementation works in chal-
lenged network conditions for which the DTN architecture is originally designed. We 
perform measurements with arti"cially created delay to observe this.

Methodology

Typically, web server performance is evaluated by generating workload on the server 
using tools such as httperf [49] and measuring the number of requests per second the 
server can process. In our case, however, requests per second is not a good benchmark 
because we want to make a comparison between the DTN- and TCP-based modes of 
operation, which are inherently di#erent. DTN-based communication stresses the 
server with fewer, but more laborious requests, whereas TCP-based operation causes a 
large amount of small requests. A logical way to compare these two modes of opera-
tion is to measure the performance experienced by the end user, which ultimately is 
the only thing that matters.
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In order to achieve this, we used the Safari web browser [50] and its built-in web in-
spector tool. This tool allows us to measure the actual time between the instants when 
the browser sends the "rst request and when the page has been rendered. We used our 
DTN proxy to connect the browser to the DTN.

The server was run on a remote machine seven network hops away from the client. 
The round-trip delay between the two systems was very low and stable, the average 
over 100 pings being 1.47 ms with a standard deviation of 0.18 ms and zero packet 
loss. The client and server machines were running DTN2 bundle daemons with a direct 
route between them (via a TCP link) – thus, the overlay DTN was just a single hop. 
We con"gured the daemon on the server to use the "lesystem for bundle storage. By 
default, DTN2 uses the Berkeley DB [51] database library but during development we 
observed that this is detrimental to the server performance – switching to "lesystem 
storage made bundle processing orders of magnitude faster.

In addition to the low-delay environment described above, we performed measure-
ments with arti"cially introduced delay. This was achieved simply by having the server 
hold up the response for the desired amount of time. The aim of this test was to dem-
onstrate how network delay leads to quick deterioration of HTTP-over-TCP perform-
ance, while HTTP-over-DTN remains usable. While this simple method of creating 
delay is su!cient for our measurements, it does not realistically model network delay, 
which we will shortly point out.

The website we used for the measurements is a replication of the Mozilla Corporation’s 
main product site (www.mozilla.com). This website was chosen for testing because it is 
reasonably complex but does not contain excessive Javascript trickery or anything else 
that would cause problems. The measurements were conducted on the site’s front page 
which consists of 29 resources: the HTML document, 4 Javascript "les, 10 CSS "les 
and 13 images. For the sake of comparison, measurements were also done on a simple 
self-contained HTML page.

The page retrieval measurements were done with three di#erent server con"gurations. 
In the "rst case, the response bundle was created by using the parser. In the second 
case, the dependency "le was used, and in the last one, the response was returned 
from the server cache.

It is important to notice that in this kind of a test setup there are numerous moving 
parts, all of which contribute to the "nal result. Ideally, what we would like to meas-
ure is just our own code. In reality, there is a good number of other factors – Mongrel, 
DTN-Ruby, DTN2, the operating system, network path, DTN proxy and web browser 
– that inevitably a#ect the result. Especially the proxy, being an unoptimized testing 
tool, produces a certain amount of latency on the client side. Therefore, we want to 
emphasize that the obtained numbers merely represent the results of this particular 
test run with this particular setup. However, this is not to say that no conclusions can 
be drawn from the results – the goal of the measurements is to get a rough idea of 
how the DTN-enabled server performs and to con"rm that performance is not an ob-
stacle to its deployment. For this purpose, this measurement scenario is su!cient.
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In addition to the page retrieval measurements, we also observed the request process-
ing times on the server at two di#erent points of the response cycle. The "rst meas-
urement excludes the bundle operations and observes only the time spent in the stan-
dard Mongrel processing cycle, including the HTTP handler in which the resources are 
gathered and aggregated into MHTML. The second measurement also includes the 
bundle operations, i.e. creating a DtnSocket from the request bundle, crafting the re-
sponse bundle and passing it to the DTN2 daemon. These results give us an under-
standing on how taxing the bundling operations performed by the server are.

Results

Table 5.2 shows the results of the measurements conducted on the www.mozil la.com 
front page. The top two rows show the request processing times measured on the 
server, the "rst row excluding the time spent in bundle operations. The bottom row 
shows the full page retrieval time measured by Safari. The measurements were done 
through DTN with three di#erent server con"gurations, as explained above. In each 
cell, the "rst two numbers are the minimum and maximum times and the last bolded 
number is the mean of ten measurements. The values are in milliseconds.

Table 5.2: Measurement results for www.mozilla.com

DTN (Parser) DTN (Dep. file) DTN (Cache) TCP

Request 43.3 / 65.8 / 53.6 23.0 / 41.1 / 28.3 2.5 / 2.9 / 2.7 -

Bundle 53.7 / 201.8 / 82.4 29.5 / 65.5 / 43.4 8.0 / 28.2 / 16.7 -

Page 905 / 1060 / 971 534 / 647 / 566 542 / 622 / 577 359 / 479 / 435

From the results we can see that HTTP-over-TCP yields the lowest page retrieval 
time. The result is not surprising because this is what Mongrel is optimized for. Server 
side processing times are not shown for TCP because they cannot be measured simi-
larly to the DTN-based cases; the resources are requested one-by-one and therefore 
there is no single request processing time for the entire page.1  Neither is there any 
bundling delay.

Also unsurprisingly, parser-based operation is the slowest of the DTN cases in terms of 
both server processing and page retrieval time. Whether the response bundle is created 
using the dependency "le or served directly from cache has no impact on the "nal re-
trieval time. The server side processing of cached responses is considerably faster, al-
though this is not re%ected in the total page retrieval time because the slight advan-
tage is lost in the other delays that occur during transmission and page rendering. 
However, in a situation where the server is overloaded with requests, we believe cach-
ing will be very useful in keeping the server responsive.

One of the reasons for the worse performance with parser-based operation is the fact 
that the resulting response bundle is considerably larger. The parser includes all re-
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sources that are referenced in CSS "les – even the ones that are not used on the bun-
dled page. The reason for this is that the parser cannot know which of the resources 
are actually used unless it understands the CSS selector syntax. Implementing such a 
parser is far beyond the scope of this thesis, and performance-wise it might not even 
be reasonable. The payload of the bundle created with the parser contains 75 resources 
and adds up to 494 kilobytes in size. In the other two cases, there are 29 resources in a 
161 kilobyte payload, so this obviously has an impact on the results.

We should also mention that the values on the second row in the table (i.e., request 
processing times with bundling delays) only show the time spent in the server applica-
tion. The delay that occurs in the DTN2 daemon between the time instants of receiv-
ing the bundle from the application and transmitting it to the network is not in-
cluded. For the test page, we observed this delay being about 150 milliseconds with 
little %uctuation.

The measurements were also conducted with a simple HTML page (681 bytes in size) 
that contained no embedded resources. In this case the operations of regular HTTP 
and HTTP-over-DTN are identical: a single request-response pair. Hence, we can also 
make comparisons of the server side request processing times. The di#erent DTN 
modes (parser, dependency "le, cache) would hardly make any di#erence in such a 
simple test and so only the dependency "le, with no entry for the requested page, was 
used. The results – in the same format as earlier – are shown in table 5.3.

Table 5.3: Measurement results for the self-contained HTML page

DTN (Dep. file) TCP

Request 2.4 / 2.7 / 2.5 0.7 / 0.7 / 0.7

Bundle 7.0 / 84.7 / 19.8 -

Page 116 / 175 / 137 102 / 132 / 122

These results reveal that the bundle operations have a rather modest impact on the 
"nal page retrieval time. However, the processing time on the server due to the bun-
dling delay is considerably larger. In the scenarios for which our server is designed, i.e. 
light load and very modest concurrency, this is unlikely to have much consequences, 
but in an overload situation it might make a big di#erence.

The "nal page retrieval test was designed to show that adding network delay will not 
have too big an impact on the performance of DTN-based operation, whereas regular 
HTTP will su#er greatly from it. The delay was created arti"cially on the server, 
which – from the point of view of the client web browser connected to the proxy – is 
analogous to having delay in the network. Table 5.4 shows the results of the measure-
ments. Notice that in this table, the measured times are shown in seconds.
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Table 5.4: Measurements results for di#erent delays (www.mozilla.com)

Delay DTN (Dep. file) TCP

50 ms 0.57 / 0.67 / 0.62 0.81 / 0.93 / 0.89

100 ms 0.64 / 0.69  / 0.66 1.36 / 1.61 / 1.45

500 ms 1.07 / 1.22 / 1.12 5.32 / 5.87 / 5.48

1000 ms 1.53 / 1.93 / 1.69 10.38 / 10.71 / 10.49

The results are a strong indicator that the resource bundling scheme works. Expect-
edly, the performance of HTTP-over-TCP degrades drastically with increasing delay. 
This is simply due to the number of round-trips involved in the page retrieval process. 
Web browsers do use parallel TCP connections, somewhat mitigating the e#ects of 
delay, but nevertheless as the delay increases, each additional round-trip becomes very 
costly. HTTP-over-DTN, on the other, only requires one round-trip, provided that the 
server manages to bundle all relevant resources. Thus, the page retrieval time is essen-
tially the sum of the round-trip delay and the server processing time. If the delay is 
further increased, the retrieval time of DTN increases on par with it, whereas TCP 
gets gradually worse – just how fast, depends on the number of resources – and "nally 
fails completely.

However, we must point out that there is a caveat to our very simple method for cre-
ating delay: if the delay were truly in the network, it would also a#ect the TCP per-
formance (e.g., the slow start mechanism). Thus, from the point of view of TCP, delay 
on the server is not equivalent to delay in the network. This fact does have an impact 
on the obtained numbers: network delay would slow down the TCP ramp-up phase, 
and therefore in a real scenario TCP would probably perform even worse. Thus, the 
outcome of the test would not change but DTN would be likely to win with an even 
greater margin.

We also did some concurrency testing on the server, using the httperf application for 
the TCP interface and a custom load generating script for DTN. As we have said be-
fore, the capabilities of the bundle-enabled server are hampered by the limitations of 
Ruby and its interaction with the DTN2 library. Thus, a comparison between the 
standard Mongrel TCP interface and the DTN interface is not really a fair one. Out of 
the box, Mongrel can handle 950 concurrent connections. In our quick tests, we were 
able to get 100 requests per second out of the standard Mongrel directory listing han-
dler, which is not even designed for serving "les directly. On the other hand, the DTN 
interface worked adequately up to about 10 concurrent processing threads, although 
with a noticeable slowdown. However, it is not clear what exactly is causing this slow-
down. A signi"cant source of delay seems to be the DTN2 bundle daemon which, for 
some reason, upon being overloaded with bundles slows the outgoing transmission rate 
to a trickle.
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Conclusions

As a general conclusion, we can say that our server is fast enough. When browsing the 
test website, everything seemed snappy and the measurement results also back this up. 
During testing we did not run into problems that might prevent the server’s real-life 
usage. Keeping in mind that the server is only designed for small-scale deployments, 
we believe it is a usable application. In this context the concurrency issue is also a 
non-issue.

It is also worth mentioning that Mongrel, despite having good performance for a 
Ruby-based implementation, is not usually run as a standalone server. Typically, Mon-
grel is used as a back-end application server with a separate front-end, such as Apache 
or Nginx, facing the public Internet and acting as a reverse proxy. For serving static 
"les, these heavyweight web servers are still a notch faster.

5.3 Parser Accuracy

If the parser is used on the server to "nd resource dependencies, it is very important 
that it works well. If the parser does not "nd the dependencies with su!cient accu-
racy, the server will essentially revert to regular HTTP-style one-by-one fetching, 
which is exactly what we want to avoid. In theory, testing the parser accuracy is easy: 
make a local copy of a web page, make it available on the server and access it with a 
web browser through the DTN proxy. The number of subsequent requests sent by the 
browser after receiving the initial response bundle equals the number of resources the 
parser failed to "nd. If there are no further requests, the parser found all relevant re-
sources. The test could be performed on a large number of web pages to obtain the 
average hit ratio.

However, it seems that in practice it is rather di!cult to test the parser. The tests 
should be performed on real websites in order to obtain real-life data, but retrieving a 
complete local copy of a web page is problematic. If the local copy is not complete, the 
parser cannot possibly "nd all dependencies and therefore its accuracy cannot be 
judged. We have attempted retrieving local copies with two di#erent methods, but 
neither of these have proven reliable enough.

Modern web browsers, such as Safari and Firefox [52], include a feature that allows the 
user to save an entire web page on the disk. In Firefox, the HTML page and its em-
bedded resources are saved as separate "les. However, this feature really does not work 
that well. First, for some reason Firefox modi"es the source of the HTML page by 
adding extraneous elements to it. Thus, the saved page is no longer identical to the 
one on the remote server. Second, Firefox fails to save all the dependent resources. For 
example, CSS "les that are linked to the page using the @import statement are not 
saved. It is ba&ing why this happens – if Firefox is able to render the page properly, 
why can it not similarly save the page? Safari seems to fare better in this regard, but 
it saves the web pages in a proprietary archive format instead of separate "les. This 
prevents using these copies on the local server.
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We also tried using Wget [53] to fetch web pages. Wget is a non-interactive command 
line tool for retrieving remote "les using the most common Internet protocols. Wget 
can be used to save complete web pages by instructing it to follow the links on a page 
recursively to a certain depth. The main problem with Wget is that it essentially is 
just another parser, and an imperfect one at that. We cannot rely on Wget being able 
to "nd all the relevant resources and hence cannot use it for testing our own parser. A 
quick test revealed that also Wget fails to recognize the @import statement. It seems 
that obtaining complete local copies of web pages would require a considerable amount 
of manual labor.

The problem of fetching copies of web pages is not inherently di!cult. After all, if a 
browser displays a web page, a local copy already exists in the browser cache. How-
ever, there seems to be no simple practical solutions to this problem – only tedious 
ones. The number of web pages on which to test the parser should be su!ciently large 
in order to have statistically sound results. If the manual workload associated with 
each test case is large, performing this kind of a test is not feasible. Therefore, we do 
not conduct such a test.

Conclusions

In section 4.4, we explained how the parser works and presented some of its known 
limitations. One limitation, which is not dependent on just the parser but the bun-
dling scheme as a whole, is that external dependencies are excluded. Basically, this 
means that the parser does not recognize references that contain a full URI, such as 
http://static.server.com/image.gif, unless the domain part of the URI matches the 
server’s own domain. The reason for this behavior is that the server obviously cannot 
bundle resources which it does not have direct access to, and as consequence, our 
server application cannot be used with websites that want to distribute their content 
from multiple separate hosts.

Another case when the parser will fail to "nd resources is when they are embedded 
within Javascript code. For example, a page might want to display an image randomly 
from a set of alternatives on each page load. This functionality may be implemented 
on the server side, in which case the parser would work "ne, but it also might be done 
with Javascript on the client side. The image URIs might be placed in a Javascript 
array from which one would be chosen randomly and inserted to the page. The parser 
would not detect these images and we can even argue that they should not be detected 
– after all, if all the images were included in the bundle, all but one of them would 
remain unused.

On the test website (i.e., the local version of www.mozilla.com), the parser only misses 
one dependent resource – an image reference embedded in Javascript code. Generally, 
we can conclude that the parser works well enough considering that it is actually de-
signed to be just a fallback mechanism. We assume that the dependency "le will be 
primarily used for declaring resource dependencies.
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5.4 Summary

The primary justi"cation for the concept of resource bundling is that web pages con-
sist of multiple resources, which in the case of HTTP-over-TCP leads to multiple 
round-trips. The website analysis presented in this chapter reveals the concrete num-
bers behind the word “multiple”. This knowledge allows us to estimate the size of the 
bundles that will pass through the system, which in turn might be used as a basis for 
design decisions in other related contexts. The results of the analysis are perhaps a bit 
surprising: the average web page contains more than 50 resources, which are for the 
most part image "les.

We also presented the results of the server performance measurements in this chapter. 
In short, these results show that the overhead of the bundle layer operations per-
formed by the server is not very signi"cant. Thus, even in a low-delay environment 
performance does not prohibit the deployment of the DTN-enabled server, although its 
scalability is limited by concurrency issues. In a challenged network environment with 
long delays, DTN-based operation easily outperforms regular HTTP-over-TCP.

This chapter concludes the content part of the thesis; in the next one, we draw conclu-
sions on the work done and discuss some ideas for future development.
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6 Conclusions

In this thesis, we have presented an approach to enabling DTN-based web access. In 
the "rst chapter, we discussed two perspectives from which this problem – running 
HTTP on top of the bundle protocol – should be considered: transport perspective 
and application perspective. We have discussed the necessary requirements for using  
DTN transport under HTTP, but the greater part of this thesis has explored applica-
tion level issues, i.e., the way in which HTTP transfers web pages and how this can be 
adapted to the DTN environment.

Regular HTTP-over-TCP is inherently incompatible with the key concepts of the DTN 
paradigm. Therefore, running HTTP on top of DTN cannot be done trivially by map-
ping HTTP messages directly onto bundles. In challenged network environments, it is 
paramount to avoid unnecessary round-trips because they can be very costly. HTTP, 
on the other hand, is a conversational protocol that fetches each web resource with a 
separate request which means that retrieving one web page requires a number of 
round-trips equal to the number of resources comprising the page. The solution pre-
sented in this thesis for redeeming this mismatch is resource bundling.

Resource bundling means that the DTN-enabled web server does not send individual 
resources in its responses, but instead bundles of multiple resources, typically an entire 
web page. This reduces the number of round-trips required to retrieve a web page ide-
ally to just one. We de"ned the necessary prerequisites for resource bundling: an ag-
gregation format for the resources and a method for the server to infer resource de-
pendencies. We opted for MHTML as the primary aggregation format on the grounds 
that it is a relatively established format designed for the exact purpose of transferring 
web pages, the MIME headers provide means for conveying resource metadata, and it 
does not incur excessive overhead. For "nding resource dependencies on the server, we 
presented two methods; the "rst one based on explicitly listing the dependencies in a 
"le, and the second one on parsing the HTML source of the requested document.
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The practical contribution of this thesis is a web server application that implements 
the devised resource bundling scheme. The two largest building blocks of the server are 
the DTN2 reference implementation and the Mongrel HTTP server. Leveraging from 
these two components, we created a web server with native support for the bundle 
protocol and MHTML-based resource bundling.

An obvious step for future development is a DTN-enabled web browser. The proxy-
based solution we have used feels more or less like a crude development and testing 
tool rather than a "nished product. A native DTN web browser that is aware of the 
potentially lengthy page retrieval operations and has a user interface speci"cally de-
signed for this would be very useful in furthering the DTN-based web.

As for developing the server application further, there is plenty of room for improve-
ment. The concurrency issues stemming from Ruby’s threading model should be re-
solved in order to produce a truly production-ready server. Ruby’s upcoming releases 
promise support for native threads which – coupled with a Ruby-based bundle router 
implementation [24] – might be viable alternative for creating a truly portable web 
server with native DTN support. It is also conceivable that an event-based architec-
ture [54] could be used instead of a multithreaded one. We can also think of other im-
provements, such as better support for di#erent bundle payload types, more e!cient 
caching mechanisms and clustering support.

The main issues with the resource bundling scheme are related to dynamic web con-
tent. As the technologies behind the web evolve and mature, web pages are becoming 
increasingly dynamic and interactive. Modern AJAX-based web applications are blur-
ring the line between the desktop and the web. Clearly, the Internet is no longer just a 
medium for linked static text documents but also a platform for a myriad of rich web 
applications. On a technical level, the interactivity of the modern web is often imple-
mented in a way that requires more and more frequent communication between the 
client and the server, thus raising the bar for DTN compatibility. Resolving this dis-
parity is a challenge that calls for new technological solutions and standards. The 
HTML 5 working draft includes features, such as client-side database storage, that aim 
to enhance o&ine capabilities of web applications, hence also bene"ting DTN-based 
web access [55].

As the Internet stretches out to ever more diverse network environments, it seems 
likely that delay-tolerant networking will play a role among future networking tech-
nologies. Whether the deployed DTN architecture is the current one from DTNRG, its 
successor or something completely di#erent remains to be seen. In any case, research 
in the DTN "eld is advancing rapidly. One interesting question is whether DTN will 
remain as specialized solution for challenged networks or could delay-tolerance become 
a feature of the Internet in general. In other words, could the bundle protocol (or some 
other DTN transport protocol) replace IP as the all-encompassing baseline of the 
Internet. Further research is required to determine whether this is feasible, but never-
theless, the idea might be worth pursuing because universal delay-tolerance certainly 
holds interesting prospects for future applications.
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