
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Omar Mukhtar

Design and Implementation of Bundle Protocol Stack for

Delay-Tolerant Networking

Master’s thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology

Supervisor: Professor Jörg Ott (Networking Laboratory)

Espoo, 11th August 2006

HELSINKI UNIVERSITY OF TECHNOLOGY Abstract of the Master’s thesis

Author: Omar Mukhtar

Name of the Thesis: Design and Implementation of Bundle Protocol Stack for

Delay-Tolerant Networking

Date: 11.08.2006

Pages: 94

Department:

Professorship:

Department of Electrical and Communication Engineering

Networking Technology

Supervisor: Professor Jörg Ott

The Internet family of protocols (TCP/IP) has dominated the computer network

communications; offering services such as worldwide web (WWW), file transfer (FTP),

e-mail and voice-over-IP (VoIP) to the scientific, research and business communalities

and to the common users. The TCP/IP protocols are also merging with other

telecommunication paradigms such as 3G and 4G cellular networks. Despite of wide

deployment, TCP/IP protocols are ill suited for some extreme networks because of some

strict fundamental assumptions regarding end-to-end communication, built-into their

architecture. These assumptions do not always hold in the emerging challenged

networks such as mobile ad hoc networks, deep space communication, sensor networks,

low earth orbiting (LEO) satellites etc., because of variable requirements of bandwidth,

longer end-to-end delays, intermittent connectivity and higher error rates.

Delay-Tolerant Networking tries to solve some of the issues by relaxing many of the

assumptions used in the TCP/IP regarding end-to-end communication. It defines an

overlay network for end-to-end message delivery, which uses the Bundle protocol. In

the thesis work, we have implemented the Bundle protocol stack for Symbian based

smart phones to extend DTN for mobile phone based interpersonal communication and

the networks formed by socializing of people. We have also designed and implemented

a convergence layer for Bluetooth. The software architecture is generic, extensible and

provides API for the development of customized DTN applications for mobile phones.

Keywords: Delay-Tolerant Networking, Bundle protocol, Symbian application design.

 ii

Foreword

This Masters of Science thesis was written in Networking Laboratory in Helsinki

University of Technology. The thesis works was carried out the under the supervision of

Professor Jörg Ott.

I would like to thank Professor Ott for giving me the opportunity to work under his

supervision. He has provided invaluable inspirations, guidance and encouragement

during the entire course of the thesis work. He has been very friendly and supportive;

especially when the deadlines used to be close and during the reviews of this literature.

I also appreciate the support from the laboratory staff, especially to the department

secretary Raija Halkilahti and her coordinator Arja Hänninen. I especially thank to the

study program coordinator Mrs Anita Bisi for her support in finalizing the timely

submission of the thesis.

Finally, I express my deepest gratitude to my family for their prayers and encouragement.

Omar Mukhtar

Espoo, August 8, 2006.

 iii

Table of Contents

Foreword .. iii

Table of Contents... iv

Abbreviations and Acronyms ... vii

1. Introduction... 1

1.1. Internet Protocols – Pros and Cons... 1

1.2. Delay and Tolerant Networking.. 4

1.3. Background and Related Work... 6

1.3.1. InterPlaNetary (IPN) Internet ... 7

1.3.2. Disconnected MANETs .. 7

1.3.3. Nomadic Networks ... 8

1.4. Motivation of the Thesis Work ... 8

1.4.1. Similar Work... 10

1.5. Outline of Thesis Work... 10

1.6. Summary ... 11

2. DTN – Architecture and Protocol Specifications ... 12

2.1. DTN Architecture ... 12

2.1.1. Key Architectural Principles... 13

2.2. Network Hierarchy and Protocol Stack .. 16

2.3. DTN Family of Protocols.. 18

2.3.1. Protocol Design Principles.. 18

2.3.2. Bundle Protocol .. 22

2.3.3. Convergence Layer Protocols ... 27

2.3.4. Routing Protocols.. 31

2.3.5. Neighbor Discovery .. 32

2.4. Summary ... 33

3. Implementation Architecture .. 34

3.1. Conceptual Model of Bundle Node .. 34

3.1.1. Bundle Protocol Agent.. 35

 iv

3.1.2. Convergence Layers.. 35

3.1.3. Application Agent... 35

3.2. Architecture for Symbian OS.. 36

3.2.1. Symbian OS .. 36

3.2.2. Top-level Architecture .. 37

3.3. Summary ... 40

4. Programming for Symbian OS and Design Patterns... 41

4.1. Programming for Symbian OS.. 41

4.1.1. Code Optimization .. 42

4.1.2. Clean-up Stack & Leave Mechanism ... 43

4.1.3. Thin Templates ... 44

4.1.4. Active Objects... 44

4.1.5. Naming Conventions .. 45

4.1.6. Strings and Binary Data .. 45

4.1.7. Client-Server Framework.. 46

4.2. Design Patterns ... 46

4.2.1. Model-View-Controller Pattern .. 46

4.2.2. Observer Pattern.. 47

4.3. Summary ... 48

5. Design and Implementation Details.. 49

5.1. Utility Classes ... 49

5.1.1. FNV Hash ... 49

5.1.2. EID.. 50

5.1.3. SDNV.. 51

5.1.4. Schedular-Timer ... 53

5.1.5. Event-Notifier ... 53

5.2. Convergence-Layer Adapter Classes.. 54

5.2.1. Connection Classes ... 54

5.2.2. CLA Classes.. 55

5.3. Bundle Protocol Agent Classes... 59

5.3.1. BPA Class ... 59

 v

5.3.2. Bundle and Admin-Record Classes .. 62

5.3.3. BP-Router Class.. 63

5.3.4. EID Lookup Record Class .. 65

5.4. Application Agent Classes.. 65

5.4.1. Symbian Client-Server Framework Classes ... 66

5.4.2. DTNServer Class .. 66

5.4.3. DTNSession Class .. 67

5.5. User Interface Classes... 68

5.6. DTN Applications... 69

5.6.1. DTN-Socket Class .. 69

5.6.2. Application Design Principles .. 70

5.6.3. Application Design Example .. 71

5.7. Summary ... 72

6. Verification and Demonstration.. 73

6.1. Verification ... 73

6.1.1. Functional Testing .. 74

6.1.2. Interoperability Testing... 75

6.1.3. Performance Testing ... 75

6.2. Demonstration Setup... 77

6.3. Software Release... 79

6.4. Summary ... 80

7. Conclusions and Recommendations ... 81

References... 84

 vi

Abbreviations and Acronyms

AA Application Agent

API Application Programming Interface

BGP Border Gateway Protocol

BP Bundle Protocol

BPA Bundle Protocol Agent

CL Convergence Layer

CLA Convergence Layer Adapter

DLL Dynamically Linked Library

DTN Delay Tolerant Network(ing)

EGP Exterior Gateway Protocol

Gbps Giga bits per second

GPRS General Packet Radio Systems

GUI Graphical User Interface

HIP Host Identity Protocol

ID Identifier

IP Internet Protocol

IPC Inter-Process Communication

IPN InterPlaNetary

IPv4 IP version 4

IPv6 IP version 6

kbps kilo bits per second

LAN Local Area Network

MANET Mobile Ad hoc Network

Mbps Mega bits per second

MFC Microsoft Foundation Classes

MMS Multimedia Messaging Service

MVC Model View Controller

OOP Object Oriented Programming

 vii

OS Operating System

PAN Personal Area Network

PDA Personal Digital Assistant

PPP Point-to-Point Protocol

QoS Quality of Service

RF Radio Frequency

RIP Routing Information Protocol

SDK Software Development Kit

SDNV Self-Delimiting Numeric Value

SDP Service Discovery Protocol

SMS Short Message Service

SPP Serial Port Profile

STL Standard Template Library

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique ID

VoIP Voice over IP

WLAN Wireless LAN

WTCP Wireless TCP

 viii

1. INTRODUCTION

The first chapter provides an introduction, background and motivation of the t

It starts with a short analysis of success and failures of conventional and mos

deployed communication network, the Internet and its family of protocols

section presents a brief account of history, background and introduction

Tolerant Networking. Subsequent section discusses motivation and outline o

work. In the last section, an outline of material, presented in this document, is

1.1. Internet Protocols – Pros and C

During past two decades, the Internet has become widely deployed wi

popularity of its services such as e-mail, web and now VoIP. It has greatly

other communication networks, to an extent that conventional circuit-switche

are converging towards packet-based services, e.g. 3G and 4G. The Interne

protocols, also known as TCP/IP protocol suite, is becoming the basis of num

of applications and inter-networks. In fact, most of today’s PANs, MANs

follow an hour-glass paradigm, with IP protocol at the heart and a large

hesis work.

t commonly

. The next

 of Delay-

f this thesis

provided.

ons

th extreme

 influenced

d networks

t family of

erous kinds

and WANs

 number of

1

different and diverse application level protocols and physical layers at the edges

[COMER], as shown in Figure 1.

App1 App2 Appm

IP

Net1 Net2 Netn

Figure 1. Hour-Glass Paradigm

This paradigm has also enabled internetworking of several heterogeneous networks, at IP

layer. IP can be used directly at network layer or can run on top of other network layer

protocols. One such example is Bluetooth LAN Access profile [BRAY], as shown in

Figure 2.

 2

Bluetooth Radio

Bluetooth Baseband

L2CAP

RFCOMM

PPP

IP

TCP/UDP

Figure 2. Bluetooth stack for LAN Access Profile

Despite of success and wide deployment of Internet family of protocols, the shortcomings

of TCP/IP are being observed by researchers as new heterogeneous networks and

communication paradigms are emerging, such as wireless networks, PANs, MANETs,

3G and 4G cellular technologies, and seamless ubiquitous and pervasive connectivity

[BALA97].. The Internet and TCP/IP protocols were built using some fundamental

assumptions for underlying network architecture, which do not hold when TCP/IP

protocols are adapted in emerging networks and communication paradigms. Researchers

have proposed different solutions to fix some of the problem, but mainly it turns out to be

‘one solution for one problem’ model. Some issues and proposed solutions as described

below.

TCP/IP protocols assume end-to-end connectivity, low error rates, small end-to-end

delays, and many algorithms are built over these assumptions. With the advent of mobile

wireless networks in particular, the flaws posed by these assumption becomes evident.

For example, TCP slows down the transmission assuming congestion in the network

rather than loss of packets. In wireless networks, on the contrary, error rates are quite

high and TCP throughput is degraded significantly, because TCP should transmit more

vigorously. Researchers proposed some solutions to improve the performance of TCP,

but the problem cannot be eliminated entirely because of end-to-end connectivity model

 3

[TANENBAUM] [BPSK97]. With the growth in usage of Internet, wireless networks and

cellular networks, mobility and multi-homing issues have become evident as well.

Mobile devices such as laptops, smart-phones, PDAs have become sophisticated

computing and communication machines, often equipped with multiple communication

interfaces. A single TCP connection maps to one IP address for an entire session, and

hence multiple communication links each identified by a different IP address cannot be

used for a single session, taking advantages of multi-homing or vertical handovers.

Mobile IP [RFC2002] and Host Identity Protocol (HIP) [RFC4423] propose independent

solutions for such problems. Routing between IP and non-IP networks has also been

investigated especially for VoIP and circuit-switched telephony, and solutions such as

ENUM [RFC2916] have been proposed.

With the advent of wireless and mobile networks and devices, the demand for ubiquitous

and pervasive connectivity is also increasing. Despite efforts to increase coverage area of

network and communication services, studies and research efforts indicate that

intermittent connectivity is becoming a rule rather than an exception [OTT04] [SESB05]

[BAIG06]. Intermittent connectivity is also evident in sparse ad hoc networks. TCP/IP

protocols fail as end-to-end model breaks again.

Besides all the research efforts mentioned above to mend the Internet, research is going

on to design new communication paradigms that do not follow some of the basic

assumptions strictly, upon which Internet TCP/IP protocols were built. One such effort is

delay tolerant networking, which aims at a variety of challenged, extreme and stressed

networks.

1.2. Delay Tolerant Networking

As described in last section, existing Internet protocols do not work well in some

environments, due to some strict fundamental assumptions built-into the architecture.

Delay-tolerant networking is an emerging communication paradigm that tries to solve

some of the issues described earlier. The DTN architecture has conceived to relax most of

 4

those assumptions. Briefly, it relaxes end-to-end error control, continuous connectivity,

and very low propagation delays. It defines a layer-agnostic interconnection of

heterogeneous (IP and non-IP) networks by introducing a new internetworking layer with

relaxed requirements. DTN targets a broad range of challenged, stressed and extreme

networks, which cannot maintain end-to-end connectivity, have longer delays, or

infrequent interrupted connections. Such networks include deep space communication,

sensors-based network, satellite connections with periodic connectivity, sparse mobile ad

hoc networks etc. The major differences between these emerging networks and

conventional Internet are discussed in [BURL03] and [FALL03], and are summarized in

Table 1.

Table 1. Comparison of conventional Internet and emerging heterogeneous inter-networks

Conventional TCP/IP Internet Emerging Heterogeneous Inter-networks

Smaller signal propagation delays, order of

milliseconds, because of high-speed LANs

and Optic fibers.

Varied signal propagation delays, order of

up to several minutes, because of wireless

links, satellite channels.

High data rates, from a few Mbps to

several Gbps, in access networks and in

backbones.

Varied data rates from a few kbps, as in

PANs, to several Mbps, as in WLANs.

Often bidirectional communication on each

connection, because of same protocol suite

and similar policies across the connection

over Internet.

Possibly time-disjoint periods for

transmission and reception, due to multi-

path links and different policies among

differently managed dissimilar networks.

Continuous end-to-end connectivity.

Might be intermittent, scheduled or

opportunistic connectivity in dissimilar

heterogeneous environment.

Low end-to-end error rates, due to reliable

physical links, and error correction at

several layers of protocol stack.

High error rates, due to wireless links,

dissimilar protocol stacks etc.

Homogeneous protocols used at network A new paradigm of heterogeneous

 5

and transport layers across the end-to-end

path; all nodes including end stations

support TCP/IP stack.

networks, protocol families and

management policies.

Single route selection between end nodes

for acceptable communication

performance.

Heterogeneous environment may not offer

a single bi-directional route.

Identical naming convention for routing

and delivery.
Not possible among dissimilar networks.

Poor recovery mechanism in case of

temporary connection loss or hardware

failures/reboots. End-to-end

communication session needs to be re-

established.

End-to-end connection setup among

dissimilar and disjoint networks and

intermittent connections may not be viable

from practical point of view, due to less

time & cost efficiency.

Uniform routing schemes across end-to-end

path (RIP. BGP, EGP).

Complex disparate routing schemes

(epidemic routing, flooding, statistical,

multi-path routing etc.) used in different

regions of dissimilar networks across end-

to-end path.

1.3. Background and Related Work

This section describes the history and background of research efforts that have led to the

evolution of DTN and associated family of protocols. It also discusses other research

efforts with similar goals, which now can be combined with DTN. Initially, the research

efforts for Interplanetary Internet became the most fundamental basis for DTN

architecture and protocol suite. Later on, other research areas with similar problem set

were also included as requirement specifications. This resulted in a common protocol

suite for DTN, now known as bundle protocol. The research is going on under IRTF

umbrella.

 6

1.3.1. InterPlaNetary (IPN) Internet

The history of DTN architecture dates back to late 1990’s when NASA started an effort

to investigate an IP-like protocol suite for communication across the solar system. This

research effort was termed as Interplanetary Internet, which aimed at an open, layered

and globally interoperable architecture supporting fairly long round trip delays between

the planets and astronomical equipments. During 1990’s, Internet has already dominated

being the biggest terrestrial communications network. Internet has been mostly wired to

high-speed fiber backbone, very low delays and negligible error rates. The backbone

offers symmetric data channels and is always-connected. IPN internet has to support both

wired (fiber, cable, copper) and wireless (satellites, WLAN, MANETs etc.) networks

with a number of challenging constraints, to become future’s communication network,.

These include significant delays, higher error rates, power and bandwidth limitations,

irregular connectivity and asymmetric channels [BURL03] [JACK05].

1.3.2. Disconnected MANETs

As practical applications of ad hoc networks are being investigated, new kinds of mobile

ad hoc networks are emerging and being deployed, termed as MANETs. These have

different sets of practical constraints, physical limitations, performance requirements and

data-delivery goals. They also use divergent set of protocols. Such MANETs also cannot

fulfill the stringent protocol requirements of TCP/IP family. Some details of such

MANETs are given below.

Sensornets

Sensor networks, also known as sensornets, is an ongoing research area in ad hoc

networks. Sensornets may have a sparse distribution of network nodes and data-retrieving

occasions are rare. Examples of such networks are: ZebraNet for wildlife monitoring

 7

[JUANG02], whales and seals for water monitoring, data mules and message ferries

[ZHAO05] etc.

Disjoint Information Resource Access Networks

Some experimental networks have been deployed in remote areas to access information

resources, such as web and e-mail, where deployment of a permanent infrastructure is not

feasible. Data-nodes arrive from time to time to form an ad hoc network and provide

intermittent connectivity. Examples are Daknet [PENT04] in Cambodia and India, SNC

in Lapland [SNC], Wizzy in South Africa. Conventional TCP/IP protocols are not

feasible in such ad hoc infrastructure also.

1.3.3. Nomadic Networks

In order to access Internet via WLAN, while in a vehicle speeding on a long highway,

conventional infrastructure cannot work; other access networks (UMTS, satellite) being

too expensive or unavailable. There may be established some hot-spots along the way but

the intermittent connectivity is too short to work with conventional IP protocols based

communication for e-mail exchange, web-browsing etc. Hence conventional Internet

protocols fails here again. Drive-Thru Internet is an effort in similar directions in order to

define a non-conventional disruption tolerant architecture [OTT04]. Other efforts in

similar directions are DieselNet [BURG06], FleetNet [LOC03], Network-On-Wheels

[LEIG06] and in [SCH05].

1.4. Motivation of the Thesis Work

With increasing penetration of smart mobile phones and PDAs, a new kind of multi-hop

mobile ad hoc networking architecture is under investigation, termed as Social-Networks.

These personal devices are capable of wireless communications, often supporting more

 8

than one link-layer technology, and people tend to always carry these devices with them.

This results in mobile ad hoc network as people meet at some place. The topology of

such mobile ad hoc networks is based on socialization behavior of the people, hence

termed as Social Networks [NEW04]. This is an on-going research area and new

architectures for communication, mobility modeling and routing are being investigated

by researchers [MUS06] [HUI05].

The motivation behind this thesis work is to implement and extend the DTN architecture

to smart mobile phones based MANETs. In particular, this work intends to provide a

DTN software framework, which could be used to investigate and explore DTN

applications in mobile ad hoc networks formed by smart phones. This could also help

investigating social networks formed by such mobile ad hoc networking.

Another interesting aspect of this research work is to provide a framework for smart

phone applications, which could effectively be configured to use multiple communication

links and networks in a ubiquitous fashion. Thus some of human-input responsibilities,

such as selection and configuration of multiple links and communication channels; user-

interaction in order to complete a communication operation, can be taken up by

communication applications themselves. This will hide such complex operations from

common users, enabling them performing data communication operations, such as file

transfer; web browsing; exchanging e-mails etc., seamlessly and more effectively in

disruptive, intermittent environments, like Drive-Thru Internet, social networks etc.,

which is not possible with conventional TCP/IP based architectures.

Symbian OS based smart mobile phones have been selected for this purpose. Symbian

OS has significant advantages over other peer technologies available such as:

� Symbian-based smart mobile phones have more than one on-board link-layer

technologies available; like GPRS, MMS, WLAN, Infrared, and Bluetooth.

� Symbian OS provides a generic abstraction for underlying communication

infrastructure, including telephony services, with a rich set of APIs.

 9

� Symbian OS offers a broad range of APIs to perform many primitive tasks for

handling communications, media and data, efficiently.

� Symbian-based phones dominate the smart mobile phones market [SYMB06].

� Good tools and SDKs are available to write sophisticated and larger software of

release quality.

� Using native programming language for Symbian provides the advantage of

integrating protocol stack into the OS, in later stages.

1.4.1. Similar Work

DTN is an on-going research area. The specifications are still maturing. Many topics

have gathered intention of researchers including routing, naming-conventions, user-level

applications, link-layer convergence protocols etc. There is a reference implementation

available on the research group’s web page, for Linux. Although that has been ported on

some PDAs like Nokia 770 tablet1, yet there’s no known implementation for smart

mobile phones explicitly. There is a Java based simulator and Java implementation of

DTN [DTNRG]. There is also an implementation for TinyOS [PATRA04].

1.5. Outline of Thesis Work

An implementation of the Bundle protocol for Symbian based mobile phones has been

carried out during this thesis work. Interoperability testing has been performed against

reference implementation.

A brief background and motivation of this thesis work has been given in this introductory

chapter. Next chapters describe DTN architecture and associated family of protocols in

detail. A brief overview of Symbian OS and application design is also given, in order to

1 This porting work has also been carried out in Networking Lab Helsinki University of Technology by the

same research group.

 10

facilitate extension of this work in future. Also a detailed design description is provided

in subsequent chapters. Finally, an example scenario is explained and demonstrated.

Appendices contain more details about design, and provide guidelines in order to build,

configure and use this implementation for further research, development and testing.

1.6. Summary

In this chapter, introduction and motivation to the thesis work was presented. A brief

review of related work was also given. DTN is an emerging communication paradigm for

challenged networks such as mobile ad hoc networks and other intermittent networking

scenarios. The thesis work aims at design an implementation of DTN applications for

mobile phones in order to provide a software framework for smart phones based inter-

personal communication over social networks. Next chapter discusses DTN architecture

and protocols in detail.

 11

2. DTN – ARCHITECTURE AND
PROTOCOL SPECIFICATIONS

This chapter starts with the description of architectural principles of De

Networking. Subsequent sections discuss the semantics of different

protocols.

2.1. DTN Architecture

As described in Chapter 1, the motivation behind DTN is to embrace unus

and challenged emerging networks. Such networks may have occasional

intermittent connectivity, long delays, and may comprise a divergent set

families. End-to-end communication across such networks using the I

protocols cannot be achieved due to various reasons described in previous ch

DTN is an overlay network of DTN nodes (nodes that participate in DTN

existing internets. DTN defines an abstraction layer on top of transport laye

application layers, called bundle layer. Although, some of the responsibili

lay-Tolerant

DTN-family

ual, extreme

or scheduled

 of protocol

P family of

apter.

) on top of

rs and below

ties, such as

12

session management and synchronization on connection break ups [TANENBAUM],

makes it , analogous to Session layer in OSI model. Nevertheless, it is a full-fledged

internetworking layer, responsible for routing the data from source to destination. DTN

neither defines any fixed-length data units nor does put any upper or lower bounds on

application data unit size. It talks about messages, which a user wants to deliver to other

end. Bundle layer is responsible for end-to-end delivery mechanism of messages, called

virtual message forwarding [DTNARCH05].

As mentioned earlier, IPN formed the basis for DTN. The research efforts under IPNSig

led to DTN architecture, termed initially as Bundle Space, which defined core

requirements for IPN design. These include heterogeneous networks, long delays, short

contacts (possibly one-way), data being too expensive for end-to-end retransmissions

and smaller transaction size matching available bandwidth-delay product [IPN99]. This

led to key design decisions for IPN:

� Deployment of an overlay network on top of existing internets, including

Internet, forming networks of internets with gateways and relay nodes to bridge

low latency environments with those with higher one.

� Late binding of names to addresses; routing between internets is based on names.

Actual address translation may be performed very late in the overlay-network.

� Relaying of data between heterogeneous environments depends upon

intermediate nodes. To cope with longer delays, a store-and-forward model

(similar to e-mail) is suitable.

� Along with conventional proactive control of transaction size, reactive control

can lead to performance in disruptive environment.

2.1.1. Key Architectural Principles

The DTN Research Group refined the architectural principles further to incorporate all

kinds of extreme challenged and disruptive networks. They also elaborate on the

 13

differences between delay-tolerant networking and convention inter-networking models,

especially the Internet [DTNARC05]. Some of the key points are summarized below:

Virtual Message Switching

Application data units are structured as variable-length messages, instead of limited size

packets. This abstraction is closer to user’s perspective of communication of data. A

message can be a huge file or a short e-mail message.

The communication abstraction of messages can also help enhance the ability of network

to make better decisions of routing, scheduling and path selection.

Naming and Addressing Mechanism: End-Point IDs

A generic naming syntax augmented with late binding to enhance interoperability

between heterogeneous internets. Late binding means that actual name-to-address

translation is carried out late in the delivery process. This concept does not require an

end-to-end connectivity prior to start of communication. The other advantage is that

routing between heterogeneous networks can be performed based on names, and hence

no address-to-address mapping mechanism is required prior to start of communication,

as opposed to DNS resolution in Internet.

Store and Forward Model

DTN uses a store-and-forward model like e-mail system. This breaks down the

requirement of having an end-to-end always connected path. Messages can be stored in

the network for longer periods. To increase reliability and to cope with hardware

failures, persistent storage is recommended. Whenever a scheduled or opportunistic link

becomes available, the network can deliver the message over that. Hence end-to-end

path connectivity is not required from the source node’s perspective.

 14

Non-conversational Asynchronous Communication

DTN uses asynchronous, minimal conversational model that differs from conventional

query/response model of communication. Conventional services using the TCP/IP family

of protocols use end-to-end query/response model messages. For example FTP can use

up to 10 end-to-end transactions exchanged for a simple file transfer (requests and

responses for connection, log-on, transfer mode, directory services, file exchange, log-

off etc.). In an extreme environment of networking, including possibilities of

unidirectional links, such conversational models cannot work. DTN suggests a non-

conversational asynchronous model. So applications should be designed or adopted in a

way to minimize the end-to-end transactions, using larger self-contained messages.

Bundling

DTN suggests combining all application level data and metadata to form a single

bundled message, in order to minimize end-to-end transactions. For example, all FTP

metadata (login-name, password, file name(s) etc.) and actual data (file(s) if applicable)

can be sent to FTP server, bundled in one message. This is why DTN layer in protocol

stack is called Bundle Layer.

Routing

Routing in DTN networks is an area under research and has not been fully defined as

yet. Being in a heterogeneous environment with a divergent set of protocol families, the

possibilities of routing algorithm that can be used efficiently are numerous. DTN nodes

can deal with different types of communication links available, which may have different

requirements of delays, bandwidth, availability etc. Links, or as termed as contacts in

[DTNARCH05] can be:

� Persistent (always-connected links like DSL)

� On-demand (like persistent but require initial setup, like dial-up connections)

 15

� Scheduled (an intermittent link available periodically for some time, like deep-

space satellite connection)

� Opportunistic (an intermittent link formed unexpectedly when the nodes become

available in the vicinity of each other, like a visitor in a shop etc.)

� Predicted (an intermittent link which is likely to be in a certain locality due to

previous known history or by other measures such as scheduled transport

vehicles or planetary dynamics)

With such a divergent set of links, the routing graph does not remain a simpler fully

connected one (like in IP networks), rather routing information spans over multiple

graphs possibly not fully connected. All this requires more sophisticated routing

algorithms with a bunch of matrices to decide from (including but not limited to

capacity, time and duration of link availability, probability of getting in contact with

other network or nodes). In contrast with the Internet routers, a Bundle node can defer

the routing of a bundle if a better link is known to be available in the near future. Further

details can be seen from [LEG05] and [LIND06].

2.2. Network Hierarchy and Protocol
Stack

As described earlier in introductory sections, DTN defines an overlay network, which

works on top of transport layers (or equivalent) and below application layer. The

protocol used by DTN nodes is called Bundle protocol, and hence the layer it works at is

termed as bundle layer. The Bundle protocol is layer-agnostic and hence can inter-

connect heterogeneous internets. The nodes that participate in DTN, running bundle

protocol, can be configured in a number of ways including hosts, gateways, routers,

proxies etc. An example topology is described in Figure 3.

 16

An internet An internet

Bundle Gateway

Link 2

Network 1

Transport 1

Bundle

Link 2

Network 2

Transport 2

Host

Link 2

Network 2

Transport 2

Bundle

DTN App

Bundle Router

Link 1

Network 1

Transport 1

Bundle

Link 2

Network 1

Transport 1

Host

Link 1

Network 1

Transport 1

Bundle

DTN App

Figure 3. DTN network hierarchy

The Bundle layer itself can be divided into 3 logical sub-layers, defined by Bundle

protocol specifications, as illustrated in Figure 4. The core functionality of Bundle

protocol (BP) is implemented as Bundle Protocol Agent. Depending upon application

layer services offered, an Application Agent entity could provide interfaces to upper

layers. It can also be used for configuration, user interactions and any policy-based

settings for the bundle layer. It can be simple enough to configure the bundle layer only,

or complex enough to implement logic for registrations and other services for

applications using BP.

One or more Convergence Layers provide an abstraction from under-lying transport and

network technologies, thus making Bundle protocol agent independent of lower layer

services. DTN defines the possibilities of a number of convergence layers used;

including but not limited to TCP, UDP, Bluetooth, ATM and File-based.

Convergence Layer(s)

Bundle Protocol Agent

Application Agent

Figure 4. Bundle Layer Anatomy

 17

2.3. DTN Family of Protocols

The DTN research group has defined a basic bundling protocol. There are other drafts

produced by researchers for convergence layers, routing and security protocols. In the

following sub-section, a general notation and terminology used throughout in those

documents is described. Later on, the semantics of basic protocols are discussed.

2.3.1. Protocol Design Principles

DTN has defined some new general terminologies and concepts used in the design of

DTN family of protocols, which are presented below.

End-point Identifiers

As described earlier, DTN uses a general naming scheme to identify nodes. These names

are called End-point Identifiers or EIDs. EID’s are based on URI schemes with the

syntax:

<scheme name> : <scheme specific part or SSP>

Any of the standard URI schemes can be used and DTN also defines its own scheme,

denoted as “dtn”. A special case is dtn:none. Since DTN employs the concept of late

binding, EIDs are not translated to addresses in the very beginning, in contrast to the

Internet protocols. Instead routing is performed based on EIDs directly.

EIDs are also a unique concept in a way that a node can be member or multiple EIDs and

one EID can be associated with multiple nodes. Thus routing becomes more complex,

and this is an on-going research area. A singleton EID is the one, which is associated

 18

with a single node only. Some of the protocol semantics, such as custody transfer, are

only defined for singleton EIDs only. The Bundle protocol specifications state that a

Bundle node must be member of at least one singleton EID.

Bundles

DTN payloads are in the form of messages, formally called Bundles. As explained

earlier, DTN suggests combining all application layer data and associated meta-data into

one message called bundle. Bundles can be of variable sizes.

Custody Transfer

As described above, DTN uses store-and-forward operations, which are different from

conventional store-and-forward mechanism of the Internet. The Internet routers store

packets for a very short interval of time directly proportional to queuing and

transmission delays, and discard them if no route to the destination is available. By

definition, DTN has to keep messages or bundles in queues for longer time. DTN also

strongly suggests keeping queued bundles in some form of persistent storage. This helps

coping hardware failures or device startups.

Since there may not be an end-to-end path in DTN networks, conventional end-to-end

reliability mechanisms like retransmissions cannot work. DTN moves the responsibility

of reliable delivery from source node to other DTN nodes deeper in the network. This is

achieved by moving a copy of message ‘closer’ to destination (in terms of some routing

metric), and termed as custody transfer. Hence, retransmission related responsibilities

move away from source node gradually, breaking the requirement of end-to-end

retransmissions, as done in the Internet.

The node, which currently has the custody of bundle, is called custodian of the bundle.

When a node gains responsibility of retransmissions of bundles, it accepts custody; when

it discharges, it releases custody. Not all the DTN nodes in the network are required to

 19

accept custody, so it is not a strictly hop-by-hop mechanism. The bundle includes a

request for its custody transfer, so it is an optional mechanism. A node is free to choose

accepting the custody for a bundle, depending upon some policy metrics.

Administrative Records

The basic Bundle protocol defines unacknowledged, prioritized but not guaranteed,

message delivery mechanism. For reliability and diagnostic purposes, it defines two

kinds of special messages.

Bundle Status Reports, or BSRs, are informational and diagnostic bundle messages, that

provide information how a bundle is progressing through the network. It is analogous to

ICMP messages of Internet, with a difference that ICMP messages are sent back to

source node. Where as BSRs are sent to a special node identified by Report-to EID,

which may or may not be same as Source EID. Another difference is that ICMP

messages report only diagnostic or error reporting, whereas BSRs are used for positive

acknowledgements as well.

Custody Signals are bundle messages, which carry information about custody-acceptance

(success or failure) status by generating nodes. These are sent to current custodian of the

bundle. If custody was accepted successfully, the generating node becomes the current

custodian and upon reception of the custody signal, the previous custodian releases the

custody.

Fragmentation

DTN allows fragmentation and reassembly of bundles in order to utilize link capacity

effectively. BPA can fragmentation bundles proactively into multiple smaller bundles if

link capacity related information is known a priori or predictable.

 20

In some cases, if a bundle is partially transmitted to next hop and the two peer nodes

detect this, the transmitting node may reactively fragment the remaining portion into a

new bundle. Similarly, the receiving node may modify the incoming portion of bundle to

make it a fragment. Reactive fragmentation is an optional capability because it depends

upon services offered by underlying convergence layers, whether they provide

mechanism for partial transfers.

Like in IP, fragmentation is done on only one ‘level’, i.e. a bundle is fragmented into two

to make new bundles. If needed, those new bundles can be fragmented further. This

process is loosely analogous to mitosis process of biological cell division, in which a cell

is divided into two. Also like IP, reassembly is performed at destination node only.

Class of Service

DTN defines a coarse-grained postal-style prioritized delivery services. The quality of

service metrics are different from conventional Internet style traffic, as DTN traffic is

generally not interactive, may be one way, and obviously with least timely delivery

requirements. There are 3 priority classes defined in DTN architecture (priority low to

high): Bulk, Normal and Expedited. DTN nodes should transfer bundles with high

priority first. At the moment, there is no well-defined quality of service mechanism in

DTN.

Self Delimiting Numeric Values

DTN specifications define protocol formats in such a way that it can be easily modified

in future. One fundamental concept is how to represent fields that contain numbers

denoting lengths and sizes. DTN defines a new scheme for number representation that is

similar to ASN.1 encoding. This is termed as Self Delimiting Numeric Values or SDNVs,

and as name implies, they can be of variable length. Each byte representing the number

field contains a special marker bit, so that last byte can be detected. Hence with a small

overhead of total marker bits, greater flexibility is achieved. Hence the any arbitrary

 21

length of a field can be described without changing the header in future. DTN

architecture recommends using SDNVs in all relevant protocols, which have been or

could be defined. For details see [BPSPEC04].

DTN Time Stamps

DTN also defines a new notation for representing time stamps. Time stamps are 64-bit

fields, with first 32-bits (in network byte order) contain number of seconds elapsed since

start of year 2000. The remaining 32-bits contain number of nanoseconds since start of

current second at the time of creating time stamp. All relevant protocols must use this

notation to describe any time-related information.

2.3.2. Bundle Protocol

The primary DTN protocol running at Bundle layer is called Bundle protocol. Bundle

protocol defines semantics, formats and sequences of protocol messages in order to carry

out basic bundle layer services, including:

� Asynchronous message transfer

� Generation of Bundle Status Reports messages

� Custody transfer related signaling

The Bundle protocol design is based upon the architectural and protocol design

principles described in the earlier sections. It defines a primary bundle message header,

along with a payload header and administrative records’ header formats [BPSPEC04].

The Bundle protocol permits use of additional extension headers specified by

supplementary protocol specification documents. Some important fields of these headers

are described here; for details see [BPSPEC05].

 22

Primary Bundle Header

This header2 contains the basic information required to route the bundle to destination. It

is included in each and every type of bundle including administrative records. The

format of the primary header is illustrated in Figure 5 and important fields are explained

below. For details, refer [BPSPEC04]. Note that the length fields use SDNVs and can be

of variable sizes. The format shown in figure is just for the convenience of

representation.

Version Proc. Flags COS Flags SRR Flags

Header Length

Destination scheme
offset Destination SSP offset

Source scheme offset Source SSP offset

Report-to scheme offset Report-to SSP offset

Custodian scheme offset Custodian SSP offset

Creation Time Stamp

Life Time

Dictionary length

Dictionary byte array (variable)

Fragment Offset

Total application data unit length

32-bits

Figure 5. Primary bundle header

2 A discussion is going on within DTN research group about referring ‘header’ as ‘block’. But the current

documents use the old notation, so we also adhere to that.

 23

The VERSION field describes protocol version used. Currently only 0x04 is defined.

FLAGS indicate directions to process and interpret the fields of the headers. They also

describe class of service and status report generation options.

HEADER LENGTH indicates length of remaining header, using SDNV notation.

OFFSET values indicate EID offsets within a special buffer containing all EIDs used by

the headers. A bundle message must refer to source and destination EIDs and may refer

to report-to node and custodian node EIDs.

CREATION TIMESTAMP indicates creation of bundle in terms of DTN time.

LIFE TIME indicates interval in seconds a bundle can exist in the network at the most,

with respect to creation time. After that is must be deleted from network.

DICTIONARY LENGTH & BYTE ARRAY fields define a special buffer in the header

containing all EIDs used in the primary header. The advantage of this approach is that if

an EID is used more than once, it would occur only once in the dictionary. Different

header fields can refer to an EID using offset values within the dictionary. The length of

this dictionary is also described in SDNV notation and hence can vary without changing

the fields of header in future. Another advantage on this approach is that variable size

EIDs can be used, as opposed to fixed 32-bit IPv4 or 128-bit IPv6 addresses.

FRAGMENT OFFSET & TOTOAL ADU LENGTH are optional fields that denote the

offset of fragment in aggregated application data payload, and the length of aggregated

application data payload, if the bundle is a fragment.

 24

Bundle Payload Header

This simple header describes the type of payload (which is currently always 0x01), flags

indication directions to process the header and a length field in SDNV notation to

describe the length of payload. The format is illustrated in Figure 6. The length fields use

SDNVs and can be of variable sizes. The format shown in figure is just for the

convenience of representation. Additional protocol documents can define more payload

header types such as routing information, security headers. At the moment, payload can

either be application level data or an administrative record header.

Header
type Proc. flags Header Length

Bundle payload (variable)

32-bits

Figure 6. Bundle payload header

Bundle Status Report and Custody Signal Formats

If the primary header’s processing flag indicate that the bundle payload is an

administrative record then the payload is processed according to a specific format. The

first byte describes the type of administrative record (status report or custody signal) and

some optional flags for additional information describing directions to interpret

remaining fields.

If the administrative record is a status report then the remaining fields describe type(s) of

status report and the time when the event took place, for which the report was generated,

in DTN timestamp format. One administrative record message can aggregate multiple

reports for the same bundle, thus reducing network traffic. The format is shown in Figure

 25

7. The length fields use SDNVs and can be of variable sizes. The format shown in figure

is just for the convenience of representation.

Status
Flags

Reason
code

Fragment offset (if
present)

Fragment length (if present)

Time of receipt of Bundle (if present)

Time of custody acceptance of Bundle (if present)

Time of forwarding of Bundle (if present)

Time of delivery of Bundle (if present)

Time of deletion of Bundle (if present)

Time of acknowledgement of Bundle (if present)

Copy of Bundle’s creation time stamp

Length of Bundle’s
source EID

Bundle’s source EID
(vraible)

32-bits

Figure 7. Bundle status report format

If the administrative record is a custody-signal message then it just contains the

information regarding success or failure of the custody transfer operation, along with an

optional reason. It also describes the time when the signal was generated using DTN

 26

time notation. The format is shown in Figure 8. The length fields use SDNVs and can be

of variable sizes. The format shown in figure is just for the convenience of

representation.

32-bits

Status Fragment offset (if present)

Fragment length (if present)

Time of signal

Copy of Bundle’s creation time stamp

Length of Bundle’s
source EID

Bundle’s source EID
(vraible)

Figure 8. Bundle custody signal format

A bundle can be identified uniquely by its source EID, creation timestamp and

fragmentation offset and length fields if bundle was a fragment. Administrative record

messages also contain a copy of the fields taken from the corresponding bundle, the very

record relates to.

2.3.3. Convergence Layer Protocols

Although the Bundle architecture or protocol specifications do not describe any specific

protocols for convergence layers, they do summarize some basic principles and services

that should be provided by convergence layers protocols [BPSPEC04]. Most

fundamentally, Bundle Protocol Agent entity expects from underlying convergence

layers to perform the following tasks reliably on behalf of it:

� Transmission of bundles, entirely or partially; notification of delivery status.

 27

� Reception of bundles, entirely or partially; notification of reception status.

� Connection management (establishment, teardown, error detection etc.) specific

to underlying transport technology.

Convergence layer protocol operations can be as simple as connection management and

message boundary marking in case of a reliable underlying transport like TCP. On the

other hand for a connection-less unreliable transport protocol, like UDP, a convergence

layer protocol should implement its own reliable delivery mechanism.

There is an unofficial release of a draft document for TCP (available in the release

package of reference implementation code), which in principle can be use for any

connection-oriented stream protocol. The same protocol has been adapted for Bluetooth

convergence layer.

TCP Convergence Layer Protocol

Since TCP is a connection-oriented reliable transport protocol, this convergence layer

has to perform only two basic tasks:

� Marking message boundaries with delimiters, as TCP is stream-oriented protocol,

it does not define and boundaries for application layer data units. So convergence

layer must define its own mechanism to extract segmented or aggregated

messages obtained from the contiguous stream.

� Detection of connection and transmission status. Although TCP provides a

reliable delivery mechanism, it does not offer any services for upper layer to

acknowledge delivery of data to the application running on peer node.

Applications using TCP must devise their own mechanism to provide precise

information regarding data delivery, connection teardown etc. Applications are

not precisely notified about TCP connection failures in some scenarios. To cope

such issues, the TCP CLA exchanges application level acknowledgements and

regular keep-alive messages between the peers of a connection.

 28

A draft has been proposed describing TCP convergence layer [TCPCL]. It defines TCP

CL level messages with short headers and delimiters to mark message boundaries. In

addition to that, it defines mechanisms for graceful connection establishment and

teardown by sending messages and using timers.

The TCP CL protocol defines a connection to be a unidirectional3 link in terms of data

transfer direction. Since a TCP connection itself is a bi-directional link, TCP CL

protocol level messages can be sent in either direction over same connection. The peer,

which initiates a connection, is termed as ‘connection-initiator’ and is responsible for

deciding direction of connection. A connection-initiator can be a receiver. This helps in

situation when the node is behind a NAT (firewall), so it can establish a connection to

some node outside NAT (firewall). Hence no NAT (firewall) traversal mechanism is

required.

Following is description of basic message formats defined by protocol.

CONTACT HEADER message is sent upon connection establishment, by both the peers.

It contains connection parameters, which define the flow of information over the

connection. After preamble, a 4-byte constant representing ASCII codes of letters in

string “dtn!”, a version field indicates current version of protocol as 2. Flags identify

connection direction and request for application level acknowledgements. An interval, in

seconds, is offered for keep-alive message exchange.

There is a 32-bit number denoting partial acknowledgement length, which enables the

receiver to send regular acknowledgements during the coarse of bundle transmission.

This feature is useful to detect connection drop earlier, and is particularly useful if

bundle is quite large. In case of partial transfer of a bundle, if the connection drops, the

BP layer can fragment the bundle reactively to send remaining portion.

3 This is going to be changed in the near future.

 29

BUNDLE DATA message starts with a message type code and a 32-bit bundle ID. It

also contains the length of the bundle in SDNV notation. After that, the actual bundle is

sent as payload of this message. In this way, the receiver can identify the start and the

end of bundle.

BUNDLE ACKNOWLEDGEMENT message also starts with a message type code. It is

a short message that just contains bundle ID, for which this ACK is being sent, and the

acknowledged length, denoted as SDNV, indicating number of bytes successfully

received.

KEEP-ALIVE messages comprise just one-byte to indicate the message type code. Upon

its reception, the peer node updates the timers, knowing that connection is up. Keep-

alive message is sent when no other data is sent or received by the node for the keep-

alive interval negotiated in contact header.

If no data including keep-alive message is received for twice the keep-alive interval, then

connection is assumed to be in idle state and is closed immediately.

SHUT DOWN message is a one-byte message type code, sent in order to gracefully shut

down the connection. Upon reception of this message, the CL should close the

connection.

Bluetooth Convergence Layer Protocol

As mentioned earlier, the TCP convergence layer protocol has been adapted for

Bluetooth serial communication links. All protocol messages and their sequencing is

exactly same. Bluetooth serial communication is stream-oriented like TCP and while

operating within short ranges (10 meters), Bluetooth devices are pretty much reliable in

delivery of data. So no special operations are required other than those described for

TCP convergence layer.

 30

Bluetooth RF serial communication (or serial port profile, SPP, in Bluetooth

terminology) is the basic communication mechanism supported by every Bluetooth

device. A Bluetooth device is assigned a 48-bit unique MAC address, which is used to

identify the device in serial communication, as IP is used in the Internet. Each

application using SPP is identified by a unique channel number (similar to port numbers

in TCP/IP). Bluetooth protocol specifications define an 8-bit channel number ranging

from 0 to 255. Serial communication is also stream oriented. All these similarities with

TCP makes it possible to adapt the TCP CL protocol easily.

2.3.4. Routing Protocols

At the moment, DTN does not define any particular routing protocol to use with the

Bundle protocol. A variety of routing algorithms and protocols can be used, depending

upon DTN application area, from simple epidemic routing to complex statistical and

heuristic algorithms. Nevertheless, researchers have proposed some routing algorithms

and protocols for DTN. A couple of epidemic routing algorithms have been implemented

in the reference implementation and in this thesis work as well. In the following, a brief

description of some routing algorithms and protocols is provided; while there are many

further research efforts, the routing approaches listed below have been implemented for

the DTN reference implementation.

Static Routing

Static routing is the simplest form of routing, in which the routes from source to all

possible destinations are provided statically at system startup. Usually, the routing

information does not change, or new routes may be added manually. Hence no protocol

is required for routing information propagation.

 31

Flooding

Flooding is another simple routing algorithm, in which the incoming data is transmitted

to all the links except from which the data arrived. Flooding also does not require any

protocol for routing information propagation. Nevertheless, some mechanism is required

to prevent loops, so that source node should not keep on forwarding same data over and

again. One simplest mechanism is to keep hop count, and discarding data using some

threshold value. Another mechanism is to keep track of transmitted data using some

unique identifier. If the same data arrives again, it can be discarded.

PRoPHET

A probabilistic algorithm PRoPHET (Probabilistic Routing Protocol using History of

Encounters and Transitivity) has been recently proposed for DTN. It exploits the

mobility patterns followed by users carrying mobile devices, which may form an ad hoc

network. Normally, a random movement of nodes is assumed in an ad hoc network. But

users in daily life follow a fixed pattern repetitively. PRoPHET discusses mechanism to

keep track of this pattern and use these metrics for deciding the routes. The details are

provided in [LIND06].

2.3.5. Neighbor Discovery

One of the largest application areas of DTN is the MANETs with intermittent

connectivity, having no end-to-end path available most of the time. The nodes

participating in the mobile ad hoc network may not have time or means to configure

network parameters, particularly if the connectivity interval is quite short. Examples are

ad hoc networks formed in a market or at a disastrous place or on board in a public

transport vehicle. In order to achieve effective communication, the nodes should be able

discover each other and establish a network automatically on the fly. Some routing

protocols for ad hoc networks, such as PRoPHET, also depend upon such mechanism

 32

provided by underlying layers. We propose a mechanism for neighbor discovery in

Bluetooth based Ad Hoc networks.

Bluetooth family of protocols specifies a mechanism to advertise the device information,

application services and parameters for the services. Bluetooth devices can query each

other for such information in order to establish a connection. This mechanism is called

Service Discovery Protocol (SDP) and is built into the Bluetooth protocol stack. SDP

works at L2CAP layer and uses a predefined reserved channel. The advertising device

maintains a service database and each service is identified by a universally unique

identifier (UUID). Upon request from another Bluetooth device, the service information

is sent to it. In this way, a device can determine what applications are supported by the

others and how those devices can be connected to [BRAY].

We have used SDP to advertise the device MAC address and channel identifier for SPP

using RFComm service UUID. This information has been termed DTN-service. The

Bluetooth convergence layer in our implementation advertises its DTN-service

information and discovers other devices in neighborhood advertising their DTN-service

information. The implementation details are provided in Chapter 5.

2.4. Summary

In this chapter, DTN architecture has been explained. It also included an overview of

DTN family of protocols, mainly he Bundle protocol and convergence layer protocols. A

few experimental routing protocols have been discussed briefly. Finally a neighbor

discovery mechanism for Bluetooth convergence layer has been proposed. Next chapter

describes implementation architecture for DTN, tailored for Symbain based smart

phones.

 33

3. IMPLEMENTATION
ARCHITECTURE

This chapter describes the top-level architecture of Bundle protocol implem

Symbian mobile phones. Although the overall design is tailored for Symb

level architecture is generic enough to be used on other platforms. This cha

give any detailed design or algorithms, rather describes architectural desi

used in the implementation.

3.1. Conceptual Model of Bundle N

A Bundle node is a logical entity on a DTN node, which implements the Bun

to send and receive bundles. It can be a thread, or process running on gen

computer, or dedicated hardware device. As described in Chapter 2, the Bun

works above the transport layer and below the application layer. Hence it u

offered by transport layer and offers Bundle layer services to applications,

communicate over DTN. Bundle protocol specifications subdivide Bundle

logical sub-layers, as illustrated in Figure 4.

entation for

ian OS, top-

pter does not

gn decisions

ode

dle protocol

eral-purpose

dle protocol

ses services

which could

 layer into 3

34

3.1.1. Bundle Protocol Agent

The core protocol logic is handled by the Bundle Protocol Agent. BPA is responsible for

generating and receiving bundles and administrative records. It may also maintain

persistent storage. Besides, BPA is responsible for all routing decisions.

3.1.2. Convergence Layers

To use transport layer services from an abstract level, BPA utilizes one or more

convergence layers. Each convergence layer is optimized for a different transport layer –

but should offer BPA a uniform Service Access Point at an abstract level.

3.1.3. Application Agent

To offer its services to application layer programs, BPA utilizes Application Agent sub-

layer. Depending upon targeted DTN applications, AA should be customized in order to

hand over application layer data and meta-data to BPA. AA may also maintain DTN

applications’ registration information. Registration is a mechanism used by an

application-layer program to identify itself as DTN user-application. It is analogous to

‘handle’ abstraction used in many OS services like file, networking, graphics etc. Each

application using such services is assigned a unique handle, which is used as a reference

to invoke system calls for those services. DTN expands this concept to a more abstract

level and in slightly loosely-coupled fashion. An application may remain ‘registered’ for

a DTN service even if the program is not running. DTN defines active and passive

registration states for this purpose.

 35

DTN Applications

DTN applications are application layer programs using Bundle node in order to

communicate in delay-tolerant networks. Since DTN uses a different concept of network

communication, applications may need to be tailored accordingly. For example,

conventional FTP cannot be used as it is in DTN networks. So either FTP client

applications can be altered to provide all data and/or meta-data at once to Bundle

protocol, or some gatewayapplication can be designed to bridge between conventional

applications and Bundle node.

3.2. Architecture for Symbian OS

Although the top-level architecture is quite generic, it mainly targets Symbian OS.

Symbian OS programming issues are discussed in detail in next chapter. Nevertheless

some general features are described here, before discussing the top-level design.

3.2.1. Symbian OS

Symbian OS is the dominant OS for smart phones and other handheld devices like PDAs

[SYMB]. Such devices have constrained resources; battery-power, memory, processing

capabilities etc. Yet they are becoming widely used devices, carried by users most of the

time, to most of the places they visit. This makes smart-phones based inter-personal

communication an interesting and potential application platform for DTN.

Owing to be running on devices with constrained resources, Symbian OS introduces may

architectural and system design concepts, which are different form other operating

systems running on general purpose computers. It offers OS-level services

asynchronously, and provides a rich library of utility functions, algorithms and data-

structures especially optimized for constrained-devices. To execute asynchronous tasks,

 36

Symbian OS defines its own mechanism of multitasking (explained in next chapter).

Symbian OS also defines a unique IPC mechanism, which is used by OS services as

well.

3.2.2. Top-level Architecture

The top-level architecture of bundle-node application follows the conceptual model

described in earlier sections of this chapter. The software comprises 3 main components:

BPA, AA and CLA(s). For modularity, these components are subdivided into logical

blocks. This is illustrated in Figure 9. BPA component implements the core logic of

Bundle protocol. It utilizes a Router component to make routing decisions. At the

moment, Router component obtains routing information from a file, because at the

moment, Bundle protocol does not define any semantics for route information

propagation. Router component can be expanded to determine routes on its own, as it

executes asynchronously. Alternatively, BPA can also update its routing information.

BPA

CLA 1 CLA n

Router

UI & Config.

AA

App 1 App m

Figure 9. Top-level Architecture

 37

BPA can utilize one or more Convergence Layer Adapters in order to use underlying

transport layer services. CLA components provide a generic API as Service Access

Points. Currently, two convergence layers are supported in the design: TCP CL for

TCP/IP and Bluetooth CL for serial communications. BPA can launch either or both of

these upon user request.

Application Agent provides a SAP to DTN applications (referred as App in above figure)

wishing to utilize BPA services that can be access through Symbian OS IPC mechanism.

DTN applications can register with the AA, which presents bundle transmission requests

to BPA on behalf of DTN applications. IPC mechanism enables multiple DTN

applications to utilize BP services, asynchronously. This enhances modularity and new

DTN applications can be developed without modifying BP application.

User-Interface component is mainly used to configure the application while it is

executing. The user can configure different options for BPA, start CLA services and

enable/disable logging information etc. It provides a graphical user interface for this

purpose, in the form of menus and dialog boxes etc. Another use of UI component is to

invoke BPA services locally, without needing any external DTN application. This

functionality is useful for demonstration and diagnostic purposes. User can send any

media file to other mobile-phone using Bundle protocol, which is received and saved by

BP application on that device.

In the following we discuss some fundamental architectural concepts used in the

implementation.

Asynchronous Interaction via Message Queues

The layered architecture of application requires that components should not use

synchronous or blocking operations, which could take significant processing time. This

would degrade the performance; for example if application is listening for a connection

synchronously, it will not be able to perform any other tasks. Hence the different

 38

components of application interact asynchronously. Symbian OS applications utilize a

concept similar to threads for multitasking and asynchronous operations, explained in

next chapter.

Components require some mechanism in order to exchange data and use services offered

by other components, asynchronously. A notion of ‘message queues’ is used for this

purpose. Every component owns two queues to store data, operational instructions and

status. One queue holds requests for the services offered by the component, termed as

TxQ. The other queue holds replies (results and status) for those requests, termed as

RxQ. In order to relate requests and replies in two queues, an identifier is used. The

queues operate as a FIFO; first-in, first-out queues.

IPC based API

Application Agent offers Bundle protocol services to DTN application via a generic API,

which is based upon Symbian OS native Inter-Process Communication. Bundle node

executes as server applications. DTN applications connect to Bundle node as client

application. This process may include registration, implicitly or explicitly. DTN

applications then can use Bundle protocol services to send or receive data.

User Interface Design Issues

Different Symbian devices may vary in user interface styles. This is the reason why

Symbian OS variants offer a common base for basic OS services, but can use slightly

varying API for user interface designs. The application is designed in such a way that

decouples UI component from other components. Hence a customized version of UI

components can be implemented for each variant of Symbian OS, while the core

components of Bundle protocol are reused without modification.

 39

3.3. Summary

This chapter described a generic software architecture for the Bundle node

implementation, tailored for Symbian OS. The architecture is decomposed into several

components, while preserving the protocol hierarchy as described in the specification

documents. Next chapter provides a crash course for Symbain OS application design,

before each component is described in detail.

 40

4. PROGRAMMING FOR
SYMBIAN OS AND DESIGN
PATTERNS

This chapter describes some of unique aspects of Symbian OS programm

This chapter also discusses some design patterns used by Symbian ap

general or specifically by this implementation of the Bundle protocol.

4.1. Programming for Symbian OS

As mentioned in the previous chapter, Symbian OS was specifically design

held devices (such as mobile phones, PDAs) with constrained resources

memory, battery power, processing capabilities). Symbian OS has been

C++ programming language, hence C++ being native programming langu

also supports other programming languages such as Java, Python with th

virtual machines, interpreters etc. Since this application developed in the

ing in detail.

plications in

ed for hand-

(screen size,

developed in

age for it. It

e support of

 thesis work

41

functions as a server program, it has been implemented using C++ for better

performance in terms of code optimization and speed of execution.

Although Symbian OS uses C++, which is a standardized, widely used and well matured

programming language, the roots of Symbian OS dates back to mid 90s when C++ was

still going through standardization process. Hence some of the advanced features of

OOP languages were not supported by compilers at that time. Symbian OS introduced its

own mechanism similar to concepts found in modern OOP languages today. For

example, exception handling is not supported by Symbian OS; nevertheless Symbian OS

uses its own mechanism to achieve similar behavior.

Symbian OS also does not use standard library functions and data-structures used by

C++ programmers, such as Standard Template Library (STL), IOStream, file-handling.

These library functions and data-structures require significant memory space for code

and data, making them infeasible for hand-held devices with limited memory. Symbian

OS provides its own library functions and data-structures to serve these purposes.

Symbian OS provides an API for a wide range of library and utility functions such as file

handling, graphics, communication and networking, inter-process communication, string

handling and processing. Some of unique features of Symbian OS, which govern the

application design considerations, are discussed below.

4.1.1. Code Optimization

As mentioned earlier, Symbian OS provides a wide range of library functions. Since

hand-held devices have limited permanent storage and physical memory for code

execution, these library functions are specifically optimized for hand-held devices in

terms of code size and execution speed. The OS code itself, along with library functions,

is placed in ROM in the form of DLLs. Applications programs are also stored as DLLs

in the Flash memory. These DLLs contain only executable code and read-only data.

 42

When an application executes, only one copy is loaded in the RAM, which is shared by

all the instances of the programs using it. The OS code and library functions do not need

to be fetched into RAM for execution; rather they are directly accessed and executed

from ROM. RAM only holds application program DLLs, stack and the heap. This is

termed as in-place execution.

4.1.2. Clean-up Stack & Leave Mechanism

Since memory is an expensive resource in Symbian OS devices, loosing memory

chunks, due to memory-leaks in programs is not affordable. Memory is leaked when it is

allocated dynamically and then not destroyed properly, after use. When a dynamically

allocated memory is freed, it goes back to heap; in case of a memory-leak, it does not.

Hence the application would run short of heap memory and program execution would

cease or crash. Unfortunately, C++ does not offer any neat and clean mechanism for

handling memory-leaks gracefully, like garbage collector used in Java. Symbian OS

defines a similar mechanism via clean-up stack and function leave mechanism. Function

leaving is similar to exceptions found in OOP languages.

A function leaves (i.e. returns) abnormally if any exception occurs due to some

erroneous condition like resource unavailability. Many of the API functions offered by

Symbian OS can leave. If a function leaves, dynamically allocated memory by that

function would be leaked, as all the references available for that would be lost. Since

exception can occur at any stage in function execution, it is necessary to keep track of all

the memory dynamically allocated, so that it could be deleted when function leaves.

Symbian OS provides a neat mechanism for this purpose. A reference of each object,

dynamically created, is pushed to a clean-up stack provided by the framework. Hence if

a function leaves, framework pops all the references previously pushed onto it and

destroys the memory. Hence clean-up stack, together with the leave mechanism, co-

serves as garbage collector and exception handling mechanism. Nevertheless, unlike

garbage collector used in Java, this mechanism does not work always automatically. The

 43

programmer has to explicitly call the API functions to destroy objects from the cleanup

stack in normal cases. Nevertheless, the objects are deleted automatically if an exception

occurs and the function leaves abnormally.

4.1.3. Thin Templates

Templates are often used in C++ to provide blueprints of algorithms for data structures.

Hence the algorithms can be reused for any data type without recoding. Compilers

automatically generate code for template classes. In some cases, it results in a separate

copy generated for each version, hence increasing code size significantly. Symbian OS

uses a concept called thin-templates to keep its code size smaller. The basic idea is to

separate the code, which uses template references from other code, by breaking it into

small functions. Hence a very small portion of code is replicated for each template class.

This reduces OS code size. All the collection classes (queues, arrays etc.) of Symbian

OS use thin-templates.

4.1.4. Active Objects

Symbian OS discourages the use of threads for performance reasons. Threads require

context-switching mechanism, which is an overhead for system resources: memory and

CPU time. Moreover, multi-threaded applications require some kind of intra-process

synchronization mechanism via mutexes or semaphores. This also requires extra coding.

Nevertheless multitasking is necessary for sophisticated applications to perform

background tasks and asynchronous operations. Symbian OS introduces co-operative

multitasking in contrast with preemptive multitasking used in conventional operating

systems using threads as basic execution unit. In co-operative multitasking, each

execution unit performs a small operation and then gives chance to others for completing

their operations; hence termed co-operative. OS does not preempt the execution before

completion. Hence no mechanism for intra-process synchronization is required.

 44

Symbian programs achieve this by using active objects. Classes, which perform

asynchronous or background tasks, are derived from active-object class. The framework

creates an active scheduler for each process. When a function is called which requires

asynchronous execution, active scheduler is signaled. The Active Object class provides a

callback function, which is called by framework when associated asynchronous task is

completed. Each active object is allowed to have only one request pending for

asynchronous operation. While the requested asynchronous operation is being executed

in the background, the active object stops further execution, giving chance to the other

active objects to perform their operations.

4.1.5. Naming Conventions

In order to better utilize resources, Symbian divides classes into four types. T-classes

objects are of small size and can be created on stack; hence can be used as automatic

variables. M-classes encapsulate abstract classes, which define interfaces. Objects of

such classes cannot be instantiated, and these classes are only used to derive from them.

C-classes contain member objects, which are too large to be created on stack. Hence

such objects are created on heap, and their reference is placed on clean-up stack. R-

classes contain handles, which are references to other services offered by operating

system servers or application servers. These letters are prefixed in the names of classes.

Leaving function names are appended by letter ‘L’ to denote that this function can leave.

A function calling other leaving functions is also a leaving function. In order to break the

nesting, a function, which calls other leaving functions, can place a trap harness by

using a macro. The leaving process stops at the first occurrence of the trap harness.

4.1.6. Strings and Binary Data

Symbian OS does not supports conventional C-style char-pointer based strings and STL-

strings are not available either, in library functions. Symbian OS provides thin-template

 45

based wrappers for single-byte data types. Strings are special case of binary data. This

mechanism also provides an abstract interface for Unicode character set which requires

two bytes per character. These data types in Symbian are called descriptors.

4.1.7. Client-Server Framework

Symbian OS offers its services via special programs executed by the kernel. These

programs are called system servers. Symbian OS provides a generic IPC API to use these

services. Some examples are file server, serial communication server, socket server, and

window server. User-level programs can also offer their services utilizing the same IPC

mechanism; hence termed as application servers.

4.2. Design Patterns

Design patterns are algorithmic solutions to commonly occurring problems in software

engineering. They speed up the design process by providing an efficient, documented

and tested algorithm for the problem. Like other OOP languages and systems, Symbian

OS also utilizes many design patterns, both in framework and in application design. A

couple of design patterns, which are used in the implementation of Bundle node, are

briefly described in the following.

4.2.1. Model-View-Controller Pattern

MVC pattern describes a software architecture that splits an application’s data, view and

control logic into three components i.e. model, view and controller respectively. As a

result of this decoupling, modifications of any of the components have minimal effect on

other components. This pattern is used by many toolkits for GUI based applications like

Symbian, MFC, and QT etc. In Symbian, the basic GUI application framework follows

this pattern. Model holds the data and algorithms to process the data. View component is

 46

responsible for drawing the data on screen. The controller logic handles user interactions

and decides how to manipulate the model. This is illustrated in Figure 10.

Model View

Controller

Figure 10. MVC pattern

In Bundle node, BPA, AA, CLAs, all components form model. View and controller are

placed in UI component.

4.2.2. Observer Pattern

Observer pattern is used often in event driven programming. This pattern defines two

components: subject and observer or listener. A subject component generates an event

and then observer is notified via a callback function. This is illustrated in Figure 11.

+Notify()
Observer

+NotifyObserver()
Subject

+Notify()
ObserverA

Figure 11. Observer pattern

 47

In Bundle node, all components forming a ‘model’ mimic multitasking via use of

periodic timer events. Each component is associated with a timer active object, which

generates periodic tick events as a subject. The component itself is derived from an

abstract observer class, which provides a virtual function as a callback. On each tick of

timer, the component performs operations on the data in the message queues.

4.3. Summary

This chapter presented an overview of Symbian OS programming and application design

considerations. Symbian OS applications use many design patterns, not so common in

other platforms such as Windows and Unix. Next chapter describes the details of

software components and the use of design patterns described in this chapter.

 48

5. DESIGN AND
IMPLEMENTATION DETAILS

This chapter describes detailed design of the Bundle node’s implementa

details include breakdown of components into classes, interaction and rela

the classes, and brief description of functionality of each class. Each comp

software is discussed in separate sections, using a bottom-up approach. Syst

built-in classes are beyond the scope of the document.

5.1. Utility Classes

Utility classes implement some general algorithms or data-structures us

classes belonging to different components of the Bundle node.

5.1.1. FNV Hash

tion. Design

tion between

onent of the

em APIs and

ed by other

49

FNV-hash is a simple yet efficient public-domain algorithm for computing smaller (32

or 64 bit) hash values with low collision rate. They are used in several software systems

to compute table indexes, unique identifiers and for similar purposes [FNV].

FNV hash is used to compute unique bundle IDs. A bundle is uniquely identified by its

creation timestamp, source EID and, if applicable, fragmentation length and offset

values. Nevertheless this information cannot be used as such for indexing purposes.

Moreover, TCP CL uses a 32-bit bundle ID while transmitting bundle over the network.

To maintain uniqueness of these values within the network, a 32-bit hash is computed

from the creation timestamp, the source EID and the fragment offset and length fields of

a bundle. This hash value is termed as Bundle ID and can be used for indexing purposes

as well.

FNV Hash Algorithm

FNV hash algorithm, described below, is encapsulated in a class, and can be accessed

via a static function.

� Initialize 32-bit hash value with a number proposed in algorithm.

� For each byte in data buffer, do the following:

o Take XOr of current data-byte and least-significant byte of hash value.

o Multiply hash value with 32-bit prime number proposed in the algorithm,

using modulo-32 operations.

� Final value is the hash value.

5.1.2. EID

This class manipulates end-point IDs and offers following services via member

functions:

 50

� Parsing of URIs into scheme and scheme-specific parts. The EID is stored in the

member variables in this decomposed form and can be accessed individually.

� Composing the scheme and SSP back to complete URI.

� Comparing the EIDs.

� Cloning of an EID into a new copy.

The EID class also stores an application tag field. This field is used by the AA to

demultiplex incoming data units to the DTN applications. Such mechanism is not

specified by the protocol specification documents, and at the moment, is implementation

dependent. Since EID can be based on any URI scheme, the manner, in which

application tag filed is extracted, is URI and implementation specific. For “dtn” URI

scheme, we propose that application tag should be identified by the last ‘/’ occurring in

the SSP. Hence the format of SSP becomes:

<Bundle node identifier>/<application tag>

Any string after the ‘/’ denotes the application tag, which is stored in the EID class and is

used by the AA for demultiplexing to the corresponding DTN application.

5.1.3. SDNV

This class encapsulates the SDNVs and can perform the following operations:

� Parsing of an SDNV string to extract the numeric value. The current

implementation of the algorithm supports extraction of numbers up to 32 bits in

size.

� Generating SDNV string from 32-bit numeric value.

� Computing the length of SDNV string from numeric value.

 51

SDNV String Parsing

SDNV class maintains an array of bytes. It extracts bytes from an SDNV string until last

byte (with the most-significant bit set to 0) is found, and stores into array. Then it

computes the numeric value using the following algorithm.

� Initialize 32-bit numeric value with 0.

� Set shifting-index to 0;

� Starting from last byte in array till first byte in array, do the following in each

iteration:

o Set most-significant bit of current byte to 0, as it is just marker bit.

o Shift left, the bits of the value obtained in previous step, shifting-index

times.

o Add the value obtained in previous step to numeric value.

o Increment shifting-index by 7.

� Numeric value placeholder contains SDNV encoded value.

Calculating Length of SDNV String

This algorithm computes the number of bytes a numeric value possesses when encoded

into SDNV string.

� Determine minimum number x > 0, such that 2x is greater than the numeric value.

� Multiply the value obtained in previous step with 9; divide by 8; ceil the result to

nearest integer.

� Divide the result obtained in previous step by 8; ceil the result to nearest integer.

� The resultant value is the length of SDNV string in bytes.

Composing SDNV String

The following algorithm describes how to encode a number into SDNV string:

 52

� Calculate the length of SDNV string from numeric value using the algorithm

above. Generate a byte array of that much length.

� Starting from last index of array till first index, repeat the following:

o Store least significant byte into array at corresponding index.

o Set most significant bit of stored byte to 1, except for last iteration. For

last iteration, set this bit to 0.

o Shift number to right 7 bits.

� The byte array holds SDNV string.

5.1.4. Schedular-Timer

This class is derived from CTimer, which is provided by Symbian OS. CTimer is an

active-object and encapsulates a timer object, which can be set to generate an event after

certain amount of time. Schedular-Timer class uses Observer pattern. This class

implements virtual callback function RunL, called every time the event is generated. This

function sets timer to fire again, and calls the notify function of the listener object.

Hence the listener object will be notified periodically in order to execute its services.

After experimenting with different variations of the timer value, a value of 100

microseconds has been chosen in order to ensure good responsiveness of the software.

5.1.5. Event-Notifier

This is an interface or abstract base class for observer or listener classes using observer

pattern. It declares a virtual function EventHandler only, used as callback function by

subject class.

 53

5.2. Convergence-Layer Adapter Classes

The classes used by convergence layers are described in this section. There are two main

sub-groups of these classes.

5.2.1. Connection Classes

Connection classes encapsulate the basic socket operations for connection opening,

closing, reading and writing data. Symbian sockets perform these services

asynchronously; hence a connection class has to be an Active Object. Connection classes

are derived from an abstract base class. Two derived classes are used in this

implementation: one for TCP connection and the other for Bluetooth RF Comm.

Connections. This hierarchy is shown in Figure 12.

CActive

CConnection

CTCPConnection CBTRFCommConnection

Figure 12. Connection classes

Since a connection class performs its services asynchronously, there is a message

queuing mechanism as described in Chapter 3, implemented in the base class

CConnection. A connection object retrieves command messages for data transmission,

connection opening or closing etc., from its TxQ. It places the status of these requests or

data received in its RxQ. The entity, which owns a connection object, can use Push() and

Pop() functions in order to handover and retrieve data, respectively.

 54

Since an Active Object can have only one asynchronous operation pending, Connection

classes implement a state machine to save the state of current operation. Once the current

operation is completed, the framework calls the callback function. In the callback

function, a request for next operation is placed and the state is changed accordingly.

A connection is a bi-directional link, so it is used for both sending and receiving. Since a

connection object can perform only one operation at a time, it switches the roles of

sending and receiving alternatively in order to maintain a fair behavior.

Since a Connection class offers its services to a CLA class asynchronously, the latter

does not know about connection or transmission failures until it reads the status message

from Connection’s RxQ. This can lead to synchronization problems; e.g. a Connection

object is in closed state but the CLA, still being unaware of that, hands over more data to

transmit. To avoid such issues, the CLA always checks the state of Connection object,

and does not handover any data to it if the later is in closed state.

Even though a connection is closed, the CLA does not delete the Connection object until

it retrieves all the status messages from Connection’s RxQ. A connection’s TxQ is

always emptied by itself when it goes to closed state, and a failure status is placed in its

RxQ message for each transmit request.

5.2.2. CLA Classes

These classes implement the convergence layer protocols. A CLA class maintains an

array of Connection-Info objects, which encapsulate a Connection object, and some

other information related to that connection such as connection state, direction, a

temporary buffer for segmentation and reassembly. The relationship between these

classes is shown in Figure 13.

 55

The CLA class creates new connection if an existing one cannot be located in the array.

A CLA object must be able to accept incoming connection requests as well. For this

purpose, CLA class encapsulates a listening socket, which is always waiting on a

particular interface for new incoming connections. Since socket operations in Symbian

OS are performed asynchronously, the CLA class is an Active Object.

CActive

CCLA

CTCPCLA CBTRFCommCLA

MEventNotifier

CConnectionInfo

1

*

CConnection

1

1

CSchedularTimer
11

1

1

Figure 13. CLA classes

Since CLA and Connection classes interact asynchronously, they exchange operation

and status codes via message queues. The CLA pushes requests message into the

connection’s TxQ and pops status or reply messages from the connection’s RxQ.

The CLA class has to perform its protocol-level operations continuously. It simulates a

thread-like behavior by using the observer design pattern. It owns a Schedular-Timer

object, which serves like a subject in the observer pattern. The CLA class itself behaves

like a listener and provides a callback function to the subject via the Event-Notifier

interface class. When the Schedular-Timer generates a timed event, it notifies CLA by

calling that function. Hence CLA class performs its operations periodically, mimicking

thread-like parallel execution. These operations are divided into 3 categories:

� Transmit operations include locating a connection object, creating a new

connection object if an already existing is not found, and handing over out-going

bundles to connection object.

 56

� Receive operations include retrieving status messages from existing connection

objects, extracting incoming bundles, reassembly and segmentation of bundles if

needed. A bundle is reassembled if it is received in segments. A received bundle

is segmented if it is merged with next data unit in the stream.

� Auxiliary operations include connection activity detection based on timers,

performing CLA protocol auxiliary operations (e.g. sending Keep-Alive

message), and deleting terminated connection objects.

BTRFComm-CLA class is conceptually same as TCP-CLA class because they use

identical protocol. Minor differences are due to different API and data-structures used

for communication over Bluetooth. The only significant difference is that the

BTRFCOMM-CLA class owns an object of the BTNeighborhoodDiscovery class.

BTNeighborhoodDiscovery Class

As described in Chapter 2, some routing protocols such as flooding and PRoPHET

utilize the presence of other Bluetooth capable Bundle nodes in the neighborhood as the

routing metrics. The BTRFComm-CLA class implements a mechanism, via

BTNeighborhoodDiscovery class, to discover neighboring devices, which advertise their

capability of exchanging the Bundles over a particular RFComm channel. The anatomy

of this class is illustrated in Figure 14.

CBTNeighborDiscovery

CActive

RHostResolverRSdp

RSdpDatabase CSdpAgent

CSdpSearchPattern

CSdpAttrIdMatchList

Figure 14. Bluetooth Neighborhood Discovery class

 57

This class performs two main tasks: service advertisement and discovery. It starts

advertising the RFComm channel for the Bundle node when the BTRFComm-CLA is

enabled and stops the advertisement when the BTRFComm-CLA is disabled. The SDP

record, which comprises the UUID of the service, channel ID and a textual description of

the service, is added into the SDP database of the device when the service advertisement

is started, and is removed when the advertisement is stopped. This mechanism is

achieved via RSDP and RSDPDatabase classes provided by the framework.

Secondly, this class is responsible for discovering the neighbors and their DTN-service

information continuously on regular basis. This task involves two operations: device

discovery (for the device address) and service discovery (for the channel ID). It

discovers the Bluetooth device addresses of the neighboring Bundle nodes via

RHostResolver class. Then it enquires to all the devices, discovered in this way, about

their SDP records using the CsdpAgent class. The CsdpSearchPattern class is used to

narrow down the search criteria to DTN-service information records only, which uses

the corresponding service UUID to filter out irrelevant service records thus saving

computing resources. The service discovery tasks are performed in the background using

the Active Object design pattern.

When a DTN-capable device is discovered in the neighborhood, the information

retrieved is sent to the BP-Router component by the BTRFComm-CLA class. The BP-

Router component may utilize this information for computing routes by using algorithms

such as flooding or PRoPHET. The BTNeighborhoodDiscovery class maintains a local

cache for the devices discovered so far. The service discovery operation is performed

only for new entries in the cache. Old entries, which cannot be detected in the

neighborhood anymore, are removed from the cache and the BP-Router is also notified

so that it can also remove the corresponding entry from its routing records.

 58

5.3. Bundle Protocol Agent Classes

The BPA component implements the core logic of the Bundle protocol; so it uses all the

classes described earlier, directly or indirectly, as shown in Figure 15. In order to

perform protocol level operations, it uses the observer pattern via the Schedular-Timer

and the Event-Notifier classes, similar to the CLA component. The other classes are

described below in detail.

CBase

CBPA

MEventNotifier

CSchedularTimer

11

1

1

CBPRecord

1 *

CBundle

CEIDLookUpRecord

1
*

1
1

1
1

CCLA

CAdminRecord

1
0..1

CBPRouter

1
1

Figure 15. BPA classes

5.3.1. BPA Class

This is the main class of the BPA component and contains the protocol state-machine

logic. It also creates and owns CLA objects, a BP-Router object and maintains a list of

bundles for transmission and reception. This class also provides an interface for the AA

component via message queues, TxQ, RxQ. Since it does not perform any asynchronous

operation locally, rather calls asynchronous services of other components, this class

 59

itself is not derived from CActive. Owing to being created on heap, it is therefore derived

from CBase.

Like the CLA class, BPA class performs protocol level operations when its callback

function is called in response to timer event generation. These operations are categorized

into 3 groups:

� Transmit operations include finding routes for out-bound bundles and handing

them over to the state-machine, which results in handing over the bundles to the

CLA objects.

� Receive operation mainly includes the processing of the incoming bundles by the

protocol state-machine. This either results in forwarding of a bundle to the other

Bundle nodes or the bundle is local delivered to the AA component.

� Auxiliary operations include the creation of out-bound bundles retrieved from

Application-Agent, handing over locally-delivered bundles’ payloads to

Application-Agent, clearing the queue of bundles by deleting to-be-discarded

bundles, and retrieving bundles from CLA objects.

This class also maintains a processing queue, which holds the out-bound or incoming

bundles.

Bundle Protocol State-Machine

The bundle protocol state-machine is described in detail in [BPSPEC04]. A compact

version is illustrated in Figure 16. This illustration describes the steps executed during

the processing of out-bound or in-coming bundles while stored in the processing queue.

It does not discuss how bundles are stored in or removed from the processing queue.

Such steps are performed in auxiliary operations.

 60

Dispatching

Forwarding LocalDelivery

Local
Delivery?

Forwarding
Failed?

Deletion

CustodyAcceptance

Accept
Custody?

Is
Fragment?

Reassembly

Figure 16. Bundle Protocol State-Machine

These states are directly mapped to what is termed retention constraints by the protocol

specifications. When a new bundle is created, it does not have any retention constraints.

As bundle undergoes processing by the state-machine, it may be associated with one or

more retention constraints, which may be removed as processing proceeds further. The

BPA must not delete a bundle as long as it has any retention constraints associated. For

example, if the BPA accepts custody of a bundle, it adds a retention constraint indicating

this decision. BPA must hold a copy of the bundle until some other Bundle node accepts

the custody or the bundle is expired.

 61

An out-bound or an incoming bundle is placed in the dispatching state, after its

destination route has been determined by consulting to the BP-Router component. If the

bundle is to be destined for local delivery and is a complete bundle then it is delivered to

the AA. If such bundle is a fragment, its state is changed to reassembly and it is kept in

the processing queue until all the fragments are reassembled and ADU is delivered to the

AA, or the fragments expire. If the bundle in dispatching state has to be forwarded to

another Bundle node and forwarding is failed then the bundle is deleted. On the other

hand if bundle is forwarded successfully and its custody acceptance is requested, the

BPA can accept the custody depending upon the local policy. If it does so, then the

bundle is kept in custody-acceptance state. The bundle is removed from the processing

queue if it does not have any retention constraints.

Configuration File

The BPA component uses a configuration file in order to load configuration parameters

at the startup. BPA class is also responsible for loading and parsing the contents of the

configuration file. The file consists of name-value tuples. The tuples are separated by a

‘;’ sign and white spaces are ignored. Within each tuple, the filed name and value are

separated by a ‘=’ sign and white spaces are ignored. The current implementation uses

four tuples: local EID, report-to EID, TCP listening port and Bluetooth listening channel

ID. The syntax of the file is generic enough to add more entries.

5.3.2. Bundle and Admin-Record Classes

This class represents a data-structure for a bundle message. It provides the API for the

following operations:

� It parses a bundle message in binary format, and extracts different header fields

to store in the respective member variables.

 62

� In the BPA, a bundle message is stored in parsed form. This class provides the

API for setting and getting values of different fields of header. Hence a bundle

message can be processed and modified efficiently.

� It composes a binary bundle message using the information stored in different

fields.

This class stores the payload in binary format, which is delivered to the AA as it is.

Nevertheless, if the bundle is an administrative record then it further decomposes it and

creates an object of Admin-Record class, which provides the API for further analysis of

the payload.

5.3.3. BP-Router Class

This class maintains the routing records for BPA. It reads the entries from a routing file,

on program startup. Entries in the file are stored in the following format, one per line:

<EID> <Transport Type> <Priority> <Node Address> <Service Identifier>

Each field in the entry is separated by one or more white space characters. The first field

contains EID in standard URI format, as explained in Chapter 3. Transport Type field

denotes underlying link-layer technology, used to select corresponding convergence

layer adapter. Currently, two values are defined: ‘TCP’ for the Internet connections and

‘RF_Comm’ for Bluetooth connections. These values are case insensitive. Priority field

is an unsigned numeric value, which is used for routing decisions by the static routing

algorithm for selecting the high priority route in case multiple routing entries exist for a

particular destination. Node Address is a transport-type-dependent field denoting IPv4

addresses for TCP or Bluetooth device address for RF_Comm. Service Identifier is again

a transport dependent numeric value, usually used by protocol stacks for selecting the

application that uses the particular service identified by this value. For TCP, it

corresponds to the ‘port number’ a listening socket is accepting connections on, and the

‘channel ID’ for Bluetooth connections.

 63

BP-Router class is derived from CBase and MEventNotifier classes, and uses the timer-

based observer design pattern, as used by some other components. Hence, its callback

function is called in regular intervals, simulating a thread like parallel execution of the

component. Each time, the records from the routing file are updated; hence entries can

be modified without restarting the program.

DTN specification documents, at the moment, do not define any mechanism for routing

information propagation. In fact no routing algorithm has been selected at all, as this is

an on going research area. At the moment, BP-Router class also does not implement any

sophisticated algorithm for routing decisions. Routes are statically defined in the routing

file and simpler algorithms, such as static routing and flooding, are used for routing

decisions. When BPA component enquires the router object for some routing

information, it provides information to use for a particular routing algorithm. In case of

static routing algorithm, the router object simply selects the first route with highest

priority. In case of flooding algorithm, all routing entries stored are used to forward

bundles. BPA maintains a flooding queue, holding signatures (which comprises source

EID, creation timestamp and fragmentation information, if applicable) of the bundles

forwarded, to prevent routing loops.

Nevertheless, since BP-Router component performs route updating asynchronously, it

can be extended to determine routes by other means such as neighbor discovery in which

it determines surrounding devices forming an ad hoc network using Bluetooth or

WLAN. Such information can be used by routing algorithms such as flooding. In future,

DTN protocol specification documents may define additional protocols for routing

information propagation (e.g. PRoPHET), which can be incorporated into modular

architecture of BPA or BP-Router components. In the current implementation, the

Bluetooth CLA detects other devices in the neighborhood and this information is stored

in the BP-Router component. BPA can enquire the routes by specifying a particular

algorithm. In case of the flooding algorithm, the BP-Router component returns routes to

all the devices in the neighborhood, from its NeighborhoodQ.

 64

5.3.4. EID Lookup Record Class

This simpler class is used in order to exchange routing information between BP-Router

and BPA components. It implements a linked-list, each node of which contains a single

routing entry stored in BP-Router component. The Number of nodes in the list depends

upon the routing algorithm used. The same class can be utilized to add new entries into

BP-Router by BPA component, as well.

5.4. Application Agent Classes

Application Agent component provides a seamless interface to application programs, via

Symbian IPC mechanism, for utilizing DTN communication. As described in previous

chapter, Symbian provides a client-server framework for IPC. The AA component

executes as application server. An application program can connect to the server. When

this IPC session is created, the application registers for a particular service such as ‘DTN

file transfer’, by providing an application tag. The application tag is used by application

agent to demultiplex incoming bundle payloads, and is used in EIDs based on DTN

URIs. While the IPC session is maintained, DTN applications can send and receive their

data identified by the tag. Application Agent maintains two queues for incoming and

outgoing application data units. The incoming data is not discarded if the session with

corresponding application program does not exist. In such case, the application program

can receive the data whenever it establishes a session with the AA, using a particular

application tag for registration.

A mechanism is provided in Bundle node UI to send and receive test bundles. In this

case, no registration is required and the UI directly accesses queues for sending or

receiving ADUs.

 65

The classes used in the design of the AA component are illustrated in Figure 17 and are

discussed in detail below.

CDTNServer

CServer

CActive

CDTNSession

1 0..*

CSession

CShareableSession

RMessageCBPACSchedularTimer

MEventNotifier

Figure 17. AA classes

5.4.1. Symbian Client-Server Framework Classes

The classes shown in above figure follow a fixed design pattern of Symbian client-server

framework. The server application creates a server object, which waits for new IPC

session requests. When a client program requests the kernel to establish a connection

with the server program, the kernel dispatches a session request to the server program.

This logic is built into the framework provided by CServer class. Upon receiving this

request, a session object for that IPC connection is created by the server object. While

the session is established, the client program can issue synchronous or asynchronous

service requests. The actual logic of service execution is handled in CSession class. A

session object receives service request parameters in the object of the RMessage class.

When the client program terminates the session, the framework deletes the

corresponding session object.

5.4.2. DTNServer Class

The server class is an Active Object, waiting for new IPC session requests. It maintains

two queues for holding incoming and outgoing ADUs. Additionally, it uses the timer-

 66

based observer design pattern for multiplexing and demultiplexing the outgoing and

incoming ADUs, respectively. It performs the following operations in its callback

function periodically:

� Iterates through all the session objects to extract outgoing ADUs and places them

in the queue along with application tag for corresponding registration.

� Iterates through all the incoming ADUs in the corresponding queue and hands

over them to the corresponding session object if found any.

� Hands over new outgoing ADUs to BPA

� Extracts new incoming ADUs from BPA. The notification of success or failure

while sending outgoing ADUs is also received in the same channel.

The server object registers only one session per application tag. That is, it refuses to

register an application for a service if another application is already registered for that

service. This simply results in the graceful termination of the new IPC session by the

framework.

5.4.3. DTNSession Class

The session class receives the request messages from the client via the IPC framework.

Each message comprises a message type and zero or more arguments. The session class

decodes the message type in order to determine type of service requested and performs

the corresponding operations, synchronously or asynchronously. Four types of requests

are handled by current implementation:

� A registration request is serviced synchronously. This must be the very first

request issued by client programs. The session is closed if any other request is

issued in prior to the registration request. The session is also terminated if

another session is already established for that registration. The client application

must terminate the session in order to cancel the registration.

 67

� A transmission request is serviced asynchronously. An outgoing ADU is created,

using the arguments passed along, and buffered temporarily. The session object

then waits for the completion of request asynchronously. The server object

extracts this ADU and hands over to BPA. When BPA notifies about the

transmission status, whether success or failure, the client is informed.

� A reception request is also serviced asynchronously. The client program requests

for any ADU received for the particular registration. The request completes when

either any ADU for that registration is sent to client, or the request is canceled by

the client.

� A cancel request cancels any pending asynchronous request. Naturally, it applies

to transmit or receive requests only.

5.5. User Interface Classes

UI classes follow a fixed design pattern of Symbian GUI applications. They create and

start other components, directly or indirectly. They provide graphical interface, in the

form of menus and dialog boxes, to users for configuring and using Bundle node

services. The relationship between the classes is illustrated in Figure 18. The user

interface framework varies for different variants of Symbian OS. The classes shown in

the figure correspond to Series80 implementation, and may vary for other builds. A brief

description is provided below. For details, consult Symbian SDK documentation and

other literature such as [HAR03].

CEikApplication

CBPAApplication

CEikDocument

CBPADocument

CEikAppUi

CBPAUi

CCoeControl

CBPAView

CBPACAppAgent
BPA_UIControls

Figure 18. UI classes

 68

In Symbian OS, every GUI application is a DLL and CBPAApplication class simply

provides a startup entry point for the DLL. CBPADocument class does nothing but

creating the UI object. CBPAUi class handles all the user inputs. It also creates BPA and

AA components on startup. CBPAView class provides a mechanism for drawing and

printing on screen. BPA class uses its services to print information and debugging

messages.

Some simple classes in BPA_UIControls package create dialog boxes for getting more

information from the user about the requested operations. For example, one dialog box

enquires about bundle sending options. Another provides interface for file selection.

5.6. DTN Applications

As described in Chapters 2 and 3, DTN defines a new paradigm for communication, and

a variety of applications can use the Bundle protocol. This is an ongoing research area

and no particular structure for such applications has been defined so far. A simple

application has been developed during this thesis work for demonstration purposes. It

sends and receives files using Bundle protocol. More applications can be developed

using Symbian client-server framework for IPC. This section briefly describes the

framework and design patterns of client applications, which can connect to and utilize

Bundle node server application. For more details, consult Symbian SDK documentation

and other literature, such as [HAR03].

5.6.1. DTN-Socket Class

This class provides the API for establishing a session with the server (i.e. Bundle node),

sending and receiving data, and closing the session. It is illustrated in Figure 19 and

provides the following functions for using Bundle protocol services.

 69

� Connect() function establishes a session with server.

� Register() function registers for a particular service. The name of service is

provided in argument as a descriptor. This operation completes synchronously.

� Send() function sends request for transfer of data. The data and meta-data (i.e.

options for sending data e.g. destination address etc.) are packed in a data-

structure and passed as the argument of the function. This operation completes

asynchronously.

� Receive() function checks for any data received. This operation completes

asynchronously when data is available for this registration.

� Cancel() function cancels any pending receive or send operation.

� Close() function closes the session.

RSessionBase RDTNSocket

Figure 19. DTN-Socket class

5.6.2. Application Design Principles

A DTN application can be as sophisticated as a web browser or as simpler as basic

console-based FTP client, as far as data processing presentation is concerned. DTN

communication is as simple as using a socket. The IPC based interface, as described

above, is asynchronous. Application should create an object of DTN-Socket class and

register for a particular service. It may then issue request for sending or receiving data.

For sending request, it should pack all the data and metadata in a data-structure defined

in the implementation. Meta-data includes destination EID, lifetime, custody transfer

requests etc.

Applications can use Active Objects or can just wait synchronously for the completion

of operation, by blocking the execution. The latter is achieved by calling

 70

WaitForRequest() function. It can cancel any pending request to issue a new one. It may

terminate the session by calling Cancel() followed by Close() function.

5.6.3. Application Design Example

A sample application, DTN File Transfer or DFT has been designed for the sake of

demonstration and reference. This simple application transfers a media file (image,

audio, video) or a plain text file using DTN. The DFT application uses the Active Object

design pattern for asynchronous operations. At the startup, the application connects to

the Bundle node application using the DTN-Socket API, and registers to it by specifying

an application tag. While executing, the application may issue a send or receive request,

which complete asynchronously. The DFT application prepends a MIME header before

the contents of the file. On the receiver end, this helps determining the type of incoming

data. The same information can be used later on by other applications such as DTN e-

mail gateways.

The DFT application has a structure and user interface similar to that of UI component

of the Bundle node application, except that the former uses an IPC interface in order to

connect the AA component of the Bundle node application. The UI component of the

Bundle node performs the same functionality (i.e. sending and receiving media files) by

directly invoking the AA services. Hence the UI components of both the applications are

similar, with minor differences in menu commands. The engine component (or model in

terms of MVC design pattern) of the DFT application is illustrated in Figure 20.

CDFT

CActive

RDTNSocket
UI Framework

Figure 20. DFT application structure

 71

The DFT class implements a callback function, which is called by the framework when

the asynchronous request completes. If a file is sent then the Bundle node notifies the

DFT application, when it successfully forwards the Bundle to next node. In the current

application, no end-to-end acknowledgement mechanism is provided. If the application

requests for reception of a file, it completes when the file is received. The incoming data

is stored in a file. A new request placed always cancels the previous one. New DTN

applications should use a similar pattern.

5.7. Summary

In this chapter, a detailed description of implementation of the Bundle node for Symbian

platform was presented. Using a bottom-up approach, some utility classes were

described first, followed by the classes used in each component. Finally the UI

components was described, which instantiates all the components and provides the entry

point for the application startup. The last section discussed some guidelines for

designing DTN applications, which can use the Bundle node’s services using native IPC

mechanism of Symbian platform. The design of a sample DTN application was also

presented as a reference. Having discussed the detailed design, the next chapter focuses

on testing and demonstration of the software.

 72

6. VERIFICATION AND
DEMONSTRATION

This chapter focuses on some verification techniques employed for the B

application testing. First, different types of testing performed for the

described. Later sections describe a demonstration setup, presented in a conf

6.1. Verification

Verification or testing is the integral part of research and development l

significant effort has been placed for verification of software before it has b

publicly. A complete description of testing plan and test cases is beyond the

document. In the following, a brief description of different test strategies is g

undle node

software are

erence.

ife cycle. A

een released

scope of this

iven.

73

6.1.1. Functional Testing

Functional testing verifies the correctness of algorithms and protocols, validating that

software functions as well as described in requirement and design specifications, from

user’s perspective. Individual components (classes or modules) are not tested separately,

as done in unit testing. Rather overall behavior of integrated components is evaluated.

The following aspects of software behavior are considered as metrics, while performing

functional testing:

� The functionality of application. Each component and class works exactly as

described in protocol specification documents and software design description.

� The software stability during execution. The application must not crash at any

stage. It should be able to handle unwanted scenarios gracefully, such as invalid

inputs, resource unavailability. It should start and exit gracefully.

� The fair utilization of resources. Software uses different resources available in

the execution environment, such as memory, processing power. It should acquire

and free those resources gracefully. There must not be memory leaks. No

component should create a deadlock, consuming all the processing power

forever.

Functional testing has been performed mostly by using emulator and debugger. For

every use case, the code has been stepped-into and iterated-through. Inputs are either

provided via UI component (e.g. when user initiates a bundle transmission) or they come

from network (e.g. when the application receives a bundle from another instance of the

application). For every input, the complete path of execution is traced to eliminate

logical bugs. A logging mechanism is provided to print informational and debugging

messages on screen. This helps tracing problems, while the software runs on real device.

Using same techniques and tools, memory leaks have been detected and eliminated to

maximum, in order to ensure the stability of software.

 74

6.1.2. Interoperability Testing

The purpose of interoperability testing is to verify the protocol using a reference design.

This provides a next level of confidence, after functional testing, regarding the

correctness of algorithms and protocols. A reference implementation, DTN2 [DTNRG],

has been used throughout the design and verification life cycle for interoperability

testing. In the testing, the version of the reference design used was 2.2.0, latest package

taken from the CVS repository available at that time.

6.1.3. Performance Testing

Performance testing for measurements and analysis has been conducted on the stable

working application. Usually, the measurements are compared with some reference data

to show performance boost. Since DTN architecture is in early stages of research and

development, performance comparisons are out of the scope of this thesis work and

hence the measurements are not compared with any reference data. Nevertheless, some

statistics have been collected in terms of end-to-end delay, to show performance of

application, while using different communication links. End-to-end delay is the sum of

transmission delay, propagation delay, queuing delay and the nodal processing delay

[ROSS03]. The test setup is shown in Figure 21.

WLAN (Ad Hoc)

a.

Bluetooth

b.

Figure 21. Performance Testing Setup

 75

In scenario (a), two mobile phones exchange bundles in ad hoc mode over WLAN

channel. In scenario (b), two mobile phones exchange bundles over Bluetooth RF

channel. The same files are transferred over Bluetooth, using a built-in utility in mobile

phones in order to show a comparative performance of the software.

During the verification, when Bundle node application running at a mobile phone

receives a bundle, it records the end-to-end delay by calculating the difference between

current time and the creation time. The measurements have been recorded for different

sizes of bundles. Each step is repeated thrice in order to take an average value for the

results. The plots of recorded data are shown in Figure 22 and Figure 23 respectively.

For the correctness of results, the clocks of the devices must be synchronized. The

accuracy of the results is +/- 1 second.

End-to-End Dealy (TCP in WLAN)

0.5 1
2

3

8

0

2

4
6

8

10

50k 100k 250k 500k 1M
File size (bytes)

Ti
m

e
(s

ec
)

Figure 22. Performance Testing (scenario a)

 76

End-to-End Delay (Bluetooth)

3 4 8
15

30

10 13
19

30

51

0
10
20
30
40
50
60

50k 100k 250k 500k 1M
File Size (bytes)

Ti
m

e
(s

ec
)

DTN
direct

Figure 23. Performance testing (scenario b)

6.2. Demonstration Setup

The application developed during this thesis work was demonstrated in a poster session

at the RealMAN 2006 workshop [JO06]. In the demonstration, two Nokia mobile phones

(Communicators 9500 and 9300i) running the very application, one Nokia Internet

Tablet 770 running DTN2, and one laptop also running DTN2 were used. A small

application was also running on laptop, which received media files (e.g. images) via

DTN2 and displayed them in the browser. This setup is illustrated in Figure 24.

We captured images in real time using built-in camera of one mobile phone, sent it to

laptop using Bundle protocol, routed through other mobile phone and the Internet tablet.

This also demonstrated a seamless vertical handover between Bluetooth and WLAN

networks, using the Bundle protocol.

Bluetooth WLAN WLAN

Figure 24. Demo Setup

 77

The screen-shots of the application running on mobile phone for sending the images

using DTN, and the application running on the laptop for receiving and displaying the

images using DTN, are shown in Figure 25 and Figure 26 respectively.

Figure 25. DTN application for Symbian Mobile-phone screen-shot

 78

Figure 26. Screenshot of received image at laptop

6.3. Software Release

The code of the software developed during the thesis work has been released in public

domain under GNU GPL license. This would provide the researchers with the further

research and development opportunities, which would help extending and enhancing the

work carried out so far. For more information, visit the following website:

http://www.netlab.tkk.fi/u/jo/dtn/index.html

 79

6.4. Summary

A brief description of different verification techniques was provided in this chapter. A

demonstration setup was also explained to show various application scenarios of DTN.

In the next chapter, conclusions and recommendations drawn during the thesis work are

discussed.

 80

7. CONCLUSIONS AND
RECOMMENDATIONS

In this final chapter, a brief summary of the document is provided. Conclu

during the research and development work are also discussed shortly. The c

concludes with some recommendations and guidelines for further research.

In the very beginning, an introduction and motivation to the thesis work w

A comparison between the Internet and DTN architectures was discussed. I

that, an overview of related work was also given, along with the scope and o

thesis work. Next was discussed the DTN architectural design including an

DTN family of protocols, mainly the Bundle protocol and convergence lay

This was followed by the description of the mapping of architectural design

software top-level design, yet considering general guidelines for S

application design. Next, the unique features of Symbian OS and design pa

application design was covered. It was followed by the descript

implementation in details such as UML diagrams, algorithms.. In the last, a d

sions drawn

hapter itself

as presented.

n addition to

utline of the

 overview of

er protocols.

 to a generic

ymbian OS

tterns for the

ion of the

iscussion of

81

some testing strategies, employed for the verification of the software developed during

the thesis work, was presented.

In earlier chapters (the first and the second), a brief analysis of the Internet family of

protocols was given with a focus on functional and performance issues arising with the

emergence of mobile ad hoc networks. Different solutions proposed for these issues

were mentioned briefly, and the approach used by DTN was discussed in detail. DTN

defines an overlay network on top of existing heterogeneous networks. It uses EID-based

generic naming-scheme along with concepts such as late binding, multi-graph routing

tables, in order to deal routing problems in heterogeneous networks where no single

routing solution can work. It uses notion of virtual messaging; a message bundles all the

application level data and meta-data into one data-unit, called bundle, in order to

minimize transactions between sender and receiver. This as opposed to conversational

style protocols such as HTTP, which are ill-suited for intermittent connections. DTN

also does not follow end-to-end connectivity paradigm strictly. The communication may

commence even if no connected path to destination is available at the moment. It

introduces a concept of custody transfer, in which the bundles are moved away from

source into the network closer to the destination. Hence for final delivery, source node is

not necessarily involved, breaking end-to-end model. DTN supports multiple transport

and network topologies via one or more convergence layer adapter. The main role of

CLAs to provide a generic interface to Bundle layer for point-to-point reliable delivery

services between the bundle nodes. We have proposed a neighborhood discovery

mechanism for Bluetooth convergence layer, using SDP. The information gathered by

this mechanism can be utilized by routing protocols such as flooding and PRoPHET.

DTN is an emerging paradigm for communication across a set of heterogeneous

networks and protocols, each with divergent and distinct requirements such as quality of

service, delays, routing, queuing, power, storage and applications. For example, a delay-

tolerant network may comprise a set of sensors nodes on some planet using a satellite

connection for deep space communication for sending data to earth. Being a relatively

new area, research is going on in many areas to define and refine protocols to support a

 82

larger set of networks and protocol families. Routing protocols for route information

propagation, policy based statistical and heuristic routing algorithms, custody transfer to

non-singleton nodes, multicasting in DTN, uses of URI schemes to multiplex application

data, security issues in DTN, convergence layer designs for non-conventional transport

technologies such as SMS, MMS or flash disks, DTN aware application design or

gateway application design enabling legacy applications to use DTN etc. are to name a

few.

This thesis work can be extended in several ways mentioned above. At the moment it

supports only trivial routing algorithms such as static routing and flooding. The BP-

Router component can be extended to incorporate more complex routing algorithms,

such as PROPHET, Swarm routing [KASS01]. Integration of Bundle Security Protocol

is also one of the primary future goals. New applications design such as FTP over DTN,

Web over DTN is also an area of interest. Automatic time-synchronization among the

devices in an ad hoc network requires some research and development activity.

Finally, real word testing of applicability and measurements is also very important, as

exploring DTN for real world inter-personal communication using mobile phones was

the primary motivation factor of this work.

 83

References

[COMER] Douglas E. Comer, “Internetworking with TCP/IP Vol. 1”, 4th ed., Prentice

Hall, 2000.

[BRAY] Jennifer Bray, Charles F. Sturman, “Bluetooth : Connect without cables”, 1st

ed., Prentice Hall, 2000.

[BALA97] Hari Balakrishnan et al., “A Comparison of Mechanism for Improving TCP

Performance over Wireless Links”, IEEE/ACM Transactions on Networking, Vol. 5, No.

6, December 1997.

[TANENBAUM] Andrew S. Tanenbaum, “Comuter Networks”, 4th ed., Prentice Hall,

2003.

[RFC2002] C. Perkins, “IP Mobility Support”, RFC 2002, October 1996.

[RFC4423] R. Moskowitz, P. Nikander, “Host Identity Protocol (HIP) Architecture”,

RFC 4423, May 2006.

[RFC2916] P. Faltstorm, “E.164 numbers and DNS”, RFC 2916, September 2000.

[OTT04] Joerg Ott, Dirk Kutscher, “Why seamless? Towards exploiting WLAN-based

intermittent connectivity on the road”, TERENA networking conference, June 2004.

[BAIG06] A. Baig, L. Libman, and M. Hassan, "Performance Enhancement of On-Board

Communication Networks using Outage Prediction," IEEE Journal on Selected Areas of

Communications (JSAC), 2006. (selected but to-be-appeared, web-source 2006:

http://www.ocean.cse.unsw.edu.au/jsac06.pdf)

 84

[BURL03] S. Burleigh, K. Fall, et al., “Delay-Tolerant Networking: An Approach to

Interplanetary Internet”, IEEE Communications Magazine, June 2003.

[FALL03] Kevin Fall, “A Delay-Tolerant Network Architecture for Challenged

Internets”, Proceedings SIGCOMM, August 2003.

[JACK05] Joab Jackson, “The Interplanetary Internet”, IEEE Spectrum, August 2005.

[JUANG02] Philo Juang et al., “Energy Efficient Computing for Wildlife Tracking:

Design Tradeoffs and Early Experiences with ZebraNet”, ACM ASPLOS-X, October

2002.

[ZHAO05] Wemi Zhao, Mostafa Ammar and Ellen Zegura, "Controlling the Mobility of

Multiple Data Transport Ferries in a Delay-Tolerant Network", INFOCOM 2005

Proceedings IEEE, Vol. 2, 2005.

[PENT04] Alex Pentland, Richard Fletcher, Amir Hasson, “DakNet: Rethinking

Connectivity in Developing Nations”, IEEE Computer magazine, January 2004.

[SNC] Sami Network Connectivity project (websource 2006:

http://www.snc.sapmi.net/).

[BURG06] John Burgess, Brian Gallagher et al., “MaxProp: Routing for Vehicle-Based

Disruption-Tolerant Networking”, Proceedings of IEEE Infocom 2006, April 2006.

[LOC03] Christian Lochert, Hannes Hartenstein et al., “A Routing Strategy for

Vehicular Ad Hoc Networks in City Environments”, IEEE Intelligent Vehicles

Symposium, June 2003.

 85

[LEIG06] A. Leiggener, R. Schmitz et al., "Analysis of Path Characteristics and

Transport Protocol Design in Vehicular Ad Hoc Networks", IEEE Semiannual Vehicular

Technology Conference, May 2006.

[SCH05] Simon Schutz, Lars Eggert, et al., "Protocol Enhancements for Intermittently

Connected Hosts", ACM SIGCOMM Computer Communication Review Vol. 35 No. 2,

July 2005.

[NEW04] M. E. J. Newman, J. Park, “Why Social Networks are different from other

types of networks”, Physical Review E, 69, February 2004.

[MUS06] M. Musolesi, C Mascolo, “A Community based Mobility Model for Ad Hoc

Network Research”, RealMAN 2006.

[HUI05] P. Hui, A. Chaintreau, J. et al., “Pocket Switched Networks and Human

Mobility in Conference Environments”, In Proceedings of the ACM SIGCOMM 2005

Workshop on Delay-Tolerant Networking (WDTN), August 2005.

[SYMB06] Worldwide total smartphone device market share stats. (web source 2006

http://www.symbian.com/about/fastfacts/fastfacts.html).

[DTNRG] Delay-Tolerant Networking Research Group, (http://www.dtnrg.org).

[PATRA04] Serqiu Nedenshi, Rabin Patra. “DTNLite: A Reliable Data Transfer

Architecture for Sensor Networks”, 8th International Conference on Intelligent

Engineering Systems, 2004.

[DTNARCH05] V. Cerf, S. Burleigh et al., “Delay-Tolerant Networking Architecture”,

v 5, March 2006

 86

[IPN99] Eric Travis, A presentation for IPN, (web source 2006

http://www.ipnsig.org/reports/interinter/index.htm).

[LEG05] J. Leguay, T. Friedman, V. Conan, "DTN Routing in a Mobility Pattern

Space", Proceedings SIGCOMM Workshop on Delay Tolerant Networks, 2005.

[LIND06] A. Lindgren, A. Doria, “Probabilistic Routing Protocol for Intermittently

Connected Networks”, draft-lindgren-dtnrg-prophet-02, March 2006.

[BPSPEC04] K. Scott, S. Burleigh, “Bundle Protocol Specifications” v 4, November

2005.

[TCPCL] M. Demmer, “Protocol for the DTN TCP Convergence Layer”, Internet draft,

March 2006.

[FNV] L. C. Noll, Fowler / Noll / Vo (FNV) hash algorithm (Web source 2006:

http://www.isthe.com/chongo/tech/comp/fnv/).

[HAR03] Richard Harrison, “Symbian OS C++ for Mobile Phones”, Vol. 1, John Wiley

& Sons Ltd., 2003.

[ROSS03] James F. Kurose, Keith W. Ross, “Computer Networking”, 2nd ed., Addison

Wesley, 2003.

[JO06] Omar Mukhtar, Joerg Ott, “Backup and Bypass: Introducing DTN-based Ad-hoc

Networking to Mobile Phones”, ACM RealMAN, May 2006.

[KASS01] I. Kassabalidis et al., “Swarm Intelligence for Routing in Communication

Networks”, Global Telecommunication Conference, 2001.

 87

	Introduction
	Internet Protocols – Pros and Cons
	Delay Tolerant Networking
	Conventional TCP/IP Internet

	Background and Related Work
	InterPlaNetary (IPN) Internet
	Disconnected MANETs
	Sensornets
	Disjoint Information Resource Access Networks

	Nomadic Networks

	Motivation of the Thesis Work
	Similar Work

	Outline of Thesis Work
	Summary

	DTN – Architecture and Protocol Specifications
	DTN Architecture
	Key Architectural Principles
	Virtual Message Switching
	Naming and Addressing Mechanism: End-Point IDs
	Store and Forward Model
	Non-conversational Asynchronous Communication
	Bundling
	Routing

	Network Hierarchy and Protocol Stack
	DTN Family of Protocols
	Protocol Design Principles
	End-point Identifiers
	Bundles
	Custody Transfer
	Administrative Records
	Fragmentation
	Class of Service
	Self Delimiting Numeric Values
	DTN Time Stamps

	Bundle Protocol
	Primary Bundle Header
	Bundle Payload Header
	Bundle Status Report and Custody Signal Formats

	Convergence Layer Protocols
	TCP Convergence Layer Protocol
	Bluetooth Convergence Layer Protocol

	Routing Protocols
	Static Routing
	Flooding
	PRoPHET

	Neighbor Discovery

	Summary

	Implementation Architecture
	Conceptual Model of Bundle Node
	Bundle Protocol Agent
	Convergence Layers
	Application Agent
	DTN Applications

	Architecture for Symbian OS
	Symbian OS
	Top-level Architecture
	Asynchronous Interaction via Message Queues
	IPC based API
	User Interface Design Issues

	Summary

	Programming for Symbian OS and Design Patterns
	Programming for Symbian OS
	Code Optimization
	Clean-up Stack & Leave Mechanism
	Thin Templates
	Active Objects
	Naming Conventions
	Strings and Binary Data
	Client-Server Framework

	Design Patterns
	Model-View-Controller Pattern
	Observer Pattern

	Summary

	Design and Implementation Details
	Utility Classes
	FNV Hash
	FNV Hash Algorithm

	EID
	SDNV
	SDNV String Parsing
	Calculating Length of SDNV String
	Composing SDNV String

	Schedular-Timer
	Event-Notifier

	Convergence-Layer Adapter Classes
	Connection Classes
	CLA Classes
	BTNeighborhoodDiscovery Class

	Bundle Protocol Agent Classes
	BPA Class
	Bundle Protocol State-Machine
	Configuration File

	Bundle and Admin-Record Classes
	BP-Router Class
	EID Lookup Record Class

	Application Agent Classes
	Symbian Client-Server Framework Classes
	DTNServer Class
	DTNSession Class

	User Interface Classes
	DTN Applications
	DTN-Socket Class
	Application Design Principles
	Application Design Example

	Summary

	Verification and Demonstration
	Verification
	Functional Testing
	Interoperability Testing
	Performance Testing

	Demonstration Setup
	Software Release
	Summary

	Conclusions and Recommendations

