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Abstract—We consider an opportunistic content sharing system
designed to store and distribute local spatio-temporal “floating”
information in uncoordinated P2P fashion relying solely on the
mobile nodes passing through the area of interest, referred to
as the anchor zone. Nodes within the anchor zone exchange
the information in opportunistic manner, i.e., whenever two
nodes come within each others’ transmission range. Outside
the anchor zone, the nodes are free to delete the information,
since it is deemed relevant only for the nodes residing inside
the anchor zone. Due to the random nature of the operation,
there are no guarantees, e.g., for the information availability. By
means of analytical models, we show that such a system, without
any supporting infrastructure, can be a viable and surprisingly
reliable option for content sharing as long as a certain criterion,
referred to as the criticality condition, is met. The important
quantity is the average number of encounters a randomly chosen
node experiences during its sojourn time in the anchor zone,
which again depends on the communication range and the
mobility pattern. The theoretical studies are complemented with
simulation experiments with various mobility models showing
good agreement with the analytical results.

I. INTRODUCTION

Content sharing via the Internet is a widespread means for
people to foster their relationships irrespective of physical
distance, cf. the phenomenal popularity of Facebook and
Twitter. While network-based social applications are essential
to overcome distances and connect people around the world,
relying on infrastructure for location-aware services may often
be undesirable [1]. We propose and analyze a fully distributed
variant of an ephemeral content sharing service, solely depen-
dent on the mobile devices in the vicinity using principles of
opportunistic networking. The net result is a best effort service
for floating content in which: 1) information dissemination
is geographically limited; 2) the lifetime and spreading of
information depend on interested nodes being available; 3)
traffic can only be created and caused locally; and 4) content
can only be added, but not deleted.

We seek to analyze fundamental properties of the floating
content concept [1]. The system is assumed to consist of
independent users, each moving according to some (random)
mobility model. Moreover, there is a specific region, the so-
called anchor zone, where users will exchange the information
object on condition that they are within each others’ transmis-
sion ranges. Once a user exits the anchor zone, she can forget

the information that is considered obsolete outside the anchor
zone. The transmission range is assumed to be fixed and same
for all users, and additionally small relative to the dimensions
of the anchor zone. No assumption is made regarding whether
the number of nodes in the region is large enough to guarantee
instantaneous connectivity, i.e., the network does not need to
percolate. Thus, user mobility is the key factor through which
information propagates in the system.

The floating content concept is a specific example of net-
works with intermittent connectivity or so-called delay tolerant
networks (DTN). While the performance limits of wireless
multihop networks assuming that the users form a connected
network (i.e., the network percolates) have been analyzed
extensively in the past years, see, e.g., [2], [3], corresponding
analytical results for DTNs are much more scarce. Much of
the research on DTNs has focused on protocol and algorithm
development based on simulations. Recently, analytical results
have also started to emerge. The delay of the information
dissemination for epidemic-style routing algorithms assuming
exponential inter-meeting times has been considered in [4], [5].
The validity of the exponential inter-meeting time assumption
for particular mobility models (synthetic models and real
traces) has been studied in [4], [6]. The scaling properties
of the delay for any opportunistic routing scheme below the
percolation threshold have been analyzed in [7] and upper
bounds have been derived in [8]. Optimal policies for routing
in DTNs with different objective functions and constraints
have been recently considered, e.g., in [9], [10]. However,
the available results do not capture the essential aspect of the
floating content application, where we need to characterize the
notion of information availability in the system.

We develop models for analyzing the feasibility of the
floating content concept by using spatial modeling techniques
adopted from physics, similarly as have been used for model-
ing the capacity of so-called dense wireless multihop networks,
see, e.g., [11], [12]. The fundamental objective is to establish
the criticality condition for the system, i.e., an explicit relation
which determines when the information remains available
within the anchor zone for “a long time”. This obviously
depends on various mobility specific parameters, and we show
that, in particular, the node encounter rate in the anchor zone
and the node arrival rate are the key factors to this end.



More specifically, we first provide preliminary results where
the node encounter rates, i.e., rate at which nodes come into
contact with each other, and the mean contact times of any
mobility model are characterized via the notion of the angular
node flux of a particular mobility model. Then we consider
two mobility scenarios. In the first one, users are assumed to
spend a considerable time inside the anchor zone so that the
information can be assumed to be homogeneously distributed
in the zone and we derive an ordinary differential equation
for the rate of change in the information availability. In this
case, the criticality condition of the fluid model turns out to
have a particularly intuitive form, 2R > Λ, where R denotes
the total rate of node encounters in the anchor zone and Λ
is the node arrival rate to the anchor zone. Note that 2R/Λ
is the average number of encounters a randomly chosen node
experiences during its sojourn time. This basic fluid model
also allows us to estimate the lifetime of the corresponding
stochastic system. The criticality condition is further examined
with elementary mobility models for which we derive exact
expressions for encounter rates. Finally, we consider the case
where users pass through the area along a straight line. An
integral equation is derived characterizing the probability of
acquiring the information at a given distance from the center.
In this case, the criticality condition cannot be solved ana-
lytically. However, numerical analysis yields a simple explicit
criticality condition. For the model, other auxiliary parameters
can be derived, such as the mean length a user moves before
acquiring the information (if at all). The analytical results are
supported by extensive simulations. Notably, the results show
a surprisingly good match with the behavior predicted by the
more abstract models, and indeed, the floating content scheme
is applicable only when the criticality condition is met.

The paper is organized as follows. Section II introduces
the floating content concept, and Section III the fundamental
quantities and some general results. In Sections IV, V and VI
we analyze the floating content system at different levels of
abstraction, and Section VII concludes the paper.

II. FLOATING CONTENT CONCEPT

Next we briefly outline the main concepts and operation of
a floating content system. More details can be found in [1].

A. System Basics

We assume that all users are mobile nodes and that there
is no supporting infrastructure for the system.1 The users are
interested in information items “posted” by other users. They
use mobile phones or similar devices to communicate, so that
ample storage capacity is available of which, say, 1 GB is
used for floating content. The devices have wireless interfaces
(e.g., Bluetooth or WLAN) for ad-hoc communication within
a certain range. The nodes cooperate by replicating content
among interested parties as we describe below.

Each item has an anchor zone, which is a real world area in
which the items should be made available. We assume circular

1Content dissemination from fixed access points would lead us towards the
PodNet model [13] paired with geographically limited distribution.
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Fig. 1. An anchor zone of an item, mobile nodes and their communication
ranges: the content item gets replicated across and deleted from nodes as a
function of the distance from the anchor point. The probability of a node
carrying an item (black nodes) tends to 1 inside the anchor zone r and
decreases until, after an availability threshold a, no more copies are found.

anchor zones defined by a center point and a radius.2 Figure 1
shows an example of an anchor zone and nodes.

As noted above, interested nodes keep copies of information
items floating around in the anchor zone by probabilistically
replicating the items when they meet. We explicitly allow
information items to disappear from the system and provide
no guarantees about their availability. If, e.g., no (or too few)
nodes are around to replicate an information item and the
creator leaves the anchor zone, the corresponding information
items will disappear (over time). Content items may be tagged
with a lifetime and are discarded thereafter.

Anchor zones require nodes to be able to determine their
position, e.g., by using GPS receivers or triangulation-based
methods using WLAN access points, cellular base stations,
or any other method offering reasonable accuracy. Since the
system is probabilistic, there are no strict requirements on the
accuracy of positioning techniques; nodes are only required
to agree on basic measurement parameters and the overall
operation to determine the extent of anchor zones.

B. System Operation

A node generates an information item I and assigns an
anchor zone (defined by its center and its radius), as well
as, a (tentative) time to live for this item. We require that the
generating node be within the anchor zone at the moment of
item creation.

If two nodes A and B meet in the anchor zone of an item
I , and A has I while B does not, then A replicates item I to
B. Since replication is based purely on the location of nodes,
in a simple case, every node in the anchor zone should have
a copy of the item. Nodes leaving the anchor zone are free to
delete their copy of the item.

In practice, the replication and deletion works as follows.
Consider a node A having an item I , with an anchor zone
defined by center point c and radius r. Let h denote the
distance of node A from point c. When node A meets another
node B, A will replicate item I to B with probability p:

p =
{

1 if h ≤ r
R(h) otherwise (1)

2Any other shapes are also possible, provided that they can be expressed in
a relatively succinct manner since they need to be communicated along with
the information items.



where R(h) ∈ [0, 1] is some (decreasing) function that gives
the probability of replication outside the anchor zone.

For deletion of items, we can define a similar function D(h)
which is 0 if the node A is in the anchor zone and some
(increasing) function when A leaves the anchor zone. Allowing
the item to survive outside the anchor zone is beneficial,
because it provides additional protection against items disap-
pearing when nodes move outside the anchor zone for a brief
moment and then return. We define an availability distance a
(see Fig. 1) beyond which copies are deleted. The deletion
function essentially serves the purpose of prioritization when
the buffer gets full. It is evaluated upon each encounter with
another node or whenever there is a need to discard content
items to free buffer space. Further storage management issues,
e.g., limiting effects of spam, are covered in [1].

In our evaluation presented below, we use a step function:
D(h) = 1 for h > r and, R(h) = 0 for h > r, i.e., the
content is unconditionally deleted outside the anchor zone,
and replication occurs only inside the anchor zone.

III. PRELIMINARIES

A. Fluxes and stationary distribution
Consider an arbitrary mobility model where n mobile users,

referred to as nodes, move according to some pattern in a
subset A of the plane. In order to analyze the floating content
concept, it is important to somehow characterize how the
nodes move, e.g., how often a node crosses a given line
segment. To this end, let ϕ(r, φ) denote the so-called angular
node flux at r in direction φ, which is defined as the rate
of nodes moving in direction (φ, φ + dφ) across a small
perpendicular line segment of ds divided by ds·dφ at the limit
ds, dφ → 0 [12], as illustrated in Fig. 2. Similarly, let Φ(r)
denote the so-called scalar node flux at r, which is defined as
a sum of angular fluxes:

Φ(r) :=

2π∫
0

ϕ(r, φ) dφ.

Let r(s) denote a parametric representation of an arbitrary
curve S with s denoting the distance along the curve from
one end towards the other. The total flux of nodes from left
to right across S is [14]

λ(S) =
∫
S

π∫
0

sinφ · ϕ(r(s), θ(s) + φ) dφ ds, (2)

where θ(s) denotes the direction of the tangent at s. From (2)
it follows that the arrival rate λ = λ(r, d) to a small disk with
radius d at r is

λ(r, d) = 2d · Φ(r).

Let n(r) denote the node density at r so that the stationary
node distribution f(r) = n(r)/n. Then,

n(r) · v(r) = Φ(r) ⇔ f(r) =
Φ(r)
n · v(r)

, (3)

where v(r) is the mean velocity of a node at r. These hold
for an arbitrary movement pattern.

dφ

ds

r

φ

Fig. 2. Angular node flux ϕ(r, φ) is a rate of nodes crossing a perpendicular
line segment ds moving in direction (φ, φ+ dφ) at the limit ds, dφ→ 0.

B. Encounter rates and contact times

1) Encounter rate R: Consider next two nodes A and B
moving independently according to some mobility model(s).
For simplicity, we further assume a constant velocity v. Let
A(t) and B(t) denote their positions at time t, respectively.
Define C(t) = A(t) − B(t), referred to as the difference
walker in [15], i.e., C(t) defines a certain mobility model. In
particular, events when C(t) visits near the origin correspond
to encounters between nodes A and B, i.e., in some sense
“collide”. We assume a constant transmission range d and an
encounter or a ‘collision” occurs when the distance between
two nodes decreases below d. Furthermore, let fc(r) denote
the stationary distribution of node C, and vc the mean velocity
of node C at the origin. The quantity vc is the mean relative
encounter velocity of nodes A and B, and thus depends on the
mobility model and the area. The encounter rate of the two
nodes is

νab(d) = 2d · Φc(0) = 2d · vc · fc(0) = 2d · vc
∫
A

f(r)2 d2r.

For a large number of nodes N , there are approximately N2/2
pairs, and the total rate of encounters is

R(d) = d · vc
∫
A

n(r)2 d2r. (4)

It follows that the mean encounter velocity about r is3

vc(r) =
2 v

Φ(r)2

2π∫
0

2π∫
0

ϕ(r, φ) · ϕ(r, φ+ θ) · sin(θ/2) dθ dφ,

which then gives

vc =
∫
n(r)2 · vc(r) d2r∫

n(r)2 d2r
.

Substituting the above into (4), and using (3), one obtains

R(d) = d

∫
A

n(r)2 · vc(r) d2r

=
2 d
v

∫
A

2π∫
0

2π∫
0

ϕ(r, φ)ϕ(r, φ+θ) sin
θ

2
dθ dφ d2r. (5)

Eq. (5) provides also the density function for encounter angles
θ, i.e. the rate at which nodes “collide” with angle θ. As an

3Note that
√

1− cos θ =
√

2| sin(θ/2)|.
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Fig. 3. Angular encounter rate, rate of encounters with angle (θ, θ + dθ)
divided by dθ at the limit dθ → 0, is close to sin(θ/2).

example, Fig. 3 illustrates this for standard RWP model in
unit disk with a constant velocity. It turns out that the form of
angular encounter rate is very close to sin(θ/2), θ ∈ [0, 2π).

2) Contact time duration: Contact time duration (inter-
meeting time in [15]) refers to the time duration two nodes
remain within the transmission range d of each other. Only
when the contact time duration is sufficiently long the content
can be transmitted succesfully. The mean contact time is (cf.
Little’s result [16])

T (d) =
πd2 · fc(0)
R(d)

=
π · d
2 · vc

, (6)

which holds for an arbitrary independent mobility model when
d is small. Alternatively, observing first that the nodes travel
straight through a small disk, means that the mean distance
is equal to the mean height, which is the area divided by the
diameter, πd2/(2d) = πd/2, yielding (6).

IV. ANALYSIS OF NON-SPATIAL MODEL

In this model, we regard the R-disk representing the anchor
zone just as a locale (local center, building, room) where the
nodes enter and then spend some time and finally exit. We
assume that the nodes move randomly within the locale and
the time spent there is relatively long so that the exact points
of entrance and exit do not have any bearing. The whole
population is assumed “well mixed” so that the proportion
of the tagged nodes, i.e., users having the information, is
everywhere constant.

A. Criticality Condition

During the sojourn time, a node encounters randomly other
nodes. Consider a system consisting of solely of two nodes
staying permanently in the locale and denote by ν the fre-
quency at which they come in contact with each other, i.e.,
within the information exchange distance. Now, if the total
population of nodes is N , then there are 1

2N(N − 1) ≈ 1
2N

2

pairs and the total rate of encounters is R = 1
2N

2ν. The
fraction 2p(1 − p) of these encounters are such that a non-
tagged node becomes a tagged one, and the total rate of such

events is p(1−p)N2ν. This is the rate at which the size of the
population of tagged nodes tends to increase. Let 1/µ denote
the node’s mean sojourn time in the anchor zone. Then the
total exit rate of nodes is Λ = Nµ, and in particular, the exit
rate of tagged nodes is Npµ, so that their net growth rate is

N
d

dt
p = N2p(1− p)ν −Npµ. (7)

In equilibrium, the two terms on the right hand side are equal
leading to the stationary value

p = 1− µ

νN
. (8)

Existence of a positive solution requires that the second term
is less than one, i.e.,

Nν/µ > 1 ⇔ 2R > Λ. (9)

This is the criticality condition. Note that the quantity on
the left hand side (of the first form of the inequality) is
the average number of encounters a randomly chosen node
experiences during its sojourn time. By considering the sign
of the derivative (7) one easily sees that the solution is stable;
if p is greater than (8) it tends to decrease, and if it less
it tends to increase. Below the criticality, the derivative is
everywhere negative and the solution is driven to p = 0,
i.e., the information cannot be sustained even in the fluid
model. In addition, one has to remember, that the number
of tagged nodes, Np = N − µ/ν, must be large in order
to avoid accidental disappearance of the information carrying
population by stochastic fluctuations.

B. Information lifetime
Let us next focus on the lifetime, i.e., how long the

information will be available within the anchor zone. With a
finite number of nodes, the information will be eventually lost
due to the random fluctuations. Assume that a state-dependent
Markovian birth-death process describes the behavior of the
system sufficiently accurately. Given i nodes possess the
information at a given time, then the birth-death rates are

λi = i(N − i)ν, and µi = iµ, for i = 0, . . . , N. (10)

Thus, i = 0 is an absorbing state in which the information
is irreversibly lost. Let Ti denote the expected lifetime of the
information on condition that initially i nodes have it. Clearly,
T0 = 0. Due to the memoryless property of Markov process,
one can immediately write the backward equations for the Ti:

TN = q,

TN−1 = q − 1
Nµ

,

Ti−1 = Ti +
1
iµ

[i(N − i)ν(Ti − Ti+1)− 1] ,

T1 =
1

(N − 1)ν + µ
[1 + (N − 1)νT2] .

(11)

Variable q = TN gets solved at the end. One can also write the
forward equations starting from state 1, but it turns out that
backward equations are numerically more stable. The same
approach works for any semi-Markov birth-death process.
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Fig. 4. Expected information lifetime with n = 20, 50, 100 nodes and
µ = 1 as a function of criticality quantity nν/µ in logarithmic scale. Initially
i = 1, 2, n−1 nodes carry the information (curves from the lowest to highest).

C. Lifetime distribution

Eq. (11) provides us the mean lifetime. Additionally, one
might be interested in the actual distribution. The following
theorem holds for an arbitrary Markov birth-death process:

Theorem 1: Let Q denote the generator matrix of a con-
tinuous time birth-death process on state space {0, .., k} with
0 being an absorbing state, and λ∗i > 0, i = 1, .., k − 1, and
µ∗i > 0, i = 1, .., k. Suppose that the process starts at state k.
Then the time to absorbtion is distributed as a sum of k inde-
pendent exponential random variables whose rate parameters
are the k non-zero eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λk of −Q.
Consequently, the time to absorbtion is T = T1 + . . . + Tk,
with Ti ∼ Exp(λi), and

E[T ] =
∑
i

1
λi
, and σ2 =

∑
i

1
λ2
i

.

If λ1 is considerably smaller than the other, then it dominates
and T ≈ T1, which gives for the standard deviation of T
σ ≈ E[T ]. On the other hand, standard deviation is smallest
when all λi are equal, yielding σ ≈ E[T ]/

√
k.

D. Examples

Assume N = 20, 50, 100 nodes and µ = 1. Encounter
rate ν is varied so that the criticality quantity Nν/µ obtains
sensible values. Fig. 4 illustrates the resulting conditional
expected lifetimes. Three curves for each N correspond to
i = 1, 2, N−1 nodes initially having the information. We note
that after the criticality threshold the expected lifetime sky-
rockets independently of the initial state of the system.

Consider next a birth-death process according to (10).
Numerically, one notices that the ratio between the second
smallest and the smallest eigenvalues λ2 and λ1 is high and
grows extremely fast, at least for N = 3, . . . , 7. Thus, the
information lifetime appears to be approximately exponentially
distributed with parameter λ1. Computing eigenvalues for an
arbitrary number of nodes Nn becomes soon numerically
very challenging when N increases. However, the recursive
equations (11) provide a straightforward and robust way to
obtain the interesting parameter λ1, λ1 ≈ 1/Ti (and Ti ≈ Tj).

E. Remark: lifetime with a large transmission range

Here we give a brief remark about impact of a large
transmission range, i.e., when the anchor zone is considerably
smaller than the transmission range. In this case, the informa-
tion remains (immediately) available as long as at least one
user remains in the anchor zone. Assuming a Poisson arrival
process with rate Λ, this system is closely related to the well-
known M/G/∞-queue, for which insensitivity results exist. For
example, if a node arriving to an empty anchor zone creates an
information, a standard busy period analysis gives the mean
lifetime of the information: E[T ] = (eΛ/µ− 1)/Λ, where 1/µ
denotes the node’s mean sojourn time in the anchor zone.

V. ANALYSIS OF MOBILITY MODELS

In this section, we analyze the floating content concept by
deriving exact expressions for the encounter ratesR for several
elementary mobility models. Based on these, and the results
in the previous section (i.e., population is still assumed to be
well mixed), the criticality conditions are then established.

A. Manhattan road network

Let us first derive expressions for the total encounter rate
observed in a Manhattan like network consisting of (i) road
sections and (ii) perpendicular intersections.

1) Road section: Consider a simple case of two-directional
road section with length ∆, where nodes move with a velocity
of v1 from left to right, and with a velocity of v2 from right
to left. The node arrival rates to the road section are λ1 and
λ2, respectively. The two directions are further assumed to be
independent and sufficiently random. Then, the total rate of
encounters, denoted by Rs, is given by

Rs = λ1λ2 ·∆ · (1/v1 + 1/v2) = (λ1n2 + λ2n1) ·∆,

where n1 and n2 denote the node (line) densities on the road
section. Consequently, the density of encounters is

ρ = λ1n2 + λ2n1 = n1n2(v1 + v2),

as λi = ni · vi (cf. (3)). For a uniform case with v1 = v2 and
λ1 = λ2, the total rate of encounters is

Rs =
2λ2 ·∆
v

.

2) Intersection: Consider next an arbitrary perpendicular
intersection where, for simplicity, we assume that all vehicles
move at a constant velocity of v, have a constant transmission
range of d. Let λ1 denote the traffic rate, e.g., from left to
right, and λ2 a perpendicular traffic rate, e.g., from bottom
to up. This can be seen as a special case of (5) with θ =
π/2. Consequently, the encounter rate due to λ1 and λ2 in an
intersection is4

Rx =
2
√

2d
v
· λ1 · λ2.

4Alternatively, a geometrical analysis shows that the time window during
which a perpendicularly moving node must enter the intersection in order to
establish a connection with an arbitrary node has length 2

√
2d/v.
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Fig. 5. In one block model, the anchor zone consists of the four road
segments with length 2h around the block, where h is th length of side of
the block. Traffic flows entering the zone are 8×λ. Nodes move straight out
of the area without making any turns.

With arbitrary velocities, v1, v2 > 0, the encounter rate due to
two flows meeting in an intersection with an angle π/2 is

Rx = 2d ·
√

1/v2
1 + 1/v2

2 · λ1 · λ2, (12)

which by conditioning then gives a general expression for a
movement with an arbitrary velocity distribution. Note that
there are 4 such pairs of flows in a general intersection.

3) Example: One block model: A single block, as illustrated
in Fig. 5 represents one potential anchor zone. Let h denote the
length of the block’s side, so that the path around the block has
length 4h. The four road segments are further extended by h/2
in order to ensure arriving nodes have a fair chance to obtain
the information before reaching the block. For simplicity, we
further assume that nodes move at constant velocity v and do
not make any turns.

The results of the previous section immediately give the
total rate of encounters,

R = 4 · 4λ2 · h
v

+
8
√

2λ2 · d
v

=
8λ2

v

(
2h+

√
2d
)
,

where d � h. Similarly, the mean number of nodes in the
anchor zone is (cf., Little’s result)

E[N ] = 16λh/v.

Due to the simple movement model, these nodes are uniformly
distributed on the 4 line segments, yielding a constant node
density of n = 2λ/v. For the criticality condition, 2R > Λ,
gives

2λ
v

(
2h+

√
2d
)

= n(2h+
√

2d) > 1. (13)

Note that the non-spatial model implicitly assumes that all
nodes are well “mixed” and information can spread “freely”.
In Manhattan example this is not strictly the case as the
information flow between the road segments is restricted.
Therefore, the criticality condition gives a somewhat optimistic
estimate for the required arrival rate.

4) Example: Assume a block dimension of h = 50 m,
transmission range d = 10 m and velocity of v = 1 m/s. Then
the criticality condition (13) suggests that for λ > 0.263 1/min,
the mean lifetime increases rapidly. Fig. 6 depicts the corre-
sponding simulation results, and a feasible operation range
indeed is just above the criticality threshold.
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Fig. 6. Information lifetime with the Manhattan model (one block anchor
zone). Three curve pairs correspond to different lifetime requirements: 6 min,
1 h and 10 h. On x-axis is the arrival rate λ and y-axis is the probability
of achieving the given lifetime. With the dashed curves the information is
initially passed to a single node, and with the solid lines to two nodes. The
vertical dashed line depicts the criticality condition.

B. Random Waypoint Model
RWP mobility model is a frequently used model due to its

simplicity facilitating the analysis, see, e.g., [17], [18], [19].
Here we simply give the necessary results and an interested
reader is referred to [20]. For unit disk, the mean transition
length is

E[LRWP] =
128
45π

. (14)

The angular node flux with N nodes at r = (0, r) is

ϕ(r, φ) =
45 ·N v

128π
· (1− r2)

√
1− r2 cos2 φ. (15)

Arrival rate to a concentric h-disk with radius h < 1 is

Λ(h) =
45h(1− h2) ·N v

64

∫ π

0

sinφ ·
√

1− h2 cos2 φdφ.

We note that unless h ≈ 1, most of the nodes simply pass
through the h-disk. The encounter rate within the h-disk is

R(h, d) = 452

642πdN
2v

h∫
0

r(1−r2)2
2π∫
0

√
1− r2 cos2 φ

2π∫
0

√
1−r2 cos2(φ+θ) sin(θ/2) dθ dφ dr,

(16)

i.e., for the whole unit disk one has R(d) ≈ 0.573678 ·dN2 v.
Consequently, consider next the floating content concept

with N nodes moving in unit disk with a constant velocity
of v and having no pause times. Let the h-disk correspond to
the anchor zone located at the center of the movement area.
The criticality condition, 2R(h, d) > Λ(h), gives

2 d ·N > Q(h),

where
Q(h) =

64π h(1− h2
)

Z π

0
sinφ ·

p
1− h2 cos2 φ dφ

45

hZ
0

r(1−r2)
2

2πZ
0

p
1−r2 cos2 φ

2πZ
0

q
1−r2 cos2(φ+θ) sin(θ/2) dθ dφ dr

.
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It turns out that Q(h) behaves according to 1/h for h < 0.4.
Criticality condition can be written as d ·N · h > h ·Q(h)/2,
and thus Fig. 7 depicts h ·Q(h)/2 as a function of zone radius
h. The curve corresponds to the value of the product dN h at
the criticality threshold. In particular, at the limit h → 0, the
criticality condition becomes

dN h >
16
45
≈ 0.356, (17)

which holds for surprisingly wide range of zone radii h.
1) Example: Assume a movement area with radius r =

200 m, anchor zone with radius R = 100 m (i.e., h = 1/2), a
transmission range of d = 10 m, and a constant velocity of v =
1 m/s. In Fig. 8, on x-axis is the number of nodes and y-axis
depicts the probability that the information lifetime is greater
than 6 min, 1 h, and 10 h. Initially, the information is passed
to a single node (dashed curve) or two nodes (solid curve).
Criticality condition (17) suggests that N > 128/9 ≈ 14 nodes
are needed, which indeed is a good minimum requirement for
a reasonable operation.

VI. SPATIAL DISTRIBUTION OF INFORMATION

Let us next consider the simplest possible mobility model
where each user moves along a straight line (at least within
the R-disk corresponding to the anchor zone) with a constant
speed v. The user population is assumed homogeneous, with
n nodes per unit area, and the velocity distribution isotropic,
meaning that all directions of motion are equally probable.

Our aim is to find the criticality condition for this system.
Furthermore, for systems which are above the threshold, the
task is to find the function p(r, θ) defining which proportion of
the nodes at distance r from the origin and moving in direction
θ with respect to the outward radial direction are information-
carrying “tagged” nodes.

A. Criticality Condition

Under the above assumptions, one can easily show that the
mean number of encounters a test node, at distance r from the
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Fig. 8. Information lifetime with the RWP model as a function of the number
of nodes N . Three curve pairs correspond to different lifetime requirements,
6 min, 1 h and 10 h, and y-axis is the probability of achieving the given
lifetime. With the dashed curves the information is initially passed to a single
node, and with the solid lines to two nodes. The vertical dashed line depicts
the criticality condition (17).
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Fig. 9. Integration along a line in direction θ through the point (0, y).

origin and moving in direction ψ with respect to the inward
radial direction, experiences with tagged nodes per unit length
of its path is

λ̃(r, ψ) =
λ

4

∫ 2π

0

p(r, θ) | cos
θ − ψ

2
| dθ, (18)

where
λ =

8
π
n d (19)

is the mean number of such encounters per unit length of
path if all nodes were tagged, i.e., if p(r, θ) = 1. The cosine
factor in (18) reflects the fact the encounter rate between two
streams of nodes depends on their relative velocity, being zero
for parallel streams and at maximum for streams in opposing
directions.

To determine the distribution p(r, θ) for the fluid system in
stationarity consider the point (0, y) at the distance y from the
origin, see Fig. 9. Then we have

p(y, θ) = 1− exp
(
−
ŝ(y,θ)∫
0

λ̃( r(y, θ, s), ψ(y, θ, s) ) ds
)
, (20)
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where

ŝ(y, θ) =
√
R2 − y2 sin2 θ + y cos θ ,

r(y, θ, s) =
√
s2 + y2 − 2 s y cos θ ,

ψ(y, θ, s) = arccos
s− y cos θ√

s2 + y2 − 2 s y cos θ
.

(21)

The integral in (20) is along the the line going through the
point (0, y) in direction θ. Variable s represents the distance of
the point of integration from the point (0, y). The exponential
term is recognized to be the probability of no information
exchange encounter between the point of entrance ŝ(y, θ) and
the point of consideration (0, y); its complement then gives the
probability that there has been at least one such encounter, i.e.,
that the information has been gained. Expressions r(y, θ, s)
and ψ(y, θ, s) give the distance of the point of integration from
the origin and the angle that the line of integration makes with
the inward radial vector at the point of integration (Fig. 9).

Since the function λ̃(·, ·) in the integrand depends on p(r, θ)
by (18), equation (20) constitutes a non-linear integral equation
for p(r, θ). This equation can be solved by iteration, by starting
with an initial guess, e.g. p(r, θ) = 1, substituting this on the
right hand side of the equation thus obtaining a new function
p(r, θ) (the variable name, r vs. y, of course, does not matter),
and continuing until the fixed point solution is found.

Above the criticality point, the iteration converges quite
fast, requiring only a few rounds. Solutions for p(r) =
1

2π

∫∞
0
p(r, θ) dθ, i.e., the total proportion of tagged nodes of

all the nodes at distance r, are shown in Fig. 10 for different
values of λR. Corresponding full directional distributions
p(r, θ) as a function of θ are shown in Fig. 11 for different
values of r (curve parameter in each family of curves).
From Fig. 10 we see that when λR becomes smaller, also
the proportion p(r) of tagged nodes decreases. It turns out
that for a certain critical value of λR the solution goes to
zero, which means that the information cannot be anymore
sustained, even within a fluid model. The critical value can be
most easily found by linearizing (20), justified when p(r, θ) is
small, retaining only the first two terms of the Taylor series
expansion of the exponential function,

p(y, θ) =
∫ ŝ(y,θ)

0

λ̃( r(y, θ, s), ψ(y, θ, s) ) ds, (22)
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Fig. 11. Directional distribution of p(r, θ) at r = 0.1, 0.2, . . . , 0.9 (from
the flattest curve to the steepest curve). Probability p(r, θ) is on the y-axis, and
the meeting angle θ on the x-axis. The graphs correspond to values λR = 2,
3, 5, and 10 (starting from the upper left corner).

which, together with (18) constitutes an eigenvalue equation
for λ. The critical value corresponds to the greatest eigenvalue,
which can again be found by a standard iterative procedure,
similar to that described above. In this way we find

λcrR = 1.038. (23)

In terms of the more elementary parameters of (19), the
criticality condition reads

ndR ≥ 0.407. (24)

For comparison, one can also analyse this mobility pattern
similarly as in Section V. The mean sojourn time in the anchor
zone is 1/µ = πR/(2v), i.e., Λ = 2R · nv. Moreover, Φ =
nv, ϕ = nv/(2π), and (5) gives R = 4n2vdR2 = Λ2d/v.
Omitting the spatial dependence and simply substituting these
to the non-spatial criticality condition (9) gives

ndR ≥ 1/4, (25)

which is thus more optimistic estimate than (24).
1) Example: Simulation results with a transmission range

of d = 10 m, radius of the anchor zone of R = 100 m and
the node’s velocity of 1 m/s, are illustrated in Fig. 12 for three
different lifetime targets: 6 min, 1 h and 10 h. The system is
initialized as follows. With dashed curves, the information is
passed to the first node arriving to the vicinity of the center,
and with the solid lines to the first two nodes. The latter
approach essentially prevents situations where a sole carrier
walks immediately out of the anchor zone without passing
the information further. From figure one can observe that the
criticality conditions indeed correctly predict the region where
the floating content concept is feasible.

B. Additional Results
From the previous model we can extract some more infor-

mation. For notational simplicity we write the formulae for
R = 1. The proportion of tagged nodes in the anchor zone is

pave =
2
π

∫ 1

0

∫ π

0

r p(r, θ) dθ dr. (26)
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If there are N nodes in total within the anchor zone, then the
number of tagged nodes is paveN . Secondly, we can calculate
the probability pinf that a random node entering the anchor
zone will acquire the information, i.e., exit as a tagged node,

pinf =
∫ π/2

0

p(1, θ) cos θ dθ. (27)

Related to this, it is of interest to calculate the average
length `inf traversed within the anchor zone upon information
acquisition of a random node exiting as a tagged node,

`inf =
1

pinf

1Z
0

πZ
0

„
p
“
1, arccos

p
1− r2 sin2 θ

”
−p(r, θ)

«
r dr dθ

For comparison, one should note that the average length
traversed within the anchor zone by a node that hits the anchor
zone equals “the average height of the disk, i.e., the area of
the disk π divided by the length of the diameter 2 or π/2.
Numerical results for these quantities are given in Table I.

VII. CONCLUSIONS

In this paper, we have studied the floating content concept,
and in particular, the expected lifetime of the information in
such a system. In the analysis, we have considered situations
where the anchor zone is assumed to be significantly larger
than the transmission range. When the diameter of the anchor
zone is several magnitudes higher than the communication
range between two nodes, the spatial dimension must be taken
explicitly into account.

We develop a sound theoretical framework to analyze the
floating content concept in this regime. Exact expressions for
the fundamental quantities, such as the node encounter rate
and mean contact times as a function of location are given.
Our results allow one to characterize the feasible operation
region ensuring sufficiently long expected information life-
times. In particular, the so-called criticality condition, related
to the mean number of encounters a randomly chosen node
experiences per visit, provides a threshold above which the

TABLE I
NUMERICAL RESULTS WITH SPATIAL MODEL.

λR pave pinf `inf /R
10 0.922 0.992 0.121
5 0.842 0.971 0.240
3 0.727 0.916 0.386
2 0.567 0.782 0.532

1.038 0 0 0.770

expected lifetime of the information increases very rapidly,
and a content can actually “float” without any supporting
infrastructure. The analytical results are applied to various
mobility models, and supported by simulation experiments.
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APPENDIX

A. Random waypoint (RWP) model

Consider the ordinary RWP model with a leg specific veloci-
ties Vi ∼ V and pause time of the τi at the waypoints, τi ∼ τ .
In RWP model, waypoints Xi are uniformly distributed in
region A and thus pause events occurs also uniformly in A.
Let A denote the area of A. Next we will briefly review the
important results regarding this mobility model.

Firstly, the velocity definition is treacherous. The average
duration of a leg is

E[T`] = E[|Xi+1 −Xi|/Vi] = ` · E[1/V ],

where ` denotes the mean leg length,

` :=
1
A2

∫
A

∫
A
|r2 − r1| dr2 dr1 = E[|Xi+1 −Xi|].

Thus, E[1/V ] must be finite, or the movement eventually
stops. The movement and pause modes alternate, and the
proportion of movement in time is

p =
E[T`]

E[T`] + E[τ ]
=

` · E[1/V ]
` · E[1/V ] + E[τ ]

, (28)

and otherwise the node is still at some waypoint. Conse-
quently, the leg generation rate [1/s] is

Λ =
1

E[T`] + E[τ ]
=

1
` · E[1/V ] + E[τ ]

,

and the average velocity during a long time interval is

vave =
`

`E[1/V ] + E[τ ]
=

p

E[1/V ]
= ` · Λ.

Note that if E[1/V ] → ∞, then vave → 0. Let fV (v) denote
the leg specific velocity distribution, E[1/V ] =

∫
v
fV (v)/v dv.

The velocity distribution at an arbitrary point of time is

f (∗)
v =

p

E[1/V ]
· fV (v)

v
, for v > 0,

and for v = 0 we have an atomic probability of 1 − p. In
summary, for node velocity we have:

case pdf mean
arbitrary leg fV (v) E[V ]
crossing arbitrary boundary fV (v) E[V ]

arbitrary point of time p · f (∗)
v (v), for v > 0 p/E[1/V ]

P{v = 0} = 1− p

1) Fluxes, crossing rates and stationary distribution: Con-
sider two RWP nodes: (i) node A with leg specific velocities
and pause times, and (ii) node B having a constant velocity
of v, such that vave(A) = vave(B) = v, and no pause times.
For simplicity of explanation, assume that A and B share the
same sequence of waypoints.

First we note that after a long time interval of t, both A and
B have “drawn” the same trajectory and thus crossed the given
infinitesimal line segments equally many times. Therefore,
nodes A and B yield the same angular flux, scalar flux, and

flux across an arbitrary curve S (see (2)). For example, the
angular flux of nodes [1/m/s/rad] is given by

ϕ(r, φ) =
Λ

2A2
a1a2(a1 + a2) =

vave

2 `A2
a1a2(a1 + a2),

where A denotes the area of the movement region, a1 =
a1(r, θ) is the distance from r to the boundary in the direction
θ, and a2 the distance in the opposite direction, a2(r, θ) =
a1(r, θ + π). Similarly, for the stationary node distribution
one obtains

f(r) =
1− p
A

+
p

`A2

∫ π

0

a1a2(a1 + a2) dφ, (29)

where the first term corresponds to the pause times occuring
uniformly in A, and the second term gives the stationary
distribution on condition the node is moving. Note that due
to the symmetry it is sufficient to integrate (0, π) instead of
(0, 2π), and that only parameter p depends on the leg specific
velocity and pause time distributions according to (28).

2) Constant velocity and no pause times: The treatment
of encounter rates and, in particular, the inter-meeting times
becomes more tedious if leg specific velocities and pause times
are included. Hence, for simplicity, let us restrict ourselves
here to a basic case of a system with n nodes each moving
independently according to a RWP model with a constant
velocity v and no pause times. The leg generation rate Λ is

Λ =
n · v
`
.

The rate of encounters with a constant velocity RWP model
is

R(d) =
dn2 v

2 `2A4

∫
A

2π∫
0

2π∫
0

h(r, φ) ·h(r, φ+θ) ·sin θ
2
dθ dφ d2r,

(30)
where h(r, φ) = a1a2(a1 + a2).

B. Example: unit disk

For a unit disk,
` =

128
45π

, (31)

and the stationary node distribution is

f(r) =
45(1− r2)

64π

∫ π

0

√
1− r2 cos2 φdφ. (32)

The angular node flux with n nodes at r = (0, r) is

ϕ(r, φ) =
Λ
π2
· (1− r2)

√
1− r2 cos2 φ,

=
45 · n v
128π

· (1− r2)
√

1− r2 cos2 φ, (33)

and the encounter rate

R(d) = 452

642 π dn
2v

1∫
0

r(1− r2)2
2π∫
0

√
1− r2 cos2 φ

2π∫
0

√
1− r2 cos2(φ+ θ) sin(θ/2) dθ dφ dr

≈ 0.573678 · dn2 v.

(34)
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Note that a given node pair meets each other with rate νab ≈
1.14736 · d v. For a comparison, each node visits a stationary
d-disk (a cell) about the origin with rate (45/32) d = 1.40625·
d v. Average relative velocity turns out to be almost constant,

vc(0) =
4
π
· v ≈ 1.27324 · v

and
vc(1) =

32− 3π
18

· v ≈ 1.25418 · v.

Mean relative velocity across the area is ≈ 1.2728 · v. Finally,
the mean inter-meeting times as a function of meeting location
vary between

T (0) =
π2

8
· d/v ≈ 1.23370 · d/v

and
T (1) =

9π
32− 3π

· d/v ≈ 1.25245 · d/v,

while the average is 1.23412 · d/v. The small increment near
the boundary is due to the fact that near the boundary the
nodes are more likely to move in similar direction.

1) Concentric disks: Let us further illustrate the situation
by considering a disk B(h) with radius h located in the center
of a unit disk. Nodes arrive to B(h) with rate

λ(h) =
45h(1− h2) · n vave

64

∫ π

0

sinφ ·
√

1− h2 cos2 φdφ.

Part of the arriving nodes move straight through the disk, while
the rest have 1 or more waypoints within the disk. In fact, it
is easy to see that the rate of arriving nodes having at least
one waypoint is simply

Λ · (1− h2) · h2.

The number of consecutive waypoints within the disk obeys
geometric distribution with parameter h2. Thus, the mean
number of waypoints/turns per visit is

E[turns per visit] =
Λ · (1− h2) · h2

λ(h)
· 1

1− h2

=
π · h

2(1− h2)
∫ π

0
sinφ ·

√
1− h2 cos2 φdφ

.

This is illustrated in Fig. 13 (left), which suggests that in
a typical scenario most nodes pass directly through the
circular zone area B(h). Similarly, (32) gives the mean
number of nodes in B(h). Let p denote again the proportion
of time the node is moving. Then,

E[nodes in B(h)] = n

∫
B(h)

f(r) d2r

= n(1− p)h2+

45np
32

∫ h

0

r(1− r2)
∫ π

0

√
1− r2 cos2 φdφ dr.

Little’s formula gives the mean sojourn time. For the en-
counter rate within B(h), we again assume (i) a constant
node velocity v and (ii) no pause times, i.e., p = 0. Then, for
d� h we have

R(h, d) =
452

642 π
dn2v

h∫
0

r(1− r2)2

2π∫
0

√
1− r2 cos2 φ

2π∫
0

√
1− r2 cos2(φ+ θ) sin(θ/2) dθ dφ dr.

Fig. 13 (right) shows various rates in an example setting with
n = 100 nodes and transmission range d = 0.01.

C. RWP-zone model

Let us next consider a situation where a large number of
nodes move in some large area. In the middle of the large
area, there is a small circular zone with radius 1, inside which
the movement is according to RWP model.

More specifically, in RWP-zone model, the nodes arrive to
the zone according to a Poisson process with rate λ. The first
waypoint in the zone is uniformly distributed, and the arrival
process to each point is isotropic, as illustrated in Fig. 14, i.e.,
the arrival direction to any given point in the zone is uniformly
distributed. After reaching a waypoint, a node chooses to exit
the zone in a random direction with a constant probability of
q, i.e., also the exit direction is isotropic. Otherwise, the node
chooses a next waypoint in random from the zone and starts
to move towards it. This is repeated until the node exits the
zone. Note that all the waypoints, first, last and intermediate,
are all uniformly and independently distributed in the zone.
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1) Analysis of RWP-zone model: Two types of transitions
occur: (1) transitions to/from the boundary to a uniformly dis-
tributed waypoint, and (2) transitions between two uniformly
distributed waypoints (a’la RWP). The mean length of type
(2) transition is given by (14), and for type (1) we have

E[L1] =
1
π2

∫ 1

0

2πr
∫ π/2

−π/2

(√
1− r2 cos2 θ − r sin θ

)
dθ dr

=
2
π

∫ 1

0

r

∫ π/2

−π/2

√
1− r2 cos2 θ dθ dr =

8
3π
.

Each visit consists of one arrival transition, one departure
transition, and zero or more ordinary RWP transitions. The
number of RWP transitions obeys geometrical distribution with
parameter 1− q, i.e., the mean number of turns before an exit
is 1/q. Thus, the mean distance travelled per visit is

E[L] = 2 · E[L1] +
1− q
q
· E[LRWP] =

112 + 128/q
45π

.

Assuming a constant velocity v, the mean sojourn time in the
zone is a function of q and v,

1/µ =
112 + 128/q

45π v
,

and consequently, the mean number of nodes in the zone is

E[N ] = λ · (1/µ) = λ · 112 + 128/q
45πv

. (35)

Note that each transition, including the initial arrival transition,
ends to an uniformly distributed location in accordance with
the RWP movement. The angular flux due to arrival/departure
transitions is straightforward to deduce, and one obtains

ϕ1(r, θ) =
λ

2π2
(a1 + a2),

which for a unit disk at r = (0, r) gives

ϕ1(r, θ) =
λ

π2

√
1− r2 cos2 θ.

Resulting scalar flux attains its maximum at the origin and
minimum at the boundary,

Φ1(0) =
2λ
π

and Φ1(1) =
4λ
π2
.
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Fig. 15. Shape of the node density function with q = 0, 1/4, 1/2, 3/4, 1
according to RWP-zone. The highest curve initially corresponds to the pure
RWP movement.
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Fig. 16. Lifetime distribution with RWP-zone model with q = 1/2.

Transition generation rates are

λ1 = 2λ and λ2 =
1− q
q

λ,

and consequently, with aid of (15), the total angular flux in
unit disk is sum ϕ1(r, θ) + ϕ2(r, θ), giving

ϕ(r, θ) =
(1− (1− q)r2)λ

q π2

√
1− r2 cos2 θ,

which allows one to compute, e.g., the resulting node density
function and node encounter rates for a given λ, q and v.
Similarly as with an ordinary RWP model, the integrals can
be evaluated numerically.

Fig. 15 illustrates the form of the resulting node density
function of the RWP-zone model. By varying parameter q,
the form of the node density function changes smoothly as
illustrated. With λ and v one can then adjust, e.g., the mean
number of nodes and their sojourn time in the zone. As
a peculiar detail, the stationary node distribution function
obtains the same value of about 0.3264 at the distance of
r =

√
7/15 from the origin independently of q.

2) Numerical Example: As a numerical example, assume
a zone radius of 100 m, transmission range of 10 m, velocity
of 1 m/s and mobility parameter of q = 1/2. With these, the
criticality condition suggests an arrival rate λ > 1.004 1/min to
ensure stable operation. Fig. 16 depicts the numerical results,
and we again observe a good match between the theory and
the simulation results.


