
Performance-Energy Trade-Off in Data Centers:
Impact of Switching Delay

Xiaohua Lu
School of Electrical Engineering

Aalto University, Finland
Email: xiaohua.lu@aalto.fi

Samuli Aalto
School of Electrical Engineering

Aalto University, Finland
Email: samuli.aalto@aalto.fi

Pasi Lassila
School of Electrical Engineering

Aalto University, Finland
Email: pasi.lassila@aalto.fi

Abstract—We develop simple queuing models for a single node
in a server farm and analytically study the impact of switching
delay on the performance-energy trade-off. The objective is to
compare how an optimized static speed scaling scheme performs
against two (gated and linear) optimized dynamic speed scaling
schemes, where the processor can be switched off when it is
idle but the penalty is the switching delay (time to wake up the
processor from the off state). In the gated scheme, the processor
speed is zero when the server is idle and constant otherwise, and
in the linear scheme the processing speed scales linearly with the
number of jobs. Our results demonstrate that the switching delay
can have a considerable impact on the optimal trade-off. The
linear scheme is always better than the gated scheme and, when
the switching delays are long, even the static scheme can be better.
In practice, the trade-off is affected highly by the parameters and
our models allow an explicit evaluation of the trade-off.

I. INTRODUCTION

Data centers, made up of a large number of parallel
servers, consume huge amounts of energy. Thus, their energy
management has become a key issue [1], and a fundamental
trade-off must be made between performance and energy.

Speed scaling [2]–[4] is a well-known technique that allows
the server to slow down the service speed when the number
of customers is low, and thus the server is running at a lower
power and also saving energy. Based on the seminal work by
George and Harrison [5], Wierman et al. [3] studied how to
optimally scale speed to balance mean response time and mean
energy consumption in a single-server queue. Surprisingly,
they found that a simple gated scheme which switches the
server off when the system is idle (thus consuming no energy)
and uses an optimal static service rate otherwise provides
almost as good results as the optimal dynamic speed scaling.

However, when the server is switched off, it typically takes
time to wake it up again, which is called the setup or switching
delay. Our purpose in this paper is to explore how switching
delay affects the performance-energy trade-off in a single-
server queue which allows speed scaling. As in [3] (and many
other papers), this trade-off is characterized by an appropriately
weighted sum of the mean number of jobs and the mean power
consumption. Our baseline is a static scheme with an optimized
fixed service rate (thus avoiding any switching delays), and
we compare it with two dynamic speed-scaling schemes that
consume less energy in certain states but, on the other hand,
suffer from the switching delay. One is the gated scheme that
switches the server off when the system is idle and uses an
optimized fixed service rate otherwise (which is different from

the service rate of the optimal static system), and the other is a
more dynamic linear speed scaling scheme where the service
rate is proportional to the number of jobs in the system. Even
in the latter system we optimize the linear step so that we use
the optimal linear scheme for comparison.

Our main observations are as follows: (i) when switching
delay is taken into account, the simple gated scheme can
typically be improved considerably by introducing (fully)
dynamic linear speed scaling; (ii) on the other hand, for
long switching delays, the optimal performance-energy trade-
off is not achieved by dynamic speed scaling but with the
baseline static scheme with a fixed optimized service rate.
Interestingly, it also turns out that the optimal performance-
energy trade-off of the optimized linear scheme that relies on
explicit knowledge on traffic parameters can be matched quite
well by a robust linear scheme, which does not require any a
priori information about the traffic. In a practical setting, the
parameters affect the trade-off considerably and our models
allow an explicit quantitative analysis of the impact of the
switching delay on the performance-energy trade-off.

A single-server queue with switching delay was originally
analyzed by Welch [6], and later considered, e.g., in [7], [8].
Gandhi et al. [9] consider a multiserver queue with switching
delay. However, their model (restricted to the single-server
case) differs from ours, since they just compare a static system
with a fixed service rate µ and the corresponding gated system
that uses the same (and not the optimal) service rate µ when
switched on.

The rest of the paper is organized as follows. In Section II,
we give the system model, introduce the three speed scaling
schemes, and specify the objective reflecting the trade-off
between performance and energy. The performance analysis of
the three schemes is presented in Section III, while Section IV
specifies corresponding optimization problems to determine
the optimal schemes. Based on numerical experiments, the
three schemes are compared in Section V. Section VI con-
cludes the paper.

II. SYSTEM MODEL AND OBJECTIVES

We model a single server (or computing node) in a server
farm. The server processes jobs that arrive according to a
Poisson process with rate λ. The arriving jobs have an intrinsic
random size, denoted by Y , which is assumed to obey an
exponential distribution with mean E[Y ] = m. Let X(t)
denote the number of jobs in the system at time t.



In order to optimize the energy usage, the server supports
speed scaling, i.e., it may be operating at a lower rate when
the number of jobs is small, and the rate can be increased
as more jobs enter the system. Specifically, we consider three
approaches. The baseline is the static speed scaling, where
the server runs at a constant rate s. In the gated speed scaling,
the server is switched off whenever the system becomes idle,
otherwise the processor is running at a fixed constant rate
s. This is a very primitive form of speed scaling that only
takes into account the idle state of the system. Finally, a more
advanced form of speed scaling is linear speed scaling, where
the processor is running at a rate that is linear in the number
of jobs, i.e., when there are n jobs in the system the server is
running at rate sn = ns, where s is the service rate of a single
job. In all schemes, the speed parameter s can be optimized
for a given cost function. Let µ = s/m, which for the static
and gated schemes is also equivalent to the job departure rate.
For the linear scheme, when there are n jobs the job departure
rate is correspondingly nµ. Also, it is convenient to denote
r = λm as the offered traffic.

In the gated and linear schemes, whenever the system
becomes idle, i.e., X(t) = 0, the server goes into sleep
state, where we assume that it is not consuming any energy.
However, when the idle period ends with the arrival of a new
job, the system cannot become fully operational immediately,
but there will be a random delay D before the server can start
processing the jobs. This additional delay for the first job in a
busy period is what we refer to as the switching delay. Note
that in the static scheme, there is no switching delay as we
assume that the server is continuously operating at rate s. For
tractability of our analytical models, we assume that also D
is exponentially distributed with mean E[D] = 1/δ. Let the
process Z(t) track the switching delay state of the system,
i.e., Z(t) = 1 if the system is in the switching delay state and
Z(t) = 0 when it is operating normally.

The process (X(t), Z(t)) is clearly a Markov process.
Thus, in the static and gated schemes the performance of the
system is the same for any work-conserving discipline, such as
FIFO or processor sharing. In the linear scheme, the system
appears like an infinite server model (each job has its own
server). In the static and gated schemes, the system is stable
whenever r < s. The linear system is stable for any r > 0.

The objective in our paper is to analyze the performance-
energy trade-off taking into account also the impact of the
switching delay. Our cost model is the same as in [3]. Thus,
when there are n jobs in the system and the server is operating
at rate s, costs are accumulating at the rate n+ sα/β per time
unit, where α > 1 and β is the (adjustable) weight parameter
converting power units to time units (called delay-aversion in
[3]). The model assumes that the power used by the server is
proportional to sα when it is running at rate s. According to
[3], the dynamic power use of real chips is well modeled by
this kind of a polynomial model.

In our analysis, our objective function z is the average
energy-aware cost per unit time, i.e.,

z = E[X] + E[Sα]/β, (1)

where S denotes the service rate which is random in the gated
and linear schemes depending on the state of the system. Due

0,0 

1,1 

1,0 

2,1 3,1 

2,0 3,0 

λ 

µ 

δ δ δ 

µ 

µ µ 

λ λ λ 

λ λ λ 

Fig. 1. State transition diagram for static and gated schemes.

to Little’s result, the objective function (1) characterizes the
trade-off between delay and energy in our system.1 For a given
speed scaling scheme, (1) depends on our speed parameter s
and to achieve an optimal performance-energy trade-off (1)
can be minimized with respect to s for any scheme separately.

III. PERFORMANCE ANALYSIS

In this section, we present the Markov models that charac-
terize the system which are needed in order to quantify the
performance-energy trade-off (1). As mentioned above, the
process (X(t), Z(t)), representing the joint state of the queue
length and the switching delay, is a Markov process. However,
the Markov processes corresponding to the static, gated and
linear speed scaling schemes have different properties.

A. Static speed scaling

In the static speed scaling, the switching delay does not
affect the system as the processor is continuously operating
at rate s. Under our assumptions the system then simply
corresponds to the M/M/1 queue, for which the mean queue
length is simply

E[X] =
λ

µ− λ
=

r

s− r
. (2)

Static speed scaling represents the baseline approach for us,
where the switching delay does not incur any additional delay
cost, but for which the energy cost may still be large as the
system can not benefit from switching off the processor.

B. Gated speed scaling

As discussed earlier, in the gated scheme, the server is
operating at rate s whenever there are jobs in the system. Thus,
in our Markov model the service rate is simply µ = s/m. This
gives rise to the two-dimensional Markov process as shown in
Figure 1. During the time that the system is empty, no energy
is consumed. However, when the idle period ends with a first
arrival (occurring with rate λ), this leads the process to the
upper part of the state space, where Z(t) = 1. During the
switching delay, there can be more arrivals, each increasing
the queue length. After the switching delay phase ends, which
happens at rate δ from any state where Z(t) = 1, the system
resumes normal operation where the jobs are processed at rate
µ until the system eventually returns back to idle state. At
some point, a new busy period begins with a new switching
delay phase.

1Dividing (1) by λ gives us a weighted combination of the mean delay and
the mean energy per job.



Denote by πi,j the equilibrium distribution of the process,
i = 0, 1, 2, ..., j = 0, 1. According to the global balance
equations, for the state (0,0), we have

π1,0µ = π0,0λ.

Correspondingly, for the states (i,1), i = 1, 2, ..., we have
π0,0λ = π1,1(λ+ δ),

π1,1λ = π2,1(λ+ δ),

· · ·
πi−1,1λ = πi,1(λ+ δ).

By solving the above, we obtain

πi,1 =

(
λ

λ+ δ

)i
π0,0, i = 1, 2, ... (3)

For state (1,0), the global balance equation is

π1,1δ + π2,0µ = π1,0(λ+ µ),

and for states (i,0), it reads as

πi,1δ + πi+1,0µ+ πi−1,0λ = πi,0(λ+ µ), i = 2, 3, ....

In addition, the normalization condition yields

π0,0 +

∞∑
i=1

(πi,0 + πi,1) = 1.

It turns out that the equilibrium distribution can be solved
explicitly. First we obtain

π0,0 =
δ

λ+ δ

(
1− λ

µ

)
,

and using this, we can express πi,0 and πi,1 as

πi,1 =
δ(µ− λ)

µ

λi

(λ+ δ)i+1
,

πi,0 =
δ(λ− µ)

µ(δ + λ− µ)

((
λ

λ+ δ

)i
−
(
λ

µ

)i)
,

for i = 1, ... With some algebraic manipulations, the mean
queue length E[X] has an explicit solution that equals

E[X] =
λ

µ− λ
+
λ

δ
=

r

s− r
+

r

mδ
. (4)

From the result above, we observe that the mean queue length
of the system consists of two parts, λ/(µ − λ) and λ/δ. The
first part, λ/(µ − λ), equals the mean queue length of the
M/M/1 system without switching delay. The second part, λ/δ,
is the mean number of arrivals during the switching delay.
Thus, the impacts of the service time and the switching delay
on the mean queue length are separated (which is a well-known
result, see, e.g., [7]).
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Fig. 2. State transition diagram for the linear speed scaling system.

C. Linear speed scaling

Next we consider the system with linear speed scaling. The
behavior of the system is similar to that of the gated system
in the previous section. The only difference is that when the
system is not in the switching delay state, i.e., Z(t) = 0, due
to the linear speed scaling scheme the departure rate given that
there are n jobs in the system equals nµ. This is illustrated in
Figure 2. Thus, the system resembles an M/M/∞ queue.

To solve the equilibrium distribution we again apply the
global balance equations. One can readily observe, compare
Figures 1 and 2, that the balance equations for the states (0, 0)
and (i, 1), i = 1, . . . , are identical to the ones of the gated
system in the previous section. Thus, also the steady state
probabilities πi,1, i = 1, . . ., have the same form as (3),

πi,1 =

(
λ

λ+ δ

)i
π0,0, i = 1, 2, ...

However, for state (1, 0), the global balance equation is

π1,1δ + π2,02µ = π1,0(λ+ µ),

and for states (i,0), we have

πi,1δ+πi+1,0(i+1)µ+πi−1,0λ = πi,0(λ+ iµ), i = 2, 3, ...

Also, recall that the global balance equation for state (0, 0)
yields π1,0 = (λ/µ)π0,0.

By successively evaluating the global balance equations for
higher values of i, we deduce that

πi,0 =
λi−1

(∑i−1
n=0 (λ+ δ)

i−1−n
µnn!

)
i! (λ+ δ)

i−1
µi−1

π1,0

=

i−1∑
n=0

n!

i!

(
λ

µ

)i−n(
λ

λ+ δ

)n
π0,0. (5)

The normalization condition can be expressed as

π0,0 +

∞∑
i=1

(πi,0 + πi,1) = 1.

By substituting πi,0 and πi,1 to the normalization condition,
we finally obtain

π0,0 =

(
1 +

λ

δ
+

∞∑
i=1

i−1∑
n=0

n!

i!

(
λ

µ

)i−n(
λ

λ+ δ

)n)−1
. (6)

Even though the equilibrium distribution has an explicit form,
the mean queue length E[X] can only be numerically evaluated
by truncation from

E[X] =

∞∑
i=0

i · (πi,0 + πi,1). (7)



IV. ENERGY-AWARE DELAY OPTIMIZATION

In this section, we derive the optimization problems cor-
responding to the three different speed scaling schemes. In
each case, to optimize the performance-energy trade-off (1)
we have a separate non-linear optimization problem over our
speed parameter s.

A. Static speed scaling

In the static scheme, the mean number of jobs is simply
E[X] = r/(s− r), see (2) and the average energy-aware cost
per unit time in the static system is

zstatic(s) = E[X] +
sα

β
=

r

s− r
+
sα

β
. (8)

The equation (8) can be minimized with respect to s. It
is easy to see that the function has a unique minimum when
s > r. However, the optimization can not be done explicitly
and needs to solved numerically. The optimal value of (8) is
denoted by z∗static.

B. Gated speed scaling

In the gated scheme, the system consumes energy only
when there are jobs in the system and the system is not in
the switching delay state.2 Thus, the objective function in the
gated scheme is given by

zgated(s) = E[X] +
sα

β
P{X > 0, Z = 0}.

The probability P{X > 0, Z = 0} can be readily obtained
from the explicit expressions in Section III-B for the equilib-
rium distribution

P{X > 0, Z = 0} = 1−
∞∑
i=0

πi,1 = λ/µ.

Combining this with (4), the objective function becomes

zgated(s) =
λ

µ− λ
+
λ

δ
+
λ

µ

sα

β

=
r

s− r
+

r

mδ
+ r

sα−1

β
. (9)

Again the mean energy-aware cost rate (9) has a unique
minimum with respect to s when s > r. In the case where
α = 2, the solution can be obtained explicitly. The optimal
value is achieved with s = r +

√
β and the optimal value of

the performance-energy trade-off (9) is

z∗gated =
r2

β
+

2r√
β
+

r

mδ
.

We note that the optimal speed s = r +
√
β is the same as

in the gated system without switching delay (see, e.g., [3]),
which is clearly due to the separation property discussed in
Section III-B. Also, this optimal solution for the speed in the
gated scheme is always greater than the corresponding optimal
speed in the static system.

2This is an optimistic assumption from the gated system point of view. The
other extreme is to assume that the energy consumption is at its maximum in
the switching delay phase, see, e.g., [9].

C. Linear speed scaling

As mentioned earlier, in the linear system, the server speed
is proportional to the queue length, which means sn = ns
when there are n jobs in the system. Similarly to the gated
system, no energy is consumed when the system is idle or in
the switching delay state. Thus, the mean energy-aware cost
per unit time can be written as

zlinear(s) = E[X] +
sαE[1{X>0,Z=0}X

α]

β
, (10)

where E[X] is given by (7) and E[1{X>0,Z=0}X
α] is obtained

from

E[1{X>0,Z=0}X
α] =

∞∑
i=1

iαπi,0.

The quantities E[X] and E[1{X>0,Z=0}X
α] are functions

of the speed parameter s and again the energy-aware cost rate
(10) can be optimized with respect to it. Although not perhaps
easy to show rigorously, it is intuitively clear that also in the
linear system there is a well-defined unique minimum for s
(since E[X] is monotonously decreasing with s, E[X] = ∞
when s = 0 and sαE[1{X>0,Z=0}X

α] is monotonously
increasing). The minimization can be performed numerically
to obtain the optimal value z∗linear for (10). In the numerical
results, we refer to the above as the optimized linear scheme.

Finally we note that, as given in [3], without any switching
delay and assuming α = 2, the optimal value for s in the linear
system is s =

√
β resulting in the mean energy-aware cost rate

r2

β
+

2r√
β
,

which is exactly the same as that of the optimal gated system.
Thus, without switching delay and for α = 2, the optimal
linear system and the optimal gated system perform equally.
In this case, as noted in Section I, even the optimal dynamic
speed scaling does not perform much better.

However, even in the case with switching delay, setting
s =
√
β may perform reasonably. This has the advantage that

the scheme does not assume any a priori knowledge of the
traffic statistics and is robust in this sense. In the numerical
examples, we also consider such a scheme and we refer to it
as the robust linear scheme.

D. Generalized model for the switching delay

In the above formulations, the switching delay was consid-
ered as an independent parameter from the other parameters
of the system. However, it is also possible in our modeling
approach to generalize this so that the mean switching delay is
still exponentially distributed but the mean value can depend
in an arbitrary way on the speed of the processor s. In the
optimization formulations for the gated (9) and linear (10)
systems, this simply means that the parameter δ is replaced
by a function depending on s, say δ(s). For example, it can
be reasonable to consider a situation where the mean switching
delay 1/δ(s) is linearly proportional to the processing speed
s, i.e., δ(s) = c/s, where c is an appropriate scaling constant.
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Fig. 3. Gain from the dynamic speed scaling schemes for different delay-
aversions β in a system without any switching delay.

V. NUMERICAL RESULTS

We consider two ways to model the effect of the switching
delay. In the first case, we assume that the mean switching
delay is a completely external parameter, independent of
everything. For the other case, the mean switching delay is
assumed to be linearly proportional to the server rate parameter
s, which models that the higher the processing rate of the
server the longer the switching delay. For all our numerical
studies, we assume that m = 1 and α = 2. As in [3], α = 2 is
used to provide insight and allows us to compare the results.

However, to make a comparison with earlier results, we
start with the system without any switching delay. The results
are illustrated in Figure 3, where we have plotted the ratio
z∗gated/z

∗
static between the mean energy-aware costs in the opti-

mal static and the optimal gated system as a function of the
offered load r for different delay-aversions β. As mentioned
in the previous section, there is no difference in the mean
energy-aware costs between the optimal gated scheme and
the optimal linear scheme in this case. Thus, the curves in
the figure represent, as well, the ratio z∗linear/z

∗
static. As can be

seen from the figure, dynamic speed scaling reduces the mean
energy-aware cost most with light load, but with heavy load,
when the system is idle only rarely, the gain disappears as
the ratio approaches 1. On the other hand, we see that the
gain is improving with higher values of delay-aversion β, i.e.,
when the performance part has higher relative weight. Still,
with any traffic load and for any β, the dynamic speed scaling
schemes perform consistently better than the optimal static
scheme when there is no switching delay.

Next we consider the case where the mean switching delay
is positive and independent of everything else. The results for
two different mean switching delay values, E[D] = 1/δ =
1, 10, are illustrated in Figure 4, where we have plotted the
ratios z∗gated/z

∗
static and z∗linear/z

∗
static, which are now separate, as

a function of the offered load r for different delay-aversions
β. As can be seen from the figure, the ratios z∗gated/z

∗
static and

z∗linear/z
∗
static are larger with switching delay d = 10 than that

with d = 1. The performance of the linear scheme is always
better than that for the gated scheme. With the same value
of d, the ratios increase as the delay-aversion β increases.
For the system with switching delay d = 10, the ratios are
almost always larger than 1, which means that the performance
of dynamic speed scaling schemes is not good with long
switching delay regardless of the traffic load. When d = 1
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Fig. 4. Gain from the dynamic speed scaling schemes for different delay-
aversions β in a system with an independent mean switching delay E[D] =
d, where d = 1, 10. Yellow curve: z∗gated/z

∗
static for d = 10. Green curve:

z∗linear/z
∗
static for d = 10. Blue curve: z∗gated/z

∗
static for d = 1. Red curve:

z∗linear/z
∗
static for d = 1.

and β = 0.1 the dynamic schemes are consistently better than
the static scheme. However, for β = 1, when the traffic load is
light, the ratios are less than 1 (dynamic schemes are better),
but when β = 10, the ratios are larger than 1 even when the
traffic load is light (static scheme is better). The optimal speed
of the static scheme, s∗static satisfies r < s∗static < r+

√
β. Thus,

as r grows the ratio of the speed in the optimized gated and
static schemes approaches 1, implying that the ratio of the costs
z∗gated/z

∗
static approaches 1. However, for the linear scheme this

may not hold.

Finally we consider the case where the mean switching
delay is positive and proportional to speed s, E[D] = s/c,
where we have assumed that c = 1. In this case, we also
experiment with the robust linear scheme as introduced in
Section IV.C and the corresponding performance of the scheme
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scaling schemes for different delay-aversions β in a system with a dependent
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is denoted by z∗robust. The results are illustrated in Figure 5,
where we have plotted the ratios z∗gated/z

∗
static, z∗robust/z

∗
static

z∗linear/z
∗
static as a function of the offered load r again for

different delay-aversions β. From the figure, we observe that
the performance of the (optimized) linear scheme is better
than that in the gated scheme. With light traffic load, when
the delay-aversion β is small, i.e., the energy part has higher
relative weight, the dynamic speed scaling schemes perform
better than the static scheme. With β = 10, however, the gain
disappears, but the optimized linear scheme is still not far
from the static one. The robust scheme is also interestingly
performing nearly as good as the optimized linear scheme
for β = 0.1 and 1 (for β = 0.1 the results are numerically
identical). However, when β = 10 the robust scheme is not
able to match the performance of the optimized linear scheme.

VI. CONCLUSIONS

We considered the impact of switching delay on the
performance-energy trade-off. The objective was to gain in-
sight on how the optimized static speed scaling scheme per-
forms against two optimized dynamic speed scaling schemes,
the gated and the linear schemes, where the processor is
switched off during idle state (to save energy) but that have an
additional delay cost, the switching delay, when turned active
again. Overall, our numerical results showed that, while in the
system with no switching delay the dynamic schemes always
yield a gain over the static scheme, the switching delay changes
the situation dramatically. Indeed, the gated scheme especially
can perform very badly, recall Figures 4 and 5 for β = 1 and
10. The optimized linear scheme, on the other hand, is much
less sensitive to the switching delay. Finally, the trade-off is
in practice very much affected by the parameters.

Future research topics include considering the case that en-
ergy is consumed already during the switching delay. Also, the
impact of other service time and switching delay distributions
could be considered. Finally, studying the energy-performance
trade-off in a multi-server setting is of interest. This leads
to a dispatching problem that has been analyzed without the
switching delay for the gated scheme in [10].
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