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Analysis of PDCCH performance for M2M traffic
in LTE

Prajwal Osti, Pasi Lassila, Samuli Aalto, Anna Larmo, Tuomas Tirronen

Abstract—As LTE is starting to get widely deployed, the
volume of M2M traffic is increasing very rapidly. From the
M2M traffic point of view, one of the issues to be addressed
is the overload of the random access channel. The limitation
in the PDCCH resources may severely constrain the number of
devices that an LTE eNB can serve. We develop a Markov model
that describes the evolution of the Message 4 queue in the eNB
formed by several users performing the random access procedure
simultaneously and then study its stability and performance. Our
model explicitly takes into account the 4 initial steps in the
random access procedure. By utilizing the model, we are able
to determine the stability limit of the system, which defines the
maximum throughput, as well as the probability of failure of the
random access procedure due to different causes. We observe
that the sharing of the PDCCH resources between Message 2
and Message 4 with different priorities makes the performance
of the whole random access procedure deteriorate very rapidly
near the stability limit. However, we can extend the maximum
throughput and improve the overall performance by increasing
the PDCCH resource size. Furthermore, we estimate the upper
limit of the number of devices that can be served by an LTE
eNB and determine the minimum PDCCH resource size needed
to satisfy a given traffic demand.

Index Terms—LTE, M2M, Markov processes, MTC, PDCCH,
Stability

I. INTRODUCTION

Machine-to-machine (M2M) communication or machine
type communication (MTC) is the technology that enables
several devices to communicate with each other without the
need of constant human intervention. Several billions of such
devices that use MTC are predicted to exist over the next
few years and majority of them are expected to be wireless
sensors. This leads to the possibility of developing a wide
range of applications over M2M that can potentially generate
a huge amount of revenue [1]. Even the existing networks,
which are primarily designed for more traditional human-to-
human (H2H) traffic, are handling some M2M traffic [2].
However, as the volume of M2M traffic grows more M2M type
communication specific provisions should be included in the
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design of the standards like LTE, which is likely to be the most
widely accepted standard for the 4G cellular network. Indeed
3GPP has conducted different studies [3], [4] that attempt
to address the issues related to M2M communication in the
present systems as well as in the future releases of LTE.

The M2M traffic is different from the traditional voice and
data traffic for which most of the existing networks including
LTE are optimized. The sensors are typically (but not always)
static and need not be optimized for mobile use. A huge
number of machines may exist in a cell, which may access
the network periodically or in random bursts. They also have
a limited power budget which should be used as efficiently
as possible. A machine may need a very small portion of the
network’s resources at a time but as the number of machines
grows, their collective resource demand can overwhelm the
network very easily, e.g., the radio access network may not be
able to handle the momentary surge in random access requests
if thousands of devices make random access attempts at the
same time.

Indeed, one of the most discussed issues is the problem
of random access overload [5], [6] at the edge of the net-
work. Slotted Aloha is the basis of the whole random access
procedure which is an inherently unstable protocol [7] and
has to be stabilized in some way to make it work [8], [9].
In the H2H case, congestion in the random access channel
is rarely a problem because the number of users requesting
random access at the same time is almost never so large.
However, the deluge of random access requests from the
huge number of MTC devices may overwhelm the network’s
signaling resources. In contention based random access such as
Slotted Aloha, when a random access attempt fails, the device
may opt for a retransmission possibly after a certain backoff
period causing further increase in the traffic and deterioration
of performance. Several such Slotted Aloha channels are
operating in parallel for random access in LTE and even such
multi-channel random access systems are not immune to the
inherent instability issues of Slotted Aloha [10]. Recent works
(e.g., [11], [12]) have analyzed the performance of backoff
algorithms in LTE for stabilizing and optimizing the random
access procedure. In fact, the random access will fail in LTE
if any one of the four steps of the procedure is unsuccessful,
leading to a waste of resources, retrial and ultimate increase
in the traffic which may have been prohibitively high to
begin with. Moreover, different signaling and data channels are
involved in the LTE random access procedure and congestion
in any one of them will ultimately affect the performance of
the whole procedure.
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Since the problem is well known there have been various
attempts to address this issue. The authors in [5] present a
nice overview of the problem when a massive number of
devices are to be given access. In the context of assigning
separate random access resources to various traffic types, [13]
considers the approach of dynamically sharing the random
access resource (preambles) between H2H and M2M traffic.
In [14] a highly tailored approach to overcome RAN overload
is presented by dividing the M2M traffic into several priority
classes and providing them different number of random access
opportunities. A more dynamic approach for RAN overload
control is provided by [15]. It is argued that with the increasing
traffic arrival rate the number of subframes that should be
allocated for the RACH procedure should also be increased
to prevent random access failure. However, we will show
here that doing so may not necessarily solve the problem as
other bottlenecks come into effect that even reduce the random
access throughput.

Fundamentally, the random access procedure is based on
parallel Slotted Aloha channels. The Slotted Aloha channel
itself has a stability limit that determines the maximum amount
of traffic the system can sustain. Almost all the existing works
focus in just this first step of the random access procedure
(Slotted Aloha), either by employing good backoff algorithms
(see e.g., [11], [12]) or by devising efficient ways to share the
random access opportunities among different types of traffic
in the cell (see [13], [14]). As it turns out in our analysis,
the steps following the Slotted Aloha step pose additional
limitations on the stability and the performance of PDCCH
which is shared between Message 2’s and Message 4’s with
Message 2’s receiving the priority, as stated in [16]. These
messages are exchanged between the device and eNB in the
steps following the initial Slotted Aloha step.

In this paper we analyze the performance of the whole
initial random access procedure assuming that the PDCCH
has limited resources in the form of CCEs (control channel
elements). The initial random access is characterized by 4
steps, as will be discussed in detail later on. A study by
3GPP [17] presents simulation results on the overall success
probabilities of the access attempts after all 4 steps. However,
our objective is to derive a model amenable to mathematical
analysis to obtain fundamental insights. More specifically, we
develop a Markov model that describes the evolution of the
Message 4 queue and then study its stability and performance
(measured by the probability of random access failure). This
paper is the first to analyze jointly the impact of all the 4 steps
of the initial random access, as far as we know.

In summary, the main contributions of our paper are the
following. We provide a tractable model for the analyzing
jointly the impact of the steps 1–4 in the LTE random access
procedure. From the model we are able to explicitly determine
the maximum throughput of the system which gives the upper
limit of the arrival rate of the random access requests, i.e., the
stability limit. We additionally provide a numerical method to
estimate the failure probability of the random access process
and its different components at various stages of the random
access process. In our extensive numerical examples, we
illustrate how the different parameters affect the performance,

including the possibility to optimize the maximum throughput
for certain parameters. We observe that the failure probability
is almost zero when the arrival rate is below the stability
limit. However, due to the nature of the priority system,
this probability increases very quickly near the stability limit.
We additionally provide two examples—determining the max-
imum number of devices in a cell and dimensioning the
PDCCH resource—that highlight the application of our results.

The paper is organized as follows: In the next section we
explain the background and role of PDCCH in LTE followed
by the steps involved in the random access procedure. This is
followed by Section III where we describe our traffic model
and identify the points where the random access can fail in our
model. Then in Section IV, we present our stochastic model,
which describes the evolution of the Message 4 buffer together
with an auxiliary variable as a two-dimensional Markov chain.
The Markov model is utilized in Section V, where we consider
the stability of the Message 4 buffer and derive its maximum
throughput. In Section VI, we present the methodology of
determining the performance of the system. The methodology
is then applied in Section VII, where we give numerical results.
Finally, conclusions of the study are presented in Section VIII.

II. LTE BACKGROUND

A. Downlink control information
In LTE, downlink control information is sent over the

Physical Downlink Control Channel (PDCCH). The control
information includes downlink scheduling assignments, which
are used to carry the information needed to receive data
on the Physical Downlink Shared Channel (PDSCH), and
uplink scheduling grants, which are used to indicate the shared
uplink resources (Physical Uplink Shared Channel, PUSCH)
the terminal uses to send data to the base station (eNodeB).

The smallest physical resource in LTE time-frequency struc-
ture is called a resource element, which consists of one
subcarrier during one OFDM symbol. The transmissions are
divided into frames of length of 10 ms which are further
divided into subframes of 1 ms. In time domain, a subframe
typically consists of 14 OFDM symbols. In every subframe,
1–3 OFDM symbols are reserved for the control region which
carries the PDCCHs. Three OFDM symbols is a typical size
for the control region and this size is assumed in this work.
The total amount of available physical resources during one
subframe depends on the number of subcarriers, i.e., the total
bandwidth allocated for the LTE carrier. For example, 5 MHz
cell bandwidth would correspond to 300 subcarriers.

The total PDCCH resource is measured in control channel
elements (CCEs), where each CCE is a set of 36 resource
elements. One downlink control message, such as downlink
assignment or uplink grant, is carried over PDCCH which uses
either one, two, four or eight CCEs. The number required
depends on the size of the payload of the message and the
coding rate. For the numerical examples, we typically make the
assumption that the total resources available for the downlink
control information in a subframe is N = 16 CCEs, the same
number used in 3GPP RAN overload study [17].

Thus, the resources used to schedule data in downlink
and used to hand out uplink grants are shared. The capacity
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for downlink assignments and uplink grants sent during one
subframe depends on the sizes of the PDCCHs used to carry
these messages (denoted by NMsg2 and NMsg4) and the total
number of CCEs (denoted by N ). In reality, the number of
CCEs one PDCCH (and one downlink control message) uses
depends on the channel conditions and is selected by the
eNodeB. Using our model, we will later study the effect of
different (static) CCE allocation sizes (NMsg2 and NMsg4) for
different messages as well as the consequence of varying the
PDCCH resource size (N ).

B. Random access procedure

Below we briefly describe the Contention based Random
Access Procedure [18] utilized, e.g., by the M2M traffic.

Step 1: M2M device (UE) initiates the random access
procedure by randomly choosing one of the available RACH
preambles, and sending the preamble in Message 1 over
the Physical Random Access Channel (PRACH). A collision
happens if two or more UEs choose the same preamble in
the same subframe. However, this collision is realized only in
Step 3, i.e., even if two or more UEs use the same preamble
for Message 1 and a collision occurs, the base station does
not detect this event at this stage.1 The transmission of a
random access preamble is restricted to certain subframes. Let
b denote their periodicity, i.e., random access is possible in
every bth subframe. In addition, let K denote the total number
of available preambles.

Step 2: eNodeB replies with Message 2, a.k.a. Random
Access Response (RAR), which includes an uplink grant for
Step 3. Message 2 is sent over the PDSCH. For this, we
need to schedule the user, i.e., send a downlink assignment
control message over PDCCH. There may be at most one
RAR message in each subframe, but each may have multiple
uplink grants (each corresponding to a separate preamble). Let
c denote the maximum number of uplink grants per RAR per
subframe. Note that in our model, an uplink grant is given for
every used preamble, whenever not limited by c, as the base
station does not detect a collision at this stage and thus makes
no distinction between a collided and an uncollided preamble.

Step 3: Next the UE sends Message 3 over PUSCH. The
collisions in Step 1 will be realized in Step 3: The two or
more UEs that chose the same preamble in Step 1 will all
try to utilize the same uplink grant in Step 3 to send their
Message 3’s. As a result, the Message 3’s interfere with each
other rendering the signal received at the eNB undecodable
and none of the UEs involved will be sent the subsequent
Message 4.2

Step 4: After receiving Message 3’s related to uncolliding
preambles generated in Step 1, eNodeB replies with Mes-
sage 4’s using again the PDSCH, which needs to be scheduled
on PDCCH. Let N be the size of PDCCH resource (in CCEs),
NMsg2 and NMsg4 be the number of CCEs used to send a
Message 2 and a Message 4, respectively. Then a maximum

1Note that this is a more conservative approach (and even realistic from
the actual system point of view) than detecting the collision in Step 1 itself.

2This is again a conservative assumption as a UE with much stronger signal
than others may be selected even in the event of collision due to the capture
effect.

TABLE I: Model parameters with typical values in [17]

Symbol Parameter Typical value [17]
K Number of preambles 54
b RACH periodicity 5
c Max number of UL grants 3

per subframe
N PDCCH resource size in CCEs 16

NMsg2 Number of CCEs used for a Message 2 4
NMsg4 Number of CCEs used for a Message 4 4
M Max number of Message 4’s per subframe

(without Message 2)
4

m Max number of Message 4’s per subframe
(with Message 2)

3

of M = N
NMsg4 Message 4’s can be sent in one subframe if

Message 2 is not present in that subframe. On the other hand,
when a Message 2 is also sent in a subframe then at most
m = N−NMsg2

NMsg4 Message 4’s can be sent in that subframe.
Although the parameters N , NMsg2 and NMsg4 are more
relevant from the system deployment point of view, our model
is greatly simplified when we use the derived parameters M
and m.

This messaging scheme is demonstrated in Figure 1. In
addition, the (model) parameters introduced in this section are
summarized in Table I including a set of typical values for the
FDD LTE [17, Table 6.2.2.1.1], where N = 16, NMsg2 = 4,
NMsg4 = 4 which leads to M = 16

4 = 4 and m = 16−4
4 = 3.

Message 4

Message 3

Message 2

UE eNodeB

Message 1

Fig. 1: Message sequence in LTE random access.

III. PERFORMANCE OF THE RANDOM ACCESS PROCEDURE

We explore the performance of the random access procedure
described in the previous section by modeling and analyzing
its success (or failure) probability. To simplify the analysis,
we assume that no other traffic except this random access
traffic is present in the network. We consider a steady-state
traffic scenario where new (i.e., fresh) random access requests
arrive according to a Poisson process with a constant rate
λ (new requests per subframe). This can be interpreted as a
traffic model where the requests are generated independently
by a large population of asynchronous M2M devices. Similar
scenarios with thousands of devices accessing the system are
considered realistic in 3GPP studies, see [4], [17]. If a random
access request fails, it needs to be retransmitted again later
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on. Whenever the station makes an access request (fresh or
retransmission), the preamble is selected randomly among the
K available ones [19].

Our purpose is to determine the maximum throughput θ∗

(successful requests per time unit) of the system. In addition,
we study the behavior of the failure probability (and its
components described below) as a function of the arrival rate
λ of fresh requests.

A random access request may fail due to collision in Step 1
when two or more UEs choose the same preamble. It may
also fail due to loss in Step 2 when the number of chosen
preambles exceeds the maximum number of UL grants. Here
we assume that the excess requests are not buffered but lost.
This is reasonable as the UE is expecting a response typically
in 5 ms [17] which is of the same order as the interval
between transmission opportunities (recall our parameter b).
Thus, there is no time for the base station to start buffering
the requests from Step 1 to be sent in subsequent time slots.
If the Message 2 timer expires, the UE will anyway perform a
backoff and eventually makes a retry, see [19]. While Step 3
does not generate any new access failure causes for requests
successful in steps 1 and 2, we still have to take into account
the final step. Message 2’s and Message 4’s share the same
resources in the PDCCH. But due to a more strict constraint
on the return time of Message 2’s (5 ms in [17]), we assume
that they get the absolute priority over the resource, see also
[16]. Only what remains of the resource is then allocated to
Message 4’s, which have a more lenient time constraint (48 ms
in [17]). Thus, in order to avoid additional losses in the final
step, there must be a buffer for Message 4’s. A failure takes
place in Step 4 if the Message 4 corresponding to the original
request is delayed in the buffer beyond the threshold that
triggers the retransmission timer. Thus, the failure probability
consists of the following components:

Pr{failure} = Pr{collision in Step 1}+
Pr{no collision in Step 1, loss in Step 2}+ (1)
Pr{no failure in Steps 1 and 2, delay in Step 4}.

It should be noted here that our aim is to analyze the random
access procedure itself and therefore we ignore the effect
of physical layer impairments on different random access
messages for the sake of simplicity.

IV. DELAY MODEL FOR MESSAGE 4

In this section we develop the Markov chain model used
to describe the evolution of Message 4 buffer. The various
parameters and the variables of the model are summarized in
Table II for quick reference and described more elaborately in
the text.

We consider a discrete time model where time slots are
indexed by n. The length of one time slot in our model
corresponds to the periodicity of RACH opportunities denoted
by b, with a typical value of b = 5 subframes (cf. Table I),
which corresponds to 5 ms in absolute time units. The model
does not take into account processing delays but assumes
that a message received in a time slot generates a response

TABLE II: Summary of the symbols.

Symbol Parameter
λ Arrival rate of fresh random access requests
a Aggregate arrival rate (fresh and retransmitted) of the

random access requests
K Number of preambles
b RACH periodicity
c Maximum number of UL grants per subframe in

Message 2
M Maximum number of Message 4’s per subframe

(without Message 2’s)
m Maximum number of Message 4’s per subframe

(with Message 2’s)
N PDCCH resource size in CCEs

NMsg2 Number of CCEs used for a Message 2
NMsg4 Number of CCEs used for a Message 4
n Index of the time slot of the Markov model
Ank Number of random access requests using preamble

k
pi Pr{Ank = i} (see (2))
Y

(1)
n Number of successful Message 1’s (see (3))
Ỹ

(1)
n Total number of preambles chosen (see (4))
q
(1)
ij Pr{Y (1)

n = i, Ỹ
(1)
n = j} (see (5))

Y
(2)
n Total number of non-colliding UL grants included in

Message 2’s
Ỹ

(2)
n Total number of UL grants included in Message 2’s

(see (11))
q
(2)
ij Pr{Y (2)

n = i, Ỹ
(2)
n = j} (see (7))

q
(2)
i Pr{Y (2)

n = i} (see (8))
q̃
(2)
j Pr{Ỹ (2)

n = j} (see (9) and (10))
Xn Queue length of Message 4 buffer at the beginning

of the time slot n (see (12))
Y

(3)
n Number of successful (non-colliding) Message 3’s
Y

(4)
n Number of transmitted Message 4’s (see (13))

θ(1)(a) Throughput of successful Message 1’s per subframe
(see (14))

θ(2)(a) Throughput of successful UL grants per subframe
(see (15))

θ̃(2)(a) Throughput of all UL grants per subframe (see (19))
σ(4)(a) Average left-over capacity of Message 4’s per sub-

frame (see (20))
θ∗ Maximum throughput of Message 4’s (see (23))
a∗2 Aggregate arrival rate for which the throughput of

Message 2’s is maximum (see (18))
a∗4 Aggregate arrival rate for which the throughput of

Message 4’s is maximum (see (22))

immediately in the following time slot. Thus, for example, if
eNB receives a Message 1 in time slot n, it will reply with a
Message 2 in the following time slot n+ 1.

Consider first the random access channel used in Step 1.
For modeling its dynamics, we apply the well-known Slotted
Aloha model [7], which is based on the approximative assump-
tion that all random access requests together (not only the fresh
ones but also the retransmissions) constitute a Poisson process,
the rate of which is denoted by a (attempts per subframe).
Thus, while the effect of retransmissions on the total traffic
is taken into account, the actual retransmission mechanism
itself is not explicitly modeled. The Poisson approximation is
justified when the fresh requests arrive according to a Poisson
process, they do not fail too frequently, and in the event of fail-
ure, the retransmissions are sufficiently randomized, i.e., the
intervals between successive retransmissions are sufficiently
long relative to the time slot duration. As already mentioned,
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our scenario of a large population of asynchronous M2M
devices allows us to model the arrival process of fresh requests
as a Poisson process. Furthermore, as we will see, our 4-step
model allows lower traffic rates than the corresponding Slotted
Aloha system, and the failure probability remains very small
unless the system is operated in close proximity of its stability
limit. According to LTE specifications, the Backoff Parameter,
which gives an upper limit for the retransmission intervals, can
be as high as 960 ms [20]. Moreover, the two retransmission
timers in LTE even seem to help (rather than hinder) to
make the retransmissions sufficiently random. This logical
reasoning for the justification of the Poisson approximation is
complemented by a simulation study presented in Appendix B.

Also, as discussed earlier, in LTE actually K parallel Aloha
channels are used and each time a device makes a retransmis-
sion the preamble is selected randomly. This randomization
further helps in mixing the fresh random access requests
together with the retransmission attempts.

In addition, it is good to notice that the input parameter of
the model is not λ, the rate of fresh requests per subframe, but
a, the aggregate rate of all requests. In the following section,
we will first explain how the throughput θ of successful
requests can be determined from the model as a function of a
whenever the system is stable. In addition, we give a necessary
and sufficient condition for stability. Thereafter we utilize the
fact that, in any stable system, the average input rate must be
the same as the average output rate, which implies that the
arrival rate λ of fresh requests is equal to the throughput θ
of successful requests whenever the system is stable. This is
how we get the functional relationship between the aggregate
request rate a and the arrival rate λ of fresh requests.

Now let Ank denote the total number of random access
requests with preamble k (including both the new ones and
the retransmissions) in time slot n. Since the aggregate stream
of requests (including the fresh ones and the retransmissions)
is assumed to follow a Poisson process and the preambles are
chosen independently from the uniform distribution, the Ank

are IID random variables obeying a Poisson distribution with
mean ab/K and point probabilities

pi(a) := Pr{Ank = i} =
(ab/K)i

i!
e−ab/K , i ≥ 0. (2)

This is an immediate consequence of the so called splitting
property of the Poisson process, see, e.g., Proposition 6.7 in
[21] or Proposition 2.3.2 in [22].

Now define

Y (1)
n := #{k : Ank = 1, k = 1, . . . ,K}, (3)

Ỹ (1)
n := #{k : Ank ≥ 1, k = 1, . . . ,K}, (4)

where Ỹ
(1)
n is referring to the total number of preambles

chosen in time slot n, and Y
(1)
n is the number of successful

(uncolliding) Message 1’s. We observe that the joint distribu-
tion of the random variables Y (1)

n and Ỹ (1)
n is as follows:

q
(1)
ij (a) := Pr{Y (1)

n = i, Ỹ (1)
n = j} =(

K

i j − i

)
pK−j0 pi1(1− p0 − p1)j−i, 0 ≤ i ≤ j ≤ K,

(5)

where we have used the multinomial coefficient defined by(
i+ j + k

i j

)
:=

(i+ j + k)!

i! j! k!

and a shorthand notation pi = pi(a).
Consider now the dynamics of Step 2. Recall (from Table I)

that c denotes the maximum number of UL grants included in a
single Message 2. There are at most b Message 2’s and, thus, at
most bc UL grants per time slot. Message 2’s in time slot n are
generated by Message 1’s of the previous time slot. Let Ỹ (2)

n

denote the total number of UL grants included in Message 2 in
time slot n, and Y (2)

n the number of successful (uncolliding)
UL grants. No losses appear in this step, Ỹ (2)

n = Ỹ
(1)
n−1 and

Y
(2)
n = Y

(1)
n−1, if the total number of preambles chosen in the

previous time slot is sufficiently small, Ỹ (1)
n−1 ≤ bc, which is

trivially true if K ≤ bc. But if Ỹ (1)
n−1 > bc, then losses happen

so that Ỹ (2)
n = bc. We assume that the preambles that are

given a UL grant in the latter case are chosen randomly by
eNB. Thus, we have (for the non-trivial case K > bc)

q
(2)
ij (a) := Pr{Y (2)

n = i, Ỹ (2)
n = j} = (6)

q
(1)
ij (a), 0 ≤ i ≤ j < bc,
K∑

k=bc

k∑
`=i

q
(1)
`k (a)

(
`
i

)(
k−`
bc−i

)(
k
bc

) , 0 ≤ i ≤ j = bc,
(7)

with the following marginal distributions

q
(2)
i (a) := Pr{Y (2)

n = i} =

bc∑
j=i

q
(2)
ij (a), 0 ≤ i ≤ bc, (8)

q̃
(2)
j (a) := Pr{Ỹ (2)

n = j} =

j∑
i=0

q
(2)
ij (a), 0 ≤ j ≤ bc. (9)

By utilizing the definition of q(2)ij (a), we easily find that

q̃
(2)
j (a) =


(
K

j

)
p0(a)K−j(1− p0(a))j , 0 ≤ j < bc,

K∑
`=bc

(
K

`

)
p0(a)K−`(1− p0(a))`, j = bc.

(10)

Thus, we have the following representation:

Ỹ (2)
n = min{B(a), bc}, (11)

where B(a) is a binomially distributed random variable with
parameters K and 1− p0(a).

In Step 3, the collisions (originally due to Step 1) are
realized. Those Message 3’s in time slot n that are generated
by unsuccessful UL grants conveyed in the Message 2’s of the
previous time slot are colliding in this step. Clearly we have
Y

(3)
n = Y

(2)
n−1, where Y (3)

n denotes the number of successful
Message 3’s in time slot n.

Consider finally the dynamics of Step 4. New Message 4’s
in time slot n are generated by successful Message 3’s of the
previous time slot. Recall (from Table I) that M denotes the
maximum number of Message 4’s per subframe. Thus, at most
bM Message 4’s can be carried in a single time slot. Recall
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also that the maximum number (per subframe) is reduced from
M to m if there is a Message 2 in the corresponding subframe.
On the other hand, there may be at most c successful Messages
3’s per subframe. Now we have to consider two different cases
separately.

1) If c ≤ m, then all new Message 4’s in time slot n are
transmitted immediately in the same time slot, implying that
the retransmission timer is never triggered due to delay,

Pr{no failure in Steps 1 and 2, delay in Step 4} = 0.

2) On the other hand, if c > m, then it is not guaranteed that
all new Message 4’s can be delivered in a time slot. Thus, in
this case, a buffer is needed for Message 4’s in order to avoid
additional losses.

Assume now that c > m, and let Xn denote the number
of buffered Message 4’s in the beginning of time slot n. The
evolution of Xn is as follows:

Xn+1 = Xn − Y (4)
n + Y (3)

n = Xn − Y (4)
n + Y

(2)
n−1. (12)

Here Y (4)
n denotes the number of transmitted Message 4’s in

time slot n,

Y (4)
n = min

{
Xn, bM −

⌈
Ỹ (2)
n /c

⌉
(M −m)

}
. (13)

Note that the expression

bM −
⌈
Ỹ (2)
n /c

⌉
(M −m)

on the right hand side refers to the leftover PDCCH service
capacity for Message 4’s in time slot n.

We observe that (Xn, Y
(3)
n ) is an irreducible and aperiodic

two-dimensional Markov chain with state space

E = {0, 1, . . .} × {0, 1, . . . , bc}.

Equation (12) describes the evolution of the first component,
while the second one is independent of the previous state of
the process,

Y
(3)
n+1 ⊥⊥ (Xn, Y

(3)
n ),

from which the Markov property can be verified. Irreducibility
(under assumption c > m) and aperiodicity follow easily from
the construction.

To summarize, when c > m, Message 4’s form a queue,
and unlike in the previous case we get a nonzero probability
of a failure due to queuing delay in Step 4. This probability
can be calculated numerically as described later in Section VI.

V. STABILITY AND THROUGHPUT ANALYSIS

In this section we consider the stability of our buffer model.
If the system is stable, the buffer for Message 4’s does not
“explode” and, as already explained in the previous section,
the throughput θ of successful requests must be equal to the
arrival rate λ of fresh requests. Thus, our purpose is first to
find conditions for stability in terms of the total traffic a,
and then to determine the throughput of successful requests,
θ(a), as a function of a, as well as the maximum throughput
θ∗ = maxa θ(a). In order to simplify notation, we assume
throughout this section that K > bc. The generalization to the
case K ≤ bc is straightforward.

Recall that we apply the well-known Slotted Aloha model
[7] for the random access channel used in Step 1. Thus, the
throughput (per subframe) of successful Message 1’s as a
function of a, the arrival rate of all random access requests
per subframe, is given by

θ(1)(a) = E[Y (1)
n ]/b = a e−ab/K . (14)

The maximum throughput in Step 1 is achieved when ab
equals the number of available preambles,

max
a

θ(1)(a) = θ(1)(K/b) = (K/b) e−1 ≈ (K/b) · 0.368,

which puts an upper limit for the throughput θ of successful
requests, as well as for the arrival rate λ of fresh requests.
For greater values of λ, the performance of the random access
channel collapses. With the parameter values given in Table I,

max
a

θ(1)(a) = 3.973 requests/ms.

Let us then consider the throughput in Step 2. Since K > bc,
the throughput is further reduced by the limited number of
UL grants in Message 2. The throughput (per subframe) of
successful UL grants as a function of a is clearly

θ(2)(a) = E[Y (2)
n ]/b =

1

b

bc∑
i=1

iq
(2)
i (a), (15)

where q
(2)
i (a) is defined in (8). With the parameter values

given in Table I (including c = 3), we have, after a numerical
optimization of (15) with respect to a, the maximum through-
put in Step 2 as follows:

max
a

θ(2)(a) = 2.377 requests/ms.

Note from (15) that, for all a,

θ(2)(a) < c, (16)

implying that
max

a
θ(2)(a) ≤ c. (17)

On the other hand, since θ(2)(a) is continuous satisfying
θ(2)(a) ≤ θ(1)(a) for all a, and θ(1)(a) is bounded with limits
θ(1)(a) → 0 for a → 0 and a → ∞, there is a∗2 < ∞ such
that

θ(2)(a∗2) = max
a

θ(2)(a) ≤ max
a

θ(1)(a) = (K/b) e−1. (18)

Part of the resources in Step 2 are, however, wasted by
colliding UL grants. Let θ̃(2)(a) denote the throughput (per
subframe) of all UL grants as a function of a,

θ̃(2)(a) = E[Ỹ (2)
n ]/b =

1

b

bc∑
j=1

jq̃
(2)
j (a). (19)

The remaining part of the downlink control channel resources
are available for Message 4’s. The average leftover service
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capacity (per subframe) for Message 4’s in time slot n is given
by

σ(4)(a) = E
[
bM −

⌈
Ỹ (2)
n /c

⌉
(M −m)

]
/b =

m+ (M −m)

q̃(2)0 (a) +

b−1∑
i=1

i

b

(b−i)c∑
j=(b−i−1)c+1

q̃
(2)
j (a)

 .

(20)

where q̃(2)j (a) is defined in (9). Note that we clearly have

σ(4)(a) ≥ m. (21)

Below we give a necessary and sufficient condition for the
stability of the Message 4 buffer, which is the main theoretical
result of the paper. For clarity, we have placed the proof in
Appendix.

Proposition 1: The buffer for Message 4’s is stable if and
only if

θ(2)(a) < σ(4)(a).

If the buffer is stable, the throughput of successful requests,
θ(a), is clearly equal to θ(2)(a). Define now

a∗4 = sup{a ≤ a∗2 : θ(2)(a) < σ(4)(a)}. (22)

As a direct corollary of Proposition 1, we get the following
result.

Corollary 1: The throughput of successful requests is given
by

θ(a) = θ(2)(a)

for all a < a∗4, and the maximum throughput by

θ∗ = θ(2)(a∗4). (23)

In addition, we recall from the previous section that the
arrival rate λ of fresh requests is equal to the throughput θ of
successful requests whenever the system is stable. Thus, for
all a < a∗4,

λ(a) = θ(2)(a).

VI. PERFORMANCE ANALYSIS METHODOLOGY

In this section, we describe how we use the delay model
to determine the performance of the system. The evaluation
can only be done numerically and it depends on the following
functions θ(1)(a), see (14) , θ(2)(a), see (15), θ̃(2)(a), see
(19) and σ(4)(a), see (20). These in turn depend on further
definitions given in Section IV. Note that our table of symbols
and definitions, Table II, also provides references to the
equations characterizing our derived quantities. We start by
describing the evaluation of the maximum throughput θ∗ and
then continue with determining the failure probability and its
various components.

A. Determining the maximum throughput θ∗

Consider first the maximum throughput θ∗, which can be
thought as the capacity of the system. Functions θ(2)(a) and
σ(4)(a) are clearly continuous satisfying

lim
a→0

θ(2)(a) = 0 < M = lim
a→0

σ(4)(a).

While not at all easy to prove, it is, however, intuitively clear
that θ(2)(a) is an increasing function for all a < a∗2 and it
intersects with the decreasing function σ(4)(a) at most once
in the interval a ∈ [0, a∗4]. If there is no intersection, then
there is no stability issue (of the Message 4 buffer) and the
maximum throughput is determined by Step 2,

θ∗ = θ(2)(a∗2) = max
a

θ(2)(a).

The situation is illustrated in Figure 2, where we have plotted
functions θ(1)(a), θ̃(2)(a), θ(2)(a), and σ(4)(a) with the (basic)
parameter values given in Table I. Note that for these values
c ≤ m so that there will be no queue at all in the Message 4
buffer. As already mentioned in the previous section, the
maximum throughput is

θ∗ = 2.377 requests/ms,

which is also visible from Figure 2.
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=a4
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0 2 4 6 8 10 12

1

2

3

4

a

b = 5, c = 3, M = 4, m = 3

Fig. 2: Illustration of the throughput curves (in different steps)
and the maximum throughput θ∗ in the case where θ(2)(a) and
σ(4)(a) do not intersect. The parameter values are taken from
Table I.

On the other hand, if curves θ(2)(a) and σ(4)(a) intersect,
then the maximum throughput is equal to the stability limit of
the Message 4 buffer,

θ∗ = θ(2)(a∗4) = σ(4)(a∗4). (24)

Figure 3 gives an example of this situation. The parameters
used in this case are otherwise the same as in the previous
figure but now c = 6 (instead of c = 3) so that there are
more UL grants in Step 2, which makes the stability of the
Message 4 buffer an issue. With these parameter values, the
maximum throughput is

θ∗ = 3.225 requests/ms,

which is calculated by numerically solving (24), where θ(2)(a)
is defined in (15) and σ(4)(a) in (20). The numerical result
can also be verified by the figure.
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Fig. 3: Illustration of the throughput curves (in different steps)
and the maximum throughput θ∗ in the case where θ(2)(a) and
σ(4)(a) intersect. The parameter values are otherwise the same
as in Figure 2 but now c = 6 (instead of 3).

B. Determining the failure probability

In addition to the maximum throughput, we are interested in
determining the failure probability as a function of the arrival
rate λ of fresh requests. Recall from (1) that

Pr{failure} = Pr{collision in Step 1}+
Pr{no collision in Step 1, loss in Step 2}+
Pr{no failure in Steps 1 and 2, delay in Step 4},

The first two probabilities on the right hand side are clearly
given by the following equations:

Pr{collision in Step 1} = 1− θ(1)(a)

a
,

Pr{no collision in Step 1, loss in Step 2} =

θ(1)(a)

a

(
1− θ(2)(a)

θ(1)(a)

)
=
θ(1)(a)− θ(2)(a)

a
.

The third one satisfies

Pr{no failure in Steps 1 and 2, delay in Step 4} =

Pr{no failure in Steps 1 and 2}×
Pr{delay in Step 4 | no failure in Steps 1 and 2}

with

Pr{no failure in Steps 1 and 2} =
θ(2)(a)

a
.

If c ≤ m, then we know (from Section IV) that

Pr{delay in Step 4 | no failure in Steps 1 and 2} = 0.

However, if c > m, we do not have any explicit expression
for the conditional probability

Pr{delay in Step 4 | no failure in Steps 1 and 2},

but we resort to simulations of the two-dimensional Markov
chain (Xn, Y

(3)
n ). In this way, we get an estimate of the

conditional probability for any fixed total rate a.

TABLE III: Different scenarios used in the numerical studies.
Note that P0 is the basic scenario that is taken from [17] and
also mentioned in Table I.

Scenario b c M m NMsg2 NMsg4 N
P0 5 3 4 3 4 4 16
P1 5 6 4 3 4 4 16
P2 5 3 4 2 8 4 16
P3 5 6 4 2 8 4 16
P4 5 3 2 1 8 8 16
P5 5 6 2 1 8 8 16
P6 1 3 4 3 4 4 16
P7 1 6 4 3 4 4 16

In the final step, we determine the corresponding arrival rate
λ of fresh requests from the equation below,

λ(a) = θ(2)(a), (25)

which is valid whenever the system is stable as explained in
the previous section. By utilizing its inverse function a(λ),
we are finally able to express the failure probability and
its components as a function of the arrival rate λ of fresh
requests.

VII. NUMERICAL RESULTS

In this section we illustrate the properties of our model
through numerical examples. First we observe how the maxi-
mum throughput behaves when the parameter c, which is the
maximum number of uplink grants in Message 2, is varied.
Then we study the queuing behavior of the Message 4 buffer.
In addition, we analyze various components of the random
access failure probability with varying traffic load. We then
provide a method to estimate the maximum number of users
that can exist in a cell based on traffic models presented in
[17] and finally dimension the PDCCH resource to sustain
such traffic.

For the numerical study, we make use of various sce-
narios formed by different combinations of the parameters
b, c,M and m provided in Table III. In every scenario we have
a total of K = 54 preambles available for the contention based
random access, and in every subframe N = 16 CCEs are used
in the PDCCH for purposes of random access (i.e., sending
Message 2’s and Message 4’s). Scenario P0 is the basic
scenario mentioned in the “Typical value” column of Table I.
An equivalent parameter set is considered in the RAN overload
study [17] by 3GPP. In Scenario P1 we assume c = 6 UL
grants are given per Message 2 while the rest of the parameters
are the same as P1. In Scenarios P2 and P3, NMsg2 = 8
CCEs are used for a Message 2 and NMsg4 = 4 CCEs for
a Message 4, while Scenarios P4 and P5 assume that each
Message 2 and Message 4 use NMsg2 = NMsg4 = 8 CCEs.
The final two scenarios P6 and P7 are almost equivalent to
Scenarios P0 and P1, respectively, except that they consider the
random access opportunity to be available in every subframe
(rather than every 5 subframes considered in P0 and P1), i.e.,
b = 1 is assumed in these two final scenarios.

A. Maximum throughput θ∗

From Figures 2 and 3 we observe that the maximum
throughput, θ∗, clearly increases with c, the number of UL
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grants in Message 2. Maximum throughput is calculated
according to Corollary 1 as explained in detail in Section VI-A.
Clearly, as c increases, more and more UL grants can be sent
in Message 2 of the first subframe (out of b), freeing up the
resources to send the Message 4’s in the later subframes. Since
the number of PDCCH resources is limited, this growth cannot
continue indefinitely, and in the limit c → ∞, the maximum
throughput approaches a value which is approximately equal
to M − (M −m)/b, as can be observed from Figure 4.

Intuition behind this approximate limit is as follows. As-
sume that b is sufficiently small so that the bottleneck of
the whole system is due to competition of common PDCCH
resources between Message 2’s and Message 4’s. Now, when
c→∞, all the UL grants (if any) related to a single time slot
can be sent in Message 2 of the first subframe (out of b). Thus,
there are typically m Message 4’s in the first subframe and
M Message 4’s in the remaining b− 1 subframes of the time
slot in consideration so that the total number of Message 4’s
per subframe is approximated by

1

b
(m+ (b− 1)M) = M − M −m

b
.
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P4êP5
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Fig. 4: The maximum throughput as a function of parameter
c for different scenarios. We see that the throughput increases
with c until it saturates approximately to level M−(M−m)/b
(represented by a dashed line). The values of parameters b, M ,
and m used here are taken from Table III, while parameter c
is allowed to vary.

Moreover, from Figure 4, we observe that when a large
amount of UL grants are sent in Message 2 (large c), the
parameter combination (b, M and m) of P0/P1 performs best
in terms of maximum throughput among all the scenarios
considered here. Moreover there is also an optimal trade-
off between parameters b and c. For a given value of c,
increasing b will allow us to send more uplink grants in a
time slot (less loss in Step 2) while increasing the collision
probability in Step 1. For smaller values of c (typically ≤ 5),
different scenarios give optimal performance. For example,
when M = 4 and m = 3 (scenarios P0 and P1), the optimal
maximal throughput is a function of the periodicity of the
random access opportunities, b, when the number of uplink
grants in Message 2, c, is fixed. This can be observed in
Figure 5 where we plot the maximal throughput against the
periodicity parameter, b for different values of c. In such cases

we see that the optimal b is 1 for smaller values of c. This
optimal periodicity becomes larger as we increase c.

c = 1

c = 3

c = 6
c = 15
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3.5

b

q*

Fig. 5: The maximum throughput as a function of periodicity
parameter, b, for different values of uplink grants, c, sent in
Message 2. We see that for any given c, there is an optimal
value of b for which we get the largest maximal throughput.

B. Behavior of the Message 4 queue

To study the queuing behavior of the Message 4 buffer,
the Markov chain (12) was simulated for 106 time slots for
different values of λ and for Scenarios P1–P7 (except P0 and
P6, which do not form a queue) in Table III. Note that in the
simulation, the total arrival rate a is the given parameter which
then corresponds to a certain rate of new requests λ(a) given
by (25).

The simulation results are presented in Figure 6, which
shows the mean queue length of the Message 4 buffer as
a function of λ for different scenarios. As can be seen, it
is characteristic for the system that the Message 4 queue
remains nicely under control until λ is quite close to the
stability limit, θ∗, given by (24). Intuitively, this also means
that the likelihood of a user experiencing a timeout event
due to buffering delay is very low until the load is close to
the stability limit. In the next section, we will observe the
contribution of this queuing delay in the timeout event of the
random access procedure and compare it with the other causes
of failure.

C. Contributions of various components in random access
failure

To gain further insight to what are the most likely causes
for random access failures, we look at the probabilities given
by (1). The three components of the failure probability are
depicted, on a logarithmic scale, in Figure 7 as a function
of λ for Scenario P1 (with labels “Collision in 1”, “Loss
in 2”, and “Delay in Step 4”). The failure probabilities for
collision in Step 1 and loss in Step 2 are obtained numerically
as described in Section VI-B, while the conditional probability
Pr{delay in Step 4 | no failure in Steps 1 and 2} needed for
the third component in (1) has been estimated from simulations
of the Markov chain (12) for 106 time slots. We can observe
that, even with arrival rates close to the stability limit, the
collision probability in Step 1 remains relatively low (of
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Fig. 6: Mean queue length as a function of λ for various
scenarios. The vertical dotted lines represent the stability limit,
θ∗, for each scenario. Scenarios P0 and P6 do not produce any
queue as c = m in those two cases.

the order 10−2). Also, the probability of loss in Step 2 is
considerably lower and makes no difference whatsoever in the
system. Thus, the number of preambles K is not a bottleneck
and the limitation of c is even less of a bottleneck. Ultimately,
as λ grows, the probability of failure becomes dominated by
the event that the queuing delay of Message 4 grows too large.
However, this happens in a very sharp manner close to the
stability limit. For the basic scenario, P0, we get no failures
due to delay as discussed in Section IV but we still have two
other components as demonstrated in Figure 8.
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Fig. 7: A breakdown of the failure probability (logarithmic
scale) as a function of λ for Scenario P1. The vertical dotted
line represents the maximum throughput θ∗ for the parameter
set used.

On the other hand, in Scenario P6, where a random access
opportunity is available in every subframe, a different picture
emerges (see Figure 9). Now the probability of loss in Step 2
increases more rapidly than the collision probability in Step 1.
Since no queue is formed as c = m, there is no loss due to
queuing delay. Even at a moderate arrival rate, the limitation of
the control channel resource begins to contribute to the failure
of the random access procedure more than the collisions in
Step 1. This is because very few UL grants can be sent in one
Message 2 (c = 3) and some users who were successful in
Step 1 have to be dropped in Step 2. For Scenario P7, the loss
probability in Step 2 remains below the collision probability
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Fig. 8: A breakdown of the failure probability (logarithmic
scale) as a function of λ for Scenario P0. The vertical dotted
line represents the maximum throughput θ∗ for the parameter
set used. We see that the probability of failure due to Loss in
Step 2 is considerably higher compared to that of Scenario P1.

in Step 1 while approaching it at higher arrival rates. Near
the stability limit, the delay in Step 4 again dominates the
probability of random access failure (see Figure 10).
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Fig. 9: A breakdown of the failure probability (logarithmic
scale) as a function of λ for Scenario P6. The vertical dotted
line represents the maximum throughput θ∗ for the parameter
set used. Note how the limitation of c causes the loss proba-
bility in Step 2 to increase beyond the collision probability in
Step 1 for higher arrival rates. No queue is formed in this case
as c = m so that there is no delay component in the random
access failure.

D. Estimation of maximum number of devices in a cell

From our model it is possible to estimate the maximum
number of MTC devices that can exist in a cell if the traffic
characteristic of the machines is similar to Traffic Model 1
in [17, Table 6.1.1], which assumes that there are a fixed
number, D, of devices in a cell each generating a request
for random access uniformly over a period of 60 seconds. In
our model, this corresponds to arrivals at a rate (or maximum
throughput) λ = θ∗ = D/60 000 per millisecond, where θ∗

is the maximum throughput the respective scenarios support
given by (23). Therefore the maximum number of devices can
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Fig. 10: A breakdown of the failure probability (logarithmic
scale) as a function of λ for Scenario P7. The vertical dotted
line represents the maximum throughput θ∗ for the parameter
set used.

TABLE IV: An estimate of the maximum number of devices
that can exist in a cell according to our model when the arrival
rate of the request follows Traffic Model 1 [17, Table 6.1.1].

Scenario Dmax

P0 143 000
P1 194 000
P2 132 000
P3 164 000
P4 85 000
P5 97 000
P6 166 000
P7 182 000

be estimated by the quantity 60 000·θ∗. For different scenarios,
the maximum number Dmax of such devices is tabulated in
Table IV.

We can now understand the reason for practically no losses
when there are 30 000 devices in a cell when Traffic Model 1
[17, Table 6.1.1] is used — according to our model as many
as 143 000 devices can be served and 30 000 is too small a
number to produce any kind of discernible failure. On the
other hand, when Traffic Model 2 [17, Table 6.1.1] is used,
which has an intensity six times that of Traffic Model 1 and
is more bursty in comparison, far fewer than 30 000 devices
may reliably be offered services. Clearly, we will have low
probability of random access success with this traffic if 30 000
devices are used, as is evident from the packet-level simulation
in [17, Table 6.4.1.1.1]. Thus, we can conclude that the model
can be used to make predictions about the capacity of a cell
as well.

E. Dimensioning the PDCCH resource

In this section we will demonstrate a method to dimension
the PDCCH resource to be used in a cell under the two
traffic models mentioned in [17], i.e., determine the minimum
number of CCEs, Nmin, that is necessary for the system to
operate properly under these two traffic models for scenarios
P0–P7. More specifically, we fix the parameters b, c,NMsg2

and NMsg4 and determine the values of N (and consequently
those of M and m as well) for different scenarios that will

TABLE V: PDCCH resource size in CCEs needed to support
Traffic Model 1 [17, Table 6.1.1].

Scenario M m NMsg2 NMsg4 Nmin

P0 1 0 4 4 4
P1 1 0 4 4 4
P2 2 0 8 4 8
P3 2 0 8 4 8
P4 1 0 8 8 8
P5 1 0 8 8 8
P6 1 0 4 4 4
P7 1 0 4 4 4

TABLE VI: PDCCH resource size in CCEs needed to support
Traffic Model 2 [17, Table 6.1.1].

Scenario M m NMsg2 NMsg4 Nmin

P0 − − − − −
P1 4 3 4 4 16
P2 − − − − −
P3 6 4 8 4 24
P4 − − − − −
P5 4 3 8 8 32
P6 − − − − −
P7 4 3 4 4 16

allow them support the traffic models described in [17].
In Traffic Model 1 30 000 devices make random access

attempts uniformly over a 60 second period. This means that
a maximum throughput of θ∗ = 30 000

60 sec = 0.5 requests per
subframe should be supported. In Table V, we show the
minimum number of CCEs necessary to sustain at most 30 000
devices. In summary, in scenarios P0 and P1 we need just
Nmin = 4 CCEs in the PDCCH to send Message 2’s and
Message 4’s. In P2, P3, P4, and P5 a minimum of Nmin = 8
CCEs is sufficient in the PDCCH for sending Message 2’s and
Message 4’s. In the final two scenarios P6 and P7, where we
have a random access opportunity in every subframe (b = 1),
we again need a minimum of Nmin = 4 CCEs to sustain the
arrival rate described in Traffic Model 1. It should be noted
that in all our scenarios at least 4 or 8 CCEs are necessary
to send each Message 2 or Message 4, which constrains the
choice of these minimum number of necessary CCEs to be the
multiples of 4 or 8.

The arrival rate is six times higher in Traffic Model 2
compared to the first. Under these conditions, a maximum
throughput of θ∗ = 30 000

10 sec = 3.0 arrivals per subframe should
be supported by the system. From (15), we see that with
c = 3, this throughput is never achieved making it impossible
for scenarios P0, P2, P4 and P6 to sustain the arrival rate
described in Traffic Model 2 with any number of CCEs. In
P1, P3, P5 and P7, where c = 6 uplink grants are provided
in a Message 2, we require N to be at least 16, 24, 32 and
16, respectively to sustain the traffic. The results for Traffic
Model 2 are summarized Table VI.

VIII. CONCLUSIONS

The PDCCH of LTE may become a bottleneck when a very
large number of devices want access to the network. We have
presented a Markov chain model to describe the sharing of
the PDCCH resources between Message 2’s and Message 4’s.
Using the model we have calculated the contribution of
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various events in the random access procedure’s failure. In
addition, we have derived a method to determine the maximum
throughput of the system, which reveals the upper limit for the
arrival rate of fresh random access requests. This method is
then used to dimension the PDCCH resource size to support
the traffic models studied by 3GPP in [17].

We have observed that near the stability limit, the proba-
bility of failure increases very sharply. Indeed, it is easy to
see that by admitting more users to the system in Step 2,
the capacity (measured by the maximum throughput) of the
random access channel can be modestly increased. However,
this also increases the probability of the random access failure
due to a large queuing delay in the Message 4 buffer. This
is because the size of the PDCCH resource is fixed and
Message 2’s always have priority over Message 4’s. Moreover,
using our model we are also able to predict the maximum
number of devices that can exist in a cell under uniform traffic
conditions. Analysis also shows that reducing the number of
CCEs in each Message 2 or Message 4 increases the capacity
of the random access channel but the behavior of the queue
near the stability limit remains more or less the same. So
limiting the arrival rates by some kind of admission control is
necessary to manage this overload.

Our model can be extended to study the realization of col-
lision in Step 1 of the random access procedure including the
impact of the capture effect. These extensions will, no doubt,
give better performance bounds but it remains to be seen how
much improvement can they really offer. Additionally, the
impact of physical layer impairments on the random access
procedure can be studied by modifying the model, e.g., by
explicitly taking into account the retransmission mechanism
and fading effects. As a part of future work, we can also study
the impact of sending further messages in the PDCCH after the
random access procedure is finished. Moreover, techniques like
enhanced PDCCH have been proposed by 3GPP to overcome
the overload issues of PDCCH which can also be a subject of
further study.

APPENDIX A
PROOF OF PROPOSITION 1

Here we give the proof for the necessary and sufficient
condition for the stability of the Message 4 buffer.

Proposition 1: The buffer for Message 4’s is stable if and
only if

θ(2)(a) < σ(4)(a).

Proof: a) Assume first that c ≤ m. Then we know from
the previous section that there will be no queue at all in the
Message 4 buffer (which, of course, is one form of stability).
On the other hand, we have in this case

θ(2)(a) < c ≤ m ≤ σ(4)(a)

by (16) and (21). So the claim is true whenever c ≤ m.
b) Assume now that c > m, and consider the Markov chain

(Xn, Y
(3)
n ) defined on

E = {0, 1, . . .} × {0, 1, . . . , bc}.

The buffer for Message 4’s is stable if and only if this
irreducible and aperiodic Markov chain is positive recurrent,
i.e., there is a unique steady-state distribution

πij = lim
n→∞

Pr{Xn = i, Y (3)
n = j}.

Now, depending on a, we have two cases to consider:
1◦ θ(2)(a) < σ(4)(a) and 2◦ θ(2)(a) ≥ σ(4)(a).

1◦ Assume first that a is such that

θ(2)(a) < σ(4)(a), (26)

and define δ = b(σ(4)(a) − θ(2)(a)) > 0. For any (i, j) ∈ E ,
we have

E[Xn+1 + Y
(3)
n+1|Xn = i, Y (3)

n = j]

= E[Xn − Y (4)
n + Y (3)

n |Xn = i, Y (3)
n = j] + E[Y

(3)
n+1]

≤ E[Xn + Y (3)
n |Xn = i, Y (3)

n = j] + E[Y (2)
n ]

= i+ j + bθ(2)(a)

= i+ j − δ(1− ε),

where ε = bσ(4)(a)/δ. In addition, for any (i, j) ∈ E such
that i > bM , we have

E[Xn+1 + Y
(3)
n+1|Xn = i, Y (3)

n = j]

= E[Xn − Y (4)
n + Y (3)

n |Xn = i, Y (3)
n = j] + E[Y

(3)
n+1]

= i−E
[
bM −

⌈
Ỹ (2)
n /c

⌉
(M −m)

]
+ j + E[Y (2)

n ]

= i− bσ(4)(a) + j + bθ(2)(a)

= i+ j − δ.

Thus the non-negative function V defined on E by

V (i, j) = (i+ j)/δ

satisfies Foster’s criterion:

E[V (Xn+1, Y
(3)
n+1)− V (i, j)|Xn = i, Y (3)

n = j]

≤ −1 + ε 1F (x),

where F is the finite set

F = {0, 1, . . . , bM} × {0, 1, . . . , bc},

and 1F (x) = 1 if x ∈ F , otherwise 0. It follows from Foster’s
Theorem (see e.g. [23]) that the Markov chain (Xn, Y

(3)
n ) is

positive recurrent under condition (26).
2◦ Assume now that a is such that

θ(2)(a) ≥ σ(4)(a). (27)

For any (i, j) ∈ E , we have

E[|Xn+1 + Y
(3)
n+1 − i− j| |Xn = i, Y (3)

n = j]

= E[| − Y (4)
n + Y

(3)
n+1| |Xn = i, Y (3)

n = j]

≤ E[bM + Y
(3)
n+1|Xn = i, Y (3)

n = j]

= bM + E[Y (2)
n ] = b(M + θ(2)(a)).

Thus,

sup
(i,j)∈E

E[|V (Xn+1, Y
(3)
n+1)−V (i, j)| |Xn = i, Y (3)

n = j] <∞,
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where V is now defined on E by

V (i, j) = i+ j.

In addition, as shown in 1◦, we have, for any (i, j) ∈ E such
that i > bM ,

E[Xn+1 + Y
(3)
n+1 − i− j|Xn = i, Y (3)

n = j]

= b(θ(2)(a)− σ(4)(a)),

implying, by (27), that

E[V (Xn+1, Y
(3)
n+1)− V (i, j)|Xn = i, Y (3)

n = j] ≥ 0

for all x ∈ E \ F , where the finite set F is defined as in 1◦.
These conditions together are sufficient (see e.g. [23]) to show
that the Markov chain (Xn, Y

(3)
n ) is not positive recurrent

under condition (27).

APPENDIX B
SIMULATION STUDY ON THE POISSON APPROXIMATION

Recall that due to a large number of machines making
independent random access attempts, we assume that the fresh
requests arrive according to a Poisson process with an average
of λ arrivals per ms. Here we examine, through simulations,
the accuracy of our Poisson approximation, which states that
the aggregate random access requests (the fresh ones as well
as the retransmissions) constitute, approximately, a Poisson
process. The simulator mimics the four-step random access
procedure in an LTE system and explicitly takes into account
a backoff algorithm, which was not directly considered in the
model presented in Section IV and the subsequent analyses.
This mechanism handles the backoffs which may be caused
by one of three events — if there is a collision in Step 1
(realized only in Step 3), or if there is a loss in Step 2, or if
the delay is beyond the acceptable limit in Step 4 as explained
in Section III. More specifically, if a fresh request fails (due
to any one of the three events described earlier), our simulator
models the backoff mechanism by assigning some probability
of retransmission, PReTx, to that request. This means that such
backlogged users will make an attempt for retransmission in
the subsequent RACH opportunities with probability PReTx.
After the first failure, a maximum of Nmax − 1 more retrial
attempts can be made to send Message 1 until the attempt is
successful. If the request is not successful even after Nmax

attempts, the request is dropped.
We work at the granularity of time slots of length b =

5 ms. A random access request will backoff immediately if it
does not receive a Message 2 in the following time slot (loss
in Step 2). A backoff due to collision in Step 1 occurs 10
time slots after the corresponding Message 3 is sent (collision
in Step 1, realized in Step 3). A request queued up in the
Message 4 buffer (and not yet sent) enters the backoff state
if the corresponding Message 3 was sent 10 time slots earlier
(delay in Step 4). Note that 10 time slots correspond to a time
of 50 ms, which is close to the timer value of 48 ms used
in [17].

The base station has a wide range of choices for Backoff
Parameter values [20, Table 7.2-1]. After a failed transmission
attempt, a user will uniformly select a time between 0 and the

Backoff Parameter, TB, to remain in the backoff state. This
means that if TB = 20 ms (as done in [17, Table 6.2.2.1.1]), a
retransmission attempt is made by such a user, on the average,
after T̄B = 10 ms (i.e, after two time slots in our simulation
model) and a probability of retransmission PReTx = b/T̄B =
5/10 = 0.5 can be assigned to all backoff users. Similarly,
if the TB = 160 ms (which is also possible according to [20,
Table 7.2-1]), a retransmission takes place after of T̄B = 80 ms
in average, making PReTx = b/T̄B = 5/80 = 0.0625. As the
upper bound for the number of trials, we use Nmax = 10 (as
in [17, Table 6.2.2.1.1]) but also Nmax = 5 to see how varying
the maximum number of trials affects the distribution of the
aggregate number of random access requests.

Numerical results

We have run simulations for Scenario P1 described in Table
III, where the different parameter values used are b = 5 ms,
c = 6, M = 4, and m = 3. The additional parameters for the
simulation are Nmax and PReTx. Recall that the highest rate of
fresh arrivals (λ) that this scenario can support is θ∗ = 3.225
requests per ms as observed from Figure 3 and the discussion
preceding it. To be as exhaustive as possible, we run the
simulation for three traffic conditions — low traffic (λ = 1.0),
medium traffic (λ = 2.0), and high traffic (λ = 3.0), where
all the arrival rates are expressed per ms. Each simulation run
consists of 100 000 time slots.

We first present the results for the case where PReTx =
1/2 = 0.5 and Nmax = 10. In Figure 11 (and all the
subsequent ones), we have plotted the empirical distribution of
the aggregate number of all random access requests arriving
in a time slot as the bar chart and overlayed it with the
probability mass function of the Poisson distribution with the
mean ab predicted from the theoretical model presented in the
paper. Recall that a refers to the aggregate arrival rate of all
random access requests (per ms). We see that for all the three
traffic conditions, the empirical distribution is very close to the
corresponding theoretical Poisson distribution. The empirical
aggregate request rate âb is also very close to the predicted
value ab as shown in Table VII.

As expected, for low and medium arrival rates the empirical
distribution is very close to a Poisson distribution. However,
the empirical distribution bears a striking resemblance to a
Poisson distribution even at heavy traffic (close to the stability
limit θ∗). Similarly, if we reduce the value of Nmax to 5,
hardly any change is noticed in the empirical distribution. This
can be seen in Figure 12. In addition, if we use a longer
Backoff Parameter of 160 ms, corresponding to PReTx =
1/16 = 0.0625, we notice that the distributions are even
closer to a Poisson distribution as observed from Figure 13.
Moreover, the Backoff Parameter can be as high as 960 ms, in
which case PReTx = 1/96 ≈ 0.010, which helps to make the
empirical distribution even closer to the Poisson distribution.
In summary, we can say that the distribution for the aggregate
number of all random access requests may be approximated
by a Poisson distribution.
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TABLE VII: The predicted value of ab and the corresponding empirical value âb obtained from simulations for different values
of parameters λ, PReTx, and Nmax.

âb
λ ab PReTx = 0.5, Nmax = 10 PReTx = 0.5, Nmax = 5 PReTx = 0.0625, Nmax = 10
1.0 5.54 5.54 5.65 5.53
2.0 12.64 12.67 12.65 12.63
3.0 22.94 23.07 22.86 23.00
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Fig. 11: Empirical distribution of Message 1 when PReTx = 0.5 and Nmax= 10
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Fig. 12: Empirical distribution of Message 1 when PReTx = 0.5 and Nmax= 5
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Fig. 13: Empirical distribution of Message 1 when PReTx = 0.0625 and Nmax= 10
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