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Abstract

Few studies have been done on the performance analysis of peer to peer (P2P)
file sharing systems. They are limited to modelling the systems where the service

time is exponentially distributed. In this special assignment, the effect of other
service time distributions such as Erlang-2 and hyper-exponential-2 distribution

in addition to the exponential distribution on the performance P2P system is
studied. The different service time distributions model the kind of service the
peers experience in a particular P2P system. A tandem queue consisting of

two queues is considered to model the system under study. Although most of
the P2P applications employ multiple chunks in file sharing, one chunk model is

considered here for its simplicity. This model is first analyzed using deterministic
fluid model. A more detailed analysis is done using the Markov chain analysis.

The study also takes into account the stability of the system in relation to the
arrival and departure rates of the peers. The simulations are performed finally

which verify the analytical results.
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1 Introduction

P2P file sharing systems and other applications using P2P mechanism for services are
producing significant volume of Internet traffic. Studies and measurements have shown
that P2P traffic in the Internet accounts for 40% to 80% depending upon the region
of observation. This has been due to the rapid development of P2P systems in the
last decade. Although Napster, Gnutella and Kazaa were the popular systems during
early 2000, eDonkey, BitTorrent and its variants have attracted large number of users
in recent years [1][2].

With the increase in bandwidth accessible to the user, P2P systems’ uses are no
longer limited to the sharing of delay-tolerant files. Recently many multimedia stream-
ing web applications such as Youtube and JumpTV have been successful in attracting
huge amount of users. These systems are based on the client/server architecture where
the servers unicast the content to the users of the service. Thus, they do not scale
well as the number of users increases and require server replication to get around the
problem of scalability. This has motivated the application of P2P technology for the
delivery of real time content such as streaming video, audio files and video on demand
which is evident in few of the already developed systems such as Sopcast [3].

Although the implementation of protocol may vary from one to another, all the
P2P systems have the inherent property of allowing the users to obtain and distribute
a resource (file) in a cooperative manner. For using the service of the system, each
participating peer contributes to the system. In traditional file sharing applications
where a client requests a file from a server (eg: FTP server), an increasing number of
requests from new clients deteriorates the service that can be dispatched by the server.
However, in a P2P system, more users joining the system means more resources being
available to the other participating peers and hence contributing to the scalability of
the system.

The other main difference between the client/server system and P2P system is that
while a client downloads from the same server in the client/server system, a peer may
be downloading from any other peer which is present in the system at that time. The
presence of a peer in the system is not permanent. The peer may leave the system
while the other peer is being served by it. In that case, the downloading peer seeks to
download from the other peers which have the resource it was downloading from the
peer which just left the system. But in a client/server system, the server is assumed
to be present permanently and if somehow the sever is not reachable, the service is
unavailable.

File sharing protocols such as used by BitTorrent divide a file to be shared into
multiple parts known as chunks. The peers download the chunks which they do not
have yet and upload the chunks they already have with other peers [4]. Considerable
work has been done in understanding system design and traffic measurement of popular
P2P systems such as in [5]. Effort has been going on now in studying the performance
issues such as the download time, file availability, lifetime of the file sharing process
and the performance of P2P system with multiple chunks [6][7][8].

The performance parameters of a P2P system, among other things, are affected
by the distribution of the arriving customers, the service time distribution and the
lifetime of the seeds. Understanding the effect of these parameters on performance
is essential in designing the system to take into account these effects. In this special
assignment, the goal is to study the performance of a P2P system for a given service
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time distribution. The work in this report primarily includes,

• Development of a Markov model for one chunk P2P file-sharing network.

• Simulation of the Markov model.

• Comparison of the results of simulation and the numerical analysis of the P2P
system.

The report is organized as follows: section 2 describes the model that is going to be
used for simulations, the numerical analysis of the model using Markovian analysis and
a brief discussion on the stability of the system using a deterministic fluid model. The
construction of the simulator is described in section 3. The results of the simulations
are discussed in section 4 and also a brief comparison of numerical analysis and results
of the simulation is carried out. Finally, summary of the results and conclusion is
presented.

2 System Description

The model used for study is a simple tandem queue as shown in Fig. 1. Although,
the protocols such as BitTorrent use multiple chunks for file sharing, the single chunk
model has been considered for its simplicity in the analysis which can still show some
important characteristics of the system.

Figure 1: A model for file sharing(single chunk)

A P2P system consists of three kinds of peers participating in the file sharing
process namely downloaders, leechers and seeds. Downloaders are the newly arriving
peers which have no chunks with them yet. The leechers are the peers which already
have one or more chunks of the file being shared but do not have a complete copy of
the file with them yet. Finally, seeds are the peers which already have a full copy of
the file being shared.

Since the system being studied is based on the one chunk model, there are only
downloaders and seeds but no leechers in the system. When a downloader has com-
pleted the downloading of a file, it becomes a seed. Furthermore, we assume that
there is one particular seed which never leaves the system. Although the provision of
a permanent seed is not present in BitTorrent like systems, this can be implemented
by introducing some amount of centralized control so that the perpetuity of the file
sharing process is ensured. Otherwise, the file sharing process fails as soon as there
are no seeds at any moment of the file sharing process.

New peers seeking a given file arrive to the system according to a Poisson process
with rate λ. The download rate is denoted by µd and upload rate by µs. We assume
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that all the peers have the same uploading and downloading capacity, i.e. µd = µs = µ.
After the downloaders arrive to the system, they may immediately start downloading
if there are any vacant seeds or wait till any seed gets vacant. So the total download
time perceived by the downloader is the sum of waiting time in the queue and the time
it takes to actually download a file. From here on, the sojourn time is referred to as
download time.

The seeds leave the system randomly with rate γ. The time that a seed spends in
the system is also exponentially distributed with parameter γ. This will have major
effect in the performance of the system since for larger γ there will be small number
of seeds at any given time and thus downloaders have to wait for longer time in the
queue before they get their service. The rate γ is influenced by the incentive the seeds
get after downloading a given file to remain in the system. It is assumed that γ is
constant during the whole process.

The P2P system starts with a single seed which has the file that other peers are
interested in downloading. At any time t, let X(t) be the random variable denoting
the number of downloaders and Y (t) be the random variable denoting the number
of seeds excluding the permanent seed. Then, the total download capacity of the
downloaders is µdX(t) and the upload capacity of the seeds is µs(Y (t) + 1). Upon
arrival of a downloader to the system, if µdX(t) ≤ µs(Y (t) + 1), then it can start
downloading immediately. However, if µdX(t) > µs(Y (t) + 1), then the downloader
has to wait in the queue until other downloaders ahead of it in the queue complete
the downloading of the file. This means the total service rate of the system at time
t is min{µdX(t), µs(Y (t) + 1)}. Since µd = µs = µ, the service rate of the system is
min{µX(t), µ(Y (t) + 1)}. The Markovian analysis is presented below for the special
case of upload and download times being exponentially distributed by constructing a
continuous time Markov chain.

2.1 Markovian Analysis

The state of the system is given by the pair (X, Y ), and πi,j, where 0 ≤ i < ∞ and
0 ≤ j < ∞, are the state probabilities. The state diagram is given in Fig. 2. The
method of global balance is used to calculate the steady state probabilities. Since the
state space extends from (0, 0) to (∞,∞), the solution involving all the states did not
seem to be tractable, so truncation of the state space is done such that the truncated
states have negligible steady state probabilities. By truncating the state space such
that X can extend from 0 to m and Y can extend from 0 to n, we can write the
following global balance equations.

probability flow into the state=probability flow out of the state

For all i such that 0 < i < m,

πi−1,0λ + πi,1γ = πi,0(λ + µ)

πi−1,nλ + πi+1,n−1 min{i + 1, n}µ = πi,n(λ + nγ)

For all j such that 0 < j < n,

π1,j−1µ + π0,j+1(j + 1)γ = π0,j(λ + jγ)

πm−1,jλ + πm,j+1(j + 1)γ = πm,j min {m, j + 1}µ + πm,jjγ
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Figure 2: state diagram for Markovian analysis of file sharing.

For all i such that 0 < i < m and j such that 0 < j < n

πi−1,jλ + πi+1,j−1 min{i + 1, j}µ + πi,j+1(j + 1)γ = πi,j(λ + min{i, j + 1}µ + jγ)

For the states in the corner of the state diagram,

π0,0λ = π0,1γ

πm−1,0λ + πm,1γ = πm,0µ

π1,n−1µ = π0,n(λ + nγ)

πm,nλ = πm−1,nnγ

(1)

Using the normalization condition,
π0,0 + π0,1 + . . . + π0,n + π1,0 + π2,0 + . . . + πm,0 + π1,1 + π1,2 + . . . + πm,n = 1 (2)

The solution obtained for the steady state probabilities using the (m + 1) × (n + 1)
equations in (1) and (2) are used in calculating the mean, standard deviation and
coefficient of variation of the different parameters of the system. Subsequently, these
values are used in calculating the download time and the lifetime of seeds and the
respective standard deviations and coefficients of variation using the Little’s result as
given in (3). These values are then compared with results of the simulation

Little’s Result: gives a simple relationship between the mean number of cus-
tomers E(N), mean sojourn time E(S) and λ the average arrival rate of the customers
in a stable system.

E(N) = λE(S) (3)
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2.2 Stability Consideration:

Using the deterministic fluid model as studied in [9], the stability bounds can be
derived. The following quantities are used to describe the fluid model,

x(t) number of downloaders in the system at time t.
y(t) number of seeds in the system at time t excluding the permanent seed.
λ, µ and γ are the parameters of the system.

Then the deterministic fluid model for the evolution of the number of downloaders and
seeds is given by,

dx(t)

dt
= λ − min{µx(t), µ(y(t) + 1)},

dy(t)

dt
= min{µx(t), µ(y(t) + 1)} − γy(t)

(4)

where x(0) = 0 and y(0) = 0 implying that at time t = 0, there is only one seed which
is permanent and no downloaders. Let x and y be the equilibrium values of x(t) and
y(t). The solution for the differential equations (4) exists and the system is stable for
the following cases:

• γ < µ and λ < ∞

• γ ≥ µ and λ <
1

1

µ
− 1

γ

The steady state values of x and y for the above cases are
x = λ

µ
and y = λ

γ
.

If γ ≥ µ and λ ≥ 1/( 1
µ
− 1

γ
), then x(t) increases without limits as t → ∞, but y(t) still

has a limiting value,
x = ∞ and y = µ

γ−µ
.

Fig. 3 shows the evolution of the number of downloaders and seeds for the case µ ≥ γ
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Figure 3: The number of downloaders (left) and seeds (right) as a function of time.
λ/µ = 10, λ/γ = 20, µ ≥ γ

so that the system is stable for any value of λ. In the beginning, the number of seeds
is not sufficient to serve the incoming download requests. This can be seen from the
large increase of downloaders. As the time progresses, the downloaders change into
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seeds such that there are sufficient number of seeds to serve all the incoming download
requests and the system stabilizes.

Fig. 4 shows the evolution of the system for λ = 10 and different values of µ and
γ. When γ = 0.5 and µ = 1 so that γ < µ, new seeds arise faster than existing seeds
leave the system. The number of seeds quickly overtakes the number of downloaders in
the system and both quantities reach their steady state values. When γ = µ = 1, the
system is still stable but it takes more time for the number of seeds and downloaders
to reach their steady state values. When γ = 2 and µ = 1 so that γ > µ and λ > 1

1

µ
−

1

γ

,

the seeds leave the system faster than the new seeds arise in the system. The number
of seeds in the system is never sufficient to serve the incoming download requests and
the system becomes unstable. Once the system becomes unstable, the the number
of seeds goes on decreasing from the stable steady state value of λ/γ. As λ takes
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Figure 4: The number of downloaders (left) and seeds (right) as a function of time.

values lager than the stability limit 1/(1/µ − 1/γ), the number of seeds stabilizes to
y = µ/(γ − µ), i.e. 1 in this case.

3 Description of Simulator

The Markov model presented in section 2 is simulated in Mathematica. Mathematica

can be used as an application as well as a programming language. Due to the available
collection of rich built-in functions and data structures, complex tasks can be solved
with relative ease in Mathematica. The use of already available functions such as
random number generator and flexible lists to build the simulator make the task simple
which would have been tedious in any other programming language such as C or C++
or even in Java.

To develop the simulator for the model, an open queuing network consisting of
two queues in tandem is constructed. The new downloaders arriving to the system
according to a Poisson process with rate λ enter the first queue whose servers are the
seeds already present in the system. Since the arrivals follow a Poisson process, the
inter-arrival time is exponentially distributed. After the arrival of a downloader, the
required time for its service (downloading of the file) is drawn from a distribution
which may be exponential, Erlang-k or hyper-exponential. The next arrival time of a
downloader is the new inter-arrival time added to the current time.

Since the upload and download capacities are assumed to be equal in the model,
the number of seeds and downloaders present in the queues determine whether a newly
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arriving downloader has to wait or can immediately start downloading. If the number
of downloaders is greater than the number of seeds, the downloader has to wait in
the queue before a seed becomes available for uploading. The downloader leaves the
first queue after its service time expires (completion of file download) and enters the
second queue. The downloader leaving the first queue is equivalent to the arrival of new
customer (seed) in the second queue. It also has the effect of increasing the number
of servers (seeds uploading to the downloaders) in the first queue.

When the seed enters the second queue its service time (the lifetime of seed in
the system), which is exponentially distributed with parameter γ, starts. After a
downloader becomes a seed, the downloaders’ queue is checked to see if there are any
downloaders waiting for service. In case there are any waiting downloaders, the new
seed starts serving (uploading) the waiting downloader. The next departure time of
the downloader from the first queue is the minimum of the remaining service times of
all the downloaders being served by the seeds.

When the service time of a seed (lifetime) in the second queue expires, it leaves the
system and the time to the next departure of a seed is calculated. The new departure
time is the minimum of the remaining service times of the seeds in the second queue
added to current time. The leaving seed may or may not be serving a downloader before
its departure. If it was uploading to a downloader, the new remaining service time of
the downloaders in the first queue is calculated. The downloader whose service gets
interrupted is placed ahead of all the waiting downloaders so that it can immediately
resume downloading when a seed becomes free.

The time to the next event is the minimum of the new remaining service time of
downloaders, the time to the next arrival of a downloader and the time to the next
departure of a seed. The generation of the random variables of different distributions
is described in section 3.2 which follows from the properties of these distributions as
discussed in section 3.1.

Simulations are done for different values of the arrival rate of downloaders, λ, keep-
ing the download rate, µ, and the departure rate of the seeds, γ, constant. Similarly,
simulation runs are made for different values γ keeping λ and µ constant. These simu-
lations are repeated for the cases where the service time of downloaders is distributed
according to Erlang-k distribution and hyper-exponential distribution.

3.1 Probability Distributions

Poisson Distribution: A random variable X is Poisson distributed with param-
eter λ if its probability mass function is given by

P (X = n) =
λn

n!
e−λ, n = 0, 1, 2 . . .

For the Poisson distribution,

E(X) = σ2(X) = λ

CX =
σ(X)

E(X)
=

1√
λ

where E(X) is the mean, σ2(X) is the variance of X and CX is the coefficient of
variation.
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Exponential distribution: A random variable X is exponentially distributed
with parameter µ if its probability density function is given by

fX(x) = P (X ∈ dx) = µe−µx, x ≥ 0

For this distribution,

E(X) =
1

µ
, σ2(X) =

1

µ2

CX =
σ(X)

E(X)
= 1

The exponential random variable has memoryless property. It means if X is time taken
for certain event to happen which is an exponentially distributed with parameter µ
and if it has lasted t seconds, the remaining time for the event to take place is still
exponentially distributed with same parameter µ. Mathematically,

P (X > t + x|X > t) = P (X > x) = e−µx

Erlang-k distribution: A random variable X is Erlang-k distributed if it is the
sum of k independent identically distributed random variables X1, X2 . . . Xk [10]. If
µ denotes the parameter of each of the exponential random variable, the probability
density function is given by

fX(x) = P (X ∈ dx) = µ
µxk−1

(k − 1)!
e−µx, x > 0.

It is a phase type distribution. The phase diagram of Erlang-k distribution is shown
in Fig. 5. where each of the phases has parameter µ. For this distribution,

Figure 5: Phase diagram of the Erlang-k distribution

E(X) =
k

µ
, σ2(X) =

k

µ2

CX =
σ(X)

E(X)
=

1√
k

< 1

For k = 2, we have

CX =
1√
2

= 0.707

Hyper-exponential distribution A random variable X is hyper-exponentially
distributed if X is Xi with probability pi, i = 1, . . . k where each of the Xi is exponen-
tially distributed with parameter µi [10]. It is a also kind of phase type distribution.
The phase diagram of hyper-exponential distribution is shown in Fig. 6. The proba-
bility density function is given by

fX(x) = P (X ∈ dx) =

k
∑

i=1

µie
−µix, x > 0.
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For this distribution,

E(X) =
k

∑

i=1

pi

µi

, σ2(X) = 2
k

∑

i=1

pi

µ2
i

−E(X)2

CX =
σ(X)

E(X)
=

√

√

√

√

2
∑k

i=1
pi

µ2

i

(
∑k

i=1
pi

µi
)2

− 1 ≥ 1

For k = 2, p1 = 0.3, p2 = 0.7, µ1 = 0.6 and µ2 = 1.4, we have

CX = 1.18

Figure 6: Phase diagram of hyper-exponential distribution

3.2 Generation of random variables

Exponential random variable: This method of random variable generation
involves inverting the cumulative distribution function F (x) = P (X ≤ x) associated
with random variable X. Since 0 ≤ F (x) ≤ 1, by generating random numbers uni-
formly distributed over (0, 1), a sample of random variable X can be produced by
inverting its cumulative distribution function. Thus, to generate random variable X
with cumulative distribution function F (x), we set U=F (x) and obtain

X = F−1(U)

where U is uniformly distributed in (0, 1).
For exponential distribution with parameter µ, we have

F (x) = P (X ≤ x) = 1 − e−λx, x ≥ 0

Solving for X in U = F (X) gives

X = F−1(U) = −(1/µ) log(1 − U)

Erlang-k random variable: Since the Erlang-k distribution is equivalent to the
sum of k independent and identically distributed exponential random variables, we can
obtain an Erlang-k random variable by adding k exponential random variables.

9



Hyper-exponential random variable: A hyper-exponential random variable
takes the value X = Xµi

with probability pi, where X = Xµi
are the k exponential

random variables each with rate µi. To generate a hyper-exponential random variable,
first a random number uniformly distributed in (0, 1) is generated. This random num-
ber is used to choose the parameter µi of phase corresponding to the point probability
pi. Then the selected parameter is used to generate the exponential random variable
as discussed above which gives the required sample of the hyper-exponential random
variable. The parameters pi and µi can be chosen so as to have the desired mean of
the distribution.

4 Results and Discussion

The results of the simulations with regard to the mean values of the performance
parameters and their variability under different download and upload conditions are
discussed here with graphical illustrations. The figures show the metrics comparing
cases where the distribution of the service time of downloaders are exponential, Erlang-
2 and hyper-exponential-2. Then the simulation and numerical results are compared.
The parameters of the service time distributions of downloaders are chosen such that
the mean value is 1. The parameter of the exponential distribution µ is set to 1 so
that its mean and coefficient of variation are equal to 1. For Erlang-2 distribution,
the parameter of each of the two phases is set to 2. Using the formulas presented in
section 3.1, the mean of the distribution is 1 and coefficient of variation is 0.71. In
case of hyper-exponential-2 distribution with two phases, the phases have exponential
distribution with parameter µ1 = 0.6 and µ2 = 1.4 and their probabilities are p1 = 0.3
and p2 = 0.7 respectively so that mean is 1 and coefficient of variation is 1.18.

4.1 Effect of Arrival the Rate of Downloaders

Fig. 7 shows the mean and coefficient of variation of the download time and the lifetime
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lifetime of seeds as a function of λ. µ = 1, γ = 0.5.
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of seeds respectively as a function of peer arrival rate λ for the case µ = 1, γ = 1
2

so
that γ < µ. This guarantees stability for any λ < ∞. The different lines represent
the cases for different distributions of service time namely exponential, Erlang-2 and
hyper-exponential. It can be observed from the top left part that the mean download
time decreases with the increase in the arrival rate. However, the download time
increases with increase in λ for small values. This is not clear in this figure as it does
not take into account the small scale values of λ around 1. The results for the small
scale values of λ will be shown in the coming section which compares the numerical
and simulation results. The decrease in download time for increasing λ is encouraging
since the system performance becomes better as the peer arrival rate increases. Since
the rate of seed departure is smaller than the service time of the downloaders, the
number of seeds increases with increase in λ. This makes the downloaders queue is
equivalent to M/G/∞ for large values of λ.

The top right part of Fig. 7 shows that the coefficient of variation of the download
time is constant for the different cases of service time distributions. For all the service
time distributions, the coefficient of variation is approximately equal to the that of
corresponding service time distribution. Thus it can be inferred that the distribution
of the download time is similarly distributed to the service time of the downloaders.
The lifetime of the seeds and its coefficient of variation is approximately 1. The
distribution of download time does not affect the mean and coefficient of variation of
the lifetime of seeds in the system as it should be.

Fig. 8 shows the mean and coefficient of variation of the number of downloaders
and seeds. The number of downloaders increases with the increase in the arrival rate.
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Figure 8: Mean and coefficient of variation (Cv) of downloaders and seeds as a function
of λ. µ = 1, γ = 0.5.

Moreover, it shows that the mean number of downloaders in the system is linearly
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dependent on the arrival rate which is in line with the Little’s result. The coefficient
of variation of downloaders decreases for increasing λ and the value is approximately
1/
√

λ. It implies that the downloaders’ queue behaves as a M/G/∞ for this stable
system and thus queue length is Poisson distributed. In the bottom part of Fig. 8, it
can be seen that the mean number of seeds increases linearly with λ which again is in
line with the Little’s result for the queue of seeds. The coefficient of variation of the
number of seeds decreases for increasing λ. The trend shows that the distribution of
the number of seeds is Poissonian with parameter λ/γ. So it can be inferred from here
that the queue of seeds behaves as M/M/∞ in this case.

4.2 Effect of Departure Rate of Seeds

The Fig. 9 shows the mean and coefficient of variation of the downloaders and seeds
respectively as a function of 1

γ
for the case µ = 1, λ = 1 so that λ < µ. This guarantees

stability for any 1
γ

> 0. The mean download time decreases with the decrease in the
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Figure 9: Mean and coefficient of variation (Cv) of the download time and lifetime of
seeds as a function of 1

γ
. µ = 1, λ = 1.

seed departure rate (γ). It stabilizes to 1 as the departure rate further decreases
towards 0, i.e. 1/γ → ∞. This is intuitive since the decrease in the departure rate
means there are more seeds in the system from which the downloaders can download
a file. For the given value of λ the downloaders’ queue behaves as M/G/∞ for small
values of γ when γ < µ. Hence, as 1/γ → ∞ the mean download time is equal to the
mean service time which is 1 for each of the distributions.

The coefficient of variation of the download time as seen in the top right of Fig. 9
stabilizes to a constant value as 1/γ increases. The values indicate that download
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times are similar in distribution to the corresponding service time distribution. The
bottom part shows that the mean lifetime of the seeds and the coefficient of variation
do not depend upon the distribution of the service time of downloaders which is as
expected.

The top part of Fig. 10 presents the mean number of downloaders and its coefficient
of variation. The mean value decreases as the departure rate (γ) of the seeds decreases.
Decrease in the seed departure rate means the downloaders have more seeds to down-
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Figure 10: Mean and coefficient of variation of downloaders (Cv) and number of seeds
as a function of 1

γ
. µ = 1, λ = 1.

load from which means shorter delays and short queue length. As the departure rate
decreases, more seeds accumulate over time which renders the downloaders queue into
M/G/∞. Coefficient of variation is seen decreasing towards 1 with the decrease in the
seed departure rate. For large values of γ, the distribution depends on the service time
distribution of the download time. When the departure rate of seeds becomes very
low the mean number of downloaders approaches λ/µ i.e. 1 in this case. This shows
that the steady state value of the fluid model for the mean number of downloaders is
valid if γ is sufficiently smaller than µ.

The bottom part of Fig. 10 shows mean number of seeds and its coefficient of
variation. Mean number of seeds increases linearly with 1

γ
. Coefficient of variation

of the seeds decreases as the seed departure rate decreases. Its value roughly follows
√

γ/λ which means the number of downloaders Poisson distributed with parameter
λ/γ where λ is 1 in this case.
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4.3 Stability Consideration

As discussed in section 2.2, the system parameters λ, µ and γ affect the stability.
Fig. 11 shows system metrics such as the mean and coefficient of variation as a function
of λ when γ = 2µ = 2. In this case where γ > µ, the system has stability limits given
by 1

λ
> 1

µ
− 1

γ
. For the given values of γ and µ, λ = 2 is the stability limit. For

the values of λ < 2, the system is stable as seen in the figure and the values of the
metrics are similar to those discussed in section 4.1. However, as the λ approaches
2 the number of downloaders and the mean download time increases rapidly towards
large values making the system unstable. When λ > 2, the downloaders’ queue keeps
on increasing where as the number of seeds saturates to a constant value corresponding
to the departure rate γ.
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Figure 11: System performance metrics as a function of λ. The departure rate of seeds.
µ = 1, γ = 2.
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The value of coefficient of variation of the number of downloaders and the download
time takes very small values for all the cases of service time distributions when the
system gets unstable. Mean life time of the seeds and its coefficient of variation
remains unaffected by the instability of the downloaders’ queue as it should be. The
mean number of seeds reaches a fixed value depending on the given value of γ and
µ and remains constant for increasing values of λ beyond the stability limit. This
is so because the number of downloaders changing to seeds is limited by the rate at
which the existing seed leave the system when γ > µ no matter what the arrival of
downloaders. This means beyond stability limit, the variability in the queue length of
remains constant.

The Fig. 12 shows system metrics such as mean and coefficient of variation as a
function of 1

γ
when λ = 2µ = 2. The system has stability limit given by 1

γ
> 1

µ
− 1

λ
.
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Figure 12: System performance metrics as a function of 1
γ
. The departure rate of

seeds. µ = 1, λ = 2.
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For the given values of λ and µ, 1
γ

= 0.5 is the stability limit. For the values of
1
γ

< 0.5 i.e. γ > 2, the system is unstable as seen in the figure. For the values within
the stability limit, the values of the metrics are similar to that as discussed in section
4.2. As 1

γ
approaches 0.5, the number of downloaders and the mean download time

increases rapidly towards large values making the system unstable.
The value of coefficient of variation of the number of downloaders and the down-

load time takes very small values for all the cases of service time distributions when
the system gets unstable as in the case of varying λ. The mean number of seeds is
unaffected by the instability as it only depends upon the mean departure rate for fixed
value of λ. The coefficient of variation of seeds follows Poisson distribution for all
service time distributions of downloaders. But around the stability limit, the variation
depends upon the service time distribution of the downloaders.

4.4 Comparison of Simulation and Numerical Results

Fig. 13 shows the comparison of numerical and simulation results for varying λ in the

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

à

à
à

à

à

à

à

à

à

à

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Λ

m
ea

n
do

w
nl

oa
d

tim
e

numerical

simulation æ

æ æ æ æ æ

æ æ

æ

æ
à à à à à à à à à à

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.96

1.98

2.00

2.02

2.04

Λ

m
ea

n
lif

et
im

e
of

se
ed

s

numerical

simulation

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

à

à

à

à

à

à

à

à

à

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5

Λ

m
ea

n
nu

m
be

ro
f

do
w

nl
oa

de
rs

numerical

simulation

æ

æ

æ

æ

æ

æ

æ

æ

ææ

à

à

à

à

à

à

à

à

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Λ

C
v

of
th

e
nu

m
be

ro
f

do
w

nl
oa

de
rs

numerical

simulation

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5

6

7

8

Λ

m
ea

n
nu

m
be

ro
f

se
ed

s

numerical

simulation

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

à

à

à

à

à

à

à

à
à

à

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.4

0.6

0.8

1.0

1.2

Λ

C
v

of
th

e
nu

m
be

ro
f

se
ed

s

numerical

simulation

Figure 13: System performance metrics comparing simulation and numerical results
as function of λ. for exponential service time distribution. µ = 1, γ = 0.5.

case µ = 1 and γ = 1
2
. The illustrations show the comparison of system metrics for

exponential distribution of the service time of the downloaders. The mean download
time in the beginning increases with the increase in λ. However with increasing value
of λ, it decreases showing that system is scalable. The values of the system metrics
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are similar to those discussed in section 4. The figures help to show that the simu-
lation results confirm to the values as predicted by the numerical analysis based on
Markovian analysis presented in the section 2.1. The results of the comparison for
varying departure rate (γ) is shown below in Fig. 14 for the case µ = 1 and λ = 1.
It also shows the confirmation of simulation results to the numerical analysis using
Markovian analysis.
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Figure 14: System performance metrics comparing simulation and numerical results
as a function of 1

γ
. for exponential service time distribution. λ = 1, µ = 1.

5 Conclusions

In this special assignment we studied the performance parameters of P2P file sharing
system using deterministic fluid model and detailed Markov chain analysis. The deter-
ministic fluid model was good in predicting only the steady state values under certain
conditions. For example, the steady state value of number of downloaders according
to fluid model does not depend on the value γ. However, the Markovian model and
its simulation showed that it is so only when the seeds stay in the system sufficiently
longer than the service time requested by the downloaders.

The study showed that the service time distribution affects the performance pa-
rameters. However, the effect is seen only on the downloading peers. The performance
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parameters relating to seeds are seen to be independent of the service time distribu-
tion of the downloaders when the system is stable. The study on the stability of the
system using simulation showed that the stability limits are same for all the service
time distribution. The simulations and the Markovian analysis show that the peer
departure rate γ is very crucial to the scalability of the system. For relatively smaller
peer departure rate, the performance parameters such as the mean download time
are very good. This means strategies have to be used in the design of system which
encourage the seeds to stay in the system for long time.

Only the one chunk model was studied in this special assignment. Although this
simplifies the analysis of the system, the real applications being deployed are rarely
one chunk if any. Nevertheless, the one chunk model helps to understand and observe
the properties of P2P systems and it can be extended to the study of multiple chunk
file sharing systems in future studies.
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Appendix A. Markovian Analysis in Mathematica:

(* m = maximum number of downloaders after truncation *)

(* n = maximum number of seeds after truncation *)

(* eqn = list containing balance equation *)

(* state = list containging steady state probabilities *)

(* solution = list containging steady state probabilities *)

(* λ = arrival rate of downloaders *)

(* µ = service rate *)

(* γ = departure rate of seeds *)

p2psolve[m , n , λ , µ , γ ]:=
(Module[{sol, solution, min1, min2, p, state = {}, eqn = {}, i, j, sum = 0},
For[i = 1, i < m, i++,

sum = sum+ Subscript[p, i, 0];
If[n > 0, sum = sum+ Subscript[p, i, n]; ];
If[n > 0, eqn = Append[eqn,

((Subscript[p, i, 0])(λ + µ ) − (Subscript[p, i − 1, 0])λ
− (Subscript[p, i, 1])γ ) == 0]; ];

min1 = Min[(i + 1), n];
If[n > 0, eqn = Append[eqn,

((Subscript[p, i, n])(λ + n ∗ γ ) − (Subscript[p, i − 1, n])λ
− (Subscript[p, i + 1, n − 1])(min1 ∗ µ )) == 0]; ]; ];

For[j = 1, j < n, j++,
sum = sum+ Subscript[p, 0, j];
If[m > 0, sum = sum+ Subscript[p, m, j]; ];
If[m > 0, eqn = Append[eqn,

((Subscript[p, 0, j])(λ + j ∗ γ ) − (Subscript[p, 1, j − 1])µ
− (Subscript[p, 0, j + 1])(j + 1)γ ) == 0]; ];

min1 = Min[(j + 1), m];
If[m > 0, eqn = Append[eqn,

((Subscript[p, m, j])(min1 ∗ µ + j ∗ γ ) − (Subscript[p, m − 1, j])λ
− (Subscript[p, m, j + 1])(j + 1)γ ) == 0]; ]; ]

For[i = 1, i < m, i++, For[j = 1, j < n, j++,
sum = sum+ Subscript[p, i, j];
min1 = Min[(j + 1), i]; min2 = Min[(i + 1), j];
eqn = Append[eqn,

((Subscript[p, i, j])(λ + min1 ∗ µ + j ∗ γ ) − (Subscript[p, i − 1, j])λ
−(Subscript[p, i + 1, j − 1])(min2 ∗ µ ) − (Subscript[p, i, j + 1])(j + 1)γ ==
0)]; ]; ];
sum = sum+ Subscript[p, 0, 0];
If[n > 0,

eqn = Append[eqn, ((Subscript[p, 0, 0])λ − (Subscript[p, 0, 1])γ ) == 0]; ];
If[(m > 0)&&(n > 0), eqn = Append[eqn,
((Subscript[p, m, 0])(µ ) − (Subscript[p, m − 1, 0])λ − (Subscript[p, m, 1])γ) == 0];

sum = sum+ Subscript[p, m, 0]; ];
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If[(m > 0)&&(n > 0), eqn = Append[eqn,
((Subscript[p, 0, n])(λ + n ∗ γ ) − Subscript[p, 1, n − 1]µ )==0];

sum = sum+ Subscript[p, 0, n]; ];
If[(n > 0&&m > 0), eqn = Append[eqn,

((Subscript[p, m, n])(n ∗ γ ) − (Subscript[p, m − 1, n])λ ) == 0];
sum = sum+ Subscript[p, m, n]; ];

eqn = Append[eqn, sum == 1];
For[j = 0, j ≤ n, j++, For[i = 0, i ≤ m, i++,

state = Append[state, Subscript[p, i, j]]; ]; ];
sol = Solve[eqn, state];
solution = Partition[(state/.sol)[[1]], m + 1]
]);
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Appendix B. Simulation of the P2P system in Mathematica:

(* Exponential random number generator *)

exgenerator[x ]:=−Log[Random[]]
x

;

(* Erlang− 2 distributed random number generator *)

erlkgenerator[k , µ ]:=(Module[{i, sum = 0, µ1 = k ∗ µ},
For[i = 1, i ≤ k, i++, sum = sum+ exgenerator[µ1]];
sum]);

(* Hyper− exponential− 2 random number generator *)

hypegenerator[µ1 , µ2 , p ]:=(Module[{r, hyp},
r = Random[];
If[r < p, hyp = generator[µ1], hyp = exgenerator[µ2]];
hyp]);

(* λ = arrival rate of downloaders *)

(* µ = service rate *)

(* γ = departure rate of seeds *)

simulate[λ , µ , γ ]:=(Module[{px, py, j, stime, intrx, intry, min,

meanx, (* mean number of the downloaders *)

meany, (* mean number of the seeds *)

stdx, (* mean number of the downloaders *)

stdy, (* mean number of the seeds *)

delayx, (* mean download time *)

delayy, (* mean lifetime of the seeds *)

stddx, (* standard deviation of the download time *)

stddy, (* standard deviation of the lifetime of the seeds *)

(* Initialization *)

i = 0, (* current simulation count *)

imax = 50000, (* number of simulation runs *)

ndx = 0, ndy = 0, (* count of number of departing downloaders and seeds *)

dx = 0, dy = 0, (* cumulative sum of the download time and the lifetime of seeds *)

dxx = 0, dyy = 0, (* cumulative sum of square of the download time and

the lifetime of seeds the lifetime of seeds *)

quex = {}, (* list of downloaders *)

quey = {{0, Infinity}}, (* list of seeds *)

tx = 0, (* arrival or departure time to/from the first queue *),
ty = 0, (* arrival or departure time to/from the second queue * )

x = 0, (* number of customers in 1st Queue *)

y = 0, (* number of customers in 2nd Queue *)

t = 0, (* time *)

intx = 0, intxx = 0, (* cumulative sum of the number of downloaders

and the number of seeds *)

inty = 0, intyy = 0, (* cumulative sum of the square of the number of
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downloaders and the number of seeds *)

axtime = exgenerator[λ], (* next arrival time of a downloader *)

dxtime = Infinity, (* time of next departure of a downloader *)

dytime = Infinity}, (* time of next departure of a seed *)

While[(i < imax),

(* Arrival of a downloader(x) *)

If[((axtime < dxtime)&&(axtime < dytime)),
t = axtime;
i = i + 1; quex = Append[quex, {t, exgenerator[µ ]}];
intx = intx+ x ∗ (t − tx); intxx = intxx+ x ∗ x ∗ (t − tx); x++;
min = Min[x − 1, (1 + y)];
If[x<=(1 + y), stime = quex[[x, 2]]; px = x; , stime = Infinity; ];
(* calculate the remaining service time and new departure time of downloader *)

For[j = 1; , j ≤ min , j++; , quex[[j, 2]] = (tx + quex[[j, 2]] − t) ;
If[quex[[j, 2]] < stime, stime = quex[[j, 2]]; px = j; ]; ];
dxtime = t + stime;
axtime = t + exgenerator[λ];
tx = t; Continue[];

];

(* Departure of a downloader(x) and arrival of a seed(y) *)

If[(dxtime < axtime)&&(dxtime < dytime),
t = dxtime;
dx = dx + (t− quex[[px, 1]]); dxx = dxx+ (t− quex[[px, 1]])2;
intxx = intxx+ x ∗ x ∗ (t − tx); intx = intx+ x ∗ (t − tx); x--;
ndx++; quex = Delete[quex, px];
intyy = intyy+ y ∗ y ∗ (t− ty); inty = inty+ y ∗ (t− ty); y++;
intry = quey[[px]]; quey = Delete[quey, px];
quey = Insert[quey, intry, Min[1 + x, y]]; (* Update the free server *)

quey = Append[quey, {t, exgenerator[γ]}] ;
(* calculate the remaining service time and new departure time of seed *)

stime = quey[[(1 + y), 2]]; py = 1 + y;
For[j = 1, j ≤ y, j++, quey[[j, 2]] = (ty + quey[[j, 2]] − t) ;
If[quey[[j, 2]] < stime, stime = quey[[j, 2]]; py = j; ]; ];

dytime = t + stime;
(* new departure time of the downloaders *)

min = Min[x, y − 1]; (* Downloaders being served *)

For[j = 1; , j ≤ min , j++, quex[[j, 2]] = (tx + quex[[j, 2]] − t) ; ];
min = Min[x, 1 + y];
For[stime = Infinity; j = 1; , j ≤ min , j++,
If[quex[[j, 2]] < stime, stime = quex[[j, 2]]; px = j; ]; ];

dxtime = t + stime;
tx = ty = t;

Continue[];
];

(* Departure of a seed(y) *)

23



If[(dytime < axtime)&&(dytime < dxtime),
t = dytime;
dy = dy+ (t − quey[[py, 1]]); dyy = dyy+ (t − quey[[py, 1]])2;
intyy = intyy+ y ∗ y ∗ (t− ty); inty = inty+ y ∗ (t− ty); y--; ndy++;
quey = Delete[quey, py];

(* adjust the position of downloader being served by the departing server *)

min = Min[x, y + 2]; (* New position of the downloader whose seed just left *)

If[py ≤ x, intrx = {quex[[py, 1]], (tx+ quex[[py, 2]] − t)};
quex = Delete[quex, py]; quex = Insert[quex, intrx, min ];
If[x<=(1 + y), stime = quex[[x, 2]]; px = x; , stime = Infinity; ];
min = Min[x− 1, 1 + y];
For[j = 1, j ≤ min , j++, quex[[j, 2]] = (tx + quex[[j, 2]] − t) ;
If[quex[[j, 2]] < stime, stime = quex[[j, 2]]; px = j; ]; ];

intxx = intxx+ x ∗ x ∗ (t− tx);
intx = intx+ x ∗ (t− tx); tx = t;
dxtime = t + stime; ];

(* Calculate the remaining service time and new departure time of seeds *)

For[j = 1; stime = Infinity; , j ≤ 1 + y, j++, quey[[j, 2]] = ty + quey[[j, 2]] − t;
If[quey[[j, 2]] < stime, stime = quey[[j, 2]]; py = j; ]; ];
dytime = t + stime;
ty = t;

];
];
meanx = intx/t;
stddx = Sqrt [(intxx/t) − (meanx)2] ;
meany = inty/t;
stddy = Sqrt [(intyy/t) − (meany)2] ;
delayx = dx/ndx;
stdx = Sqrt [(dxx/ndx) − (delayx)2] ;
delayy = dy/ndy;
stdy = Sqrt [(dyy/ndy) − (delayy)2] ;
{delayx, stddx, delayy, stddy, meanx, stdx, meany, stdy}
]);
(* End of function simulate *)
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