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August 26, 2010

Abstract

Peer-to-peer streaming has been researched extensively
in the past years, but mostly in models considering a
static number of peers. In this paper we study the per-
formance of certain previously presented push-based
sharing mechanisms in a dynamic network of peers.
The results show that the schemes that were simu-
lated perform remarkably well in dynamic settings,
even when the peers spend abnormally short times in
the system.

1 Introduction

Streaming high definition video or other bandwidth
consuming material in a large scale service creates
enormous server requirements. Utilizing Peer-to-peer
(P2P) technologies might enable us to circumvent these
requirements at the cost of the upload bandwidth of
the users. This makes P2P streaming technologies an
interesting area of research.

Several different aspects of P2P streaming have been
studied extensively in the past years, but most of the
research concentrates on systems that expect a “flash
crowd” type user behaviour. A system, where users
constantly come and go hasn’t received much atten-
tion. In this paper, we implement and apply a set of
push-based P2P streaming mechanisms to a simulated
dynamic network of peers.

1.1 Previous work

Different types of P2P live streaming mechanisms have
been lately studied in a completely static setting [1]
and in settings involving flash crowd behaviour [2],
where the peers all arrive during a short starting pe-
riod. A system, where some of the peers disconnect,
or “churn”, in the middle of streaming, have also been
simulated [3, 4], but previous work on systems, where
peers also arrive at random is rather rare.

1.2 Outline

The structure of the paper is the following. In section
2 we supplement the model presented by Bonald et al.
[1] and in Section 3 we present the results gathered by
simulation. In Section 4 we present the conclusions.

2 Model

2.1 Static model

The foundation for our work lies in the static model
defined by Bonald et al. [1] and this subsection depicts
their definition. The model consists of a source that
creates numbered chunks at a rate λs, which means,
that bλsc chunks are created per time slot, and one
additional chunk is created with probability λs−bλsc.
The source sends the chunks one at a time into a net-
work of N peers, to peers chosen at random. The goal
is that, after the source has sent a chunk to a peer, the
chunk gets disseminated to all the peers in the network
as fast as possible by the peers themselves.

Each peer u in the network V has a limited upload
capacity s(u), which is the maximum number of chunks
u can send per time unit (or time slot). The download
capacity of the peers is left unconstrained. The average
upload capacity of the peers in the network is 1, i.e.,

1
N

∑
u∈V

s(u) = 1.

Also, unless specified otherwise, we consider the homo-
geneous case, where ∀ u ∈ V : s(u) = 1. When the
source rate is below the average upload capacity, i.e.,
λs < 1, the system is in underload regime. Respec-
tively, when λs > 1, the system is in overload regime.
When λs = 1 we say, that the system is in critical
regime.

A number of push-based diffusion schemes by Bonald
et al. [1] were implemented, and these schemes are de-
fined as follows. We consider the neighbourhood of
each peer in the network to be the entire network.
Thus, all the peers are connected to each other via
a single hop. If we denote the collection of chunks of
peer u ∈ V by C(u) and the all the possible collec-
tions of chunks of a peer by C, we can formally define a
push-based scheme to be a mapping V × CN 7→ V × C
that gives a peer u the destination peer and the chunk
c ∈ C(u) to be sent. We consider the following schemes
(unaltered from [1]):

Random peer (rp): The destination peer is chosen
uniformly at random among the neighbours of u.

Random useful peer (up): The destination peer is
chosen uniformly at random among those neigh-
bours v ∈ V of u such that C(u)\C(v) 6= ∅. When
the chunk c is selected first, the choice of the des-
tination peer is restricted to those neighbours v
such that c /∈ C(v).
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Latest blind chunk (lb): The sender peer u chooses
the most recent chunk (that is, the chunk of high-
est index) in its collection C(u).

Latest useful chunk (lu): The sender peer u
chooses the most recent chunk c in its collection
C(u) such that c /∈ C(v) for at least one of its
neighbours v. When the destination peer v is
selected first, c is the most recent chunk in the
set C(u) \ C(v).

A push-based scheme comprises of the combination
of a peer choice and a chunk choice. The schemes that
were simulated are referred to, according to the afore-
mentioned abbreviations, as rp/lb, rp/lu, lb/up and
lu/up. Whichever is chosen first, the receiver or the
chunk, is denoted by the order accordingly. For exam-
ple, as rp is a peer selection scheme, in rp/lu the peer
is chosen first, then the chunk.

Time in the system is discretized into slots which
correspond to a single time unit. All events taking
place in a single time slot are considered simultaneous.
We consider each peer to be aware of the sending plans
of all other peers in the current slot. This means that in
the more intelligent (i.e., less random) schemes, there
should be no wasted sending attempts, as the peers
may adjust their choices according to the situation of
the current slot.

The peers have a buffer of 50 time slots, and thus
chunks older than 50 slots are considered old and are
discarded. The main characteristics of each scheme are
the diffusion rate, which designates the average number
of peers a chunk has reached after 50 slots of diffusion,
and diffusion delay, which is the average number of
slots a chunk has to spend in the system until it has
reached 95% of its diffusion rate.

2.2 Dynamic model

We wanted to study a streaming service where users
arrive and leave at a constant rate instead of a flash
crowd behaviour, where all the users arrive when the
program starts almost simultaneously. In our model,
the peers arrive and leave according to an M/G/∞-
model. In simulation terms this means that in each
time slot n peers arrive according to a Poisson pro-
cess with rate λp, and the peers have independent and
identically distributed service times (rounded to the
nearest integer). In the simulations we used the ex-
ponential distribution with mean 1

µp
. Thus, after the

system has reached steady state, the mean number of
peers in the system is N̄p = λp

µp
. Consequently, it also

holds that

N̄p ∼ Poisson
(
λp
µp

)
,

at least in a continuous-time model. In the discrete
model it is a good approximation.

3 Results

The simulations were carried out with a custom C pro-
gram created specifically for this purpose. This section
discusses the results of the simulations and the figures
presented in the appendices. The main attention is on
the attributes diffusion rate and diffusion delay. Un-
less otherwise noted, the mean number of peers in the
system is 600. For the most part, different scenarios
were simulated for a time interval during which the
source sends 1000 chunks, as no significant difference
in results were found in longer test simulations. The
computing times of different schemes varied from a few
seconds (mostly for rp/lb and rp/lu) to a half an hour
(for the more computing intensive schemes).

3.1 Critical regime

With a source rate of 1 and homogeneous upload ca-
pacities among peers, we simulated systems of mean
sizes of N̄p = 600 and N̄p = 60 peers. The dynamics of
the systems were varied by choosing 5 different mean
service times 1/µp = {6000, 600, 60, 6, 3} and adjusting
the arrival rate to get a system with the correct mean
number of peers. For comparison, the diffusion graphs
in a static setting are presented in figure A1, and the
results seem entirely identical to previous research [1].
The results for dynamic networks are visualized in fig-
ures A2–A6.

Instead of visualizing the diffusion rate only at the
50 slot mark the figures present the diffusion of the
chunk at each point of its life. Also the fraction of
chunks that have been able to spread (in the available
50 slots) to a certain number of peers is visualized.

The most interesting point visible in the results is
that at reasonable levels of dynamics, the schemes do
not seem to degrade almost at all compared to the
static setting. Even at extreme levels of dynamics
(1/µp = 3 slots), the schemes seem to function at a
reasonable rate.

3.2 Effects of source rate

A system of 600 peers was simulated with a varying
source rate λs from 0.1 to 1.9. The results are shown
in figure B1. In an almost static λp = 0.1, and thus
1/µp = 6000 system, the results seem very similar to
earlier results for static systems [1].

An interesting effect seems to arise in more dynamic
settings in underload regime (λs < 1): The diffusion
rate becomes larger than 1 with sufficiently small λs. In
the static setting this would never happen, as we scale
the rate with the number of peers. On the other hand,
in the dynamic setting the diffusion rate is calculated
by dividing by the mean number of peers, when ac-
tually an individual chunk “sees” more than the mean
amount of individual peers during its lifetime. In un-
derload regime the chunks have more time to spread,
as there are fewer new chunks to take precedence over
them. This taken into account, the results seem again
differ very little from the results for a static system.
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3.3 Effects of heterogeneity

We define the heterogeneity of the system to be the
variance in the upload capacities of the peers in the
network. Similarly to [1], in our system, the hetero-
geneity is portrayed by the property h ∈ [0, 1], which
is tied to the peers’ upload capacities in the following
manner: a fraction 1

3h of the peers have an upload ca-
pacity of 2, a fraction 2

3h a capacity of 0.5 and the
rest (1 − h) a capacity of 1. Thus, increasing h also
increases the variance in the peers’ upload capacities.

Figure C1 visualizes the effects of increasing hetero-
geneity in three different dynamic settings. In the least
dynamic setting the results are again almost similar to
the static setting, and in the more dynamic settings
the differences between the schemes under observation
seem to diminish. The major effect seems to be that
as the dynamics increase, the performance of the rp/lu
scheme drops below that of the lb/up.

3.4 Effects of the number of peers

The effect of the mean number of peers in the system
was studied by fixing the peer arrival rate (λp = 1)
and varying the service time (1/µp) between simula-
tions. The results illustrated in figure D1 show us that
the dynamics have again very little or no effect in the
overall performance of the diffusion schemes in com-
parison with the static setting.

4 Conclusion

We analyzed the effect of M/G/∞-type peer dynamics
in four push-based diffusion schemes in contrast with
the performance in a static setting. The main finding is
that adding peer arrivals and departures does not have
a significant effect on the performance of the schemes
in question, at least at reasonable rates of dynamics.

Various points of a dynamic setting are however still
left open, like the performance from the point of view
of the peer. In these results the analysis is based on
the chunk point of view, and it would be interesting
to simulate a setting that enables the analysis of the
user’s perceived service quality.
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Appendix

A Figures: Critical regime
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Figure A1: Diffusion graphs of the policies in a static setting.
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Figure A2: Diffusion graphs of the policies in a dynamic ( 1
µp

= 6000) setting.
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N̄p = 600 N̄p = 60
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Figure A3: Diffusion graphs of the policies in a dynamic ( 1
µp

= 600) setting.
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Figure A4: Diffusion graphs of the policies in a dynamic ( 1
µp

= 60) setting.

5



N̄p = 600 N̄p = 60
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Figure A5: Diffusion graphs of the policies in a dynamic ( 1
µp

= 6) setting.
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Figure A6: Diffusion graphs of the policies in a dynamic ( 1
µp

= 3) setting.

6



B Figures: Source rate
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Figure B1: Diffusion rate and delay as a function of source rate.
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C Figures: Heterogeneity
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Figure C1: Diffusion rate and delay as a function of heterogeneity.
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D Figures: Mean number of peers

æ æ æ æ æ æ

à à à à à à
ì

ì ì ì ì ì
ò ò ò ò ò ò

100 1000500200 2000300150 1500700
0.0

0.2

0.4

0.6

0.8

1.0

Number of peers

D
if

fu
si

on
ra

te

æ

rp�lb

à

rp�lu

ì

lb�up

ò

lu�up

æ
æ

æ
æ

æ
æ

à

à
à à

à
à

ì
ì

ì
ì

ì
ì

ò ò
ò

ò ò
ò

100 1000500200 2000300150 1500700
0

10

20

30

40

50

Number of peers

D
if

fu
si

on
de

la
y æ

rp�lb

à

rp�lu

ì

lb�up

ò

lu�up

Figure D1: Diffusion rate and delay as a function of the mean number of peers N̄p =
λp

µp
.
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