
Segmented P2P Video-on-Demand:
Modeling and Performance

Samuli Aalto, Pasi Lassila
TKK Helsinki University of Technology

Email: firstname.lastname@tkk.fi

Petri Savolainen, Sasu Tarkoma
Helsinki Institute for Information Technology

Email: firstname.lastname@hiit.fi

Abstract—In a segmented peer-to-peer video-on-demand sys-
tem the video file is split into a number of segments and the
downloading of the video file proceeds in a more or less sequential
manner from one segment to another (i.e., in stages). We present
an analytical fluid model for such systems. Notably, for this
model we derive an explicit condition when the system has a
unique positive steady-state solution and that the viewing quality
is acceptable. The analytical results are complemented with
extensive simulations from the corresponding stochastic model,
as well as traces from a more realistic BitTorrent simulator.

I. INTRODUCTION

Peer-to-Peer (P2P) protocols such as BitTorrent are widely
used in file sharing, and they are also gaining popularity
in video-on-demand (VoD) and live streaming applications.
The collaboration between the peers in P2P systems enables
scalability to large numbers of simultaneous users.

We consider the specific case of VoD, also referred to as on-
demand streaming of stored media [1]. A well-known example
of a VoD application is YouTube where users requesting a
video are served on a client-server basis. A key question is
then how much and under what conditions can a VoD service
benefit from P2P assisted operation?

In P2P VoD, the whole stored media file needs to be
retrieved (cf., file sharing) at such a rate which allows, as
soon as possible, the pieces to be played back in sequential
order at the media playback rate (cf., live streaming). Thus,
there are two phases, the transfer and the playback phases,
which are partly overlapping. If the retrieval rate is sufficient,
the playback phase extends beyond the transfer phase.

To achieve the above objectives, the downloading mecha-
nism of the P2P VoD system must be based on a roughly
sequential download of the pieces of the file. However, it
does not need to be strictly sequential as the VoD application
allows more degrees of freedom in the downloading than
live streaming, as shown in [1]. Experimental P2P systems
have been developed for VoD based on windowed BitTorrent
[2], where an adaptive window size is used to speed up the
downloading. Also, combining P2P and network coding for
VoD has been proposed, e.g., in [3], [4], where the file is split
into segments and network coding is used over the pieces in a
segment. To make the dissemination of the video file efficient,
peers share data within multiple segments.

We develop a fluid model for the system where the original
file is split into multiple segments, each consisting of several

pieces, and we assume that the downloading proceeds sequen-
tially in stages. This is a conservative assumption as realistic
systems [3], [4] can download multiple segments simultane-
ously. The model consists of differential equations describing
the time-dependent evolution of the mean number of leechers
in each stage and the mean number of seeds. An explicit
condition is derived for guaranteeing that the downloading rate
exceeds the viewing rate, i.e., the performance is acceptable.
The condition characterizes, e.g., how the number of segments
or the number of permanent seeds improves the system, and
allows us to assess the gain obtained by using a segmented
P2P approach over a traditional client-server approach. We
validate the results by comparing them against results from a
stochastic model, where the approximations used in the fluid
model are not present. Additionally, we compare the accuracy
against traces from a segmented BitTorrent simulator.

The paper is organized as follows. Section II discusses the
related work. The modeling framework and the fluid model are
presented in Section III, followed by the steady state-analysis
in Section IV. The stochastic model used for validating the
fluid model is defined in Section V. The synthesis combining
our insights on the fluid model and the stochastic model are
in Section VI. Section VII includes the numerical validations,
and conclusions are given in Section VIII.

II. RELATED WORK

P2P live streaming has been analyzed recently in many
papers, including the impact of network coding, see [5], [6],
[7]. However, our objective is to consider the case of VoD, or
on-demand streaming.

Qiu and Srikant [8] develop a simple fluid model to analyze
the performance of a BitTorrent-like P2P file sharing system
under a steady flow arrival scenario. Their model describes
the time-evolution of the system by differential equations. The
global stability of this fluid model is proved in [9]. Extension
of [8] to heterogeneous users has been given in [10], [11].

Inspired by [8], Parvez et al. [1] develop fluid models to
analyze the performance of a BitTorrent-like P2P on-demand
streaming. They only consider an upload constrained system.
Like Qiu and Srikant, Parvez et al. use the parameter η
to capture the joint effects of the piece selection policy,
the number of downloading connections, and the number of
pieces. Both conclude that η ≈ 1 at least for “most scenarios
of interest”. However, while the assumption that η ≈ 1 is



plausible for file sharing systems, it may not be the case for
on-demand-streaming. For example, simulations with realistic
P2P VoD systems in [2] have shown that the efficiency of the
piece exchange is limited by the used windowing mechanism.
The Parvez et al. model also totally ignores the playback phase
(which is an essential feature of any VoD system) and simply
assumes that any seed, whether it has played back the media
file or not, departs with rate γ.

Like [1], our fluid model for an on-demand streaming
system is inspired by the file sharing application model of
[8]. However, unlike [1],

• Our model does not include the implicit efficiency param-
eter η but we model the efficiency of the piece exchange
explicitly by taking into account the different stages of
the leechers.

• Our model does not include the arbitrary departure pa-
rameter γ but we include the playback phase explicitly in
our departure model. We believe that this more accurately
reflects what can be expected from users in a real VoD
application.

• Our model is not restricted to the upload-constrained
case, but we allow any positive values of the download
and upload rates, respectively.

In addition, we generalize the previous models by allowing
for a finite number of permanent seeds.

III. DETERMINISTIC FLUID MODEL

In this section, we present the general modeling framework
and the deterministic fluid model of the P2P VoD system. A
stochastic counterpart of this model is given later in Section V.

A. Modeling framework

Let m denote the size of the video file to be shared (in bits).
New peers arrive at rate λ (arrivals per time unit on average).
Each peer is connected to the network over an asymmetric
access link (e.g., an ADSL link) with a download capacity of
d (bits per time unit) and upload capacity u (bits per time unit).
The corresponding download and upload rates are: c = d/m
and µ = u/m (file transfers per time unit).

The life span of a peer consists of two phases, the file
transfer phase and the playback phase, which are partly
overlapping. The first part of the transfer phase (called the
startup delay) lasts until there are sufficiently pieces in the
playback buffer to start the playback phase. After the startup
delay, the video is played back at a constant rate w (bits per
time unit) so that the total playback time is equal to z = m/w.
Video transfer and playback proceed in parallel until the entire
video is transferred. It is desirable that the transfer rate is
greater than the playback rate so that the video can be played
back without any breaks or delays. In such a case, the playback
phase still continues after the transfer phase. On the other
hand, if the transfer rate is less than the playback rate, the
playback phase ceases at the same time as the transfer phase.

In a segmented system, the file is divided into I segments
with each segment i consisting of a fixed number of pieces (or
chunks). The amount of data in a typical segment corresponds

to a few tens of seconds of data in the original video stream.
Peers download pieces from other peers segment-by-segment.
This is a conservative assumption as real systems can optimize
the downloading over segments, see, e.g., [3], [4]. Thus, the
transfer phase consists of I consecutive stages. A peer is said
to be in stage i when it is currently downloading segment i.
Since the size of any single segment is m/I , a download-
constrained peer completes each stage i with rate Ic.

We assume that the startup delay is negligible, which is
justified by the fact that the video file sizes are typically very
large compared to the size of the playback buffer. In addition,
we assume that

d > w, (1)

which is a necessary requirement for a VoD system in order
that the video can be played back with good quality, since the
transfer rate for a downloading peer is always upper bounded
by its own access link rate. It follows from (1) that

z > 1/c. (2)

During the transfer phase, the peer is called a leecher. Ac-
cording to the fundamental P2P principle, leechers help each
other. However, due to the character of the VoD application,
only the leechers that are in a higher stage j ≥ i can help
a stage-i leecher. In fact, we make a slightly conservative
assumption that only those leechers that are in a strictly higher
stage j > i can help a stage-i leecher.

An altruistic leecher becomes a seed as soon as its own
transfer phase is completed. Let ζ ∈ [0, 1] denote the fraction
of altruistic peers. Non-altruistic peers are assumed to leave the
system immediately after they have completed their own file
transfer, while altruistic peers stay in the system until the end
of the playback phase but depart immediately thereafter, which
is a worst case scenario. In addition to the non-permanent
seeds, we allow a number of original seeds, say k, that stay
in the system permanently.

B. Fluid model

Let xi(t) denote the number of stage-i leechers at time t. In
addition, let x(t) = x1(t)+. . .+xI(t) and y(t) denote the total
number of leechers and non-permanent seeds, respectively, at
time t.

The number of stage-1 leechers, x1(t), increases with rate
λ. On the other hand, it decreases with the rate at which
the first segment becomes complete for any stage-1 leecher.
Assuming that there are no bottlenecks in the core network,
this completion rate ϕ1(t) is determined by the minimum of
the total download rate and the fair share of the upload rate
that the stage-1 leechers get,

ϕ1(t) = min{ϕd
1(t), ϕ

u
1 (t)}, (3)

where

ϕd
1(t) = Icx1(t)



and

ϕu
1 (t) = Iµx1(t)

(
x2(t)

x1(t)
+

x3(t)

x1(t) + x2(t)
+ . . .+

xI(t)

x1(t) + . . .+ xI−1(t)
+

y(t) + k

x1(t) + . . .+ xI(t)

)
.

Thus, we have
x′
1(t) = λ− ϕ1(t). (4)

Since the segments are completed in a sequential order,
the number of stage-i leechers, xi(t), increases with the
completion rate ϕi−1(t) of stage i − 1. On the other hand,
it decreases with rate ϕi(t),

ϕi(t) = min{ϕd
i (t), ϕ

u
i (t)}, (5)

where
ϕd
i (t) = Icxi(t)

and

ϕu
i (t) = Iµxi(t)

(
xi+1(t)

x1(t) + . . .+ xi(t)
+ . . .+

xI(t)

x1(t) + . . .+ xI−1(t)
+

y(t) + k

x1(t) + . . .+ xI(t)

)
.

Thus, we have

x′
i(t) = ϕi−1(t)− ϕi(t). (6)

As mentioned above, an altruistic leecher becomes a seed
after the final stage I , which completes the whole file trans-
fer phase. Thus, the number of non-permanent seeds, y(t),
increases with rate ζϕI(t) with

ϕI(t) = min{ϕd
I(t), ϕ

u
I (t)}, (7)

where
ϕd
I(t) = IcxI(t)

and
ϕu
I (t) = IµxI(t)

y(t) + k

x1(t) + . . .+ xI(t)
.

In (3), (5) and (7) it is indeed assumed that upload capacity is
shared fairly between the stages, which may not be optimal.

Characterizing the rate at which seeds depart from the
system is more difficult and requires some approximations
given below. We base our model on initially making the
optimistic assumption that the transfer rate is sufficient so that
the video can be played back without any breaks or delays.
Since we also assume that the startup delay is negligible and
altruistic peers leave the system as soon as they complete the
playback phase, this fixes the total time that such a peer spends
in the system to be equal to z. Now we make an approximative
assumption that the system is quasi-stationary at every point
in time t. Then by Little’s result, the average time that an
altruistic peer stays as a seed equals z − x(t)/λ. Thus, the
total departure rate of seeds becomes y(t)/(z−x(t)/λ) which
implies that

y′(t) = ζϕI(t)− y(t)/(z − x(t)/λ). (8)

There are no a priori guarantees that the difference z −
x(t)/λ stays positive. If this is not the case, the differential
equation system behaves in an unstable manner, which can be
interpreted as a sign of problems in the playback quality of
the P2P VoD application.

All in all, our fluid model is as follows: x′
1(t) = λ− ϕ1(t),

x′
i(t) = ϕi−1(t)− ϕi(t), i = 2, . . . , I,

y′(t) = ζϕI(t)− y(t)/(z − x(t)/λ).
(9)

IV. STEADY-STATE ANALYSIS

In principle, model (9) allows us to explicitly solve the
equilibrium of the system by setting x′

i(t) = y′(t) = 0 (for
all i) and solving for the corresponding equilibrium values
x̄1, . . . , x̄I and ȳ, λ− ϕ1 = 0,

ϕi−1 − ϕi = 0, i = 2, . . . , I,
ζϕI − ȳ/(z − x̄/λ) = 0,

(10)

where ϕi refers to the equilibrium value of ϕi(t). From this,
we get the following immediate results for the equilibrium
values: {

ϕi = λ for all i = 1, . . . , I,
ȳ = ζλ(z − x̄/λ).

(11)

Equilibrium values x̄1, . . . , x̄I and ȳ are admissible if they
are strictly positive. Note that (a priori) there is no guarantee
about the existence or uniqueness of an admissible equilibrium
solution. As explained below, the complete analysis is very
challenging, but we have found some important results that
are valid for any I .

We first show several structural properties of the steady-state
solution which simplifies the general solution significantly.
After that, the steady-state solution is characterized more
explicitly.

A. Structural properties

Due to the min-operation in (3), (5), and (7), we need
to separately consider whether the stages are download or
upload constrained at the equilibrium. Stage i is said to
be download constrained if there are admissible equilibrium
values satisfying

ϕi = ϕd
i = Icx̄i. (12)

Correspondingly, stage i is said to be upload constrained if
there are admissible equilibrium values satisfying

ϕi = ϕu
i = Iµx̄i

(
x̄i+1

x̄1 + . . .+ x̄i
+ . . .+

x̄I

x̄1 + . . .+ x̄I−1
+

ȳ + k

x̄1 + . . .+ x̄I

)
. (13)

Since there are I stages, this leads (a priori) to 2I different
cases, which would make the analysis extremely laborious.
However, as we show below, it is possible to rule out a
majority of them so that the number of possible cases increases
only linearly as a function of I , which significantly simplifies
the solution.



Proposition 1: If stage i is upload constrained, then also
stage i+ 1 is upload constrained. In this case, x̄i < x̄i+1.

Proof: Let i ∈ {1, 2, . . . , I − 1}. Assume that stage i
is upload constrained, i.e., there are admissible equilibrium
values satisfying ϕd

i ≥ ϕu
i . Now it follows from (11) that

Icx̄i = ϕd
i ≥ ϕu

i = ϕi = λ. (14)

On the other hand, by (13),

Iµx̄i(a+ b) = ϕu
i = ϕi = λ, (15)

where we have used notation

a =
x̄i+1

x̄1 + . . .+ x̄i

and

b =
x̄i+2

x̄1 + . . .+ x̄i+1
+ . . .+

x̄I

x̄1 + . . .+ x̄I−1
+

ȳ + k

x̄1 + . . .+ x̄I

By combining equations (14) and (15), we get

Ix̄i(c− µ(a+ b)) ≥ λ− λ = 0,

implying (since a > 0) that

c ≥ µ(a+ b) > µb. (16)

Consider now what happens if stage i + 1 were download
constrained with the same admissible equilibrium values. Now
it would follow from (12) and (11) that

Icx̄i+1 = ϕd
i+1 = ϕi+1 = λ. (17)

On the other hand, by (13),

Iµx̄i+1b = ϕu
i+1 ≥ ϕd

i+1 = ϕi+1 = λ, (18)

where we have used the same notation for b as above. By
combining equations (17) and (18), we get

Ix̄i+1(c− µb) ≤ λ− λ = 0,

implying that
c ≤ µb, (19)

which contradicts equation (16). Thus, we conclude that stage
i+ 1 must be upload constrained.

Assume now that both stages i and i + 1 are upload
constrained. From equation (15), we deduce that

Iµx̄i(a+ b) = λ = Iµx̄i+1b,

which implies that x̄i < x̄i+1 since a, b > 0.
As an immediate consequence, we get the following result.
Proposition 2: If stage i+1 is download constrained, then

also stage i is download constrained. In this case, x̄i = x̄i+1 =
λ/(Ic).

Proof: Let i ∈ {1, 2, . . . , I − 1}. Assume that stage i+1
is download constrained, i.e., there are admissible equilibrium
values satisfying ϕd

i+1 ≤ ϕu
i+1. Now it follows from (11) that

Icx̄i+1 = ϕd
i+1 = ϕi+1 = λ (20)

so that x̄i+1 = λ/(Ic). In addition, by Proposition 1, we
conclude that also stage i must be download constrained.
Finally, it follows again from (11) that

Icx̄i = ϕd
i = ϕi = λ, (21)

implying that x̄i = λ/(Ic).
Proposition 3: If stage i is download constrained and stage

i+ 1 is upload constrained, then x̄i ≤ x̄i+1.
Proof: Let i ∈ {1, 2, . . . , I − 1}. Assume that stage i is

download constrained, i.e., there are admissible equilibrium
values satisfying ϕd

i ≤ ϕu
i . It follows from (12) and (11),

Icx̄i = ϕd
i = ϕi = λ. (22)

Assume then that stage i + 1 is upload constrained with the
same admissible equilibrium values. Now it follows from (12)
and (11) that

Icx̄i+1 = ϕd
i+1 ≥ ϕu

i+1 = ϕi+1 = λ. (23)

By combining equations (22) and (23), we get

Icx̄i = λ ≤ Icx̄i+1,

which implies that x̄i ≤ x̄i+1.
It follows from Propositions 1, 2, and 3 that for any ad-

missible equilibrium value vector (x̄1, . . . , x̄I , ȳ) there exists
a “switch-over index” i∗ ∈ {0, 1, . . . , I} such that the stages
1, . . . , i∗ are download constrained and the rest (i∗+1, . . . , I)
are upload constrained. In addition,

x̄1 = . . . = x̄i∗ ≤ x̄i∗+1 < . . . < x̄I .

B. Steady-state solution

The case that all stages are download constrained can be
characterized explicitly in a closed form, see Proposition 4
below.

Proposition 4: There is a unique admissible equilibrium
solution (x̄1, . . . , x̄I , ȳ) for which all stages are download
constrained if and only if

1

µ
≤ ζ

(
z − 1

c

)
+

k

λ
. (24)

In this case, the equilibrium values are
x̄i =

λ

Ic
for all i = 1, . . . , I,

x̄ =
λ

c
,

ȳ = ζλ

(
z − 1

c

)
.

(25)

Proof: 1◦ Assume that all stages are download con-
strained. Let i ∈ {1, 2, . . . , I}. Since stage i is download
constrained, it follows from (12) and (11) that

x̄i =
ϕi

Ic
=

λ

Ic
.

Since this is true for any i, we get

x̄ = x̄1 + . . .+ x̄I =
λ

c
,



implying, by (11), that

ȳ = ζλ
(
z − x̄

λ

)
= ζλ

(
z − 1

c

)
.

Thus, we have proved equation (25). Note that these equilib-
rium values are admissible (the last one due to (2)).

Since stage I is download constrained, we have

ϕd
I ≤ ϕu

I ⇐⇒ Icx̄I ≤ Iµx̄I
ȳ + k

x̄

⇐⇒ c ≤ µ
ȳ + k

x̄
.

By applying (25), the condition above becomes

c ≤ µζc

(
z − 1

c

)
+ µk

c

λ
,

which is clearly equivalent with inequality (24).
2◦ Assume then that condition (24) is satisfied. As seen from

above, only for the values of (x̄1, . . . , x̄I , ȳ) given in (25),
condition (24) implies that ϕd

i ≤ ϕu
i for all i. In other words,

all stages are download constrained. In addition, equations (11)
are satisfied so that the values of (x̄1, . . . , x̄I , ȳ) given in (25)
constitute an equilibrium solution, which is easily seen to be
admissible (due to (2)).

Note that condition (24) does not depend at all on the
number of stages, I . Also the total numbers, x̄ and ȳ, are
independent of I .

For the other cases with at least one upload constrained
stage, steady-state analysis can be done explicitly only for I =
2. For larger systems, we need to resort to numerical methods.
However, the structural properties derived earlier facilitate
the analysis considerably. Essentially, instead of needing to
consider separately all possible 2I different combinations of
upload/dowload constrained stages (exponential complexity),
it is sufficient to consider I different combinations (linear
complexity) where one simply needs to examine separately
the cases with i∗ = 1, . . . , I − 1. For each value of i∗ one
needs to solve an algebraic equation and apply the admissi-
bility constraints. The algorithm to numerically determine the
admissible equilibrium values is given in Algorithm 1 below.

Algorithm 1:
1) For each i∗ < I , find all solutions of the following

system of algebraic equations:

2cx̄1 = λ,
. . . ,
2cx̄i∗ = λ,

2µx̄i∗+1

(
x̄i∗+2

x̄1 + . . .+ x̄i∗+1
+ . . .+

x̄I

x̄1 + . . .+ x̄I−1
+

ȳ + k

x̄1 + . . .+ x̄I

)
= λ,

. . . ,

2µx̄I

(
ȳ + k

x̄1 + . . .+ x̄I

)
= λ,

ȳ = ζλ

(
z − x̄1 + . . .+ x̄I

c

)
.

(26)

2) If a solution exists, verify that the solution is admissible.

We implemented the above routine in Mathematica, which
contains a rather efficient solver for algebraic equations. How-
ever, even then for a given fixed I the number of possible
solutions increases rapidly as i∗ becomes small, limiting the
efficiency of our numerical approach. However, our numerous
numerical experiments (which are omitted here due to lack
of space) indicate that a unique admissible solution of (26) is
found if and only if

1

µ
≥ ζ

(
z − 1

c

)
+

k

λ
(27)

and
1

Iµ
<

k

λ

(
1− I − 1

Icz

)
. (28)

Note that (28) is obtained from (26) by assuming that i∗ =
I − 1 (i.e., only last stage is upload constrained) and ȳ = 0
(no seeds are left in the system).

V. STOCHASTIC MODEL

In addition to a fluid model, we develop a more detailed
stochastic model to test the accuracy of the approximative
assumptions made for the fluid model. The stochastic model
does not utilize the quasi-stationarity approximation to esti-
mate the departure rate of altruistic seeds. Instead, the sojourn
time is derived from the stochastically evolving service rate
of the system. However, the sharing of the upload capacity
is still idealized, i.e., the upload capacity of a peer is shared
uniformly among the leechers that are in a lower stage.

Let the capital letters Xi(t) and Y (t) refer to the random
variables corresponding to the number of stage-i leechers and
non-permanent seeds, respectively, at time t. We assume that
the new peers arrive according to a Poisson process with
rate λ. Let A(t), Ci(t), and D̃(t) denote the total number
of peers arrived, stage-i completions, and seed departures,
respectively, until time t. In addition, let Ã(t) and C̃i(t) denote
the total number of altruistic peers that have arrived and that
have completed stage i, respectively, until time t. We have
immediately the following relations:

X1(t) = A(t)− C1(t),
Xi(t) = Ci−1(t)− Ci(t), i = 2, . . . , I,

Y (t) = C̃I(t)− D̃(t).

Note that Ã(t) is derived from A(t) by including each
arriving peer in Ã(t) with probability ζ according to an
independent Boolean trial. Below we show that in our model
also Ci(t), C̃i(t), and D̃(t) are determined from the arrival
process A(t) (and its derivative Ã(t)).

While the playback rate w is deterministic and constant,
the transfer rate Ri(t) in stage i is random and time-varying
depending on the dynamics of the whole video file sharing
system. More precisely, Ri(t)/(m/I) is the stochastic coun-
terpart of ϕi(t), and can be computed from (5) by replacing
xi(t)’s and y(t) by their stochastic versions Xi(t) and Y (t).

A peer stays in the first stage until all pieces of segment 1
have been retrieved. Since the transfer rate R1(t) in our model



is the same for all peers in the first stage, a peer that arrived
at time T a completes the first stage at time T c

1 , where

T c
1 = inf{t ≥ T a |

∫ t

Ta

R1(s) ds ≥
m

I
}. (29)

Vice versa, a peer that completes the first stage at time T c
1

arrived at time T a, where

T a = sup{t ≤ T c
1 |

∫ T c
1

t

R1(s) ds ≥
m

I
}. (30)

It follows from (30) that

C1(t) = A(sup{t′ ≤ t |
∫ t

t′
R1(s) ds ≥

m

I
}), (31)

The definition of C̃1(t) is the same as (31) but applied to Ã(t).
By a similar reasoning, we can generalize these for the other
stages i ∈ {2, . . . , I}:

T c
i = inf{t ≥ T c

i−1 |
∫ t

T c
i−1

Ri(s) ds ≥
m

I
},

T c
i−1 = sup{t ≤ T c

i |
∫ T c

i

t

Ri(s) ds ≥
m

I
},

(32)

and

Ci(t) = Ci−1(sup{t′ ≤ t |
∫ t

t′
Ri(s) ds ≥

m

I
}). (33)

Again, C̃i(t) is defined as in (33) but applied to C̃i−1(t).
The transfer phase of a peer lasts until the entire video

file has been retrieved. Let T c
I denote the time at which a

peer that arrived at time T a completes the final stage (and the
whole transfer phase at the same time). There is no guarantee
that the length of the transfer phase, T c

I − T a (derived from
(32)), is less than the length z of the playback phase with the
full playback rate. If this is not the case, we assume that the
playback is delayed so that the peer stays in the system until
the end of the transfer phase and departs from the system just
immediately thereafter. Thus, we have

D̃(t) = min{Ã(t− z), C̃I(t)}, (34)

which completes our model.

VI. STEADY STATE SYNTHESIS

By extensively experimenting with the two models
(fluid/stochastic), we have arrived at the following synthesis
of the long-run behavior and performance of the segmented
P2P VoD system.
(i) If

1

µ
<

k

λ
, (35)

the number of leechers and non-permanent seeds are
positive and finite and the equilibrium transfer rate for any
leecher exceeds the playback rate w (so that the playback
quality is sufficient for the VoD application). All stages
are download constrained, and the numbers of leechers
and non-permanent seeds are well estimated by equation
(25).

(ii) If
k

Iλ
≤ 1

Iµ
<

k

λ

(
1− I − 1

Icz

)
, (36)

the number of leechers and non-permanent seeds are
positive and finite and the equilibrium transfer rate for any
leecher exceeds the playback rate w (so that the playback
quality is sufficient for the VoD application).
If additionally (24) is satisfied, then all stages are down-
load constrained, and the numbers of leechers and non-
permanent seeds are well estimated by equation (25).
Otherwise, there is index i∗ ∈ {0, 1, . . . , I−1} such that
the stages 1, . . . , i∗ are download constrained and the rest
(i∗ + 1, . . . , I) are upload constrained. In this case the
numbers of leechers and non-permanent seeds are well
estimated by Algorithm 1.

(iii) If
k

λ

(
1− I − 1

Icz

)
≤ 1

Iµ
<

k

λ
, (37)

the number of leechers is still positive and finite but
the number of non-permanent seeds becomes 0 and the
equilibrium transfer rate for stage-I leechers stays below
the playback rate w resulting in playback problems.

(iv) If
1

Iµ
≥ k

λ
, (38)

the number of stage-I leechers goes to infinity (system
becomes unstable), the number of non-permanent seeds
becomes 0, and the equilibrium transfer rate for stage-
I leechers stays below the playback rate w resulting in
playback quality problems.

Note that cases (i)-(iv) divide the (λ, ζ)-plane into four
complementary areas, each with its own characteristic be-
havior. The four areas are separated by three bordering lines
determined by three threshold values for λ. Figure 1 illustrates
this synthesis for I = 3 in the (λ, ζ)-plane.

0 Λ 1
0

Ζ

1

HiL

DDD

HiiL

DDD

DDU

DUU

DDU

HiiiL

PQP

HivL

UNS

Fig. 1. Illustration of the steady-state synthesis for I = 3. The three vertical
bordering lines satisfy (from left to right) λ = kµ, λ = Ikµ

(
1− I−1

Icz

)
, and

λ = Ikµ, respectively. Letter D [U] refers to a download [upload] constrained
stage (e.g., DDU = first two stages are D-constrained and last one is U-
constrained), PQP refers to Playback Quality Problems, and UNS refers to an
UNStable system with severe playback quality problems.



The altruism parameter ζ has no effect on the thresholds in
equations (35), (36) and (37). However, the per-leecher service
rate increases with ζ (up to the download capacity limitation
d) implying that the system offers better viewing quality.

By (36), the limit for λ up to which the playback quality
is sufficient increases with the number of permanent seeds, k,
and the number of segments, I . Similarly, by (37), the limit
for λ up to which the system remains stable increases (even
linearly) with k and I .

Finally, we make a comment comparing the relative effi-
ciency achieved with a segmented P2P approach compared
to a traditional client-server approach used by typical content
distribution services, such as YouTube and Akamai. In a client-
server setting clients can download the file from k possible
servers each with service rate µ. Then (35) corresponds to
the stability limit of the system (limit for sufficient playback
quality is even smaller). In the segmented p2p system, on the
other hand, at this limit the system is able to offer the best
possible quality (all stages are download constrained), and the
actual limit where playback quality degrades below acceptable
is even higher, recall (36) and the discussion above, than in
the client-server setting.

VII. NUMERICAL RESULTS AND MODEL VALIDATION

In this section, we validate the accuracy of the fluid model
against (i) simulations from the stochastic model of Section V
and (ii) traces from a more realistic BitTorrent simulator
implementing a windowing algorithm, see [2]. To make the
BitTorrent system behave in a segmented manner, the window
is moved in steps so that each client must first download
the entire segment at which point the window is moved to
correspond to the next segment. Note that in the BitTorrent
system the peers downloading the same segment are still able
to share the data within their segment, while our models (fluid
and stochastic) do not take this into account.

In the following tests we consider a viewing scenario where
the parameters correspond to a typical YouTube setting. The
users are viewing a video file consisting of 800 pieces each
32KB in size. The video coding rate is w = 300 kbit/s, and
thus the viewing time is z = 699 s. The upload and download
bandwidths of the users are u = 512 kbits/s and d = 1024
kbit/s (typical asymmetric ADSL subscriber rates). Also, we
assume that k = 10 (ten permanent seeds). Similarly as in the
steady-state analysis, we focus on the behavior of the system
in the (λ, ζ) parameter space, cf., Figure 1.

A. Validation of system dynamics

First we consider the accuracy of the fluid model for
predicting the dynamic properties of the stochastic model,
as well as, the segmented BitTorrent system. In this setting,
we assume the video is split into 10 segments, i.e., there are
I = 10 stages, and new peers arrive with a rate λ = 0.1 1/s.
In the simulation of the stochastic model, customers arrived
according to a Poisson process with rate λ and the results were
obtained by averaging over 20 sample paths. In the BitTorrent
traces, the arrivals were deterministic, but randomness is still

caused by altruism, as modeled by ζ. The presented results
represent one sample path of the system. The results are given
in Figure 2. The figure shows the time evolution of the total
number of leechers,

∑
i xi(t), and the number of seeds y(t)

as a function of time. In the figure, the result from the fluid
model corresponds to the solid smooth lines, the stochastic
model results are shown with dashed lines and the BitTorrent
traces are depicted by the jagged solid lines.

The upper panel corresponds to the case with ζ = 0.7. The
system is download constrained and the number of seeds is
higher than the number of leechers. In the lower panel, ζ = 0.3
and the system is upload constrained (number of seeds has
dropped below that of the leechers). From the results, we can
observe that the dynamics are somewhat different between the
fluid model and the stochastic model, while the match is better
between the fluid model and the BitTorrent result. However,
most importantly, the steady state solution of the fluid model
clearly matches very well with the stochastic model and the
BitTorrent. The accuracy of the fluid model is especially good
in the download constrained case (upper panel).

The differences in the dynamics between the stochastic
model and BitTorrent may be explained by the fact that
the detailed mechanisms implemented in BitTorrent does not
result in an equal sharing of the upload bandwidth, as is
assumed in our stochastic model. This allows BitTorrent to
more efficiently generate new seeds into the system, which
significantly helps in shortening the time to reach steady
state compared with the stochastic model. The fluid model
also assumes the uniform sharing of the upload capacity.
However, the utilized quasi-stationary approximation provides
a counter-effect balancing the “slowdown” caused by the
uniform sharing assumption.

B. Steady-state validation

Next we focus on validating the steady state synthesis results
in Section VI. The synthesis results predict that the number of
seeds stays positive as long as λ < Ikµ(1−(I−1)/(Icz)), see
(36). To study this, we have numerically evaluated the number
of seeds in the system given by the steady state solution of
the fluid model and we compare that result against simulated
results from the stochastic model. The results are given in
Figure 3, which depicts the number of non-permanent seeds,
ȳ, as a function of λ for a system with I = 5 stages (upper
panel) and I = 10 stages (lower panel). In each panel, we
show the result for ζ = 0.7 and ζ = 0.3. In the figure, the
solid lines without markers represent the solutions of the fluid
model and the lines with circle markers represent the simulated
results. The simulated results have been obtained by simulating
the stochastic model for at least 60 000 s (in some cases up to
120 000 s) and discarding the results of the first 20 000 s due
to initial transient. The final results are an average of 5 such
sample paths. The threshold value for λ as predicted by (36)
is indicated by the dashed vertical line.

The results demonstrate that indeed (nearly) up to the
predicted threshold value of λ the number of seeds grows,
and as λ is increased further beyond this the number of



SxiHtL

yHtL

Ζ = 0.7

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

t

yHtL

SxiHtL

Ζ = 0.3

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

t

Fig. 2. Dynamic solution of
∑

i xi(t) and y(t) as a function of t for the
fluid model (solid smooth line), the stochastic model (dashed line) and the
BitTorrent simulation (jagged solid line) with ζ = 0.7 (upper panel) and
ζ = 0.3 (lower panel).

seeds quickly drops to zero indicating severe viewing quality
problems. In the fluid model this change is sharp, while in
the stochastic model it is more smooth. The accuracy of the
fluid model in the case when ζ = 0.7 is remarkably good
(the system stays download constrained for all values of λ).
However, when ζ = 0.3 the system is download constrained
for small values of λ but then switches to being upload
constrained. In this case, the accuracy is not as good but still
the qualitative behavior is accurately captured.

VIII. CONCLUSIONS

We have derived a fluid model for a segmented p2p system.
Specific features of our model include an explicit modeling
of the downloading efficiency via stages and the coupling of
the actual video viewing time to the departure rate of the
seeds. As demonstrated by our validation results with the
stochastic model and the segmented BitTorrent system, the
model accurately captures the steady state properties, while
the dynamic behavior shows some differences.

Our main result concerns the steady-state properties of the
system. In the (λ, ζ)-plane, we are able to characterize the
performance of the system. Notably, an explicit condition has
been derived under which the downloading rate exceeds the
actual viewing rate, i.e., quality remains acceptable. The result
allows us to characterize how the number of segments or the
number of permanent seeds improves the system. Also, the
result reveals that the condition is independent of altruism
ζ. However, given that the threshold condition is satisfied, a
higher level of altruism does imply better quality.

Future challenges include, analyzing the impacts of hetero-
geneous users. Also, generalizing the model to allow simul-

æ
æ

æ
æ æ æ æ

æ

æ

æ æ æ

æ

æ

æ

æ

æ

æ
æ
æ

æ

æ æ æ

Ζ = 0.3

Ζ = 0.7 I = 5

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

5

10

15

20

25

30

Λ

y

æ

æ
æ

æ æ

æ

æ
æ æ æ æ

æ

æ

æ

æ

æ

æ
æ

æ

æ æ æ

Ζ = 0.3

Ζ = 0.7

I = 10

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30

40

50

60

Λ

y

Fig. 3. Steady state solution of ȳ as a function of λ when ζ = 0.3 and
ζ = 0.7 with I = 5 (upper panel) and I = 10 (lower panel).

taneous downloading of multiple pieces could be useful for
understanding the optimal allocation of uploading capacity
between the segments.

ACKNOWLEDGEMENT

This work was supported by TEKES as part of the Future
Internet program of TIVIT (Finnish Strategic Centre for Sci-
ence, Technology and Innovation in the field of ICT).

REFERENCES

[1] K. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis of
BitTorrent-like protocols for on-demand stored media streaming,” in
Proc. of ACM SIGMETRICS, 2008, pp. 301–312.

[2] P. Savolainen, N. Raatikainen, and S. Tarkoma, “Windowing BitTorrent
for video-on-demand: Not all is lost with tit-for-tat,” in Proc. of IEEE
GLOBECOM, 2008.

[3] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. Ro-
driguez, “Is high-quality vod feasible using P2P swarming?” in Proc. of
WWW, 2007, pp. 903–912.

[4] M. Wang and B. Li, “R2: Random push with random network coding
in live peer-to-peer streaming,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 9, pp. 1655–1666, December 2007.

[5] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg, “Epi-
demic live streaming: Optimal performance trade-offs,” in Proc. of ACM
SIGMETRICS, 2008, pp. 325–336.

[6] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p
streaming systems,” in Proc. of IEEE INFOCOM, 2007, pp. 919–927.

[7] C. Feng and B. Li, “On large-scale peer-to-peer streaming systems with
network coding,” in Proc. of ACM MM, 2008, pp. 269–278.

[8] D. Qiu and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” in Proc. of ACM SIGCOMM,
2004, pp. 367–378.

[9] D. Qiu and W. Sang, “Global stability of peer-to-peer file sharing
systems,” Computer Communications, vol. 31, no. 2, pp. 212–219, 2008.

[10] F. Lo Piccolo, G. Neglia, and G. Bianchi, “The effect of heterogeneous
link capacities in BitTorrent-like file sharing systems,” in Proc. of HOT-
P2P, 2004, pp. 40–47.

[11] Y. Yue, C. Lin, and Z. Tan, “Analyzing the performance and fairness
of BitTorrent-like networks using a general fluid model,” Computer
Communications, vol. 29, no. 18, pp. 3946–3956, 2006.


