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Outline
e Erasure codes
e LT codes
e The degree distributions
e Optimization of the degree distributions
e Analytic results forn =3 andn =4
e Importance sampling based method for optimizing the degree distribution

e Test results
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Erasure codes
e File divided into n blocks is distributed.
e Erasure codes can be used to encode the original data, resulting in n + m blocks

e These blocks are then distributed, any n’ > n blocks are sufficient to recover the
original file (overhead factor f = n'/n > 1)

e With different codes there usually is a trade-off between computational efficiency
and f

e E.g. with Reed-Solomon codes, f = 1, but computation is inefficient.
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The fountain coding principle
1. A server distributes a file consisting of n blocks of length [

2. Server encodes blocks into packets, and distributes these:
- 2™ different packets
- Practically infinite number of these packets can be generated

- Number of blocks encoded into one packet is the degree of packet

3. In1ideal case, client needs to collect any n packets in order to decode the original
content

— analogy to filling a bucket under a fountain spraying water drops

e No retransmission of a specific packet is needed

e This 1s the 1deal case, 1n practice erasure codes approximate this.
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LT codes

e Efficient codes developed by M. Luby, company Digital Fountain

e Optimal codes for infinite n in terms of overhead

e A degree distribution defines the efficiency

e Extension to LT codes with linear time encoding and decoding: Raptor codes
e One form of low-density parity-check (LDPC) codes

e Possible applications: realible multicast, P2P, distributed storage...
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O Q O Q Q O File blocks

Choose d blocks

LT encoding

XOR

‘ Packet

1. Choose packet degree d from degree distribution p(d)
2. Choose uniformly at random d blocks
3. XOR the selected blocks bitwise
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Original file blocks (input symbols) above, encoded packets below.

1. Degree one packet starts the decoding.

2. If the packet degree is one, then the neighbor block = packet.

3. XOR the value of the recently recovered block with its neighbors, remove edges.
4. Continue iteratively until done or no more degree one packets.
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Degree distributions
e With a good degree distribution the overhead factor is as small as possible
e In expectation, ideal soliton distribution works best.

e From the ideal soliton distribution Luby derived the robust soliton distribution. It
1s possible to tune this distribution so that for NV ~ 10000, the overhead is about
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Optimal degree distributions in cases n = 3 and n = 4

e (De)coding process modeled as a Markov’s Chain

— The set of received packets and possibly decoded blocks corrensponds to a
state

— Total number of these states is then 22" .
x 256 forn = 3
*x 65536 forn =4
x 232 ~4-10° forn =5
— Next step is to reduce the state set so that state transition matrix P becomes
smaller
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State space reduction

e Let’s take a file with blocks {a, b, c}

e Now consider the situation where receiver has reveived a packet with block a and
packet of b and ¢ XORred together — state {a, bc}

e With regards to the decoding process, this is the same thing as if we were in state
{b, ac} or {c, ab}, so these states can be aggregated into one state

e Unique representation for these states is chosen to be {a, bc}

e Similarly for other states: give a unique representation over permutations of
different blocks

e State space can be reduced approximately to square root of 22"

— For n = 3 to 15 states, for n = 4 to 192 states
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Transition matrix generation
e Mathematica is used to automatically perform the state space reduction
e This way automatic generation of transition matrix is possible

e With transition matrix for Markov’s chain, average number of steps to absorbing
state can be calculated

e This, however, works only for n = 3 or 4, for n = 5 the number of raw states
becomes too large

e The optimized distributions give average overhead of one packet with n = 3 and
1.5 packets with n = 4.
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Optimization for any n
e Idea: to estimate the average number of packets using importance sampling

e Review of IS:

BN = [ 16xp00) dx. = [ 602 g(x) dx.

g9(x)

where p(x) and ¢(x) are probability distributions. An estimate for expectation h
can be calculated by drawing samples X () from g(x):

Zh (X () Zw (X D) (X @),

where we use the importance ratios
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Importance sampling based optimization for LT codes

e Importance sampling allows the calculation of an expectation using a different
distribution than the original one

e We propose an optimization method for LT codes using this fact, the estimate for
average number of packets needed for decoding is:

()

P n )

where nz(-k) denotes the number of packets of degree ¢, q and p are degree
distributions, Ry 1s the number of packets needed for decoding

e This means that we can generate samples of LT process with one probability
distribution and use the presented equation to calculate the expectation with a
different degree distribution
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Importance sampling based optimization for LT codes

e We implemented an iterative algorithm, which optimizes the estimate by the
method of steepest descent (i.e. gradient method)

e The accuracy of the estimate can be controlled trough the gradient, i.e., samples
are generated until the variance of the gradient is small enough

e The algorithm takes some degree distribution as input and outputs a better one, 1f
possible

e Present implementation has been tested for n < 100, in order to keep the
simulation and optimization times reasonable
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Results

e We optimized point distributions (i.e. parameters are the probabilities for each
degree) forn = 3, ... 10.

e Plot of average overhead percentages from 100000 simulations with the
optimized distributions:
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Results

e We tested geometric forms with one and three parameters, optimizing the

parameters

e Overhead percentages again from 100000 simulations with optimized
distributions (roughly the same for both forms!)
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Results with n = 100

e We tried to create a more efficient form from soliton distributions

e Optimized parameters are the probabilities for degrees one and two, and
additionally for degree 50. Otherwise the distribution 1s soliton distribution

Distribution Avg | Std

Degrees one and two optimized 125 | 13
Degrees one and two + spike at 50 | 124 | 10
Soliton 170 | 70

Robust soliton 130 | 13
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Histograms of simulations with n = 100
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Numbers of packets needed with the best form we found and with robust soliton

distribution.
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Tests with n = 1000

e We tested the optimized distributions for n = 100 with simulations of the LT

process when n. = 1000

Distribution Avg | Std

Degrees one and two optimized 1130 | &4
Degrees one and two + spike at 100 | 1121 | 37
Robust soliton 1124 | 57

e To our surprise, the optimized results for n = 100 perform well.
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Conclusions
e QOur proposed optimization strategy works

e We were able to generate better results than with the robust soliton distribution
for n = 100 and even for n = 1000

e Open questions:
— What is the best form of degree distribution?
— Is the spike really needed?
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