

Dimensioning of Wireless Mesh Networks with Flow-Level QoS Requirements

Pasi Lassila, Aleksi Penttinen and Jorma Virtamo

Networking Laboratory Helsinki University of Technology

Introduction

- Dimensioning problem
 - Given the network (nodes, links, routing) and the traffic demands
 - Determine link capacities such that a given criterion is fulfilled
 - Relation to QoS: criterion must be a meaningful performance metric for users
- Background
 - Dimensioning of wireline IP access networks for data traffic
 - Based on applying recent flow-level network models of data traffic
- Scope of this work
 - Extend ideas from earlier work to Wireless Mesh Networks (WMNs)
 - Main point: include impact of wireless interference in the modeling

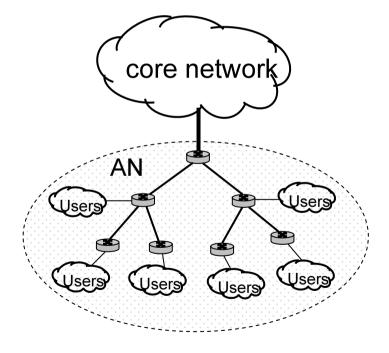
Flow-level modeling and dimensioning (1)

- "Good old" circuit switched networks
 - QoS determined by blocking probability
 - Dimensioning based on classical Erlang formula (insensitivity!)
- Other approaches to dimensioning IP networks
 - Bertsekas-Gallager square root method: based on packet level QoS
 - Multi-commodity flow optimization (e.g., Pioro et al): easy to apply, but ignores the stochastic (dynamic) nature of traffic
- What is QoS in IP networks?
 - No established QoS metric has been defined
 - Majority of Internet traffic is elastic (controlled by TCP)
 - Users experience QoS at the flow level (e.g., as file transfer delay)
 - Natural choice for the QoS metric is the flow throughput

Flow-level modeling and dimensioning (2)

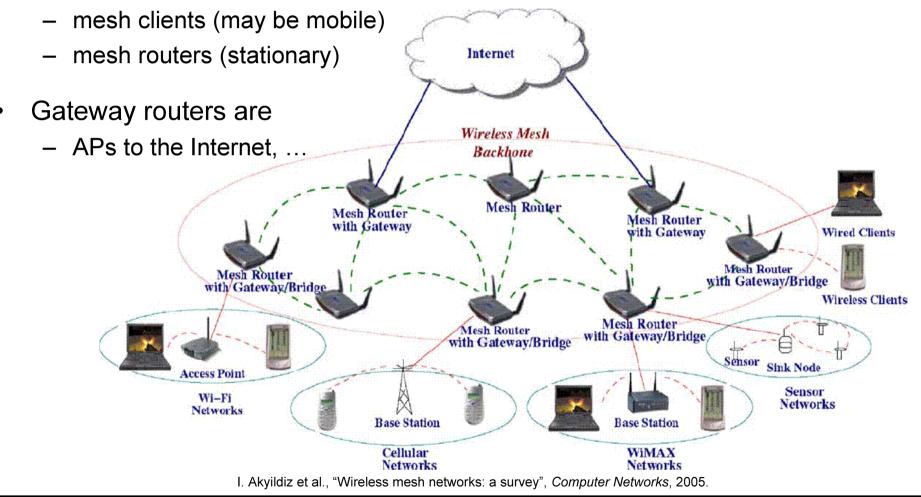
- We apply flow-level models based on balanced fairness (BF)
 - Flow-level performance depends on random flow arrivals, random file lengths and how the flows share the capacity
 - BF is an idealized fair bandwidth sharing scheme for which performance can be computed efficiently, at least approximately
 - BF approximates max-min fairness and proportional fairness, for which performance can not be easily evaluated
 - The models are robust, i.e., performance only depends on the load

\Rightarrow BF is used as a computationally efficient tool that allows robust dimensioning based on flow-level throughput

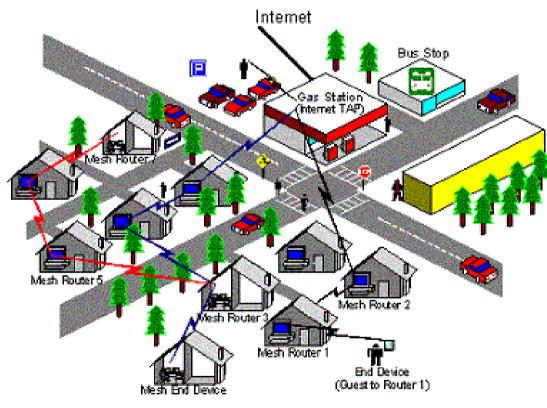

- Practical use of the results:
 - Approximate answers to "how much capacity is needed?"
 - Provides "educated guesses"

Where is dimensioning at flow-level required?

- On a given link, flow throughput $\approx C - \rho$ (available capacity)


- Core network links are "transparent"
 - Even with modest over-provisioning, C – ρ is so huge that core does not affect e2e delays
- In access networks (ANs) throughput criterion is closer to offered load
 - More detailed dimensioning is needed

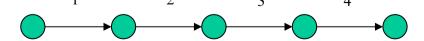
Backbone WMN (Wireless Mesh Network)

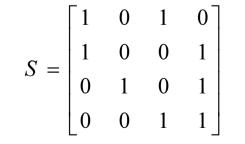

• WMN consists of

Practical (existing) example of WMN

- Community/neighborhood networks providing wireless access to Internet
- Companies:
 - Legacy vendors:
 - Motorola
 - Cisco
 - Nortel
 - Microsoft
 - New start-ups:
 - Tropos Networks
 - Mesh Dynamics
 - ...

http://research.microsoft.com/mesh/


Network model and assumptions (1)


- Network consists of nodes connected by uni-directional links
 - Set of links denoted by $\mathbf{L} = \{1, \dots, L\}$
- Routing is fixed and traffic matrix is given
 - There are *K* classes of flows, i.e., *K* routes
 - \mathbf{R}_i = set of links on the route of class *i*
 - F₁ = set of classes that use link I
 - The offered load in each class is ρ_k (bit/s)
 - R_l = offered load on link I, $R_l = \sum_{i \in \mathbf{F}_l} \rho_i$
- MAC layer model
 - We assume that MAC layer operates according to STDMA
 - Allows to incorporate wireless interference effects in flow level models
 - Approximates performance of other MAC schemes (e.g., based on CSMA)

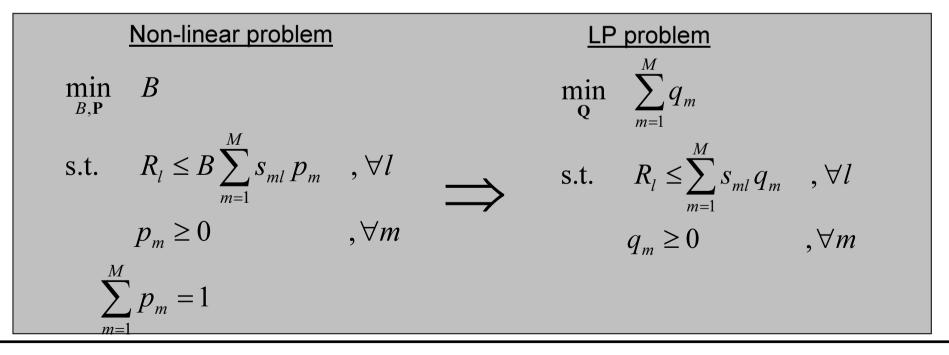
Network model and assumptions (2)

- STDMA operation
 - Network characterized by a schedule P and a set of transmission modes S = {S₁,...,S_M}
 - Each transmission mode is a vector $S_i = [s_{i1}, ..., s_{iL}]$, where $s_{il} = 1$ if link *l* is used in mode *i* and 0 otherwise
 - Whether link / is used or not depends on the interference model
 - Allows very versatile modeling of interference!
 - Schedule $\mathbf{P} = [p_1, \dots, p_M]$, where p_m defines the proportion of time that transmission mode *m* is used
- Example
 - Node can only send or receive (1 transmitter)

Network model and assumptions (3)

- Interference model in this study
 - Each node has a single transmitter with nominal capacity *B* (bit/s)
 - All nodes have the same radio (i.e., the same *B*)
 - Each node has a fixed transmission range (constant power)
 - Within this range the link capacity is constant, i.e., B
 - Interference occurs if receiver hears more than one transmission within its transmission range
 - This type of binary interference can also be modeled using so called clique constraints
- Impact of interference on link capacities
 - Schedule P determines effective bandwidth of link /

$$C_l = B \sum_{m=1}^M s_{ml} p_m$$


• Dimensioning task: Find minimum *B* such that performance is sufficient

Dimensioning for sufficient capacity

- Determine *B* according to stability limit subject to interference constraints
 - Capacity is "just enough"
- Non-linear problem can be converted to an equivalent LP-problem

- Let
$$q_m = B p_m \implies \sum_{m=1}^M q_m = B$$

PAN-NET Research Seminar

Dimensioning with flow-level QoS requirements

- Joint optimization of MAC layer performance and flow-level performance
 - Minimum throughput requirement for each class, denoted by γ_k^{\min}
 - Class-*k* throughput $\gamma_k(\mathbf{C})$ depends on capacity vector $\mathbf{C} = [C_1, \dots, C_L]$

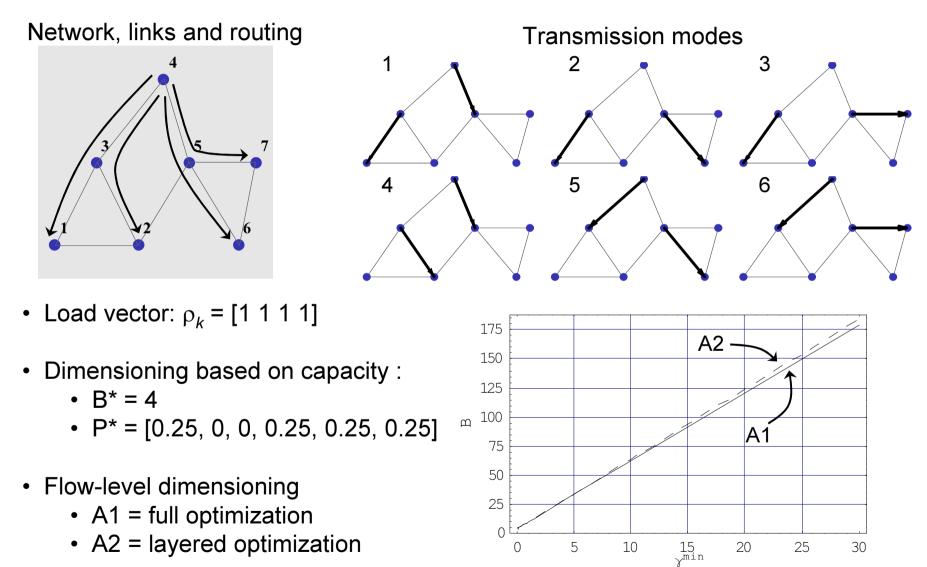
SF - bound for throughput:
$$\frac{1}{\gamma_k(\mathbf{C})} = \sum_{l \in R_k} \frac{1}{C_l - R_l}$$

- Let
$$d_l = \sum_{m=1}^M s_{ml} p_m$$
 and $D(\mathbf{P}) = [d_1, \dots, d_M] \implies \gamma(\mathbf{C}) = \gamma(B \cdot D(\mathbf{P}))$

$$\begin{array}{lll} \min & B & \min & \sum_{m=1}^{M} q_m \\ \text{s.t.} & \gamma_k (B \cdot D(\mathbf{P})) \ge \gamma_k^{\min}, \forall k \\ & p_m \ge 0, \forall m \end{array} \implies \begin{array}{lll} \min & \sum_{m=1}^{M} q_m \\ \text{s.t.} & \gamma_k (\mathbf{Q}) \ge \gamma_k^{\min}, \forall k \\ & q_m \ge 0, \forall m \\ & \sum_{m=1}^{M} p_m = 1 \end{array}$$

PAN-NET Research Seminar

Simplified flow-level dimensioning method


- Layered approach
 - Fix schedule according to capacity limit LP-problem
 - Using that schedule, determine minimum *B* that satisfies QoS requirements
- More detailed
 - Step 1: Solve LP-problem for optimal schedule at MAC layer
 - Denote the result by P*
 - Step 2: Find sufficient B such that throughput for all classes $\geq \gamma_k^{\min}$

$$B = \max b_k$$
$$b_k = \left\{ B : \gamma_k \left(B \cdot D(\mathbf{P}^*) \right) = \gamma_k^{\min} \right\}, \forall k$$

• Overestimates the required *B*

Numerical example

Otaniemi, March 16, 2006

Conclusions

- Dimensioning approach for wireless multihop networks
 - Includes interference modeling via an STDMA assumption of the MAC layer
 - Dimensioning can be based on flow level QoS requirements (per flow throughput)
 - Problem:
 - Number of transmission modes *M* grows exponentially with number of links *L*, in the worst case $M = 2^{L}$
 - Solving the non-linear program for large instances is computationally demanding
 - Efficient solution methods need to be developed
- Extensions and challenges
 - Is the interference model realistic enough? Most likely not, but what are the most relevant aspects to change?
 - Routing is now fixed, but it could be included in the optimization. I
 - Assumes now that node location are given, but this could also be subject to optimization (optimal dimensioning and topology design)
 - However, all this is at the expense of increased computational cost