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1 Introduction

Distribution of large files is nowadays a popular application on the Internet. Situations with
one server distributing data to multiple receivers is particularly common, where the content
can be operating system updates, movies or other media files, the list of possible applica-
tions is endless. Also different kinds of peer-to-peer applications, such as data replication,
are becoming more popular. These concepts can be easily extended to any kind of network
from small scale wireless ad-hoc networks to global communications networks.

This kind of applications can be very demanding for the network itself and to servers,
i.e., the sources, distributing the content. A favorable characteristic for the distribution
process is the reliability of the file transferring process to minimize the number of retrans-
missions and probability of errors. In 1998 John W. Byers et al. presented an interesting
new idea called a digital fountain approach for reliable distribution of data [BLMR98].

The purpose of this work is to present key ideas behind digital fountain codes and their
properties. The main results developed in this work are optimal probability distributions,
called degree distributions, used in fountain codes.

First general discussion about coding methods and some channel models is discussed
in Section 2. Section 3 presents digital fountain principle and the respective codes. After
this analytical results are presented in Section 4 and simulation results in Section 5. All
analytical and simulation results were obtained using Mathematica 5.0 [Wol].
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2 Background for digital fountain codes

2.1 General

In general, communication over any real transmission channel is noisy, i.e., channel incurs
some errors to transmitted information. Important goal naturally is to reduce this noise as
much as possible. This can be achieved by improving the channel characteristics physically
or by means of information and coding theory. The latter way includes adding an encoder
before the channel and a decoder after it. This way the transmitted message undergoes three
distinct phases during transmission: encoding, adding of possible noise and decoding. The
usage of digital fountain codes fall into this latter category.

Material represented in this section can easily be found in many sources covering prin-
ciples of information theory or telecommunications. The main reference that has been used
in this section is [Mac03].

Figure 1: Channel model with encoder and decoder

2.2 Forward error correction

Forward error correction (FEC) is a way to increase reliability of a communication channel
by adding redundancy to transmitted messages. In FEC, possible errors introduced by the
transmission channel are corrected by the code itself without need for retransmitting the
message or parts of it. Another scheme used for correcting errors is automatic repeat request
(ARQ), where incorrectly transmitted parts of a message are sent again over the channel
when explicitly asked for by the recipient.

ARQ scheme could cause problems situations where packet losses are frequent, i.e.,
when network is congested or satellite communications in bad weather. This mean that
in some situations FEC is the more alluring choice, providing that efficient FEC solutions
(coding methods) are available. FEC does not use any retransmissions so its properties suit
particularly well to transmission of large chunks of data to many participants at the same
time (it should be noted that it is possible to combine FEC and ARQ methods, i.e., the can
be used to complement each other). ARQ would raise some problems when used in this
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kind of application, e.g., distributing servers could choke if thousands of receivers tried to
ask for a specific missing part or different parts of a message at the same time.

FEC has been traditionally used in specialized hardware components in transmission
links and software based FEC systems are not widely used yet in computer communications.
One reason for this is that encoding and decoding processes could add a significant delay
component to the overall communication process. Nowadays even desktop PC’s have plenty
of computing power so the significance of encoding delay probably is not relevant anymore.
Of course, the coding method used has to be efficient enough to provide a good alternative
to the traditional packet based transmission method.

Traditional TCP on the Internet uses an ARQ style packet acknowledgement scheme.
Some discussion on how to utilize FEC on the Internet in one-to-many data transfer over IP
multicast can be found in [RFC3452]. Other request for comments covering the use of FEC
on the Internet are [RFC3453] and [RFC3695].

2.3 Symmetric channel and erasure channel

Perhaps the most simple instance of a channel is a binary symmetric channel. The set of
possible symbols which can be fed into the channel is called an input alphabet and denoted
by Ai and correspondingly the set of possible output symbols is output alphabet, Ao. In
a binary symmetric channel both sets are the same and include only two symbols: Ai =
Ao = {0, 1}. When the probability of an error is pf then a transferred symbol is the same
with probability of 1− pf and changes with probability of pf .

A binary erasure channel is a channel where input alphabet is Ai = {0, 1} and output
alphabet is Ao = {0, 1, ?}. The symbol ? in output alphabet refers to a situation when
possible error has occurred and the real symbols is either 0 or 1. This means that transferred
symbol is correct with probability 1−pf and output is symbol ? with probability pf . Hence
an erasure channel does not output possible erroneous bits, but instead represents them with
a symbol which tells the receivers that something is wrong.

Both of these concepts can be extended to an arbitrary size of input alphabet, so that
q = |Ai|. The channel can the be called a q-ary binary or erasure channel.

Important thing to be noticed here is that in a regular a IP-based network links can
be thought as erasure channels; a packet is discarded by the network nodes if it has some
errors, for example by comparing the checksum in packet header to a computed checksum.
Hence the channel is q-ary erasure channel and the size of this channel is q = 2l, where
l is the number of bits in the packet. Thus, if the probability for error is again pf , then
the probability for receiving a packet without error is 1 − pf and packet is discarded with
probability pf .
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3 Digital fountain codes

3.1 Digital fountain principle

Let us consider a situation where a company has a server which is supposed to distribute
a large file to hundreds of thousands of clients. Downloading a movie from a electronic
movie store is one example application. Point to point connections between server and every
downloader would definitely cause serious troubles for the server unless it has vast amounts
of bandwidth and the processing power to handle all the connections at the same time.
Multicasting is a more reasonable solution to this situation. Problem with this approach is
that multicasting itself is not widely supported by ISPs or the networking equipment and
thus may not be applicable to this problem.

The digital fountain principle introduced in [BLMR98] could be a way to solve the
described problem. The name comes from an analogy to a fountain. We have an infinite
supply of packets which we “spray” into network (a fountain sprays water drops into air),
and to collect the original data we just need to collect a given amount of these packets
(we hold a bucket under the fountain to get enough water for our purposes). If in above-
mentioned problem we have a movie file consisting of N blocks size of ` then in ideal case
we need just to collect N packets to decode the original file.

The digital fountain can be approximated with erasure codes. The classic Reed-Solomon
codes are not practical enough for this but in [BLMR98] Tornado codes are presented which
are suitable for approximating the ideal digital fountain. After this LT codes [Lub02] and
Raptor codes [Sho] have been invented which also approximate the digital fountain. Raptor
codes are the most efficient type of fountain codes to this day. In this work the emphasis
will be on LT codes and their properties are discussed in the next section.

3.2 LT codes

LT codes were presented by Michael Luby in 2002 [Lub02]. The number of encoded sym-
bols which can be produced is virtually limitless; these kind of codes are called rateless
codes. The encoding and decoding processes are rather simple and only exclusive-or (XOR,
⊕) and copying operations are needed. This simplicity can be deceptive as work has to be
done to make these codes efficient enough to be practical.

Encoding symbols are here called packets, as they are the units which are transferred
from source to receiver. Input symbols are non-overlapping continuous chunks of a file
and they are called blocks. The procedures defined next follow the presentation in [Mac03,
chapter 50].
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3.2.1 Encoding

A digital fountain encoder needs to produce an infinite supply of packets built from blocks
of the original file. The encoding procedure goes as follows:

1. Choose a degree d from a degree distribution ρ(d).

2. Choose uniformly at random d blocks from the source file consisting of blocks s1 . . . sk.
Denote these as ŝ1 . . . ŝd.

3. The encoded packet tn is produced by successively using bitwise XOR to each of
blocks chosen in the previous step, tn = ŝ1 ⊕ ŝ2 ⊕ . . .⊕ ŝd.

The procedure is illustrated in Figure 2. Encoding generates a bipartite graph where each
sent packet has as neighbors the blocks which are combined using XOR. Figure 3 shows
this.

Figure 2: Encoding illustrated, d blocks from source file are chosen and combined
by computing a bitwise XOR

Figure 3: Encoding defines a bipartite graph
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3.2.2 Decoding

The decoding procedure needs in addition to packets the information about which blocks
are included in which packets. When this information is available the decoding procedure
is:

1. Find a output node of degree one in the graph, i.e., find a node tn which has only sk

as a neighbor. If no such node is available receive more packets until such a node is
found.

2. Now recovered tn is exactly the copy of its only neigbour; set sk = tn

3. For every other output node ti, i 6= n connected to the input node sk set ti = sk ⊕ ti.

4. Remove all edges between sk and output nodes.

5. If all si have been recovered, we have recovered the original file, otherwise return to
step 1.

The decoding procedure is illustrated in Figure 4. The procedure defined here is referred to
as simple decoding.

Figure 4: Decoding illustrated, process evolves from left to right and from top to
down. On each step solid line represents the usable information which is used to
resolve values of input nodes and to change the values of output nodes.
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3.2.3 Approach using linear system of equations

The whole encoding and decoding process can also be thought as solving a linear system
of equations in binary base, that is possible symbols in equations are 0 and 1. One sent
packet corresponds to one linear equation, and multiple sent packets forms a linear system
of equations. This system can be solved by modulo-2 matrix inversion. The disadvantage
of this approach is that the inversion becomes computationally very expensive when the
number of the equations grows.

Example 1 Let us consider the situation in Figure 4. Let the output nodes correspond to
vector y and the input nodes correspond to vector x. Now we know that y = (1 0 1 1).
Then we have the following linear system of equations:

x1 + x3 = 1

x2 = 0

x1 + x3 = 1

x2 + x3 = 1

In this simple case it is easy to see that the solution is x = (0 0 1). The same result can
be calculated by putting above equation into matrix form and inverting the multiplicating
matrix.

This approach will be called full decoding. Name comes from the fact that here we
use all the information we have from the encoding packets collected so far to calculate the
original data, i.e., we solve the system of multiple equations (packets) in one step. This is
in contrast to iterative decoding where only one collected packet is processed at each step.

3.3 Degree distribution

There are some design problems which should be taken into account when designing a
digital fountain encoder described before. The main problem discussed is the design of a
proper degree distribution. This distribution is crucial for a successful operation of a digital
fountain. Many of the decoded packets should have a high degree, so that all of the input
blocks are connected to some encoded packet. On the other hand, degree one packet is
needed to start the decoding process and low-degree packets are needed to keep the started
process going on.

The distributions presented by Luby in [Lub02] are described next. Later, in Section 5,
they are used to generate simulation results. The last two of these are of more interest, only
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a few arguments are given to motivate these. For more discussion about the properties of
these two distributions see [Lub02] or [Mac03].

3.3.1 All-at-once distribution

Distribution which Luby calls all-at-once distribution means just that all packet degrees are
one, i.e., ρ(1) = 1.

Definition 1 In all-at-once distribution all packet degrees are ρ(1) = 1.

This strategy does not produce good results, which is fairly intuitive. The expected
number of packets needed in theory for decoding is fairly easy to calculate. If the receiver
has already received k distinct packets, then the probability that the next packet is a new
one is N−k

N . Now if we the denote by Xk the random variable for the amount of received
packets until block k is received we have

X = X0 + X1 + · · ·+ XN−1,

where X is the random variable for total number of packets. Xk is geometrically distributed
with probability p = N−k

N , so the exceptation is E[Xk] = 1
p = N

N−k . Consequently, the
expectation of total number of packets is:

E[X] = E[X0 + X1 + · · ·+ XN−1] = E[X0] + E[X1] + · · ·+ E[XN−1]

=
N−1∑
k=0

N

N − k
= N

N−1∑
k=0

1
N − k

= N

N∑
k=1

1
k
≈ O(N log N),

(1)

where the approximation
∑N

k=1(1/k) ≈ O(log N) is used on the last summation. This
approximation can be derived by bounding the summation by integrals:

∫ N+1

1

1
x

dx <

N∑
k=1

1
k

< 1 +
∫ N

1

1
x

dx ⇐⇒ log (N + 1) <

N∑
k=1

1
k

< 1 + log N (2)

This bounding method is illustrated in Figure 5, where left part of figure shows the bounding
from upper side and correspondingly right part the bounding from below. Each rectangle
represents one term 1/k of the sum, k ranging from 1 to N , while the area under the drawn
curve is the definite integral of function 1/x. The left part of the figure shows that the area
covered by N rectangles is smaller than the area of the first rectangle added to the area
under the curve starting from x = 1 and ending when x = N . The right part shows that
the area under N rectangles is larger than the area under the curve in the same region. This
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reasoning leads to Equation 2.

1 2 3 4 5
x

1
2
3
4
5
6

Bounding the sum above

1 2 3 4 5 6
x

0.5

1

1.5

2
Bounding the sum below

Figure 5: The method of bounding sums. Each rectangle represents one term of the
bounded sum and the area under curves is used to limit the sum of terms from above
and below.

3.3.2 Ideal soliton distribution

This distribution is based on the idea that on each iteration of the decoding algorithm pre-
sented in Section 3.2.2, it is ideal to have just one degree one node on each iteration. This
leads to the following distribution:

Definition 2 Ideal soliton distribution ρ(i) is:

ρ(i) =

 1
N when i = 1

1
i(i−1) for i = 2, . . . , N,

where N is the number of blocks in original message.

This distribution however works poorly in practice, as we will see in Section 5. The reason
for failure of the ideal soliton distribution is that it operates as desired only in expectation,
i.e., one symbol of degree one is revealed in a step in expectation. Thus the variance in
the process may lead to situation where there is no degree one symbols available so more
packets are needed for the process to continue, this causes undesired overhead in the number
of packets.

3.3.3 Robust soliton distribution

As the ideal soliton distribution works poorly in practice, Luby proposes a robust soliton
distribution which is somewhat based on ideal soliton distribution presented above.
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Definition 3 For the robust soliton distribution, first define function:

τ(i) =


R
iN for i = 1, . . . , N

R − 1
R log R/δ

N for i = N
R

0 for i = N
R + 1, . . . , N,

where δ is the failure probability of decoding process after N ′ encoded packets and R =
c log (N/δ)

√
N for some constant c > 0. The robust soliton distribution µ(i) is the

normalized value of the sum ρ(i) + τ(i):

µ(i) =
ρ(i) + τ(i)∑N
i=1 ρ(i) + τ(i)

.

It can be shown ([Lub02]) that decoding can be achieved using N ′ = N+O(log2(N/δ)
√

N)
encoding symbols by using this distribution.

This distribution ensures that number of degree one symbols during the decoding pro-
cess is

S = c log
(

N ′

δ

)√
N ′,

instead of one, as is in case of ideal soliton distribution. This larger value for available
degree one packets in iteration causes the distribution to behave better, as variation around
only one degree one packet in ideal soliton distribution is the reason for its failure.

Further discussion about the properties of the robust and ideal soliton distributions can
be found in [Lub02].

3.3.4 Objectives for optimization of degree distributions

In the next sections two different and mutually exclusive approaches to optimizing the de-
gree distribution for small cases are considered.

Definition 4 Objective Min.Avg. means minimization of the mean number of packets for
succesful decoding.

Definition 5 Objective Max.Pr. means maximization of the probability of succesful decod-
ing with specified amount of packets.
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4 Analytical results using Markov chains

For simple cases, when the size N of the message is just three or four blocks, analytical
results were calculated to give some insight about the behavior of the degree distribution
when probability for successful decoding is maximized. These cases are modeled using
Markov chains. The case N = 3 is simple enough to form the necessary state transition
matrices explicitly by going trough all necessary steps by hand. However, when N = 4
the state space becomes so big that help of a computer algebra system is needed. Mathe-
matica 5.0 [Wol] was used to generate the necessary state transition matrices for these two
cases. The results in this section are exact in the sense that no simulation is used, although
numerical optimization methods are utilized.

The results calculated here are later in Section 5 compared to simulation results with
N = 3 and N = 4.

4.1 Modeling the fountain coding process as a Markov chain

4.1.1 Markov chain and state space reduction

The whole fountain coding process constitutes a Markov chain. From the receiver’s point
of view, the set of received packets and possibly decoded blocks denotes a state. State
transition probabilities depend on the arrival probabilities of specific packets.

For example let us consider a file consisting of three blocks {a, b, c}. When the receiver
has already received a packet with block a and another one with packets b and c, then the
process is in state {a, bc}, and here bc denotes a packet with blocks b and c combined using
bitwise XOR.

The number of possible distinct packets is 2N (i.e. the number of the subsets of a set
with |N | elements). Using this information, total number of possible states in Markov chain
described as above is 22N

. For N = 3 this is 256, and for N = 4 number of states is 65536.
For N = 4 the state space is rather big, so the reasonable thing to do is to reduce the state
space if possible.

State space reduction can be done by noticing that several states can be aggregated into
one state in the Markov chain. From the point of view of the process, it does not matter
which are the specific blocks included in the packets. The only relevant things are the
degrees of the packets and the general composition of the packets: do the packets have
common blocks together or do they not. Returning to the example above, states {b, ac} and
{c, ab} can be aggregated together with state {a, bc}, as the general structure of all these is
the same: one degree one packet and one packet where the other two blocks are combined
with XOR-operation.
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In general, all states which can be returned into each other by permutation of elements of
the original file so that the general structure of the packet does not change, can be aggregated
into one single state.

Using this state space reduction scheme, the number of states can be reduced to 12
when N = 3 and to 192 when N = 4. This is approximately the square root of the number
of raw states 22N

. For N = 5 the number of raw states is 232 ≈ 4 · 109, square root of
this is 63000, and so with N = 5 even the reduced state space is too big to do any useful
calculations with the Mathematica modules constructed for this work.

4.1.2 State transition matrix generation algorithm

A state transition matrix for the Markov process with reduced states can be done easily after
the state reductions. The following algorithm follows the Mathematica implementation of
state transition matrix generation:

1. First generate reduced states in case N = n:

(a) Generate all possible states, there are 22N
such raw states.

(b) Make all possible state aggregations and provide unique representations for
each of these reduced states.

2. Generate all possible arriving packets, that is, all combinations of blocks in the file.

3. With help of possible packets and states, generate matrix of possible next states.

4. Reduce the states in the matrix obtained in previous step.

5. Generate the symbolic state transition matrix in case N = n:

(a) Calculate symbolic expressions for probabilities of possible arriving packets in
terms of degree distribution ρ(d).

(b) Using symbolic expressions for probabilities, present the matrix obtained in
step 4.

→ This is the state transition matrix P of reduced system.

4.1.3 Calculation of average number of steps to absorption

Now using the state transition matrix P we can calculate the average number of sent packets
needed to recover the whole original file. This Markov chain has now the state where all
blocks are decoded as an absorbing state. In the example with three blocks, using the

12



notation presented, this state is {a, b, c}. As this Markov chain is clearly finite, it can be
written into the following canonical form:

P =

Q R

0 I

 ,

where Q is the transition matrix between transient states, R represents transitions from
transient states to absorbing ones and I is identity matrix corresponding to the absorbing
states. When the state space is aggregated, the identity matrix I corresponds to just one
state, i.e., I = 1, an 1 × 1 matrix. Now the fundamental matrix M = (I −Q)−1 is well-
defined with all elements positive and represents all possible transition sequences in the
transient states without going to absorbing ones. A specific element mij in the fundamental
matrix M tells the number of visiting times in state j before absorbtion when starting in
state i. Using the fundamental matrix, average number of steps can then be calculated by
multiplication with the initial distribution vector.

4.2 Case N = 3

Average number of packets needed to deliver the three block message is studied by con-
structing a Markov chain as described above. State transition probabilities are obtained
from the degree distribution ρ(d). In the following we consider both full and simple de-
coding for N = 3 and optimize the degree distribution in the sense of the two objectives
presented in Section 3.3.

4.2.1 Full decoding

The state diagram of the fountain coding process when decoding is done by solving the
linear system of equations is presented in Figure 6. Self transitions are not explicitly drawn.
The original file consists of three blocks, a, b and c. Probabilities of different degrees
are denoted by pi, where i is the corresponding degree number. State transition matrix
representing the chain is:
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Pfull
3 =



0 p1 p2 p3 0 0 0 0

0 p1

3 0 0 2
3 (p1 + p2) p2

3 + p3 0 0

0 0 p2

3 0 2
3p1

p1

3
2
3p2 0

0 0 0 p3 0 p1 + p2 0 0

0 0 0 0 (2p1+p2)
3 0 0 (p1+2p2+3p3))

3

0 0 0 0 0 p1+p2+3p3

3 0 2
3 (p1 + p2)

0 0 0 0 0 0 p2 p1 + p3

0 0 0 0 0 0 0 1



,

where the overscript full refers to the fact that we are doing a full decoding ,i.e., solving the
linear system of equations. Variables pi are the probabilities from degree distribution ρ(d),
pi = ρ(i) and p1 + p2 + p3 = 1.

Actual states in Markov chain are the states where a solid line starts and the absorbing
state {a, b, c} in Figure 6. Dashed lines represent state reductions, where a state is reduced
to a equivalent representation. When using linear systems of equations to decode the orig-
inal file, some additional state reductions can be done in addition to the reduction scheme
presented in Section 4.1.1.

For example the state {ab, abc} means that we have one packet created from blocks a

and b (or b and c or a and c) and another one which is composed of all the three blocks.
When solving a corresponding system of linear equations we can decode one packet fully
(in case {ab, abc}, c can be solved) so the state can be reduced to {a, bc}.

Fundamental matrix can now be calculated as presented in the previous section, and
with the initial distribution vector π(0) = (1 0 . . . 0) we obtain the average number of
steps from beginning of the process to the end:

E [number of steps before absorption] = π(0)MeT = π(0)(I−Q)−1eT = π(0)A−1eT

= 8 +
18

p1 − 3
+

1
1− p2

+
18

p2 − 3
− 9

2 p1 + p2 − 3
+

2
p3 − 1

− 9
p1 + p2 + 3 p3 − 3

,

(3)
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Figure 6: Decoding by solving a linear system of equations

where π(0) = (1 0 . . . 0), eT = (1 . . . 1)T and

A =



1 −p1 −p2 −p3 0 0 0

0 1− p1

3 0 0 −2
3 (p1 + p2) −p2

3 − p3 0

0 0 1− p2

3 0 −2
3p1 −p1

3 −2
3p2

0 0 0 1− p3 0 −p1 − p2 0

0 0 0 0 1− (2p1+p2)
3 0 0

0 0 0 0 0 1− p1+p2+3p3

3 0

0 0 0 0 0 0 1− p2


.
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From this result it is easy to calculate the optimum weights if we want to have as few steps
as possible to decode the message. Numerical minimization using Mathematica yields the
following results: 

p1 = 0.429

p2 = 0.429

p3 = 0.143

When weights are set as above, then the average number of packets needed to transfer the
message succesfully is 3.917 which is seen by inserting above values into (3). With uniform
distribution, p1 = p2 = p3 = 1

3 , the average is 17
4 = 4.25 packets.

4.2.2 Simple decoding

Similar construction can be done when doing the decoding as presented in Section 3.2. The
state transition diagram is the same as in full decoding case (Figure 6), with the exception
that the state {ab, abc} is now not reduced but is an explicit state. This is so because
in the LT decoding algorithm, only received degree one packets allow the algorithm to
continue operation. Now the process can continue to a different state when a degree one or
a degree two packet different from already obtained one is received. The state transitions
are presented in Figure 7.

The state transition matrix can be formed using Mathematica modules. The optimal
weights can then be easily computed the same way as before. Optimized results for two
different objectives presented in Section 3.3 are listed in Table 1. Objective Min.Avg. means
minimization of average number of steps needed for decoding and Max.Pr. maximizing
the probability of decoding in exactly three steps, this probability is denoted P3 in the
table. Situation when degrees are uniformly distributed, i.e., when all degrees have the
same probability, is also presented for comparison in Table 1. The differences between two
objectives is not significant when looking at the excepted number of steps and probability
for decoding in three steps. On the other hand, uniformly distributed packet degrees is not
a good choice compared to the optimized cases. The average number of steps when all-at-
once distribution presented in Section 3.3.1 is used can be calculated using (1). The result
is 5.5 steps on average. This is worse than any of the results presented in Table 1.

4.3 Case N = 4

In the case of four blocks, the state space becomes much larger than in three block case if it
is constructed similarly as before. As presented earlier, the three block-case has 12 different
reduced states. With four blocks this grows to 192 reduced states.
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Figure 7: Decoding by fountain code approach

Table 1: Optimal weights in case N = 3 for simple decoding

MinAvg MaxPr Uniform distr.

p1 0.524 0.517 0.333
p2 0.366 0.397 0.333
p3 0.109 0.086 0.333

E[steps] 4.046 4.049 4.725

P3 0.451 0.452 0.354

With the symbolic state transition matrix, the optimal weights can be calculated simi-
larly as in case N = 3. Symbolic expression for the average number of steps to absorbtion
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Table 2: Optimal weights in case N = 4 for simple decoding

MinAvg MaxPr Uniform distr.

p1 0.422 0.429 0.25
p2 0.385 0.430 0.25
p3 0.112 0.100 0.25
p4 0.061 0.041 0.25

E[steps] 5.580 5.590 7.182

P4 0.314 0.315 0.183

as function of different packet degree probabilities is calculated using Mathematica, and
numerical optimization of this gives the needed results.

Only the simple decoding is considered here. The results for degree weights are pre-
sented in Table 2. Objective Min.Avg. is the same as before and the objective Max.Pr. is to
maximize the probability of decoding in four steps. Again the results for uniform distribu-
tion are presented for comparison.

In this case the difference between the two objectives is insignificant. With good degree
distribution, the message can be delivered using 5.6 packets on average. Uniform distribu-
tion is almost 1.5 packets worse when comparing the average numbers. Also the probability
for a succesful decoding with exactly four steps is nearly half of the probability when using
the optimal weights. All-at-once distribution for N = 4 gives (Equation (1)) now 8.333
steps on average, which is again a rather poor result if compared with the other presented
distributions.

18



5 Simulation results

5.1 Simulator

The simulator used is written as a Mathematica module. This module first generates a
packet as a vector of included blocks, and then runs the decoding process if degree one
packets are available. Otherwise already received vectors are stored and a new one is gen-
erated. The simulator takes as a parameter the list of possible degrees, so packets from an
arbitrary degree distribution can be generated.

5.2 Simulations with different degree distributions

5.2.1 Comparison between analytical results and the simulator

The correctness of simulator can be checked by calculating the average number of steps
needed in optimal weight cases. The mean m and standard deviation σ were calculated from
10000 runs of the simulator with optimal degree distributions and uniform distribution. The
results are presented in Table 3.

Table 3: Simulation results for simple cases

m σ

Min.Avg. 4.056 1.342
N = 3 Max.Pr. 4.082 1.375

Uniform distr. 4.737 2.123

Min.Avg. 5.584 1.727
N = 4 Max.Pr. 5.595 1.766

Uniform distr. 7.134 3.151

The results are near the analytical ones calculated in Section 4. With taking the standard
deviations into account, we can be fairly sure that the simulator produces the same answers
as presented in previous section.

5.2.2 All-at-once and uniform distribution

Equally good heading for this section would be “useless distributions”.
Results from using the all-at-once distribution defined in Section 3.3.1 are presented in

Table 4 and Figure 8. The size of file considered here is 100 blocks. Statistics have been
collected from 100 simulator runs and are compared to results obtained from using uniform
distribution.
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Table 4: All-at-once and uniform distributions compared

Distribution m σ

All-at-once 522 118
Uniform 2057 294
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Figure 8: Histograms from simulations using all-at-once and uniform distributions.
Horizontal axis shows the amount of packets needed for the decoding to complete.
Number of blocks in the processed file is N = 100.

Results for all-at-distribution follow the expectation presented in Section 3.3.1 quite
nicely, as for hundred blocks log N = log 100 ≈ 4.6. The results are bad considering that
with all-at-once distribution we need to send 400-700 packets and with uniform distribution
even more; 1750-2500 packets. This example clearly shows that attention has to be put into
finding a good degree distribution.

5.2.3 Ideal and robust solition distribution

Simulations for ideal and robust soliton distributions were also made to show that there
exists reasonable good distributions for approximating the digital fountain. The soliton and
robust soliton distributions were introduced in Section 3.3. Histograms of the process with
100 runs with these distributions are presented in Figure 9. Parameters for the robust soliton
distribution were c = 0.1 and δ = 0.5

Not surprisingly the robust soliton distribution seems to perform a little better here.
Nearly all cases needed less than 160 encoding packets, and the usual value is somewhere
around 120 packets. The soliton distribution performs well in some cases but has some
unwanted spread in the region of 200− 400 packets. The overhead around 20% in average
obtained using the robust soliton distribution is much better than any of the other distribu-
tions presented in this paper. For N around 10000 blocks the robust soliton distribution can
be tuned so that the overhead is around 5%.
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Figure 9: Histograms from simulations using the soliton and robust soliton distri-
butions for the case N = 100. Note that the overhead in packets is much lower
compared to Figure 8.

The arguments presented by Luby in his paper [Lub02] for the robust soliton distribution
are somewhat heuristic. Thus, probably better distributions exist for large cases and, also,
in general.
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6 Conclusions

Digital fountain codes provide interesting alternative to traditional acknowledgement based
transmission protocols. Possible applications where fountain coding could be used are nu-
merous: large file transfer, packet transmission over one-way channel, satellite transmis-
sion, distributed storage and so on. One particular application, where digital fountain codes
are useful, are peer-to-peer or P2P networks. Receiving the same file simultaneously from
many peers using fountain codes is easy to implement if degree distribution and parameters
are agreed upon in advance.

There are, however, some difficulties in designing a good digital fountain encoding and
decoding scheme, most notably the designing of a good degree distribution.

The LT codes discussed in this paper are very sensitive to the degree distribution, and
even in the cases where the file size in blocks is small, much work has to be done to derive
the optimal degree distributions. The Markov chain based method described in this paper
is not scalable to larger cases so alternative ways must be found.

Designing optimal degree distributions for practical cases, where the file size is sev-
eral hundred or thousand blocks, provides interesting computational problems and area for
further research work.
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A Mathematica source code

This appendix presents the Mathematica package used for generating the results. Package
consists of functions for state transition matrix generation and step calculation to final state;
another important part is the simulator which runs the LT process with specified degree
distribution.

A.1 Package fountain.m

1 (∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Digital Fountain codes − simple case

File : fountain . m
6 Version : 0.5

Authors: Tuomas Tirronen

Related Packages:

11 <none>

Changes:

14−02−2005 Package created
16 21−02−2005 First working(?) version

24−02−2005 Changed almost everything, this should work
25−02−2005 Some changes, e.g, parameter to simulator is function

which returns random symbol list instead of degree list
07−03−2005 Added functions to calculate number of different states

21 of decoding process
26−04−2005 Cleaning up
04−11−2005 Final version for special assignment

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
26

BeginPackage["fountain‘"];

Options[FountainSim]={Debug−>False};

31 ListDeg:: usage="listdeg [ p ]: Returns an integer from probability distribution
specified by p ( list of probabilities ) ";
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DegVect::usage="degvect[ deg, n ]: Returns a list consisting of ’deg’ unique
random symbols from the range 1,...,’ n’. ";

36

FountainSim:: usage="FountainSim[ deg, n ]:\ n
\ n
Paramter ’deg’ is the degree distribution of packets , and\n
parameter ’n’ is length of message in packets .\ n

41 \ n
If optional argument Debug == True, then running simulate prints debug messages\n
\ n
See also : DegVect and ListDeg.\ n
";

46

(∗∗∗∗∗∗∗ State calculations ∗∗∗∗∗∗∗)
<< DiscreteMath‘Combinatorica‘

Replicas :: usage="Replicas[x, elements]: Shows states identical to x, elements
51 is the list of possible elements in message";

NofReplicas:: usage="NofReplicas[x, elements]: Shows number of states
identical to x, elements is the list of possible elements in message";

56 UniqueRepr::usage="UniqueRepr[x,elements]: Shows the state used for
unique representation on state set where x belongs to , elements is the
list of possible elements in message";

StateSubsets :: usage="StateSubsets [n]: Returns list of possible states
61 when number of possible elements is n, all states with at least one

element of length one are excluded.\ n
See also : States . \ n"

StateTable :: usage="StateTable [n]: Displays table of all possible states
66 when number of elements is n.\ n See also : States .\ n";

States :: usage="States [n]: Displays all reduced states of n elements";

(∗∗∗∗∗∗ Creation of state transition matrix ∗∗∗∗∗∗)
71 AppStates:: usage="AppStates[n]: Intermediate matrix used when calculating

state transition matrix. Result is combination matrix of all possible
states appended with every possible packet .\ n

25



See also : UrStates , TransMatrix.\ n";

76 ArrPackets:: usage="ArrPackets[n]: Shows proper packets received in the
decoding process when the total number of elements is n\n
See also : TransProbs, TransMatrix.\ n";

UrStates :: usage="UrStates[n]: Intermediate matrix used when calculating
81 state transition matrix. Resulting matrix shows reduced states of AppStates

matrix.\ n
See also : AppStates, TransMatrix.\ n";

TransProbs:: usage="TransProbs[n]: Shows (symbolic) probabilities of
86 arriving packets , here p[1] stands for degree 1 packets , p[2] for

degree 2 and so on.\ n
See also : TransMatrix.\ n";

TransMatrix:: usage="TransMatrix[n]: Shows state transition matrix when
91 there is n possible elements in the decoding process ";

(∗∗∗∗∗∗∗∗ case n=3 ∗∗∗∗∗∗∗∗∗)

StepsToLastState :: usage="StepsToLastState [P]: Returns the mean no.
96 of steps from state i to last state n. ";

MFull3::usage="MFull3[p1,p2,p3]: Returns reduced state transition
matrix of fountain code decoding
in case of n=3 using a perfect decoder. ";

101

MSimple3::usage="MSimple3[p1,p2,p3]: Returns reduced state transition
matrix of fountain code decoding
in case of n=3 using a ’simple’ decoder. ";

106

Begin["‘Private ‘ "];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ function implementations ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)

111 (∗∗∗∗ A random number based on the list of probabilities ∗∗∗∗)
ListDeg[ p_ ] := Module[

{
sum=0, tr =Random[]
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},
116 First [ First [ Position [ Map[ sum += #&, p] , _?(# >= tr &) ]]]

];

(∗∗∗∗ Generation of new vector ∗∗∗∗)
121 DegVect[ deg_, n_ ]:= Module[{ nv={}, x, ddeg=If[ 2∗deg<n, deg, n−deg ] },

Do[ While[ MemberQ[ nv, x = Random[ Integer, {1,n} ]]]; nv=Append[nv,x], {ddeg} ];
If [ ddeg==deg, nv, Complement[ Range[1,n], nv ] ]

];

126 (∗∗∗∗ Simulator itself ∗∗∗∗)
FountainSim[ newvect_, n_, opts___ ] := Module[

{
rounds, nv, worklist , decoded, newsyms, newsym, tmp,
debug = Debug /. {opts} /. Options[ FountainSim ]

131 },
rounds = 0;
decoded = {}; (∗ List of decoded symbols ∗)
worklist = {}; (∗ Working list : keeps track of contents of received packets ∗)

136 While[ Length[ decoded ] < n,

rounds++;
nv = newvect[];

141 If [ debug,
Print[ "∗∗∗∗ Round ", rounds , " ∗∗∗∗ "];
Print[ "New vector = ", nv ];

];

146 (∗∗∗∗ Processing of new vector ∗∗∗∗)
nv = Complement[ nv, decoded ];
Which[

Length[nv] == 1, (∗ new one packet element ∗)
newsyms = nv;

151 While[ newsyms != {},
If [ debug,

Print[ "New resolved symbols = ", newsyms ];
Print[ "Worklist before purge = ", worklist ];

];
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156 Scan[ worklist =DeleteCases[ worklist , #, {2} ];&, newsyms ];
(∗worklist = Map[ Complement[#,newsyms]&, worklist ];

"equally fast as above" ∗)
worklist = Union[ DeleteCases[ worklist , {}, {1} ] ];
decoded = Join[ decoded, newsyms ];

161 newsyms = Flatten[ Select [ worklist , Length[#] == 1& ] ];
];

, (∗ else if ∗)
Length[nv] > 1, (∗ new composite element ∗)

worklist = Append[ worklist, nv ];
166 ];

If [ debug,
Print[ "Worklist after purge = ", worklist ];
Print[ "Decoded symbols = ", decoded ];

171 Pause[0.1]
];

];
rounds

];
176

(∗∗∗∗∗∗∗∗∗∗∗ State calculations ∗∗∗∗∗∗∗∗∗∗∗)
(∗\ label {states }∗)
Replicas [ x_, elements_ ] := Union[ Sort[ Sort / @ #] & /@

(x /. Thread[ Rule[ elements, # ] ] & /@ Permutations[ elements ] ) ]
181

NofReplicas[ x_, elements_ ] := Length[ Replicas [ x ] ]

UniqueRepr[ x_, elements_ ] := Union[ Sort[ Sort / @ #] & /@
(x /. Thread[ Rule[ elements, # ] ] & /@ Permutations[ elements ] ) ] // First

186

StateSubsets [n_] := Subsets[DeleteCases[Subsets[n] // Sort // Rest, {_}]]

StateTable [n_] := (Table[
(Table[

191 {n + 1 − j}, {j , 1, i }]~Join~# &) / @
StateSubsets [n − i] , {i , 0, n − 2}]
// Flatten[#, 1] &)~Join~{Table[

{i }, {i , n − 1}]}~Join~{Table[{i}, {i , n}]}

196 States [n_] := Module[{elements = Range[n], rawstates = StateTable [n]},
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UniqueRepr[#,elements]& /@ rawstates // Union
]

(∗∗∗∗∗∗∗∗∗∗∗ Generation of state transition matrix ∗∗∗∗∗∗∗∗∗∗∗∗)
201

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Case n=3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)

StepsToLastState [P_] := Module[
206 {

A, b,
n = Length[P]

},
A = Append[Drop[P − IdentityMatrix[n], −1], Append[Table[0, {n − 1}], 1]];

211 b = Append[Table[−1, {n − 1}], 0];
LinearSolve[A, b]

];

(∗ ∗∗∗∗∗∗∗ Alternate way to compute nof steps to last state ∗∗∗∗∗∗∗∗
216 StepsToLastState [P_] := Module[

{
A, b,
n = Length[P]

},
221 d = Position [P,1] // Flatten ;

A = Append[Drop[IdentityMatrix[n]−P, {d[[1]]}], Append[Table[0, {n − 1}], 1]];
b = Append[Table[1, {n − 1}], 0];
LinearSolve[A, b]

]; ∗)
226

(∗ ∗∗∗∗∗∗∗ Alternate way to compute nof steps to last state ∗∗∗∗∗∗∗∗S
StepsToLastState [m_, n_] := Module[

{
l = Length[m]

231 },
pos = Position [m, Plus @@ Array[p, n]] // Flatten ; (∗

searches place of last state eg. position of p[1] + p[2] + p[3] ∗)

Inverse[Drop[m, {pos[[1]]}, {pos[[2]]}] −
236 IdentityMatrix[l − 1]]. Table[−1, {l − 1}]

]; ∗)
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(∗ Matrix for full decoding ∗)
MFull3[p1_,p2_,p3_]:=

241 {
{0,p1,p2,p3,0,0,0,0},
{0,p1/3,0,0,(2/3)( p1+p2),p2/3+p3,0,0},
{0,0, p2/3,0,(2/3)( p1), p1/3+p3,(2/3) p2,0},
{0,0,0, p3,0, p1+p2,0,0},

246 {0,0,0,0,(2 p1+p2)/3,0,0,(1/3)( p1+2 p2+3 p3)},
{0,0,0,0,0,(1/3)( p1+p2)+p3,0,(2/3)( p1+p2)},
{0,0,0,0,0,0, p2,p1+p3},
{0,0,0,0,0,0,0,1}
};

251

(∗ Matrix for simple decoding ∗)
MSimple3[p1_,p2_,p3_]:=

{
{0,p1,p2,p3,0,0,0,0,0},

256 {0,p1/3,0,0,0,(2/3)( p1+p2),p2/3+p3,0,0},
{0,0, p2/3,0, p3,(2/3)( p1), p1/3,(2/3) p2,0},
{0,0,0, p3,p2,0, p1,0,0},
{0,0,0,0, p2/3+p3,0, p1/3,(2/3) p2,(2/3) p1},
{0,0,0,0,0,(2 p1+p2)/3,0,0,(1/3)( p1+2 p2+3 p3)},

261 {0,0,0,0,0,0,(1/3)( p1+p2)+p3,0,(2/3)( p1+p2)},
{0,0,0,0,0,0,0, p2+p3,p1},
{0,0,0,0,0,0,0,0,1}
};

266 End[];
EndPackage[];
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