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Abstract. We consider estimation of blocking probabilities in a nonstationary loss net-
work. By invoking the so called MOL (Modified Offered Load) approximation, the problem
is transformed into one requiring the solution of blocking probabilities in stationary loss
networks with time varying loads. To estimate these blocking probabilities, Monte Carlo
simulation is used and to increase the efficiency of the simulation, we develop a likelihood
ratio method that enables samples drawn at one time point to be used at later time points.
This reduces the need to draw new independent samples at every time point, thus giving
substantial savings in the computational effort. The accuracy of the method is analyzed by
using Taylor series approximations of the variance indicating the direct dependence of the
accuracy on the rate of change of the actual load. Finally, two practical applications are
provided to demonstrate the efficiency of the method.
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1 INTRODUCTION

Loss networks (see, e.g., [1]) are classical teletraffic models that have been used to evaluate
the performance of traditional circuit switched networks. Such circuit switched systems
include the existing fixed telephone networks, as well as cellular networks. The traditional
loss network model uses the assumption that the arrival process of calls into the network
can be described by a time homogeneous Poisson process. However, this assumption is not
always justified. Consider, e.g., the need to assess the impact of televoting on the fixed
network or traffic jams moving along a highway in cellular networks. To this end, the loss
network model can be extended such that the calls of a given traffic class are assumed to
be generated by a Poisson process with a time varying rate.
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technology programme of the Ministry of Economic Affairs The Netherlands.



In loss networks, one of the basic tasks is to calculate the blocking probability for each
traffic class in the system. The steady state distribution of the system in the stationary
(time homogeneous) case has the well known product form, from which it is easy to obtain
analytic expressions also for the blocking probabilities. In the nonstationary loss network the
product form does not hold anymore and hence, the time dependent blocking probabilities do
not have explicit analytic expressions, either. However, by using the Modified Offered Load
(MOL) approximation, as given in [2], accurate approximations of the blocking probabilities
can be obtained. The MOL approximation corresponds to a problem of determining blocking
probabilities for a stationary loss network with an offered load depending on time. However,
it is well known that exact evaluation of blocking probabilities for stationary loss networks
representing realistic size networks is computationally very difficult due to the huge size
of the state space. As an alternative, Monte Carlo (MC) simulation can be used to obtain
estimates of the blocking probabilities.

This paper addresses the problem of efficiently estimating the MOL approximation by
using MC simulation augmented with ideas from the importance sampling (IS) variance
reduction method. The objective is to minimize the number of time points for which sam-
pling is required. Ideally, with our likelihood ratio method samples are generated only once
and these are used for all time points, whereas the direct method of computing the MOL
approximation using MC simulation entails generating the samples independently at every
time point. To be able to use samples generated at some reference time point at other time
points requires the samples to be weighted appropriately with the likelihood ratio. This is
similar to IS in stationary loss networks, as studied in [3], [4], [5], and [1], where IS is used
to provide better sampling of the most important parts of the state space. In our case, the
likelihood ratio is used to scale the result to a different point in time. The method does not
incur much extra effort in the simulation and the sample statistics can be used to determine
if accuracy is good enough at each time point. When this is not the case, samples are redrawn
for such time points. We also compute approximations to the variance of our estimator to
obtain insight into the dependence of the variance on the load. Finally, we consider two
application scenarios where the likelihood ratio method is used 1) to estimate the blocking
probability over a given finite time horizon assuming that the load is also known, and 2)
in an on-line algorithm that only utilizes local information of the load and the samples are
used until the accuracy criterion fails.

The paper is organized as follows. Section 2 introduces the non-stationary loss network
and the MOL approximation. In section 3, we present the likelihood ratio method and our
analytical results. Applications are given in Section 4, and the conclusions in Section 5.

2 THE NONSTATIONARY LOSS NETWORK

Consider a network having J links, indexed j = 1, . . . , J , with link j having a capacity of Cj

resource units. The network supports K classes of calls. A class k call, k = 1, . . . , K, has a
bandwidth requirement of bj,k on link j, bj,k = 0 when class k does not use link j. The vector
bj denotes the required bandwidths of all classes on link j. Calls of class k arrive according
to an inhomogeneous Poisson process with time dependent arrival rate λk(t), and have an
exponentially distributed holding time with mean 1/µk. New calls are always accepted if
there is enough capacity and blocked calls are cleared.



2.1 Infinite capacity

Assume first that the system has infinite link capacities and let X∞(t) = (X∞
1 (t), . . . ,

X∞
K (t)) denote the state at time t of the infinite capacity system, with X∞

k (t) recording the
number of class k calls in progress at time t. The state space of the process is

I = {x | x = (x1, . . . , xK) ≥ 0},
where xk ∈ N, k = 1, . . . , K, with N denoting the set of natural numbers {0, 1, 2, . . .}.

It is well known (see, e.g., [6]) that with inhomogeneous arrivals and exponentially dis-
tributed call durations the time dependent distribution of the process X∞(t) that starts
empty is a product of independent Poisson distributions (cf. the stationary case),

π(x, t) = P{X∞(t) = x} =
K∏

k=1

ρk(t)
xk

xk!
e−ρk(t). (1)

where dρk(t)
dt

= λk(t) − µkρk(t), t > 0, ρk(0) = 0 for k = 1, . . . , K. The results in [6] also
show that the form of the distribution (1) does not depend on the distribution of the call
durations. However, for a generally distributed call duration, Sk, ρk(t) is given by ρk(t) =
E[

∫ t

t−Sk
λk(z) dz]. Further note that (1) is determined by the load only. Routing such as

typically occurring in wireless network models also leads to an expression for the load and
a product of independent Poisson distributions of the form (1), see, e.g., [7].

2.2 Finite capacity and the MOL approximation

For the finite capacity system, the set of allowed states, S, consists of those states for which
the resulting link occupancies of all the links in the network do not exceed the capacity limit
of any link. Formally, S is defined as

S = {x ∈ I | ∀ j : bj • x ≤ Cj} ,

where the scalar product is defined as bj • x =
∑

k bj,kxk. The set of blocking states for a
class-k call, Bk, consists of those states for which an addition of one more call from class k
to a given state results in a link occupancy violating some link capacity constraint,

Bk = {x ∈ S | ∃ j : bj • (x + ek) > Cj} ,

where ek is a K-component vector with 1 in the kth component and zeros elsewhere.
Let X(t) denote the state process of the finite capacity system. Unfortunately, contrary

to the case in the stationary loss network, the distribution of X(t) does not anymore have
the simple product form of (1). However, as the infinite capacity system still possesses the
product form, an appealing approximation (known as the Modified Offered Load Approxi-
mation, MOL) for the distribution of X(t) is,

P{X(t) = x} ≈ P{X∞(t) = x |X∞(t) ∈ S}. (2)

The MOL approximation is known (see, e.g., [2]) to give accurate results when the arrival
rate does not change too quickly compared with the time scale of arrival and departure
events (i.e., the load varies slowly) and if the blocking probabilities are not too high. This
approximation is based (i) on the relation, in equilibrium, between the system with finite and
infinite capacity, where eq. (2) is exact, and (ii) on the explicit expression (1) for the time



dependent distribution of the infinite capacity system. Analytical expressions and bounds
on the error of the MOL approximation can be found in [2] for a network with unit size calls
and a single link, and in [7] for general call sizes and multiple links.

The primary performance measure we are interested in is the instantaneous blocking
probability of a class k call at time t, Bk(t). It is the probability that an arriving class k
call is blocked at time t and is given by

Bk(t) = P{X(t) ∈ Bk}.
No explicit analytical expressions exist for computing Bk(t). However, by invoking the MOL
approximation, Bk(t) can be expressed in the form of a ratio of two state sums

Bk(t) ≈ P{X∞(t) ∈ Bk |X∞(t) ∈ S} =
P{X∞(t) ∈ Bk}
P{X∞(t) ∈ S} . (3)

Computing the MOL approximation at time t consists of computing ρk(t), ∀k, and then
computing the loss probabilities from the time homogeneous loss network with load ρk(t).
Note that an estimate of ρk(t),∀k, as measured from a live network, is sufficient, as well.

All methods available for loss networks (see, e.g., [1] for an overview) can be used to
evaluate the blocking probabilities for a given fixed t. Exact computation of these blocking
probabilities can be done efficiently only for networks with special topologies and, in practice,
approximations are required. Here we investigate the use of so called static Monte Carlo
methods to obtain estimates of the blocking probabilities.

3 THE LIKELIHOOD RATIO METHOD

In the following we assume that Bk(t) is to be estimated for a given traffic class k. Thus, the
index k is assumed implicit and is omitted, i.e., we denote Bk(t) ≡ B(t), etc. Additionally,
note that the simulation requires estimation of two state sums

β(t) = P{X∞(t) ∈ B}, and γ(t) = P{X∞(t) ∈ S}.
Of these, it is the estimation of β(t) that is often inefficient due to the rarity of the blocking
states. The probability γ(t) ≈ 1 and is hence easy to estimate, as discussed, e.g., in [8].
Thus, in the sequel, we focus on methods for estimating β(t).

Consider estimating the MOL approximation of β(t) for t ∈ [0, T ]. In the straight
forward method, one essentially performs a separate simulation at every time point ti ∈
[0, T ]. For each ti the standard MC method is used and β(ti) is estimated by β̂N(ti) =
(1/N)

∑N
n=1 1(X∞

n (ti) ∈ B), where X∞
n (ti) denotes i.i.d. samples drawn from (1) and N is

the total number of samples. This assumes that samples are independently drawn for each
time point. The idea in our likelihood ratio method, introduced below, is to minimize the
number of samples drawn in the simulations when estimating β(t), t ∈ [0, T ], by allowing
some controlled reduction of accuracy of the estimates at the different time points. Ideally,
we want to draw the samples only once, and with those samples estimate β(ti) for all ti.

To achieve this, ideas from the importance sampling (IS) variance reduction method
are applied. IS is based on the following well known property. Consider a discrete random
variable X with distribution p(x), and the probability of a set A, denoted by α, which can
be expressed as α = E[1(X ∈ A)]. Introducing another distribution p∗(x) for X (satisfying
p∗(x) > 0, ∀x ∈ A) allows us to write α = Ep∗ [1(X ∈ A)(p(X)/p∗(X))], where Ep∗ [·] denotes



expectation with respect to the distribution p∗(·), and p(x)/p∗(x) is the likelihood ratio. In
the simulation context, this allows us to draw the samples from the distribution p∗(·), and
the bias is corrected with the likelihood ratio. The idea in IS is roughly to choose p∗(x) such
that it makes the occurrence of the more important samples more probable, thus reducing
the number of samples required for estimating α.

Our idea is to use the likelihood ratio to scale the results across different points in time.
Now, assume we have a reference time point t∗ and samples X∞

n (t∗) generated from the
distribution π(x, t∗) given by (1). At another time point t, the only thing that has changed
is the load. Thus, the points generated at time point t∗ can be reused at time point t, if we
use as samples 1(X∞

n (t∗) ∈ B) π(X∞
n (t∗), t)/π(X∞

n (t∗), t∗), i.e., samples weighted with the
likelihood ratio. Thus, an unbiased estimator for β(t) at another time point t is

β̂N(t) =
1

N

N∑
n=1

1(X∞
n (t∗) ∈ B)L(X∞

n (t∗), t∗, t), (4)

where L(X∞
n (t∗), t∗, t) = π(X∞n (t∗),t)

π(X∞
n (t∗),t∗) is the likelihood ratio with the geometric form,

L(x, t∗, t) =
π(x, t)

π(x, t∗)
=

K∏

k=1

(
ρk(t)

ρk(t∗)

)xk

e−(ρk(t)−ρk(t∗)). (5)

With the likelihood ratio method the results of all time points can be estimated by
scaling the reference time point results with the likelihood ratio. What makes the method
applicable is the explicit and simple expression for the likelihood ratio. This may increase
the variance beyond an acceptable level at some time points. For such points the samples
need to be redrawn. Even though the sampling distribution at time t is not asymptotically
optimal, assuming that loads do not vary heavily, under-estimation of the variance is not
a major problem, since the twisting in the sampling distribution is not that great (it is
proportional to the difference in the load at t∗ and t). However, if the difference in the
loads at t∗ and t is indeed great, the under-estimation problems discussed rigorously in
[9] may appear. Thus, our method incurs a slight computational increase corresponding to
the computation of the statistics of other time points besides the reference time point, but
potentially saves a considerable amount of time in that samples do not need to be generated
separately for each time point.

3.1 Analysis of the likelihood ratio method

In the following we present some analytical results and observations on how the variance
of (4) behaves as a function of time relative to our reference time t∗. To start with, some
simplifications in the notation are introduced. Let X∗ denote the random variable X∞(t∗),
and the notation Eρ∗ [·] is used to denote expectation with respect to the distribution (1) at
the reference time t∗ (instead of Eπ(·,t∗)[·]).

Our idea is to approximate L(x, t∗, t) by the linear terms of its Taylor series expansion
around t∗. First, we note that

β(t) = β(t∗) +
dβ(t∗)

dt
(t− t∗) + err(t∗, t), (6)



where err(t∗, t) denotes the error terms of the Taylor series expansion of β(t) around t∗.
Using the Taylor series expansion of L(x, t∗, t) we can alternatively express β(t) as

β(t) = Eρ∗[1(X∗ ∈ B) L(X∗, t∗, t)]

= Eρ∗

[
1(X∗ ∈ B)

(
L(X∗, t∗, t∗) + dL(X∗,t∗,t∗)

dt
(t− t∗) + Err(X∗, t∗, t)

)]
,

≈ β(t∗) + Eρ∗

[
1(X∗ ∈ B) dL(X∗,t∗,t∗)

dt

]
· (t− t∗),

(7)

where dL(x, t∗, t∗)/dt is short hand for dL(x, t∗, t)/dt evaluated at time t∗, and

dL(x, t∗, t)
dt

=

(
K∑

k=1

(
xk

ρk(t)
− 1

)
· dρk(t)

dt

)
· L(x, t∗, t).

The error term in the Taylor series, Err(x, t∗, t), equals

Err(x, t∗, t) =
d2L(x, t∗, t̂)

dt2
(t̂− t∗)2

2
, (8)

for some t̂ ∈ [t∗, t]. To gain insight into the error, in Remark 1 we relate the expected value
of this error to the higher order derivatives of β(t).

For the variance we need the 2nd moment of 1(X∗ ∈ B) L(X∗, t∗, t),

Eρ∗ [1(X∗ ∈ B) (L(X∗, t∗, t))2] ≈ β(t∗) + 2Eρ∗

[
1(X∗ ∈ B) dL(X∗,t∗,t∗)

dt

]
(t− t∗)

+Eρ∗

[
1(X∗ ∈ B)

(
dL(X∗,t∗,t∗)

dt

)2
]

(t− t∗)2.
(9)

Collecting the terms from (7) and (9), we obtain

Vρ∗[1(X∗ ∈ B) L(X∗, t∗, t)] ≈ β(t∗)(1−β(t∗))

+2(1−β(t∗))Eρ∗

[
1(X∗∈B) dL(X∗,t∗,t∗)

dt

]
(t−t∗) + Vρ∗

[
1(X∗∈B) dL(X∗,t∗,t∗)

dt

]
(t−t∗)2.

(10)

Thus, we have obtained a characterization of the variance of (4) as a function of terms
depending only on random variables at the reference time t∗ and the distance at time t from
the reference time t∗. The dependencies are such that the variance depends quadratically
in time on the variance of 1(X∗ ∈ B) dL(X∗,t∗,t)

dt
and linearly in time on the expectation of

1(X∗ ∈ B) dL(X∗,t∗,t)
dt

. Furthermore, note that (10) is simply a 2nd order equation in t.
Remark 1: Here we comment on the error of the Taylor series approximation. First, it

can be observed that the terms in the Taylor series expansions (6) and (7) of β(t) satisfy

Eρ∗

[
1(X∗ ∈ B)

dkL(X∗, t∗, t∗)
dtk

]
=

∑
x∈B

1

π(x, t∗)
dkπ(x, t∗)

dtk
π(x, t∗) =

dkβ(t∗)
dtk

,

i.e., the terms of the Taylor series (7) with respect to L(x, t∗, t) coincide term by term with
the higher order derivatives of β(t) in the Taylor series (6) of β. This also follows from the
uniqueness of the Taylor series. Thus, the expected value of the error (8) equals

Eρ∗[1(X∗ ∈ B) Err(X∗, t∗, t)] = err(t∗, t) =
d2β(t̂)

dt2
(t̂− t∗)2

2
,

for some t̂ ∈ [t∗, t]. Further, it can be seen that d2β(t)/dt2 ∼ d2ρk(t)/dt2,∀k (see [7] and
[2]). In conclusion, we note that the error in β(t) by using the Taylor series approximation



(7) of L(x, t∗, t) is naturally related to the rate of change in β(t) which depends on the rate

of change of the loads, i.e., Eρ∗[1(X∗ ∈ B) Err(X∗, t∗, t)] ∼ d2β(t)
dt2

∼ d2ρk(t)
dt2

, ∀k.
Remark 2: We can also make a note here on bounding the true likelihood ratio, i.e.,

the ratio of the probability of a given state in the finite nonstationary loss network at time
t to the product form probability of the state in the MOL approximation corresponding to
the reference time t∗. To this end, let the true distribution of the finite nonstationary loss
network at time t be denoted here by p(x, t). So, we are trying to compute

L∗(x, t∗, t) =
p(x, t)

π(x, t∗)
=

p(x, t)

π(x, t)
· π(x, t)

π(x, t∗)
= L∗(x, t) · L(x, t∗, t),

where L(x, t∗, t) is the likelihood ratio of the two product form probabilities as given by
(5), the value of which is explicitly known. Although the term L∗(x, t) can be explicitly
characterized, its form is not amenable for numerical evaluation. However, L∗(x, t) can be
bounded for example in the following manner by using the results of [7] and [2],

L∗(x, t)=
π(x, t) + (p(x, t)− π(x, t))

π(x, t)
≤ 1 +

sup0≤τ≤t 2
∫ t

0

∑K
k=1

∣∣∣dρk(τ)
dτ

∣∣∣ βk(τ) dτ

π(x, t)

Note that this bound is increasing in t, which suggests that the accuracy of the MOL
approximation decreases with t. The error is clearly determined by the blocking probabilities
βk(t) and the rate of change of the loads, dρk(t)/dt. Indeed, numerical experiments in [7]
show that the accuracy is very good for networks with small blocking probabilities, or slowly
changing blocking probabilities. This also coincides with the range in which our likelihood
ratio method is applicable.

Remark 3: It is also possible to analyze the variance with respect to the load by using
Taylor series expansions. These results have been omitted due to lack of space.

4 APPLICATIONS AND NUMERICAL EXAMPLES

In this section we introduce two application scenarios, where the likelihood ratio method
is applied. The scenarios correspond to situations, where 1) the likelihood ratio method is
used for all time points (assumes full knowledge of the load into the future), and 2) the
likelihood ratio method is used on-line until it breaks (accuracy becomes unacceptable).

For both applications numerical examples are given using a 3 link star topology network.
The network has 3 routes, (1,2), (1,3) and (2,3), and two types of calls with bandwidth
requirements 1 and 2, respectively. Thus, there are 6 traffic classes all together. The link
capacities are C = [70, 70, 70]. Two different load scenarios are considered such that Bk(t) ≈
1%,∀k. In the first scenario (called uniform load), all traffic classes have the same sinusoidal
load ρk(t) = 10 + sin(t),∀k. In the second scenario (called nonuniform load), the load has a
different phase for each traffic class such that ρk(t) = 10+sin(t+(k−1) ·1.05), k = 1, . . . , 6.
Also, in the numerical examples we estimate the ratio B(t) = β(t)/γ(t). To this end, the
same samples that are used for estimating β(t) are used for estimating γ(t), as well. This
results in a ratio estimator, for which the standard deviation can be obtained using standard
methods (see, e.g., [1]). All simulations were implemented in Matlab 6.0 and were run under
Linux on a 700 MHz Pentium III PC. To compare the performance of the direct MC method
and our likelihood ratio method in a fair manner, the sample generation was done in the
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Fig. 1. Results for the uniform load scenario with standard MC (1st fig) and likelihood ratio method (2nd fig), and
for the nonuniform load scenario with standard MC (3rd fig) and likelihood ratio method (4th fig).

same way for both the standard MC and the likelihood ratio method. We have used the
discretized inverse transformation method, where the necessary Poisson distributions are
simply computed into arrays and sample generation corresponds to a table lookup using a
linear search.

4.1 MOL approximation for fixed time points

The problem considered here is that given ρk(t), for all k, and a set of time points tm,
with m = 1, . . . , M , how should one compute the MOL approximation of β(tm),∀m. This
corresponds to computing a discretized approximation to the continuous β(t).

To apply the likelihood ratio method, we fix the initial reference load (or time) as ρ∗ =
{ρ1(t1), . . . , ρK(t1)}. Then, samples are generated from the distribution (1) with load ρ∗

until the relative error (ratio of standard deviation to mean) is less than ε2 ≤ ε1, where
ε1 is the target relative error to be met by all time points. Choosing ε2 < ε1 can be used
to increase the likelihood that time points having loads that are similar to the reference
load will meet the target accuracy ε1. The same samples are used in estimator (4) to obtain
estimates of Bk(t),∀k, and the relative errors of the estimates at all points tm,m = 1, . . . , M .
For those time points not meeting the target accuracy ε1, new samples are drawn using the
load corresponding to the first time point not fulfilling the accuracy criterion. Resampling
is performed until all time points meet the accuracy criterion.

We computed B1(t), the blocking probability of class 1, for 32 evenly spaced time
points in the interval [0, 2π] for both load scenarios. Two accuracy criterions were used,
(ε1 = 0.05, ε2 = 0.045) and (ε1 = 0.02, ε2 = 0.018). The results using the likelihood ratio
method are compared against results given by direct MC simulation (corresponding to an
independent simulation at each time point until an accuracy of ε1 is reached). Figure 1 shows
the results for both methods and for both load scenarios. In more detail, 1st figure from left
corresponds to the uniform load scenario and shows our estimate of B1(t) and the 95% con-
fidence intervals using the standard MC method with ε1 = 0.05 accuracy criterion. The 2nd
figure from left corresponds to the same uniform load scenario and shows the estimate for
B1(t) when using the likelihood ratio method for accuracy criterions (ε1 = 0.05, ε2 = 0.045).
The iteration round at which each time point satisfied the target accuracy ε1 is also shown
in the figure via a change of the marker. The 95% confidence intervals are only slightly
shorter in magnitude than in the standard MC case, and have been left out to keep the fig-
ure clear. Finally, the 3rd and 4th figures show the same results as the 1st and 2nd figures,
but for the nonuniform load scenario. Finally, the total number of generated samples for
standard MC and the likelihood ratio methods are shown in Table 1, where also the total



Table 1.
Number of samples used for the likelihood ratio and direct Monte Carlo methods.

Load/accuracy (ε1) Samples/running time (MC) Samples/running time (LR)

uniform/5% 405 800/400 s 35 000/120 s
uniform/2% 2 531 900/2 460 s 212 400/740 s
nonuniform/5% 340 000/330 s 79 200/240 s
nonuniform/2% 2 096 500/2 050 s 498 700/1 490 s

Table 2.
Number of samples used for the on-line version of the likelihood ratio method.

Load/accuracy (ε1) Samples/running time (LR)

uniform/5% 36 000/120 s
uniform/2% 208 700/690 s
nonuniform/5% 92 400/210 s
nonuniform/2% 571 600/1 270 s

execution times of the simulation codes are shown. The results clearly indicate that using
the likelihood ratio method substantial savings in the number of generated samples can be
obtained. However, note that the savings in the execution times are only indicative and are
subject to implementation related differences.

4.2 Likelihood ratio method for fixed time points, on-line variant

The above version of the algorithm assumes that the loads are known also into the future.
Another, important setting is the case where an operator may wish to follow the time
evolution of the blocking probabilities in an on-line manner. Then the load is not known
into the future but it is measured on-line and only an estimate of the traffic load at current
time is known (and at the previous time epochs).

To account for the above considerations, another variant is introduced of the method
in the previous section. The idea is simply to store the samples generated at the reference
time, use them up to the time when the accuracy criterion ε1 breaks, and then immediately
perform resampling. For our numerical examples, we use the same load scenarios as earlier
and the two accuracy criterions (ε1 = 0.05, ε2 = 0.045) and (ε1 = 0.02, ε2 = 0.018) as earlier.
In Table 2, the number of samples needed in the simulations and the execution times of the
program are shown. The results for the direct MC method are the same in this case as in
Table 1 and are not shown. Again we can see that substantial reductions in computational
effort are obtained using the likelihood ratio method.

5 CONCLUSIONS

In this paper the problem of efficiently estimating blocking probabilities in a loss network
with time varying arrival rates has been considered. By using the so called MOL approxima-
tion the problem can be transformed into one requiring the solution of blocking probabilities
for a stationary loss network with a time dependent load. To this end, an efficient simulation
method, the likelihood ratio method, has been derived. The idea of the method is based
on utilizing the well known change of probability measure technique of the IS simulation
method. Whereas in IS the idea is to define the IS distribution such that the more impor-
tant events become more frequent, in our likelihood ratio method the same idea is used to



effectively scale the blocking probabilities of one time point into the blocking probabilities of
also other time points. In other words, using the likelihood ratio method enables us to reuse
the samples generated at one time point at other time points, as well, without the need to
draw the samples again (and again) at every considered time point, thus saving potentially
a lot of computational effort. To gain insight into what factors affect the performance of the
method, the variance of the likelihood ratio estimator has been analyzed by using Taylor
series techniques, where it is shown that the variability of the offered load is the key com-
ponent for prediction of the confidence intervals for the blocking probabilities. Additionally,
several variants of the method that can be applied in different practical circumstances have
been given. Numerical examples comparing the performance of the likelihood ratio method
and the standard MC clearly show the efficiency of the likelihood ratio method.

Topics for future research include improving the efficiency further by deriving an im-
portance sampling distribution that uses more samples from the set of blocking states such
that variance is reduced in many time points. This requires analysis of the sensitivity of the
most likely blocking state(s) with respect to the changing load.
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