
On Improving Connectivity of Static Ad-Hoc
Networks by Adding Nodes

Henri Koskinen, Jouni Karvo and Olli Apilo
Helsinki University of Technology (TKK), Networking Laboratory, P.O. Box 3000, FIN-02015 TKK, Finland

{Henri.Koskinen, Jouni.Karvo, Olli.Apilo}@tkk.fi

Abstract— The connectivity of a given static, disconnected ad-
hoc network can be improved by placing additional nodes in
the network, forming connections between separate clusters of
connected nodes. Finding optimal locations to place the additional
nodes is a difficult problem. We give definitions of two problems:
connecting the network with a minimal number of additional
nodes, and maximizing utility from a given number of additional
nodes in case complete connectivity cannot be established. The
former problem reduces in a limit case to that of the Euclidean
Steiner minimal tree. We present heuristic algorithms that can be
used to efficiently attack these problems: a minimum spanning
tree algorithm and two greedy algorithms, all applicable to both
problems. The algorithms are feasible in their computation effort.
We study the performance of these algorithms by simulations. We
also consider the generalization of the problem to k-connectivity
and recognize its relation to another NP-hard problem, namely,
that of graph augmentation.

I. INTRODUCTION

Ad hoc networks are by nature constructed “automatically”,
by the nodes adapting to the neighboring nodes and building
up a network. In this context, the network topology is random,
and in particular, no connectivity is guaranteed: the nodes
may be so sparsely located that they are unable to make up a
connected network.

This has motivated a wide range of research, with a primary
interest in the connectivity of random networks. The most
popular and simple topology model has been the Boolean one,
which we also use in this paper. In this model, two nodes
are considered directly connected if the distance between
them does not exceed the transmission range, a network
parameter. Under this model, the main object of study becomes
geometric graphs. Percolation properties of such graphs when
the positions of the network nodes are distributed according
to a homogeneous Poisson point process in the infinite plane
have been studied in [1]. In the case of a finite domain, the
probability of a random network being connected depends only
on the probability distribution of the critical transmission range
for connectivity: for a given set of nodes, this critical range is
equal to the greatest edge length in the Euclidean minimum
spanning tree of the nodes, as pointed out in [2]. Asymptotic
scaling laws for the critical range have been derived in [3].
The notion of the critical range can be generalized to k-
connectivity, which guarantees connectivity to prevail at the
failure of any k − 1 nodes. The distributions of the critical
ranges for k-connectivity with any k are not known when the
number of nodes is finite. Attempts to determine analytically
the probability of k-connectivity of finite random networks

have been made in [4], based on using as an approximation
the probability of every node having at least k neighbors.
Efficient algorithms for determining the critical ranges for the
purposes of simulation and empirical modelling are developed
in [5], and empirical models describing the convergence of the
distributions of the critical ranges to the known asymptotic
ones [6] are presented in [7].

As an example of the findings in these studies, one may
look at Figure 1 which shows the transmission range that,
for nodes distributed uniformly at random in a 1 km × 1 km
area, provides different degrees of k-connectivity with 99%
confidence, according to the empirical models in [7]. One
may conclude from the figure that the required transmission
ranges are too long to achieve high bit rate connections
efficiently with current radio technology. Recognizing that
the scenario chosen for the figure could well describe an
ad hoc network applied in a practical emergency or disaster
recovery situation, we are concerned with what can be done
when an ad hoc network needs to be formed but the users
are too far apart to form a network with a desired level of
connectivity. More precisely, in this paper we study the option
of improving the connectivity of a static ad-hoc network by
carrying extraneous nodes to the scene. The problem is where
to put these nodes so as to minimize the number of nodes
required for a connected network, or to maximize the utility

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements Number of nodes

T
ra

ns
m

is
si

on
ra

ng
e

[k
m

]

Fig. 1. The transmission range predicted to ensure k-connectivity with 99%
confidence for randomly placed nodes in a 1 km × 1 km area. 3-, 2-, and
1-connectivity, from top to bottom.

of the network. We present algorithms that suggest locations
for such additional nodes. Networks where adding extraneous
nodes is feasible are some sensor networks — see [8] for a
survey on sensor networks — and such ad-hoc networks that
are used in a controlled situation where some central entity
can organize the deployment of the nodes.

To our knowledge, the connectivity problem in ad hoc
networks has not been addressed so far from this practical
viewpoint. Placing additional nodes, “base stations”, in the
network for connectivity has been studied in [1] from a
theoretical point of view. The paper suggests that the more
dimensions the network has, the less the addition of base
stations improves connectivity. However, these results relate
to a stochastic model, and the locations of the base stations
were not optimized to the actual node locations.

This paper is organized as follows: in the next section
we give a thorough description of the problem setting, the
underlying assumptions, and the network model. Section III
defines essentially two optimization problems for the node
addition. Section IV describes the first heuristic algorithm,
the Minimum Spanning Tree algorithm. A more efficient
algorithm, the Greedy Tessellation algorithm is presented in
Section V, and the last and most evolved algorithm, the Greedy
Triangle algorithm in Section VI. Some observations on the
generalization of the problem to k-connectivity are made in
Section VII. Section VIII contains performance analysis of the
algorithms, aided by simulation results. Finally, Section IX
concludes the paper with a summary and reflections of future
work.

II. PROBLEM SETTING AND NETWORK MODEL

As hinted earlier, the motivation for our problem stems from
an emergency scenario. We consider a group of agents, e.g.
fire fighters, deployed in some region, who need to establish
communications in the form of an ad hoc network. For this
purpose, each agent is equipped with a terminal device; from
now on, we will refer to these devices as terminal nodes. In
support of forming the network, there is a team in possession
of additional transceivers that can be used as relays in the
network; we will call these transceivers relay nodes. We
assume that both the terminal nodes and the relay nodes are
based on same standard hardware and therefore have equal
transmission and reception capabilities. The task of the support
team is to place relay nodes in the region so that the terminal
nodes and the relay nodes together can form a connected
wireless multihop network where each link can provide a
desired rate of communication to support the service required
by the agents, say, a speech application. The problem we are
interested in is to optimize the points where the support team
should place relay nodes, given the locations of the terminal
nodes.

The key assumption behind our problem statement is that
the locations of the terminal nodes are known. The position of
a node can be estimated using GPS or the future Galileo posi-
tioning systems, yielding accurate enough estimates (within
10–20 m from the true position), and being cost-effective

enough for implementation. Another way of positioning nodes
is using triangulation [9], but this requires that each part of
the network has enough nodes with known positions. Thus,
triangulation methods can be used to locate single nodes that
are not on the coverage of other positioning systems.

Another important assumption is that the location informa-
tion of the terminal nodes can be collected even though the net-
work is not connected. The motivation behind this assumption
is that depending on the solutions on the physical layer, it can
be possible to be able to sustain low bitrate communications
over much further distance than to provide quality of service.
In this case, the network is able to convey control information
even if efficient communications are not possible. In other
words, in this problem we define connectivity using a linkwise
throughput requirement.

We use the commonly studied Boolean model for the
network. This implicitly means that we assume the dominating
factor affecting communications to be the path loss of radio
signals coupled with a constant-level background noise, rather
than the interference between simultaneous transmissions.
Within this model, the transmission power employed by the
network nodes (which we assume to be the same for all
nodes), the path-loss model, and the signal-to-noise ratio
required at reception for a desired rate of communication
are woven into a single parameter, the transmission range.
Given the geographical positions of all nodes, the network
topology is then represented by a geometric graph, where two
nodes are assumed to have an undirected edge, representing
a bidirectional link, between them if and only if the distance
between them does not exceed the transmission range.

We will next define the problem rigorously.

III. PROBLEM DEFINITIONS

Formally, we assume that the network deployment region
(where the terminal nodes are located and the relay nodes may
be placed) is a bounded convex subset S of the Euclidean
space R

d, d > 1. In all the problems that we are about
to define, the problem instance is completely defined by the
set of locations of N terminal nodes, N = {xi ∈ S | i =
1, 2, . . . , N}, and the transmission range r. Together these
imply the pre-existing network topology in the form of an
undirected geometric graph G(N , E(N , r)) = G(N , r) with
vertex set N and edge set E(N , r) = {(xi,xj) |xi,xj ∈
N , i 6= j, ||xi − xj || ≤ r}.

A solution to any of the problems is a set of locations
to place relay nodes, Nr = {yi ∈ S | i = 1, 2, . . . , Nr}.
Given a configuration of terminal and relay nodes N ⋃Nr and
transmission range r, we call a cluster the set of all terminal
nodes in a single maximal connected component in the graph
G(N ⋃Nr, r).

We are hereby ready to define the first optimisation problem:
Problem 1 Given N and r, find Nr with minimum
cardinality that makes the graph G(N ⋃Nr, r) connected.

We point out that in the limit r → 0, this problem reduces to
finding the Euclidean Steiner minimal tree for the set N : for
a given set of points, the Euclidean Steiner minimal tree is

the tree connecting all the points with minimum total edge
length, when the addition of new points is allowed before
forming the edges. The optimal solution is then to place
the relay nodes along the edges of this tree. Finding Steiner
minimal trees is known to be NP-hard [10]. In the general
case, our problem poses the additional complications that we
are not connecting single points to each other, but clusters
where the best points in the clusters for connecting to other
clusters must be chosen, and that the objective function has
been discretized from the total length of edges in the Steiner
tree to the number of added relay nodes. In the following,
we suggest heuristic algorithms that are suboptimal but give
results without excessive computing requirements.

A greedy approach to solving the problem is to add new
relay nodes trying to get as good an improvement as possible
in each step, until the connectivity target has been met. A
utility metric is required for this approach, and it should reflect
how close we are to achieving the target. To this end, we
enumerate the clusters that exist after each step and let Cj

denote the j:th cluster.
The choice of the utility metric depends on the target

application. We define several possible metrics:

Metric 1: The number of nodes in the biggest cluster,

U1 = max
j
|Cj |

Metric 2: The number of node pairs in the biggest cluster,
up to a multiplication by a constant:

max
j

(|Cj |
2

)

∝ max
j
|Cj |(|Cj | − 1) = U2.

Metric 3: The sum of all node pairs over all clusters (i.e.,
the number of possible connections),

∑

j

|Cj |(|Cj | − 1) =
∑

j

|Cj |2 −
∑

j

|Cj |,

where, since the clusters form a partition of the terminal
nodes, the latter term simply equals the number of
terminal nodes and can be ignored. Thus,

U3 =
∑

j

|Cj |2.

Metric 4: The amount of traffic carried by the network.
Instead of using the coarse-grained but simple approaches
of Metrics 1–3, an estimate of a traffic matrix could be
used to prioritize connecting different clusters.

The utility metric is also needed for cases where it is not
possible to make the network connected, due to having too few
relay nodes available. This gives rise to the second problem:

Problem 2 Find Nr that maximizes the chosen utility
metric U , subject to Nr ≤ Nmax

r ∈ Z+.

Provided that the constraint Nr ≤ Nmax
r actually prevents us

from achieving connectivity, this problem can be viewed as the
maximization of the chosen utility metric in SNmax

r . This is
a difficult task but allows applying, e.g., simulated annealing.

Our algorithms can readily be used for greedy approaches to
Problem 2 as well as Problem 1.

In all examples and simulations where applicable in this
paper, we have used Metric 1. Metrics 1 and 2 are equivalent
in light of Problem 2, as discussed briefly in Appendix A.

At least one further problem definition comes into question:

Problem 3 Find Nr that maximizes the degree of node-
connectivity of the graph G(N ⋃Nr, r), subject to Nr =
Nmax

r ∈ Z+.

Recall from graph theory that a k-(node-)connected graph
remains connected after the removal of any k−1 nodes. In fact,
this problem allows for two alternative variants, depending on
whether we require robustness against both terminal nodes and
relay nodes failing, or only terminal nodes failing.

Problem 3 is computationally expensive, and as we will
point out in Section VII, Problems 1 and 2 generalized to k-
connectivity become notably more complicated as k increases.
We do not study Problem 3 further in this paper.

IV. MINIMUM SPANNING TREE ALGORITHM

Our first algorithm arises naturally if we only require that
each relay node or contiguous chain of relay nodes connect ex-
actly two clusters of the graph G(N , r). Under this limitation,
the optimal solution is to place the relay nodes along the edges
of the Euclidean minimum spanning tree (MST) calculated for
the clusters, when the distance between two clusters is defined
as the shortest distance between two terminal nodes in these
distinct clusters.

In fact, it is not difficult to show that this MST consists of
exactly those edges that are longer than the transmission range
r, in the MST calculated for all the terminal nodes. This can be
seen by considering Kruskal’s algorithm for finding the MST
(see e.g. [11]).

The steps of the algorithm are thus as follows:

1) Calculate the Euclidean minimum spanning tree for N .
2) Place the relay nodes on the edges of the minimum

spanning tree that are longer than r. If there are too
few relay nodes available to span all such edges, select
the edges that result in maximizing the chosen utility
metric.

In two dimensions, step 1 can be completed in O(N logN)
time by utilizing the Delaunay triangulation; when d = 3, the
complexity of finding the minimum spanning tree has at least
been brought down to O(N4/3 log4/3 N) [12]. In a higher
number of dimensions, step 1 is likely to require exhaustively
calculating the distance matrix of the terminal nodes, which is
a quadratic task. Step 2 is linear in N if all the necessary edges
can be spanned, since the whole minimum spanning tree has
N−1 edges. If, on the other hand, not all necessary edges can
be spanned, the optimal selection of edges generally requires
going through all possibilities. In this case, we propose the
greedy method of selecting edges in the order of added utility
(with respect to the initial clusters) per used relay node. In
this method, the initial clusters can be found in linear time
by traversing the minimum spanning tree (edges longer than r

Fig. 2. Minimum Spanning Tree algorithm. The initial clusters in this
example realization of 70 terminal nodes are connected with solid edges,
and the edges to place relay nodes are dotted. The transmission range is 10%
of the side of the domain, as illustrated by the circle.

in the tree separate different clusters), and rating and sorting
the O(N) potential edges takes O(N logN) time. With this
approach, the overall complexity of the algorithm is in any
case determined by step 1.

Figure 2 illustrates the Minimum Spanning Tree algorithm.

V. GREEDY TESSELLATION ALGORITHM

The stricter requirement that a single relay node should,
when possible, connect more than two clusters suggests points
that are equally distant from several clusters as potential points
of placement. A useful tool for finding such points is the
Voronoi tessellation: for a given set of n points, or sites,
in the plane, their Voronoi tessellation (or Voronoi diagram)
partitions the plane into n convex sets, so that all points
forming a given set have the same site as their nearest site. The
definition is analogous in higher dimensions, but we restrict
the following description to the planar case. See [12] for a
rather comprehensive survey on Voronoi diagrams.

What makes the Voronoi tessellation interesting for our
problem is that it efficiently captures the geometric neighbor
relationships of the nodes: points equally distant from three
clusters are a subset of the vertices, i.e. the coinciding corners
of the convex sets also called cells, of the Voronoi tessellation
of the nodes. Note that in practise, points equally distant to
more than three nodes do not exist. However, placing a relay
node at a vertex close to other vertices may well result in
connecting more than three clusters.

For this reason, we examine coinciding corners of Voronoi
cells that contain nodes all in different clusters, and the corner
where inserting a new node yields the maximal increase in the
chosen utility metric is selected as the place to insert the next
relay node. To sum up:

1) Find the maximal connected components and clusters of
the graph G(N ⋃Nr, r). (Initially, Nr = ∅.)

2) Construct the Voronoi tessellation of N ⋃Nr.

3) Regard as candidate points the coinciding corners of
such Voronoi cells that contain nodes all in different
connected components, excluding corners further than r
from the nodes and corners not in S.

4) Add to Nr the candidate point that yields maximal
increase in the chosen utility metric.

5) If there were more than one candidate points in step
3 and the problem constraints allow further addition of
points, go to step 1.

6) If allowed by the constraints and the graph
G(N ⋃Nr, r) is not yet connected, finish with
the Minimum Spanning Tree algorithm.

The last step is required since connected components can be
too far apart to be connected with the addition of a single relay
node.

Our complexity analysis is mainly based on results gathered
in [12]. On the first run through steps 1–5, step 1 amounts
to finding and traversing the minimum spanning tree of the
nodes, as described in the previous section. The computational
complexity of constructing the Voronoi tessellation in step 2 is
O(N logN) in the plane, quadratic in three dimensions, and
increases exponentially with the number of dimensions, along
with the maximal size of a diagram. The number of vertices in
the tessellation to consider potential candidate points in steps
3 and 4 is O(N) in the plane and O(N 2) in R

3.
On subsequent rounds, the addition of new points to Nr

can be updated to the connected components and the tessella-
tion without having to find them from scratch. Updating the
tessellation is the more complicated task but takes only O(n)
time, where n = N + Nr, when d = 2 or d = 3. Although
updating the candidate points should also be a light task, the
increase in utility must still be checked for each one in step 4,
on every round. The number of rounds made (i.e., the number
Nr before proceeding to the last step) with fixed N depends on
the density of the network: a very sparse network is unlikely
to result in any addition due to too large distances between

Fig. 3. An example of the Greedy Tessellation algorithm, when applied to
the same realization as in Figure 2. The edges of the Voronoi tessellation are
shown with dotted lines, the candidate points for relay node insertion with
’+’-signs. The first location to add a relay node is marked with an asterisk.

clusters, as is a very dense network due to a high probability of
being connected. With fixed average density of terminal nodes
and transmission range, the number of additions is O(N),
since it is bounded by the number of initial clusters.

As a conclusion, because of the O(N) repetitions of step
4, the overall running time of this algorithm before the final
step is O(N2) in R

2 and O(N3) in R
3, which also dominates

the final step. The algorithm is illustrated in Figure 3.

VI. GREEDY TRIANGLE ALGORITHM

The Greedy Tessellation algorithm uses points that are
equally distant from different clusters as potential places for
relay nodes. However, with a closer look we see that this is
not always optimal: the point equally distant from three given
terminal nodes may fall outside the triangular convex hull of
their locations, in which case it cannot be the optimal place for
a relay node to connect the three nodes (optimal in the sense
that the range required from the relay node to connect the
terminal nodes is minimized). For example, the point marked
in Figure 3 as the place for the first relay node is such a point.
Hence, taking only to the vertices of the Voronoi tessellation
into account, one may not find all the places where connecting
three clusters with a single relay node is possible.

Having made this observation, we may simply select triplets
of nodes where the nodes are pairwise at most 2r apart
and all belong to different clusters, as corners of candidate
triangles. The point equally distant from the corners of a
candidate triangle is a candidate point for node insertion only
if this point is inside the triangle; if the point is outside the
triangle, the midpoint of the longest side of the triangle is the
candidate point (see Figure 4(a) and compare with Figure 3).
Finally, it needs to be checked whether the distance from the
candidate point to each corner of the triangle is less than r. Of
these feasible candidate points, the one yielding the maximal
increase in the chosen utility metric is chosen as the location
of the next added relay node.

It is of course possible for a single relay node to connect
more than three distinct clusters: in R

2, a single node could
in theory connect five clusters (given the same transmission
range for all nodes), and in higher-dimensional spaces even
more. The occurrence of such cases is, however, rare, and
thus deliberately seeking these cases is omitted in order to
simplify the algorithm. It should be noted however that a
proper candidate triangle can still result in connecting more
than three clusters.

This method is easily extended to handle triangles whose
vertices are too far apart to be connected by a single relay
node. The idea is to place two nodes optimally in order
to connect the clusters. Consider an addition of two nodes,
targeting in connecting three clusters: find a candidate triangle
with no side longer than 4r, and find jointly optimal points for
two relay nodes (optimality being defined as above). Where
to add these two nodes optimally is divided into different
cases, depending on the shape of the triangle; these cases
are discussed exhaustively in Appendix B. As in the case of
single node placement, it must be checked whether placing

the new nodes will actually establish connectivity. Again, the
placement of the two nodes can actually connect more than
three clusters simultaneously, but for the sake of simplicity,
checking this has been omitted.

Like the Greedy Tessellation algorithm, this algorithm must
also be finished with the Minimum Spanning Tree algorithm.
The Greedy Triangle algorithm has thus the following phases:

1) Find the maximal connected components and clusters of
the graph G(N , r), and the candidate triangles.

2) Find the point (if any exist) where adding a single relay
node results in connecting the candidate triangle that
yields the maximal increase in the chosen utility metric,
and add this point to Nr. Maintaining the connected
components, the clusters, and the candidate triangles,
repeat this as long as new candidate triangles can be
connected and the problem constraints permit.

3) Repeat the previous step, now adding to Nr pairs of
points where relay nodes connect candidate triangles.

(a)

(b)

Fig. 4. Applying the Greedy Triangle algorithm to the realization of Figure
2. (a): The first point to place a relay node, as determined in step 2 and
indicated by the ’+’-sign. Note the difference from Figure 3 in the placement.
(b): The first pair of points to place relay nodes, as determined in step 3, after
several relay nodes have been added in step 2. Note that in this case, four
clusters are connected.

4) If allowed by the constraints and the graph
G(N ⋃Nr, r) is not yet connected, finish with
the Minimum Spanning Tree algorithm.

The Greedy Triangle algorithm can be used as such in a
Euclidean space with an arbitrary number of dimensions.
However, because among n nodes there are altogether Θ(n3)
triplets of nodes, it is again a good idea to utilize the geometric
neighbor relationships of the nodes in finding sensible candi-
date triangles, at least in the two-dimensional case. In this case,
we propose requiring that at most one pair in any considered
triplet of nodes not have neighboring cells in the Voronoi
tessellation of the nodes, which limits the number of triplets to
examine down to O(N). (We found requiring all three nodes
to have pairwise neighboring cells, i.e. considering only the
triangles in the Delaunay triangulation, too restrictive.) With
this choice, the complexity of the algorithm is the same as that
of the Greedy Tessellation algorithm, namely, O(N 2) in R

2

and O(N3) in R
3. The phases of the algorithm are illustrated

in Figure 4.

VII. ON THE GENERALIZATION TO k-CONNECTIVITY

A natural generalization of the problems is to require k-
connectivity. In a k-(node-)connected network there are at
least k node-disjoint paths between every pair of nodes or,
equivalently, there are no k − 1 nodes whose removal would
disconnect the network. Thus, the higher k, the more tolerant
the network is to node failures.

As in the case of simple connectivity, we may start with
the idea of connecting clusters pairwise with chains of relay
nodes, which leads us to a related problem known as graph
augmentation. In commonly used terms, the task in the min-
imum augmentation problem is to add to a given graph the
set of edges with minimum total weight so that the resulting
graph is k-connected. When k = 1, the problem reduces to
finding the MST, but for any k > 1 the problem is known to
be NP-hard: see [13] and the references therein.

Thus, even with the simplest approach to making a network
k-connected with k > 1, we immediately run into complex
problems. In what follows, we examine the problem of making
a given connected network biconnected as the simplest case
to demonstrate the difficulties that appear. The solutions to
this problem can be applied on top of the previous algorithms
to make a disconnected network biconnected, although it is
not difficult to see that this kind of incremental strategy –
even if the individual steps were solved optimally – can be
highly suboptimal in increasing the degree of connectivity by
more than one. A somewhat related problem has been studied
in [14], where an ad hoc network of mobile robot nodes is
already assumed to be connected, and the goal is to move
the robots to make the network biconnected so that the total
distance travelled by the robots is minimized.

The task in making a connected network biconnected is thus
to make sure that there are no single nodes whose removal
would disconnect the network; such nodes are sometimes
called articulation points, and they can be found from a

given network using, for example, the recursive depth-first-
search (see e.g. [11]). Note that in this particular problem,
the assumption of an initially connected network removes the
ambiguity mentioned in Section III as to which nodes to regard
as articulation points: a relay node as an articulation point
either contradicts this assumption or implies unnecessarily
added relay nodes.

The articulation points can be eliminated by considering the
network without them, and reconnecting this network with
relay nodes. However, as explained shortly, this can result
in placing unnecessary relay nodes, and such nodes should
be excluded from the final solution. Thus, the steps of our
algorithm to make a connected network biconnected are as
follows:

1) Find the set of articulation points A ⊂ N of the graph
G(N , r) (assumed connected). If no articulation points
are found, the network is already biconnected and no
relay nodes need to be added.

2) Apply any of the algorithms presented earlier with input
{N\A, r} to find a set of points Nr that, depending
on the constraints, makes the graph G(Nr

⋃N\A, r)
connected or maximizes the chosen utility metric (with
clusters defined as in Section III).

3) Remove unnecessary points possibly added in the previ-
ous step: for each point y ∈ Nr, check whether the graph
G(N ⋃Nr\{y}, r) has any other articulation points than
those in G(N ⋃Nr, r). (The latter articulation points
exist only if the problem constraints prevented making
the graph G(Nr

⋃N\A, r) connected in the previous
step.) If not, let Nr = Nr\{y}.

It is essential that in step 2, all the articulation points
are considered absent, because this way chains of several
articulation points require in general less relay nodes to be
bypassed.

An example of when unnecessary points are included in Nr

in step 2 and the last step is needed is when the network is a
chain of several biconnected clusters (thus each two successive
clusters separated by an individual articulation point) and the
ends of the chain may be connected – and the network made
biconnected – with the insertion of a single relay node: a lot
more than this single required point will be output by the
algorithm called in step 2. Figure 5 shows an example of such
a network.

In particular, whether a given point in Nr is deemed unnec-
essary in step 3 is independent of the existence of the other
unnecessary points, and therefore the order in which the points
are checked and removed does not matter. To see this, think
of the separate, connected clusters of the graph G(N\A, r)
as single vertices and the original articulation points as edges
connecting these vertices. (Such an edge may consist of several
articulation points.) Because a continuous chain of articulation
points – or even a single one – may have connected more than
two clusters, these edges may be branched. As articulation
points, they have formed a tree connecting the vertices, and
because they may be branched, we may think of the tree as a
Steiner tree. Thus, relay nodes at the points Nr found in step

Fig. 5. An example of a connected network that can be made biconnected
by adding a single relay node, e.g. at the point marked with the ’+’-sign. The
articulation points are circled.

2 form another such tree between the vertices, and removing
any relay node cuts at least a branch of an edge from this tree.
Now, if the union of these two trees has no cycles, the removal
of any relay node will leave the connectivity of the vertices up
to the original tree and hence the original articulation points,
so in this case there are no unnecessary relay nodes. In fact, an
unnecessary relay node is such that the branch that its removal
cuts only connects vertices that belong to the same cycle in
the union of the trees, and even without this branch the cycle
would exist in the union. Thus, all unnecessary points in Nr

can be found and removed independently of each other. This
also shows that the network will remain biconnected at the
end of the algorithm.

Although intuitively appealing, this algorithm may also give
very poor results. Consider the example network of Figure 5:
there is no guarantee that the single required point to place
a relay node will be found in step 2. Instead, the final result
may just as well be that one relay node is added next to each
pre-existing articulation point.

Finally, we remark that the same strategy in making a
biconnected network triconnected, i.e. figuratively removing
all separation pairs at once and reconnecting the network,
only rules out separation pairs comprised of terminal nodes,
as the resulting network will not in general be triconnected
with respect to the added relay nodes. For triconnectivity with
respect to all nodes, the separation pairs would have to be
removed one at a time, but then the final number of added
relay nodes can depend on the order of removal.

VIII. PERFORMANCE ANALYSIS

In this section, we present and discuss results from applying
our three algorithms for simple connectivity to simulated
realizations of randomly and uniformly distributed terminal
nodes in a square-shaped domain in the plane. The purpose is
partly to compare the performance of the algorithms relative
to each other, and in part to gain some idea on how close to
optimal their solutions are.

The latter is a problematic task, as finding the optimal solu-
tion for a general realization is very difficult. As mentioned in
Section III, when the transmission range is infinitely shrunk,
the optimal solution to Problem 1 is to cover the edges of
the Euclidean Steiner minimal tree for the terminal nodes
with chains of relay nodes. In this limit, we know the so-
called Steiner Ratio: for any set of points in the plane, the
total edge length of their Euclidean minimum spanning tree
is at most 2/

√
3 ≈ 1.15 times the optimal solution, i.e. the

total edge length of their Euclidean Steiner minimal tree [15].
However, with a non-negligible transmission range the case is
completely different: as a simple example, consider a regular
pentagon whose vertices are on a circle with radius equal to
the transmission range, and assume one terminal node at each
of these vertices. These initially disconnected terminal nodes
can be connected with a single relay node placed at the center
of the circle, whereas utilizing the minimum spanning tree
results in placing four relay nodes.

Nonetheless, we used as a benchmark for our algorithms
the method of placing the relay nodes on those edges of
the Euclidean Steiner minimal tree that connect different
clusters. This method should be close to optimal with sparse
networks, i.e. when the transmission range is small compared
to the typical distance between neighboring terminal nodes.
Figure 6 shows the average number of relay nodes needed
to connect random configurations with varying number of
terminal nodes using each of the different algorithms. The
transmission range was set to 10% of the side of the square
domain, in order to demonstrate a "feasible" scenario where
the number of relay nodes needed is still a fraction of the
number of terminal nodes, making the addition of relay nodes
sensible. As expected, our three algorithms produce gradually
better solutions. The two greedy algorithms also outperform
utilizing the Steiner tree with these parameters, as the Steiner
minimal tree simply optimizes the wrong measure from our
problem’s viewpoint.

The gain from utilizing the Steiner tree is captured in Figure

0 50 100 150 200 250
0

5

10

15

20

25
Minimum spanning tree
Greedy Tessellation
Greedy Triangle
Euclidean minimum Steiner tree

PSfrag replacements

N

N̄r

Fig. 6. Average number of relay nodes needed to connect the network, as a
function of the number of terminal nodes initially in the network, taken over
1000 random realizations. The transmission range is 10% of the side of the
square-shaped domain.

5 10 50 100 150 200

30

40

50

60

70

80

90

Minimum spanning tree
Greedy Triangle
Euclidean minimum Steiner tree

PSfrag replacements

N

N̄r

Fig. 7. Average number of relay nodes needed to connect the network, taken
over 1000 random realizations and plotted on log-log -scale. The transmission
range is 5% of the side of the domain. The Greedy Tessellation algorithm has
been omitted for clarity.

7 which shows corresponding results with the transmission
range set to 5% of the side of the domain. In a very sparse
initial network, the existence of suitable candidate triangles is
unlikely, and the Greedy Triangle algorithm practically reduces
to the Minimum Spanning Tree algorithm, while the Steiner
tree yields the best results. As the density of the initial network
increases, the Greedy Triangle algorithm surpasses the Steiner
tree method in performance. For almost throughout the range
of the figure, the curve of the MST algorithm is a constant
shift from that of the Steiner tree method on the logarithmic
scale, implying a constant approximation ratio (in terms of the
average number of relay nodes that has been plotted). This
ratio was approximately 103%.

The quantity that best describes what we referred to as
the density of the network is the average number of other
terminal nodes directly connected to a random terminal node in
the initial configuration. Not accounting for boundary effects,
this quantity is given by N/A · πr2 where A is the area
of the domain. In essence, this quantity determines which
method yields the best results, and for example the two greedy
algorithms bring significant advantage to using the MST at
proper intermediate values of this quantity, when suitable
candidate triangles are likely to exist. It is interesting to note
in both figures that the average number of relay nodes needed
increases with the number of terminal nodes up to the point
where N/A · πr2 ≈ 1: when r2/A = (10%)2, this point is
at N ≈ 32, and with r2/A = (5%)2 at N ≈ 127. This is
especially true with the two greedy algorithms.

IX. SUMMARY AND DISCUSSION

We defined and studied two connectivity problems for static
ad-hoc networks, which involve adding new nodes to the
network. The first problem is achieving connectivity with
a minimal number of additional nodes, which reduces in a
limit case to the Euclidean Steiner minimal tree problem. The
second problem is maximizing the utility of the network given
the number of additional nodes available. Our algorithms for

solving the second problem can be used to define greedy
approaches for solving the first problem. We also considered
the generalization of the problem to k-connectivity, which is
closely related to the graph augmentation problem.

We presented three heuristic algorithms for achieving con-
nectivity of a randomly dispersed ad-hoc network by adding
relay nodes. The Minimum Spanning Tree algorithm connects
clusters pairwise with the shortest chains of relay nodes.
The Greedy Tessellation algorithm and the Greedy Triangle
algorithm aim at connecting several clusters at each step.
The greedy algorithms resort to the Minimum Spanning Tree
algorithm in case the clusters are too far apart.

We assumed throughout this paper that all the nodes have
equal transmission range. It would also be reasonable to
assume that the relay nodes can have a larger range when
communicating with each other than when communicating
with the terminal nodes. It takes only slight modifications to
adjust our algorithms to this relaxed assumption.

We also precluded the mobility of terminal nodes from
our assumptions. The approach of adding relay nodes in
optimized locations has little application in a scenario where
each terminal nodes tends to move all over the network region.
However, by keeping track of the locations of terminal nodes
over time, it should be possible to recognize those nodes that
are nearly stationary and place relay nodes to connect these
nodes. Studying this question is left as further work.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for the suggestion of
Problem 3, and Petteri Kaski (TKK) for pointing out the
reference [15]. Henri Koskinen has been financially supported
by the Finnish Defence Forces Technical Research Centre and
in part by a grant from the Nokia Foundation. The work
of Jouni Karvo was funded by the EU FP6-507572 project
WIDENS, and Olli Apilo was funded by the Academy of
Finland (grant n:o 202204).

REFERENCES

[1] O. Dousse, P. Thiran, and M. Hasler, “Connectivity in ad-hoc and hybrid
networks,” in Proc. INFOCOM’02, vol. 2, New York, June 2002, pp.
1079–1088.

[2] M. Sánchez, P. Manzoni, and Z. J. Haas, “Determination of critical
transmission range in Ad-Hoc Networks,” in Proceedings of Multiaccess
Mobility and Teletraffic for Wireless Communications 1999 Workshop
(MMT’99), Oct. 1999.

[3] P. Gupta and P. R. Kumar, “Critical power for asymptotic connectivity
in wireless networks,” Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming, pp. 547–566, 1998.

[4] C. Bettstetter, “On the connectivity of ad hoc networks,” The Computer
Journal, Special Issue on Mobile and Pervasive Computing, vol. 47,
no. 4, pp. 432–447, Jul 2004.

[5] H. Koskinen, “A simulation-based method for predicting connectivity
in wireless multihop networks,” Telecommunication Systems,
vol. 26, no. 2-4, pp. 321–338, June 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:TELS.0000029044.31054.5a

[6] P.-J. Wan and C.-W. Yi, “Asymptotic critical transmission radius and
critical neighbor number for k-connectivity in wireless ad hoc networks,”
in Proceedings of the 5th ACM international symposium on Mobile ad
hoc networking and computing. ACM Press, 2004, pp. 1–8.

[7] H. Koskinen, “Quantile models for the threshold range for k-
connectivity,” in MSWiM ’04: Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless and mobile
systems. ACM Press, 2004, pp. 1–7.

[8] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, Aug. 2002.

[9] C. Savarese, J. M. Rabaey, and J. Beutel, “Locationing in distributed
ad-hoc wireless sensor networks,” in Proc. Acoustics Speech and Signal
Processing, ICASSP’01, vol. 4, Salt Lake City, Utah, May 2001, pp.
2037–2040.

[10] M. R. Garey, R. L. Graham, and D. S. Johnson, “The complexity of
computing Steiner minimal trees,” SIAM J. Appl. Math., vol. 32, no. 4,
pp. 835–859, June 1977.

[11] R. Sedgewick, Algorithms in C. Addison Wesley, 1990.
[12] F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental

geometric data structure,” ACM Comput. Surv., vol. 23, no. 3, pp. 345–
405, 1991.

[13] T.-S. Hsu, “Graph augmentation and related problems: Theory and
practice,” Ph.D. dissertation, University of Texas at Austin, 1993.
[Online]. Available: citeseer.ist.psu.edu/hsu93graph.html

[14] P. Basu and J. Redi, “Movement control algorithms for realization of
fault-tolerant ad hoc robot networks,” IEEE Network, vol. 18, no. 4, pp.
36–44, Jul 2004.

[15] D.-Z. Du and F. Hwang, “An approach for proving lower bounds:
solution of Gilbert-Pollak’s conjecture on Steiner ratio,” in Proceedings
of 31st Annual Symposium on Foundations of Computer Science, vol. 1,
Oct. 1990, pp. 76–85.

APPENDIX

A. Equivalence of Utility Metrics 1 and 2

Let V denote the set of all possible solutions to Problem
2. This set is partially ordered using U1. The optimal solution
to Problem 2 is any one of the solutions v ∈ V ⊂ V , where
V is the smallest set of v ∈ V such that ∀w 6∈ V, w ∈ V :
U1(w) < U1(v).

Consider Metric 2: U2 = maxi |Ci|(|C|i−1) = maxi(|Ci|2−
|Ci|). Since the expression inside max(·) is strictly increasing
with |Ci| when |Ci| ≥ 1, this expression equals (maxi |Ci|)2−
maxi |Ci|. Thus, this metric is strictly increasing as a function
of maxi |Ci|, and thus a partial order of V using U2 is the same
as the partial order using U1. Thus, the smallest set V ′ ⊂ V
such that ∀w 6∈ V ′, w ∈ V : U2(w) < U2(v) equals V .

Thus, the optimal solution for problem 2 using utility
function U1 is the same as the optimal solution for problem 2
using utility function U2. The same reasoning can be used to
analyse greedy algorithms and show that the step that a greedy
algorithm would take is the same independently of which of
these two utility functions is used.

B. Optimal placement of two relay nodes to connect three
terminal nodes

We examine here the problem of connecting three terminal
nodes at given locations by placing two relay nodes so that the
transmission range required from the relay nodes is minimized.

Let us name the locations of the three terminal nodes as
points A, B, and C, forming the vertices of a triangle ABC .
Without loss of generality, we assume that |AB | ≤ |CA| ≤
|CB |. We will choose Euclidean coordinates in R

2 so that
point C is chosen as the origin and the first dimension is in
the direction

−→
CA, so that the position vector r̄A = (a 0)T .

Let r̄B denote the position vector of terminal node B. Given
the assumption |AB | ≤ |CA| ≤ |CB |, the triangle can always
be flipped and rotated so that point B is located inside the
bounded set depicted in Figure 8(a). Also, note that any triplet

0.5 1 1.5 2
x
����
a

0.2

0.4

0.6

0.8

1

y
����
a

C A

(a)

PSfrag replacements

A

B

C

(b)

Fig. 8. The set of possible locations of terminal node B (a); example triangle
(b)

of points in R
d is located on a R

2 plane, and thus this
algorithm generalizes easily to R

d.
The optimal solution for the locations of the two relay nodes

is either

A to use the relay nodes to split in half the two shortest
sides (CA, AB) of the triangle ABC , or

B first, to connect two terminal nodes (A and B) with one
relay node and then place the second relay node midway
between the first relay node and the remaining terminal
node C to be connected.

It can be deduced that whenever case B is optimal, the first
relay node must connect the two terminal nodes closest to each
other. This is because by the possibility of case A, the least
required transmission range cannot exceed half the second-
shortest distance between two of the three terminal nodes.

For now, assume that case B above is optimal (we will
derive the conditions for this later). Under this assumption,
our task is to optimize the location of the first relay node,
point P , so as to minimize the required range max{f1(P) =
|CP |/2, f2(P) = |AP |, f3(P) = |BP |}. For an explanation
of f1(P), recall that in case B, the second relay node is
placed in the middle of edge CP . We know that the optimal
P must lie inside the triangle ABC , for otherwise it would
be possible to decrease the distance to all the points A, B,
and C by moving P . Furthermore, in the optimum we must
have fi(P) = fj(P) ≥ fk(P), for some i 6= j 6= k; i, j, k ∈
{1, 2, 3}, otherwise P could again be improved. Here, strict
inequality applies if the two equal functions have attained their
least possible common value.

The equation f1(P) = |CP |/2 = f2(P) = |AP | is
satisfied by points P located on the circle with radius 2

3
|CA|,

centered at 4

3
r̄A. Another circle is defined accordingly by

the equation f1(P) = f3(P). The solutions of the equation
f1(P) = f2(P) = f3(P) are hence the intersections of these
two circles, which are on the line |AP | = |BP |, as shown
by Figure 8(b). It is easy to show that under the assumption
|AB | ≤ |CA| ≤ |CB |, these intersections always exist. In light
of the above, the optimal P is located at such an intersection
if it is inside the triangle, otherwise it is at the intersection of
the line or circle fi(P) = fj(P) and the side of the triangle
where the value fi(P) = fj(P) is smallest.

We know that one of the intersections f1(P) = f2(P) =
f3(P) always falls outside the triangle ABC . In order that the
other intersection not fall outside the side AB , the midpoint
of AB must lie inside the two circles. In fact, it suffices to

write this condition for one circle only, since it implies the
other, so we get
∣

∣

∣

∣

r̄A + r̄B

2
− 4

3
r̄A

∣

∣

∣

∣

<
2

3
|CA| ⇔

∣

∣

∣

∣

r̄B −
5

3
r̄A

∣

∣

∣

∣

<
4

3
|CA|, (1)

i.e. point B must lie inside the circle with radius 4

3
|CA|,

centered at 5

3
r̄A. If this condition is not satisfied, the optimal

P — given the assumption that case B really is optimal —
is located midway between A and B, at (r̄A + r̄B)/2. On the
other hand, the condition for the other intersection not falling
outside the side CB is

∣

∣

∣

∣

2

3
r̄B −

4

3
r̄A

∣

∣

∣

∣

>
2

3
|CA| ⇔ |r̄B − 2r̄A| > |CA|, (2)

i.e. point B must lie outside the circle with radius |CA|,
centered at 2r̄A. If this condition is not satisfied, the optimal
P — given the assumption that case B really is optimal — is
located on the segment CB at 2

3
r̄B . (Under the assumption

|AB | ≤ |CA| ≤ |CB |, the other intersection cannot fall
outside the side CA.)

In general, case B is optimal if the optimal P presented
above satisfies |CP | < |CA|. It is easy to check that whenever
the optimal P is at (r̄A + r̄B)/2, this condition is always
satisfied. When it is at 2

3
r̄B (i.e. when |r̄B − 2r̄A| < |CA|),

the condition becomes
2

3
|CB | < |CA| ⇔ |CB | < 3

2
|CA|. (3)

Finally, let us derive the condition |CP | < |CA| for the
intersection f1(P) = f2(P) = f3(P) falling inside the
triangle ABC . Let r̄B = (x y)T . A general point P on the
line |AP | = |BP | is then at r̄P = ((a 0)T + (x y)T)/2 +
(y−0 − (x−a))T t. The value of the scalar t corresponding
to the intersection f1(P) = f2(P) = f3(P) falling inside the
triangle ABC can be solved to be

t = {4 a y − [16 a2 y2 −
(

3 a2 − 10 a x+ 3x2 + 3 y2
)

·
(

12 a2 − 24 a x+ 12x2 + 12 y2
)

]1/2}
/
(

12 a2 − 24 a x+ 12x2 + 12 y2
)

.

On the other hand, the value of t that makes |CP | = |CA|
and results in the greater x-coordinate for P , is

t = [−2 a y
+(3 a4 − 8 a3 x+ 6 a2 x2 − x4 + 6 a2 y2 − 2x2 y2 − y4)1/2]

/[2
(

a2 − 2 a x+ x2 + y2
)

].

We get the boundary for the condition of interest by setting
these two values equal. The resulting equation is satisfied on

the circles with radii |CA|/2, centered at
(

7

8
a ±

√
15

8
a
)T

.
Only the upper one of these creates a boundary in the
domain of interest. Simple experimenting shows that given
the conditions (1) and (2), case B is optimal if

∣

∣

∣

∣

∣

∣

r̄B −
(

7

8
a

√
15

8
a

)T
∣

∣

∣

∣

∣

∣

< |CA|/2. (4)

0.5 1 1.5 2
x
����
a

0.2

0.4

0.6

0.8

1

y
����
a H1L

H2L H3L
H4LI

II

III

IV

V

Fig. 9. The division of the possible locations of terminal node B according
to the optimal placement of two relay nodes

The labels of the conditions (1) to (4) have been placed near
their respective boundaries in Figure 9, so that each label is
on the side of the boundary where the condition is satisfied.
The resulting five subsets of the possible locations of terminal
node B have been labelled using Roman numerals, and the
optimal solution in each subset is summarized in Table I.

TABLE I

OPTIMAL PLACEMENT OF RELAY NODES ACCORDING TO THE LOCATIONS

OF TERMINAL NODE B IN FIGURE 9

Subset Solution and example

I Place first node P at r̄P = (r̄A + r̄B)/2, place
second node midway between C and P

II
Place first node P in the intersection f1(P) =
f2(P) = f3(P) inside the triangle, place sec-
ond node midway between C and P

III Place first node P at r̄P = 2

3
r̄B , place second

node midway between C and P

IV,V Place one node midway between C and A and
the other node midway between A and B

