QoS paradigm

• Three concurrent problems:
 – Construction of proper forwarding treatments
 • What kind of service structure best characterises user requirements and operator business
 – Decision of proper forwarding class for the application data stream
 • How network becomes aware of individual data streams and their requirements
 – Engineering the network for committed quality level
 • How network can guarantee service level agreements made for the customers

IRoNet prototype

• Is based on following ideas and assumptions:
 – There is a need for a ‘QoS’ capable network architecture
 – This architecture need NOT to provide hard quality for the users
 • i.e. no signaling is required nor are connections reserved
 – Users do not care actual details of the service which they use rather they are interested in using similar network than today
IRoNet prototype

• Our solution is based on:
 – Division of traffic into a number of classes based on their characteristics
 • Real-time conversations (VoIP etc)
 – Low jitter
 • Short interactive flows (HTTP etc)
 – High throughput
 • Long lasting flows (FTP etc)
 – Low packet loss
 – Provisioning of resources for each class based on the usage and policy
 – Allowing a single user to move within the network

IRoNet prototype

• Our prototype has following components
 – FreeBSD based DiffServ edge routers
 • ALTQ is used to engineer the services
 – NECSOM MediaSwitch DiffServ / MPLS core routers
 • Linux traffic control is used to engineer the services
 – CoralReef measurement probes and network policy generators
 – Policy Server with MySQL database farm

Edge routers

• Standard PC hardware
 – Celeron 433MHz / 128MB
 – D-Link multiport 10/100 Ethernet NICs
 – FreeBSD 4.5 operating system
 • ALTQ-package to add all necessary QoS functions
 – Classification
 – Marking
 – Queueing
 – Scheduling
 • ALTQ
 – Alternate Queueing for BSD
 • http://www.csl.sony.co.jp/person/kjc/kjc/software.html
 – Modifies OS-kernel
 – Software modules reside between network device driver and IP forwarding daemon
Core routers

- NECSOM media switch
 - Based on Frame Synchronized Ring architecture developed in VTT
 - Max 12 10/100 Ethernet interfaces
 - Each carrying own processor
 - Linux operating system
 - Linux traffic control package to add all necessary QoS functions

FreeBSD policy agent

- Basically software that communicates with
 - ALTQ API for manipulating interface dependent parameters
 - Filter lists for different classes
 - Profile values for metering, policing and marking
 - Kernel routing table for installing precalculated routes
 - Policy server for current information about provisioning

Policy Server

- Database server storing
 - Records of individual users service level agreements
 - User is allowed to use
 - 256kbps webtraffic
 - 64kbps VoIP
 - Network device information
 - Routers and their configurations
 - Topology information
 - Physical topology
 - Routes
Policy Server

- Routing and provisioning server
 - QoS routing simulator performing optimization of routes
 - Combination of offline and online operations
 - Real-time collection of network status data (LSA)
 - Non-real-time processing of the information
 » Simulation of best possible implementation of policy
 » Installing the routes into the network database

Policy Server

- Network profile server
 - Processing of measurement data collected inside the network
 - Centralized processing
 » All traffic data is postprocessed inside the server
 - Distributed processing
 » Most of the data is preprocessed within the network

Policy Server

- Network profiles are generated based on the traffic flow observed on the representative points within the network
- Policies (filters) for differentiating the traffic into the classes are generated based on the network profiles

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Flow Analysis</th>
<th>Aggregate Analysis</th>
<th>Clustering</th>
<th>Storing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Analysis</td>
<td>Reconstruction of the traffic</td>
<td>Statistical manipulation of the flow statistics</td>
<td>Computational intelligence methods to reduce the dimensionality</td>
<td>Decision process for clusters</td>
</tr>
<tr>
<td>Aggregate Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clustering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Where are we now ...

- So far we have deviced first version of the edge router, policy server and measurement probes
 - Capabilities which they currently have
 - **Edge router**
 - Full user plane operation
 - Communication channel to the dB
 - **Policy server**
 - User dB
 - SLA
 - Authentication
 - Network policy dB
 - Filterlists making the differentiation

Where are we now ...

- **Measurement probe**
 - Line rate capturing capability
 - tested up to 155Mbps b/dir
 - now in process of modifying software for 2.4Gbps b/dir
 - Flow and aggregate statistics processing
Performance data

- Edge router forwarding capability
 - Sensitivity to packet size
 - Sensitivity to added processing

![Graph of forwarding capability vs. packet size with two lines representing Without ALTQ and With ALTQ]

- Edge router forwarding time
 - Sensitivity to packet size
 - Small packets
 - Large packets
 - Sensitivity to added processing
 - Without ALTQ
 - With ALTQ

![Graph of forwarding time vs. frame size with two lines representing Mean and 90% Load with different colors for Without ALTQ and With ALTQ]

Performance data

- Edge router isolation capability
 - No differentiation
 - Four classes
 - Class 1: 4 Mbps
 - Class 2: 2.5 Mbps
 - Class 3: 1.5 Mbps
 - Class 4: 1 Mbps

![Bar chart showing isolation capability with vertical bars for each class]
Performance data

- Edge router isolation capability
 - No differentiation
 - Four classes
 - Class 1: 4 Mbps
 - Class 2: 2.5 Mbps
 - Class 3: 1.5 Mbps
 - Class 4: 1 Mbps

Conclusions

- Prototype is building up piece by piece – however, it takes a while before we have all pieces together
- Next year we will have routing and provisioning server, and core router ready
- New ideas have came up and will be added to the prototype
 - SIP control for adding possibility to signal connections based on time charging

- Questions ???