HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

Piia Pulkkinen

Design and Implementation of a Policy
Control Agent for a Differentiated Services

Router

Master’s thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Technology

Espoo, 24th May, 2004

Supervisor: Professor Raimo Kantola

Instructor: Marko Luoma, Lic.Sc.(Tech.)



Contents

1 Introduction 1
1.1 Background . . . . .. ... 1
1.2 Aimofthe Thesis . . . . . . . . . . .. ... ... . 2
1.3 Structure of the Thesis . . . . . . . .. .. ... ... 3

2 Overview of Quality of Service 4
2.1 Imtroduction . . . . . . ... 4
2.2 Defining Quality of Service . . . . . . .. ... 4

2.2.1 QoS Properties . . . . . .. ..o )

2.2.2 Implementing QoS in the IP Networks . . . .. .. ... ... 6

2.3 Integrated Servicesand RSVP . . . .. . ... ... 6

2.3.1  Services . . .. o. .o e e 7

2.3.2 Architecture . . . . . ... 7

233 RSVP . . . 7

2.4 Differentiated Services . . . . . . . ... ... ... .. 8

241 Concepts . . . . oo e 9
2.4.2 Comparison of the Best-Effort and DiffServ Router Architec-

tures . . . . . L. 11

243 Classifier. . . . . . . ... 12

2.4.4 Conditioner . . . . . ... 13

245 Scheduler . . ... ... o 14

2.5 MPLS . . . o e 15

3 Related Research and Development Work 18
3.1 Imtroduction . . . . . . . .. .. 18
3.2 Dummynet . . . ... 18

3.2.1 Design Goals . . . ... ... Lo 19
3.2.2 Architecture . . . . . ..o L 20
3.2.2.1 R-queues and P-queues . . . . . ... .. ... ... 20
3.2.2.2 Traffic Management with ipfw . . . . . .. ... ... 21

3.2.3 Configuration . . . . .. .. ... L o o 22



CONTENTS ii
3.3 NIST Net . . . . . . . e 22
3.3.1 Features . . . . . . ... 23
3.3.2 Operating Requirements . . . . . . ... ... ... .. .... 23
333 Usage . . . . . o e 23
3.3.4 Implementation . . . ... ... ... ... ... .. ..., 24
3.4 Click . . . . .. e 26
3.4.1 Architecture . . . . . .. ... 26
3.4.1.1 Elements .. ... ... ... ... .......... 26
3.4.1.2 Connections . . . . . . . . .. ... 27
3.4.2 Inside the Kernel . . . . . . .. .. ... ... 28
3.4.3 Configuration . . . . .. .. ... L o oo 28
3.4.3.1 Installation and Changing Configuration . . . . . . . 29
3.4.3.2 Extensions . . ... ... . ... .. ... ..., 29
3.5 XORP . . . o 30
3.5.1 Design Goals . . . ... .. ... . 30
3.5.1.1 Router Features. . . . . . ... ... ... ... ... 31
3.5.1.2  Extensibility . . .. ... ... 000000 31
3.5.1.3 Performance. . . . ... ... ... .......... 31
3.5.1.4 Robustness . . . . ... ... L Lo 32
3.5.2  Architecture . . . . . ..o L 32
3.5.21 XRLs . . .. . . . . 32
3.5.2.2 Process Model . .. ... ... ............ 33
3.6 Linux Traffic Control . . . . . . .. . .. ... ... .. ........ 34
3.6.1 Architecture . . . . . .. ... 34
3.6.2 Queuing Disciplines . . . . . ... ... ... ..., 35
3.6.21 Classes . . . . ... 36
3.6.2.2 Filters . . . . . .. ... 36
3.6.23 Policing . . . ... ... oo 37
3.6.3 Traffic Control Usage . . . . . . . . ... ... ... ..... 37
3.6.4 Linux Traffic Control Next Generation - tcng. . . . . . . . .. 37
3.6.4.1 New Architecture . . . . . .. ... ... ... ..., 38
4 Alternate Queuing Framework 40
4.1 Introduction . . . . . . . ... ... 40
4.2 ALTQ History and Current Status . . . . . . ... ... ... .... 40
4.3 Designgoals . . . . . . .. 41
4.4 Features . . . . . . . . .. e 41
4.5 ALTQ Tools and Applications . . . . . . . .. ... ... ... .... 43

4.5.1 ALTQ Daemon -altqd . . . . .. ... ... ... ... .... 43



CONTENTS iii
4.5.2  Statistics and Monitoring . . . . . ... ..o 44
4.5.3 Application Programming Interface . . . . . . ... ... ... 44

4.6 ALTQ Architecture . . . . . . . . . . ... 46
4.6.1 ALTQ Traffic Control Model . . . . . . .. ... ... ..... 46
4.6.2 ALTQ Implementation Model . . . . . .. ... ... ..... 47

5 Policy Control Agent 49

5.1 Imtroduction . . . . . . . ... 49

5.2  Overview of the Policy Control Agent . . . . . . . ... ... ..... 49

5.3 Implementation Issues . . . .. .. .. .. .. ... .. .. ...... o1
5.3.1 Language . . . . . . . . ... 51
5.3.2 Communication with ALTQ . . . . ... ... ... ... ... 52
5.3.3 Internal Databases . . . . .. ... ... .. ... ... 52

5.4 Architecture . . . . . . ... 53
5.4.1 Mainmodule . . ... ... .. ... ... ... o6
5.4.2 ALTQ Communication Module . . . .. ... ... ... ... 57
5.4.3 Local Database Management Module . . . . . ... ... ... 57
5.4.4 Policy Server Communication Module . . . . .. .. ... ... 58

5.5 Operation of the Policy Control Agent . . . . .. ... ... ..... 58
5.5.1 Overview . . . . . ... 58
5.5.2  Profile Operations . . . . . . ... .. ... .. ... 60
5.5.3 Filter Operations . . . . . . .. .. .. ... ... ....... 61
5.5.4 Class Operations . . . . . . . . .. .. ... ... . ...... 63
5.5.0 Receiving New Parameters . . . . . ... ... ... ... ... 65

6 Policy Control Agent Measurements 67

6.1 Introduction . . . . . . .. . . . ... 67

6.2 Test Setup . . . . . . . . 67
6.2.1 Router Hardware and Software . . . ... ... .. ... ... 68
6.2.2 Measurement Tools . . . . . . . .. ... L. 69

6.3 Testing Procedure . . . . . . .. .. ..ol 70
6.3.1 General Performance . . . . . ... ... ... 70

6.3.1.1 Throughput . . . . ... ... ... .. 71
6.3.1.2 Latency . ... ... ... ... .. 71
6.3.1.3 Packet Order . . . . ... ... .. ... ... ... 72
6.3.2 Profile Modifications . . . . .. ... ... ... ... .... 72
6.3.3 Filter Modifications . . . . . .. ... ... ... .. ...... 73
6.3.4 Class Modifications . . . . . . . .. ... ... ... ... 73
6.3.5 Policy Server Communication Module . . . . . . .. ... ... 74
6.3.6 Latency Behaviour during Modifications . . . . .. ... ... 75



CONTENTS iv

6.3.7 Effect of the I/O Operations . . . . .. . ... ... ...... 76
6.3.8 Summary of the Testing Procedure . . . . ... .. ... ... 76
6.4 Measurement Results . . . . . . .. ... ... L. 76
6.4.1 General Performance . . . ... ... ... ... ........ 78
6.4.1.1 Throughput . . . . . .. ... o000 79

6.4.1.2 Latency . . . ... ... .. ... ... .. 82

6.4.1.3 Packet Order . . . . ... ... ... ... ...... 83

6.4.2 Profile Modifications . . . . .. ... ... ... .. ..., 84
6.4.3 Filter Modifications . . . . . . . ... ... ... .. ...... 86
6.4.4 Class Modifications . . . . . .. ... ... ... ........ 88
6.4.5 Policy Server Communication Module . . . . .. ... ... .. 89
6.4.6 Latency Behaviour during Modifications . . . . .. ... ... 90
6.4.7 Effect of the I/O Operations . . . . . ... ... .. ... ... 93
6.4.8 Conclusions from the Measurements . . . . . . . .. ... ... 95

7 Conclusions 97



Acronyms

AF Assured Forwarding

ALTQ Alternate Queuing

API Application Programming Interface
BA Behaviour Aggregate

BGP Border Gateway Protocol

BSD Berkeley Software Distribution
CBQ Class Based Queuing

CBS Committed Burst Size

CIR Committed Information Rate

CPU Central Processing Unit

CTR Committed Target Rate

DARPA Defense Advanced Research Projects Agency
DiffServ Differentiated Services

DRD Derivative Random Drop

DRR Deficit Round Robin

DSCP Differentiated Services Code Point
ECN Explicit Congestion Notification
EF Expedited Forwarding

EWMA Exponentially Weighted Moving Average
FCFS First Come First Served

FEA Forwarding Engine Abstraction
FEC Forwarding Equivalency Class
FIFO First In First Out

GUI Graphical User Interface

HFSC Hierarchical Fair Share Curve

HTB Hierarchical Token Bucket

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IGMP IP Group Membership Protocol



ACRONYMS vi

IntServ Integrated Services

I/0 Input/Output

IPC Inter-Process Communication

IPSec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ITU-T International Telecommunications Union, Telecommunications
Sector

JoBS Joint Buffer Management and Scheduling

LDP Label Distribution Protocol

LSR Label-Switched Router

MAC Media Access Control

MF Multi-Field

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NIST National Institute of Standards and Technology (U.S.)

OSPF Open Shortest Path First

PBS Peak Burst Size

PEP Policy Enforcement Point

PHB Per Hop Behaviour

PIM-SM Protocol Independent Multicast - Sparse Mode

PIR Peak Information Rate

PRIQ Priority Queuing

PTR Peak Target Rate

QCMD Queue Command

QOP Queue Operation

QoS Quality of Service

RED Random Early Detection

RIB Routing Information Base

RIO Random Early Detection In/Out

RSVP Resource Reservation Protocol

RSVP-TE Resource Reservation Protocol Traffic Engineering

SNMP Simple Network Management Protocol

TCB Traffic Conditioning Block

TCif Traffic Control interface

TCP Transmission Control Protocol

TOS Type of Service

tr'TCM Two Rate Three Colour Marker

TSWTCM Time Sliding Window Three Colour Marker



ACRONYMS vii

UDP User Datagram Protocol

URL Uniform Resource Locator

VPN Virtual Private Network

WRED Weighted Random Early Detection
WRR Weighted Round Robin

WWW World Wide Web

XORP Extensible Open Router Platform

XRL XORP Resource Locator



Chapter 1

Introduction

1.1 Background

The story of the Internet began in the 1960s, when the U.S. Defense Advanced
Research Projects Agency, also called DARPA, launched a network project in
co-operation with a group of universities in the United States. The ARPANET
network stayed in the use of researchers for a long time until it was made publicly
accessible. The introduction of the World Wide Web (WWW) in the 1990s started a
new era in the history of the network communication. The public network began to
expand rapidly from country to country and from continent to continent, and soon
there was the Internet, a multinational, multilingual and in no way controllable

network. The baby had grown to a dinosaur.

Since the early days the traffic in the Internet has been based on datagrams
and best-effort packet forwarding. In practice, all packets are delivered to their
destinations independently of the other packets. The best-effort service means
that all efforts are made to ensure fast and correct packet delivery, but nothing is
guaranteed. Depending on various network conditions packets may end up to wrong
destinations, be delayed, duplicated, corrupted or even get dropped. However, the
best-effort service worked tolerably well until the Internet exploded, because the
traffic volumes were low enough and the network was able to carry most of the
traffic through. During the last ten or fifteen years, the amount of network traffic
and the variety of applications have increased enormously which has revealed the
limitations of the original network design. The best-effort architecture is facing an

impossible task when trying to handle all packets in a mixture of traffic sufficiently.



1.2 Aim of the Thesis

All applications suffer from the lousy network conditions, but the actual victims are
the intolerant real-time applications, like IP phone calls and video conferencing. If
several packets get lost on the way and they need to be retransmitted over and over
again, or the connection has for some other reasons huge delays, file transfer will
work, but will be extremely slow. On the contrary, the real-time applications can
become totally unusable due to packet losses or intolerable delays. The architecture,
like best-effort, offering only one service cannot meet the needs of various types of ap-

plications whose requirements from the network differ substantially from each other.

The urgent demand for Quality of Service (QoS) architectures on the Inter-
net was realised also by the IETF. Its first attempt to bring quality differentiation
to the Internet was the introduction of the Integrated Services (IntServ) [BCS94|
architecture. However, due to the complex resource reservation feature IntServ
was soon found unscalable and thus not an optimal solution. Some years later the
IETF published another QoS architecture proposal, namely Differentiated Services
(DiffServ) [BBCT*98|. Unlike IntServ, DiffServ does not use resource reservations
and does not itself create services. Instead, DiffServ uses provisioning and provides
only mechanisms for building services which makes it more scalable and practicable

architecture than IntServ.

1.2 Aim of the Thesis

Although DiffServ is currently deployed in the Internet only in a small scale, it
is already facing new challenges set by the changing world. People are more and
more moving around with pocket PCs and mobile phones with Internet access and
laptops, which can be used on business trips or taken over to a friend’s place, are
replacing desktop computers. Thus, the support for mobility of the users is becoming
an essential feature of the QoS networks. In a DiffServ network, the support for
mobility requires a centralised management of customer profiles and authentication.
Hereby, the user is allowed to log into the network through any access point and
also to change the access point at any time. User’s own customer profile is always
installed into the edge router he is at the moment connected to, no matter of the
location. When the user changes the access point or logs out from the network,

his customer profile is removed from the edge router to make room for other profiles.

The DiffServ architecture brings configurability to the network, but the in-
crease of control is not achieved for free. The traffic management mechanisms in

the routers can be configured for only one traffic situation, although the amount



1.3 Structure of the Thesis

and types of traffic vary all the time. An inappropriate configuration has an
unwanted effect on the traffic and can decrease the network utilisation even below
the best-effort service level. Therefore, it is crucial to have a mechanism in the
network that modifies the configurations on-the-fly according to the changing
network conditions. Without any adaptability, the DiffServ architecture can provide

QoS only on paper, not in a real, heterogeneous network.

We have built a prototype of an adaptive policy-based network which bases
the resource provisioning on policies and traffic volumes and allows the users to
move from one access point to another. The routers in the network are DiffServ
routers whose DiffServ functionalities were realised with a traffic management
software called Alternate Queuing (ALTQ) [ChoO1]. The configuration of ALTQ
can be changed dynamically, and the Policy Control Agent software is responsible
for performing the modifications in the edge routers. The task of the Agent is to
receive the new configuration parameters from the databases in the Policy Server
and configure ALTQ according to them. This thesis describes the design of the
Policy Control Agent, takes a look at the most important implementation issues
and finally presents and analyses the results of the performance measurements.

1.3 Structure of the Thesis

Chapter 2 gives an overview of the Quality of Service concepts. It explains briefly
the most common QoS mechanisms and introduces Integrated Services [BCS94],
Differentiated Services [BBC™98| and Multiprotocol Label Switching [RVCO01]| ar-
chitectures. Chapter 3 takes a look at the research and development work that has
been done all over the world concerning traffic management. The chapter presents
five different software solutions which all have their own viewpoints to the subject.
Chapter 4 introduces the ALTQ traffic management software [Cho01] emphasising
on the functionalities and design issues relevant to the Policy Control Agent imple-
mentation. Chapter 5 describes the design and implementation of the Policy Control
Agent. Chapter 6 defines the performance test procedure for the ALTQ/Policy Con-
trol Agent router and presents the results with brief analyses. In addition, it gives

some suggestions for further development. Finally, Chapter 7 summarises the work.



Chapter 2

Overview of Quality of Service

2.1 Introduction

In the traditional best-effort network, all packets receive the same treatment and
therefore have equal possibilities to get delayed, corrupted or lost on the way. In the
networks providing QoS, traffic is divided into several groups which receive different
treatment. Traffic differentiation can be based on the traffic type or customer, for
example, and the treatment is defined in the contract between the customer and

the service provider.

This chapter gives some definitions for QoS and introduces the most popular
methods and mechanisms to realise QoS in the IP networks. The chapter takes
a look at two QoS architectures, namely Integrated Services and Differentiated
Services, and at Multiprotocol Label Switching architecture, which provides one way
to implement the Qos architectures. Due to the field of this thesis, Differentiated

Services is studied closer than Integrated Services.

2.2 Defining Quality of Service

According to ITU-T, Quality of Service is 'the collective effect of service perfor-
mances which determine the degree of satisfaction of a user of the service’ [IT94].
Therefore, from the users’ point of view QoS is easily a psychological issue. Service
providers see QoS as a set of adjustable parameters, but in practice measuring QoS

and tuning the parameters is not an easy task. In the service contract between the



2.2 Defining Quality of Service

customer and the service provider, the offered forwarding service is defined with
appropriate QoS properties. It is important that the properties are measurable for
both parties, so that the fulfilment of the contract can be controlled.

2.2.1 QoS Properties

The performance of the network is commonly characterised with properties in-
cluding latency, jitter, throughput and error rate. As different kinds of traffic have
different needs, QoS is actually optimisation of one or more of the parameters.

The total delay that the packet encounters when travelling from the source
to the destination is often referred to latency. Latency consists of three parts:
propagation delay, transmission delay and queuing delay. Propagation delay is the
time that the packet spends on the wire and it exists always, because a packet
cannot travel faster than the speed of light. Transmission delay indicates the time
it takes to transmit all bits of the packet, and it depends on the size of the packet
and the capacity of the link. Queuing delay is the time the packet has to spend in
the queue waiting for transmission. Packet sizes and link capacities are usually hard
to modify, but queuing delay can be affected a bit easier. Latency is an especially
important characteristic for intolerant real-time applications which require strict
bounds for latency in order to work properly. Another important attribute for the
applications is jitter which stands for latency variation in a short time-scale. Jitter
prevents the applications from using the packets right away when they arrive,
because the timing between them is arbitrary. Therefore, the applications store all
the incoming packets to a playback buffer and smooth the jitter by buffering the
less delayed packets some extra time. [PDO0O]

Throughput defines the maximum number of bits that the network is able to
transfer from end-to-end in a certain amount of time. Throughput is affected by the
physical restrictions of the transmission media and the traffic volumes inside the
network, hence it can be substantially lower than the available bandwidth. [PD0O]

The reliability of the network can be characterised as a number of errors per
a certain amount of data or time. Errors include packet loss, when the transmitted
packet never reaches the destination, packet duplication, when the packet gets
copied en route and is thereby received in the destination multiple times, and
packet corruption, when some bits get altered and make the packet unusable.

TCP (Transmission Control Protocol), which is a reliable protocol and uses



2.3 Integrated Services and RSVP

acknowledgements to ensure the correct transmission of the packet, can tolerate
an unreliable network quite far. UDP (User Datagram Protocol), on the contrary,
is an unreliable protocol and it suffers greatly from the continuous packet losses,

because it does not implement a packet retransmission mechanism. [PD00]

2.2.2 Implementing QoS in the IP Networks

In order to put QoS in practice, working QoS architectures are needed. The architec-
tures consist of different elements which are implemented as separate mechanisms.
The QoS mechanisms have for some time been a hot research topic, hence currently
several mechanisms exist and new ones are studied. Some mechansims have been
deployed wider than the others, but there is no such thing as a common QoS
architecture or even a common mechanism for any functionality. All architectures

and mechanisms are just proposals.

The lack of a prevalent QoS solution may be one reason for the slow deploy-
ment of QoS in the Internet. Some service providers have made their decision and
chosen one architecture to support, but most service providers have done nothing.
In this situation, the end-to-end QoS between different operators’ networks is hard
to achieve. The more networks there are between the communication partners the
more difficult it is to receive end-to-end QoS. There are ways to fit the services
offered in separate networks together, but it is expensive and requires detailed and
complex agreements between the service providers. Because there is no point in
offering a half-way QoS, the services are generally defined only inside the service

provider’s own network.

2.3 Integrated Services and RSVP

When the real-time applications became common in the Internet during the 1990s,
it was soon realised that the existing Internet architecture could not meet the re-
quirements of the real-time traffic. Jitter and packet loss were too severe for that
type of traffic. Hence, IETF developed a service model called Integrated Services
(IntServ) [BCS94]|. Its purpose was to make sure that the real-time traffic was pro-
vided the network resources it needed and at the same time, the existence of the
best-effort traffic was not forgotten. [Wan01]



2.3 Integrated Services and RSVP

2.3.1 Services

The IntServ model offers two kinds of services targeted to the real-time traffic.
Guaranteed Service [SPG97] is tailored to meet the needs of the intolerant real-
time applications that need the packets to arrive at a certain time. The service sets
strict bounds to the maximum queuing delay and, to be able to control the delay,
reserves some amount of network resources for the use of the traffic flow. Controlled
Load Service [Wro97| is intended for tolerant real-time applications which can accept
packet losses and adapt to jitter to some extent. Controlled Load service offers better
than best-effort service by providing the network conditions similar to lightly loaded
best-effort network. The delay bounds or bandwidth cannot be fixed, thus the service

does not provide strict guarantees. [Wan01]

2.3.2 Architecture

The IntServ router reference model includes four components that implement the
QoS functionalities: classifier, packet scheduler, admission control and reservation
setup protocol. The classifier separates the incoming packets to the different classes
according to the flow specification by examining the packet header. It also monitors
that the hosts stay inside the agreed traffic profile and do not send too much traf-
fic. The packet scheduler controls the packet forwarding by using different queues.
Depending on the class the packet belongs to, it receives a certain kind of treat-
ment from the scheduler. When a new packet stream wishes to enter the network,
the admission control in every router checks if there are resources available. If the
requested service is Guaranteed Service, the reservation setup protocol called Re-
source Reservation Protocol (RSVP) [ZBHJ97] is used to set up the route and make
the reservations. In Controlled Load Service, RSVP messages are used to find out
whether there are enough resources for the new packet stream to enter the network,
but no reservations are made. In addition to the IntServ components, the router in-
cludes the normal routing and network management elements. The components are
illustrated in Figure 2.1 which presents a simplified reference model of an IntServ
router. [BCS94]

2.3.3 RSVP

RSVP is a signalling protocol that is used to carry reservation messages between

the traffic sender and the receiver. The protocol is not tied to IntServ or any other



2.4 Differentiated Services

control
plane : .
routing | | reservation management
agent setup agent agent
Y
admission
control
routing
database traffic control database
data
plane .l ] packet
classifier| +—— —> | scheduler >
input internet
driver forwarder output driver

Figure 2.1. [BCS94, Luo00] IntServ router reference model

architecture, nor has it anything to do with routing. The reservations are soft-state
which means that they expire after a certain time if they are not renewed before
that. In some cases, the reservations can be merged together or shared among

several packet streams. [Wan01]

Setting up a reservation begins with a PATH message that the source host
sends to the destination host by using RSVP. The message includes a specification
of the traffic that the source is willing to send. To find the way to the destination,
RSVP uses the guidance of some routing protocol. At the destination end, the
host generates a RESV message based on the information in the received traffic
specification. The message contains a description of the requested resources and a
definition of the packets which are eligible to use the resources. The RESV message
is sent back to the source host using the same route as the PATH message. Routers
on the way make resource reservations according to the RESV message. Because
the reservation process in the routers begins from the receiver end, the reservation

mechanism of RSVP is called receiver oriented. [Wan01]

2.4 Differentiated Services

Some years after the deployment of IntServ it was clear that the architecture lacked

scalability and was not able to solve all QoS problems. There was a need for an ad-



2.4 Differentiated Services

vanced QoS architecture that would be scalable and simple at the same time. In 1998,
the IETF published a definition for Differentiated Services (DiffServ) [BBC*98|, an
architecture designed to offer better than best-effort service in different service lev-
els. One major difference to the IntServ was that in DiffServ there was no resource
reservation with special protocols. Instead, DiffServ achieved resource assurance
with a set of different methods consisting policing, provisioning and traffic prior-
isation. [Wan01, Kil99

2.4.1 Concepts

The basic idea of DiffServ is to divide the traffic on the edge of the network into a
set of groups which receive different forwarding treatment inside the network. The
treatment is defined by Per-Hop Behaviours (PHBs) which are marked to the packet
IP headers with a 6-bit Differentiated Services Code Point (DSCP). The place for
the DSCP in the IPv4 header is the former Type of Service (TOS) field, nowadays
called a DSCP field. One DSCP value refers to exactly one PHB, but one PHB can
map to several DSCP values. |[Kil99, Wan01| Figure 2.2 shows the transformation
of the TOS field into the DSCP field. The DSCP field reserves the first six bits of
the TOS field bits, while the last two bits are currently unused. Experimentally the
bits have been used by ECN (Explicit Congestion Notification).

14
DSCP Cu
0 4 8 T 16 19 31
r < R
Version| Hlen (i3 TO8: ) Length
NG il s
Identification Flags Fragment offset
Time to live Protocol Header checksum

Source address

Destination address

Options (variable) PAD (variable)

Figure 2.2. IPvj header

A PHB defines the packet treatment in the network, and all the packets that have

the same PHB form a behaviour aggregate and receive the same treatment. PHB



2.4 Differentiated Services 10

neither defines a service nor makes any reference to the actual implementation.
Instead, it is a service building block situated between services and mechanisms.
The description of a PHB covers all the main quality aspects: latency, packet
loss ratio and bit rate. The whole DiffServ architecture can be seen as a set of
logical best-effort networks in parallel, each having its own network resources and

characteristics and mapping to one PHB. [Kil99, Luo00|

PHBs are divided into PHB groups containing PHB classes that are sets of
PHBs. There are currently two standardised PHB groups: Assured Forwarding
(AF) [HBWW99| and Expedited Forwarding (EF) [JNP99]. They can be referred to
service classes which have a certain kind of equality with the IntServ services. AF
equates to Controlled Load and EF to Guaranteed Services. AF PHB consists of
four PHB classes, each with three drop precedence levels. One flow can be destined
to only one PHB class, but the packets inside the flow may have different drop prece-
dencies. Each AF class is assigned a certain amount of forwarding resources, and if
the class is congested, the packets with the highest drop precedence are discarded
first. The class can be selected by the customer, and the packet drop precedence is
usually selected by the edge router. EF offers end-to-end assured service, where the
QoS properties can have firm limits. Unlike IntServ Guaranteed Service, EF does
not reserve network resources. Instead, the adequacy of the resources is achieved
with provisioning. In addition, EF has only one PHB and all packets within the
behaviour aggregate share the same resources. Thus, the resource allocation is done
per traffic aggregate, not per-flow, as in IntServ. [HBWW99, Wan01, Kil99|

A network or a part of a network which implements the DiffServ architec-
ture under the same PHB and service specifications is called a DiffServ domain.
The domain consists of two types of routers: the edge routers and the core routers.
Edge routers are located in the boundary of the domain, hence they are the
access points of the DiffServ network and have some network interfaces outside of
the domain. The edge routers that connect to the customer networks are called
DiffServ access routers, because they are the customer access points to the domain.
Routers connecting DiffServ domains together are called DiffServ border routers.
Core routers are completely inside the domain, thus all links are connected to
the DiffServ capable routers. An example of a network consisting of two DiffServ

domains is presented in Figure 2.3. [Luo00, WanO1]

Both types of routers have different roles. The edge routers are the brains of the
network. They examine the headers of all incoming packets and mark the correct
DSCP value to the DSCP field according to the predefined rules. The routers also



2.4 Differentiated Services 11

operator A | operator B
edge l ~-~-.__ DiffServ
router cor<ta | L~ access
router :
7 edge | edge routers
DiffS L7 router | router |
iffServ .
access ~ " | )
N
routers "~ = |5
N \ ,
SN ) | ! edge
DiffServ core router
border routers router

Figure 2.3. Two DiffServ domains connected together

supervise that the customers do not violate the service contract by sending traffic
which is out of the agreed profile. The core routers examine the DSCP field of every
packet and determine the requested forwarding treatment according to the DSCP
value. The scalability and efficiency of the DiffServ architecture are based on the
distribution of the router functionalities and intelligence. The time-consuming work
is done on the edge, where the traffic volumes and data rates are low, and the busy
core routers are allowed to concentrate on other operations. [Wan01]

2.4.2 Comparison of the Best-Effort and DiffServ Router Ar-
chitectures

The ordinary network router which handles the best-effort traffic takes the incoming
packet, checks its destination address and forwards the packet to the correct output
link according to the packet destination address. The components needed for this
operation are a forwarder, a scheduler and a routing agent. The routing agent cal-
culates the routes by using the routing algorithm and maintains the routing table.
From the routing table the forwarder gets the information which link the packet has
to be directed to. The packets are queued to wait for their turn to get forward, and
the scheduler decides which packet is transmitted next. The scheduler works on the
First Come First Served (FCFS) basis which means that the packets are handled
in the arriving order. The queues are managed in tail drop basis. If there are too
many incoming packets and the queues which are always of finite size become full,
all packets that do not fit into the queue are discarded. The packets that are already
in the queue will not get dropped. [Luo00, PD00, Wan01]



2.4 Differentiated Services 12

Best-effort router DiffServ router

control plane control plane
policy
control

routing A routing
classifier _
—+| forwarder scheduler{ —++ conditioner forwarder scheduler
user plane user plane

Figure 2.4. [Luo00] Components of a best-effort router and a DiffServ router

The DiffServ router architecture adds some elements to the best-effort router, as
Figure 2.4 shows. The first component in the forwarding path is the classifier which
divides the incoming packets into different groups based on the header information.
The conditioner measures the traffic properties, sets a DSCP value to the header
and alters the traffic shape to fit inside the committed profile, if needed. Policy
controller is a management unit which takes care of the configuration of the classifier,
conditioner and scheduler. [Wan01, Luo00]

2.4.3 Classifier

The classifier on the edge router is usually a multi-field (MF) classifier, because the
edge routers often need to examine several fields of the packet header. The packets
are divided into different groups according to the predefined rules called filters and
forwarded to the conditioner. When the packets arrive at a core router, they already
have the DSCP value set. So the classifier in the core router is a behaviour aggregate
(BA) classifier that separates packets according only to the DSCP value. [Wan01]



2.4 Differentiated Services 13

2.4.4 Conditioner

The conditioner is located in the DiffServ router forwarding path after the classifier.
Together the conditioner and the classifier form a bigger element called a traffic
conditioning block (TCB). The conditioner is used especially in the edge routers
but in some cases also in the core routers. The functional components inside the
conditioner are meter, marker, shaper and dropper. The meter is used to measure
the temporary properties of the traffic which are compared to the committed traffic
profile to find out whether the traffic is inside or outside the profile. The common
properties are peak rate, average rate and maximum burst size of the traffic. The
marker sets the DSCP value to the packet header either straight away or according
to the meter information. The shaper can force the traffic back into its profile limits
by keeping the packets queued for awhile and thus delaying them. If shaping is not
enough to bring the traffic into compliance with the profile, the dropper may discard
certain packets. Shaping traffic by dropping is known as policing. [BBC*98, Luo00]

Token bucket is a common meter which uses tokens to determine if the traf-
fic is inside or outside the profile. Tokens are generated at a certain rate to the
bucket, and when a packet arrives, the tokens are calculated. If there are not enough
tokens for the packet, it is considered to be out-of-profile. Otherwise the packet is
inside the profile. [Wan01]

Dividing the traffic into two, like the token bucket does, is not enough for
DiffServ AF due to its three drop precedencies. Hence, AF uses a dual token bucket
scheme called a Two Rate Three Colour Marker (trTCM) [HG99] which is able to
separate the packets into three groups. The traffic exceeding the Peak Information
Rate (PIR) and the associated Peak Burst Size (PBS) is marked as red, whereas the
traffic below the PIR and PBS but over the Committed Information Rate (CIR)
and Committed Burst Size (CBS) is marked as yellow. The traffic that fits nicely
inside the CIR and CBS limits is marked as green. The tr'TCM is implemented as
two consecutive token buckets, of which the first one leaves out the red traffic and
the second one separates the green traffic from the yellow traffic. The other possible
marker for AF is TSWTCM (Time Sliding Window Three Colour Marker) [FSN0O]
which is not based on token buckets but on a long-term traffic rate estimating.
TSWTCM marks the packets as red, yellow and green, using Committed Target
Rate (CTR) and Peak Target Rate (PTR) as thresholds. [Wan01]



2.4 Differentiated Services 14

2.4.5 Scheduler

The scheduler decides which packet is transmitted next to the output link. The
packets waiting to be scheduled are placed into one or more queues which can be
managed with various methods. The simplest and most common queue management
algorithm is tail drop. The queue is filled in order and when the queue gets full, all
packets trying to get in are dropped. New packets are accepted as soon as there
is room in the queue. Random Early Detection (RED) [FJ93] and RED In/Out
(RIO) [CF98| are more sophisticated, active queue management algorithms. RED
was designed to provide a new mechanism for congestion notification. As shown in
Figure 2.5, the algorithm accepts all packets to the queue until a certain threshold
(MinTH) on the average queue length calculated with an exponentially weighted
moving average (EWMA) algorithm is reached. After that, the incoming packets are
dropped with a linearly increasing probability (Pdrop) until the second threshold
(MaxTH) is reached. When the queue fills up, all packets are discarded. RIO scheme
is the basic idea behind DiffServ AF. RIO consists of two parallel RED algorithms,
one for high precedence traffic and the other for low precedence traffic. To be able to
separate the low and high precedence traffic, RIO expects the packets to be marked
beforehand in the conditioner element. A generalisation of RIO is called Weighted
RED (WRED), and it enables using several RED algorithms in parallel. [Wan01,
PDO00, Luo00]

Pdrop |

MaxP -- f- == == == -- -

MinTH MaxTH MaxQsize ~VC

Figure 2.5. [Luo00] Drop probability function of RED

The scheduling is taken care of by a scheduling algorithm. The algorithm can be run
for a single queue, several queues or even over several other scheduling algorithms.
The simplest and the most common scheduler is First Come First Served (FCFS),
also called First In First Out (FIFO). FCFS schedules the packets in the order they



2.5 MPLS 15

arrive to the router, and does not provide any differentiation. Priority Queuing
(PRIQ) is a slightly enhanced FCFS which observes the priority values marked in
the packets. One way to implement PRIQ is to assign own FCFS queue for each
priority and schedule always the higher priority packets before the lower priority
packets. Another way is to use only one FCFS queue where the higher priority
packets are placed in front of the lower priority packets. [PD00]

Round Robin schedulers assign a time slice of certain size to each connec-
tions and rotate around the queues scheduling packets according to the time slices.
In Weighted Round Robin (WRR), the time slices are not of the same size, thus
during one rotation, the scheduler selects more packets from some connections
than from others. WRR is inefficient if the packet sizes vary greatly, because the
operation of WRR is based on packets. Deficit Round Robin (DRR) counts bits,
not packets, and divides the frames into quantums according to the weights of the
connection. The size of the quantum governs the number of packets that can be
sent in one rotation. If the quantum is too small even for one packet, the connection

has to wait several rotations to be served. [Luo00, PD0O0]

Class Based Queuing (CBQ) [FJ95] is the most popular scheduling mecha-
nism in DiffServ. CBQ is a hierarchical scheduler which supports link capacity
sharing among different classes. The traffic is divided into classes using predefined
rules called filters. Sharing is based on the tree-like class structure whose leaves
represent the actual scheduled packet queues. An example of a CBQ class tree
is presented in Figure 2.6. When the leaf classes are not congested, CBQ uses a
general scheduler which is some variant of Round Robin schedulers. If there are
one or more congested leaf classes, the general scheduler is replaced by a link share
scheduler which operates according to the rules set by the user. [PD00, Luo00]

2.5 MPLS

The definitions of the DiffServ and IntServ architectures do not say anything
about the implementation issues. There are several ways to implement the QoS
architectures in the IP networks, and one option is to use the Multiprotocol Label
Switching (MPLS) [RVCO01]| architecture. In general, MPLS is suitable for realising
traffic engineering and guaranteed QoS and building Virtual Private Networks
(VPNs).

The forwarding process in a router is based on examining every incoming



2.5 MPLS 16

root [100%]

55% 20% 25%

(class 2.1 ) (class 2.2)
15% 40% 15% 5% \ 25%

(Ieaf1 1, 1) (Ieaf1 1 2) (leaf21 1) (Ieaf2 1 2) (Ieaf22 1)

Figure 2.6. An example of a CBQ class tree with link sharing percentages

packet header and making the decision of the next hop independently. The opera-
tion is reliable but time-consuming. MPLS was developed to lighten the work of the
routers and to speed up the routing decisions. The basic idea behind MPLS is that
packets are routed over the predefined paths, and a short, fixed identifier called
a label is stamped on each packet header to determine the next hop. The name
‘multiprotocol’ comes from the ability to have multiple protocols implemented over
the same forwarding path. [Wan01, RVCO01]

When a packet arrives to the edge of an MPLS network, its header is exam-
ined and it is classified into one of Forwarding Equivalency Classes (FEC). FEC is
a group of packets which are forwarded identically inside the MPLS network. The
packets take the same route and receive same kind of treatment. The MPLS header
is added to the packet header, and a label in it specifies the FEC of the packet.
Inside the MPLS network there are predefined paths called label-switched paths
(LSPs) for different FECs. The label-switched routers (LSRs), as the MPLS capable
routers are called, forward the packet along the appropriate LSP according to the
label in the packet header. The labels are defined locally and one-way between two
LSRs, hence every router has a table which maps the labels meaning the same FEC
together. As a FEC has a different label in the different links, the router needs to
change the labels for all incoming packets before forwarding them. When the packet
arrives to the egress router of the MPLS network, the MPLS header is removed.
An example of an MPLS network is illustrated in Figure 2.7. The figure also shows
the basic operation of the network by presenting two LSPs between the hosts and
the labels along the path. [Wan01]

A label distribution protocol is responsible for setting up the LSPs by informing the



2.5 MPLS

17

LSP A - D: LSR1-LSR3-LSR5
LSP B - C: LSR1-LSR2-LSR4

label: 23
label: 81 [c]—
host AQ\ LSR2 C LSR4 host C
LSR1 /
hOStB @\ LSR3 LSR5 host D
label: 14 [D}—=
label: 72

Figure 2.7. Basic operation of an MPLS network

neighbouring routers about the label mappings. The protocols that can be used for
that purpose include LDP (Label Distribution Protocol) [ADF*01] and an RSVP
extension RSVP-TE (RSVP Traffic Engineering) [ABG*01].



Chapter 3

Related Research and Development
Work

3.1 Introduction

Traffic management in the IP networks is currently a hot research topic worldwide.
Numerous mechanisms and tools have already been developed in various research
projects. The emphasised aspects, operation and architecture of the mechanisms de-
pend on the primary objectives of the project. Thus, the points of view to the traffic
management and the design decisions in the implementation issues vary greatly. This
chapter introduces five freely distributable traffic management tools: Dummynet,
NIST Net, Click, XORP and Linux Traffic Control. Alternate Queuing (ALTQ)
traffic management software which we used as a basis in the router development is

presented in Chapter 4.

3.2 Dummynet

Dummynet |Riz97, Riz98]| is a simple software tool initially designed for performance
testing of the network protocols and applications. In addition, it has been introduced
as a traffic manager. Dummynet operates inside the protocol stack, where it captures
all network traffic and creates effects of delays, limited bandwidth and bounded
queues, for example. Thus, it is able to simulate network conditions which otherwise
would need a number of machines and a large network to produce. Dummynet was

developed by Luigi Rizzo in the University of Pisa in Italy. The first version of



3.2 Dummynet 19

the software was released in 1996 as a part of a research project. Dummynet was
designed for the FreeBSD operating system, and since FreeBSD version 3.1 it has
been integrated into the distribution. |Riz02, Riz97|

3.2.1 Design Goals

Researchers have for a long time struggled with the problem how to build a
realistic, reasonable-sized and affordable testing network environment. Simulation
is an option in rare cases, since the real network conditions are seldom known
exactly. However, accuracy is required to configure the simulator to correspond the
real network. The other option, putting up an actual-sized network, is not usually
a sensible idea. The design goal of Dummynet was to offer a third option. With
Dummynet, one computer can be configured to represent the whole network and
emulate its conditions. The experiments can be made like in a real-sized network
with the difference that the network between the end nodes is a single dum-
mynet machine. If there is a need to get different conditions to different links in a

real test network, Dummynet machines can be sprinkled around the network. [Riz98|

Network conditions that Dummynet is capable of producing are bounded-
sized queues and queuing delay, limited bandwidth, propagation delay, packet losses
and the effects caused by multipath packet forwarding. As Dummynet was not
initially designed for traffic management, further development was needed to equip
the software with all necessary components for traffic management. The original
implementation was lacking two important features: packet filtering mechanism and
flexible configuration. They were realised with the IP firewall (ipfw) code which was
already included in FreeBSD. Due to this design decision Dummynet is configured
with extended ipfw commands. [Riz98§]

Dummynet is distributed with the FreeBSD operating system and as a stand-alone
version. The software integrated into the operating system works as any other
program, and it is targeted for FreeBSD-based routers and bridges. The stand-alone
Dummynet is packetised together with a minimal version of FreeBSD called
picoBSD. The whole packet fits into one bootable floppy disk, and it is intended for
workstations which do not primarily implement routing functionalities. [Riz02]



3.2 Dummynet 20

3.2.2 Architecture

The requirements that Dummynet sets to the underlying system are fairly minimal.
The stand-alone Dummynet does not even demand a hard disk to be present in
the machine. Everything the software needs is in the floppy disk, and after loading
the program operates in the main memory. However, the system timer granularity
has to be small enough for the experiments. The faster the test network is, the
higher the timer resolution should be. The buffer space to store the packets is
another noteworthy matter. Dummynet needs the buffering resources from the

underlying system, because it does not store the packets in process internally. [Riz97]

The location of Dummynet inside the protocol stack is between the IP and
TCP layers. The implementation takes only a few hundred lines of code and is
fairly simple. It consists of two queue abstractions and functions needed to move
packets between the queues. As Dummynet does not take copies of the packet data,

it introduces practically no overhead to the system. [Riz97, Riz98§]

3.2.2.1 R-queues and P-queues

The operation of Dummynet is based on a queue abstraction consisting of two
queues: R-queue and P-queue. The queues are placed in the middle of the protocol
stack, as shown in Figure 3.1, thus all network traffic flowing up and down the stack
passes through the queues. The names of the queues come from their functionality.
The R-queue is a router queue simulating the impacts of routers in the network.
These are the effects of the finite queue size and queuing policy. The P-queue repre-
sents the links between the machines and their effects on the packet transfer which
are the bandwidth limitations and propagation delay. The letter P in the name of
the queue stands for 'a pipe’ which is the term used for a communication link in
Dummynet. |[Riz98|

The effects are generated by keeping the packets in the R- and P-queues for a certain
amount of time. The R-queue implements the bounded-sized queue by limiting the
accepted amount of packets to some predefined value. The queuing policy of the
R-queue is specified by the user. The choices include, for example, FIFO and a
WFQ (Weighted Fair Queuing) variant called WF2Q+ implemented especially for
Dummynet. The bandwidth limitation is created by moving the packets from the
R-queue to the P-queue at a certain packet rate at the maximum. The P-queue
simulates the propagation delay simply by keeping the packets queued long enough.
When the P-queue releases the packet, it is transmitted to the next protocol stack



3.2 Dummynet 21

application

protocol stack

network

Figure 3.1. [Riz98] R- and P-queues of Dummynet

layer. |Riz98, Riz02]

3.2.2.2 Traffic Management with ipfw

Ipfw separates the packets according to their headers. An IP packet header carries
many kinds of information and several fields can be used in dividing the packets
to different groups. The user can freely define which pieces of information are
used and how strict the matching rules are. The possible options for the examined
fields include source and destination addresses, source and destination ports and a
protocol. [ipf00]

The integration of the ipfw code into Dummynet enabled the configuration
of multiple independent pipes. The traffic can be divided with ipfw rules to different
groups which have separate Dummynet queues. Thus, not all traffic passing through
Dummynet experiences the same kinds of network conditions. In addition, ipfw
allows the packets to be examined more than once. Therefore, it is possible to
configure a hierarchical structure of pipes where the packets travel through several
pipes. [Riz98|

As a default, Dummynet is configured as a router but it can be used also as
a bridge. In both cases, the packets are handled by ipfw, which is located above the
bridge functionalities in the TCP /IP protocol stack. The bridge handles the packets
by using the MAC-addresses which are lost if the packets are passed upwards in
the protocol stack. Therefore, the Dummynet bridge caches the MAC-addresses
before passing the packets to the next layer upwards and maps the addresses

back to correct packets when getting them back from ipfw. The feature has been



3.3 NIST Net 22

implemented by modifying drivers for the network interface cards. Because the
number of modified drivers is small, the Dummynet bridge supports only a limited
set of network interface cards. With a Dummynet router the same problem does
not exist, but unlike a bridge a router always stands out in the network topology

which is not always desirable.

3.2.3 Configuration

The configuration of Dummynet consists of pipes and queues. The pipes represent
communication links that have a certain bandwidth. The queues are packet queues
that are connected to one pipe and have a weight attached to them. The weight

specifies how big a share of the pipe bandwidth is assigned to the queue. [Riz02]

The user interface of Dummynet is extremely simple. A bare command line
is the only way to configure the software. Dummynet does not support a config-
uration file, which means that all configurations have to be made by typing the

commands one after another to the command line.

The configuration commands are either ipfw commands or sysctl variable settings.
The ipfw commands are used to configure pipes and queues inside Dummynet.
The commands are detailed, and one command contributes to only one pipe or
queue. Sysctl variables are the internal variables of the kernel which are numerous
and used for various purposes, not only for ipfw or Dummynet controlling. The
variables define the environment where Dummynet works, so they set the global

configuration which affects on every pipe and queue in Dummynet. [Riz02]

3.3 NIST Net

NIST Net [CS03] is a network emulation tool for Linux targeted for research pur-
poses. It is able to emulate different kinds of network conditions and also record
the existing conditions and playback them later. The software is developed in the
United States at the National Institute of Standards and Technology (NIST) as a
part of a research program. The first initial beta release in the NIST Net project
was in 1998, and the current version of NIST Net was released in June 2002 under
the version number 2.0.12. [CS03, 0SN03]



3.3 NIST Net 23

3.3.1 Features

Several network emulators were developed already before NIST Net. However, they
lacked support for high data rates and their capabilities were restricted. The design
goal of NIST Net was to create a software tool capable of emulating various net-
work conditions in a sophisticated manner. Packet loss, duplication and reordering,
delay with adjustable distribution and limited bandwidth were the most impor-
tant implemented features. In addition, NIST Net was designed to allow the user
to define his own packet handlers which can be used for various purposes includ-
ing data capturing and performance monitoring. The implementation of NIST Net
is loosely based on Hitbox network emulator [ADLY95] and MOST radio network
emulator [DBCF95|. [oSN03, CS03]

3.3.2 Operating Requirements

NIST Net runs in a Linux machine configured as a router. The software observes
the traffic passing through the router and applies the user-defined actions to the
selected flows. NIST Net is implemented as an extension to the Linux kernel, hence
it is not a stand-alone system like Dummynet which is distributed jointly with an
operating system. Most Linux distributions with new enough kernel work fine with
NIST Net. Only Red Hat has been reported to cause some troubles in installation,
but they can be avoided by following special installation instructions. [CS03, 0SN03]

The hardware requirements of NIST Net are quite moderate. The critical
characteristics of the underlying system are the amount of kernel memory and
processing power. If the system properties are sufficient, the software is able to run

without causing a distracting processing overhead. [0SNO03|

3.3.3 Usage

Before NIST Net is ready to be used, it has to be loaded into the kernel memory.
The loading is done with a special command or using a general insmod command.
The operation can also be automated by adding the software to the list of modules
that are loaded in the system boot. [oSNO3]

NIST Net provides three types of user interfaces: two command line inter-

faces, one graphical user interfaces and an API for programmers. The command



3.3 NIST Net 24

line interfaces are called Cnistnet and Hitbox. Hitbox is the original and thus
older interface, whose set of commands is restricted. In addition, it does not
automatically provide the user any information about the system state. Cnistnet
is the new command line interface, and it implements a wider range of commands
than Hitbox. With Cnistnet the user is able to use all features of NIST Net and
define the software behaviour accurately. The command line interfaces suit well for

complex, non-interactive testing which is performed through scripting. [0SN03]

The second way to use the software is via APIs. NIST Net contains a set of
APIs for scripting and programming. For non-interactive testing the APIs can be
used instead of the command line interfaces. [0SN03]

Probably the most popular user interface is the graphical user interface called
Xnistnet. The GUI looks like a spreadsheet which contains the same parameters
that can be set with the command line commands. The user fills in the appropriate
cells and launches the software. Xnistnet is an interactive user interface, thus it
shows some bandwidth and queue statistics in real-time. The GUI suits mainly for
simple testing. More complex testing can be executed by running scripts either in

a command line interface or via APIs. [o0SNO3]

The configuration of NIST Net consists of a set of rules, which are used to
divide packets into different action groups. Rules include the identification part
and the action part. The identification part lists some of the packet header values:
source and destination address, source and destination ports and used protocol. Not
all of them needs to be defined, as they can also be marked as default, meaning that
they match to every packet. The action part defines the treatment of the matching
packet. The possible actions are dropping or duplicating packets, increasing delay,
limiting bandwidth and applying a RED-variant DRD (Derivative Random Drop)
queuing policy [Gay96]. All of the actions have adjustable parameters. [0SN03|

3.3.4 Implementation

The NIST Net implementation includes the actual program, three user interfaces
and an API for the programmers. The program itself is a kernel module extension
which works on Linux. NIST Net maintains a table of emulator entries based on
the configuration. The entries consist of the packet matching rules, actions to be
taken and statistics of the matching packets. [0SN03]



3.3 NIST Net 25

NIST Net is constructed of two parts: a kernel module and a set of user in-
terfaces. The structure of the NIST Net architecture is illustrated in Figure 3.2.
The NIST Net kernel module captures the packets entering the IP layer in the
Linux kernel and compares the packet header values to the packet rules in the
emulator entries. If the packet matches some entry, the actions defined in the entry
are performed on the packet. In case of dropping, the packet is simply discarded.
If the packet is duplicated, two copies of the packet are passed back to the Linux
kernel IP layer. A delayed packet is returned to the IP layer after a certain amount
of time. The fast timer uses the kernel real time clock as the time source when
scheduling the delayed packets back to the IP layer. NIST Net is controlled from the
user interface which operates the kernel module through the control APIs. [CS03]

application code stat setup | [NIST Net other user
7y (FP code) | |user interface | | interface
user level sockel intefface ' 0 K
kernel level dqstyle infterface v
Linux kernel stat gen external handler
Y (int code) yy
socket code v v
[ dd interface>
IP level code |external hooks |
AR packet packet processing
S. o matching drop | dup | delay
T~y v ]
i """""" :: _':, | packet intercept § ; |
=" 1
real time net device | | t { {fast timer > scheduling
clock code code
A NIST Net kernel module
Y network

Figure 3.2. [CS03] Architecture of NIST Net

The external hooks in the NIST Net kernel module enable the existence of the
external handlers for the NIST Net program code. Handlers can be used in applying
external statistics when creating the emulator entries. An external handler can co-
operate with NIST Net or take care of the packet processing entirely, bypassing the
NIST Net code. The handlers have been implemented for low monitoring and Voice

over IP testing, for example. [CS03|



3.4 Click 26

3.4 Click

One fundamental problem with most routers is the inflexible architecture. Routers
allow some functionalities to be turned on and off but more detailed subtractions
or extensions are hard to make because of the closed design. To study if a router
could be made flexible with a fully modular design and easy configuration, a software
called Click [KMC*00] was invented in MIT in 1999. Click increases the flexibility
of router implementation by allowing the router forwarding path to be built from
individual modules. The modules can be connected together in several ways like
the toy building blocks, and the final result depends greatly on the builder. If the
existing modules do not implement some required feature, it is possible to write a
new module. In addition to the basic modules, Click has many extension modules
which include DiffServ support, for example. The current version of Click is 1.3prel
and it was released on March 2003. [KMC*00]

3.4.1 Architecture

Each Click module, called an element, represents one small part of the router func-
tionality. Click handles the configuration as a directed graph, where the elements
are vertices and connections between the elements are edges. Packets move along
the edges, so every connection represents a possible transfer path for a packet.
[KMC*00]

3.4.1.1 Elements

Elements are the building blocks of the Click router. All router functionalities
have been divided into separate pieces which can be connected together to form a
router forwarding path. The input and output interfaces of the elements are strictly
defined which allows a free combination of the elements, as long as the connected
interfaces are of the same type. On the other hand, strict definitions prevent illegal

combinations that would not work in practice. [KMC*00]

Functionally the elements may be very small. For example, a queue is one
separate element - no other element implements it. Division of the router func-
tionality into small enough pieces which are still of a reasonable size increases the
flexibility of the architecture. All actions are taken inside the elements, nothing
happens outside of them. [KMCT00]



3.4 Click o7

There are four important properties on every element: class, ports, configura-
tion string and method interfaces. The class specifies the code to be used in packet
processing and some other element characteristics. Every element belongs to exactly
one element class. The input and output interfaces of the element consist of ports
which are defined in ports property. The optional configuration string consists of
extended attributes for the element. Method interfaces are the interfaces that the
elements use to communicate with each other. All elements support at least the
packet transfer interface, which is the simplest interface, but also other interfaces
can be defined. Figure 3.3 illustrates a example of an element and presents some of
the properties. [KMC™00]

element class

input port — Tee(2) > output ports

configuration string
Figure 3.3. [KMC*00] An example of a Click element

The element is not only a functional component but also a basic unit for scheduling.
When the CPU time is assigned to different tasks, the time slots are divided to
elements. Click implements a task queue which contains the elements that wait for
CPU processing. One by one the elements get their share on FCFS basis. There are
still only few elements that end up to the queue, because most elements get the

processing time through their push and pull functions. [KMC*00]

3.4.1.2 Connections

Connections are created between the elements and they are the possible transfer
paths for the packets. There are two types of connections: push and pull. In a push
connection, the source element passes the packet to the destination element which
has no idea that a packet is coming until it arrives to the input interface. In the pull
connection, the destination element requests the packet from the source element
which then passes the packet. Push connections are used when the element on the
other end is allowed to send a packet whenever it suits to it, and the destination
element is prepared to store the packet if it is not able to handle it right away. Pull

connections are practical, when the destination element needs to control the timing



3.4 Click 28

of the packet arrivals. [KMC*00]

All ports of the element are either push or pull ports. This creates the rule
of connecting two elements: only two push ports or two pull ports can be connected
together. A push port cannot be connected to a pull port, or vice versa. There
are also so called agnostic ports that can be either push or pull ports, depending
on to which type of port they are connected to. Every port can be connected to
exactly one port, so there is no danger of one port having both push and pull
connections. [KMCT00]

3.4.2 Inside the Kernel

Click implementation is an extension to the Linux kernel. The scheduling of the
elements is taken care of by the router driver which is controlled by the Click kernel
thread. There can be several router driver threads running at the same time but
they can be active only one by one. Interrupts are allowed to preempt the thread,
but the driver also releases the CPU voluntarily every now and then to keep the
system running. [KMCT00]

There are four main object categories in a runnig Click system: elements,
packets, timers and a router. Click has element objects for all elements that appear
in the system - either in the current configuration or among the elements that
could be used. The objects for the latter type of elements are called prototype
objects. The packet objects are for the packets that are stored in the memory,
and in the kernel the packet objects are similar to the packet abstraction used by
Linux. The timers in Click use Linux timer queues and their abstractions are timer
objects. The router object takes care of the router configuration in many levels. It
collects the information for the current configuration, configures elements, checks
the connections and puts the router on line. It also has a responsibility of handling
the task queue which is used in scheduling the elements. [KMC™00]

3.4.3 Configuration

The configuration of Click consists of simple commands written in Click’s own pro-
gramming language. The language has two important concepts: declaration and
connection. The declaration creates the elements, and the connection describes how

the elements should be connected together. In addition, there is an abstraction called



3.4 Click 29

a compound element which consists of the user-defined, consecutive elements which
are handled together like they were a single element. The language is used only
in the descriptive configuration. The information on how the packet processing is

performed in practice is stored in another way. [KMC*00]

3.4.3.1 Installation and Changing Configuration

The kernel driver takes care of the installing of the configuration. It reads the
configuration file written in Click language, parses it, checks if it has any errors,
does the initialisation of the elements and puts the router on line. Normally the
system can store only one configuration at a time which causes losing of information
when the configuration is changed on-the-fly. For example, all packets that are
in queues are dropped, because the new configuration starts from a clean system
state. [KMC™00]

There are two ways to change from one configuration to another without los-
ing information. If the modifications are made locally inside one element, the
element specific handlers can be used to change the configuration. If the mod-
ifications are too complex for the handlers, the whole configuration file can be
changed using hot swapping. The new configuration file is accepted only if it does
not contain any errors, otherwise the old configuration remains effective. When
the new configuration has been accepted, it adopts the system state which the
old configuration left behind. Therefore, no packets or any other information are
lost. [KMCT00]

3.4.3.2 Extensions

Click implements several extensions, including different scheduling and dropping
policies, queue management, IP header compression and decompression and security
features like firewalling and NAT (Network Address Translation). The DiffServ sup-
port in Click is implemented by taking all DiffServ components defined in [BBC*98]
and transforming them into Click elements. The system administrators can combine

the elements together to form a tailored DiffServ implementation. [KMC*00]



3.5 XORP 30

3.5 XORP

Extensible Open Router Platform (XORP) [HHKO03] is another router software de-
veloped to meet the needs of an open router architecture. The main design goals
of XORP were extensibility, performance and robustness. XORP bases heavily on
Click implementation, as its forwarding path was constructed of Click elements.
The software was targeted for research purposes in both laboratory and production
networks which naturally set high requirements for the program stability and de-
velopment. The home of XORP is at the International Computer Science Institute
in Berkeley, California. The current version of XORP is 0.3 alpha, released in June
2003. [HHKO03|

3.5.1 Design Goals

The primary goal of XORP is to work as a bridge between the protocol and mech-
anism testing in the laboratory environment and in the real production networks.
New ideas developed in the laboratories easily remain inside the laboratory walls
because introducing the new protocols and new mechanisms in the real world is
extremely difficult. The commercial routers have not been designed for research
purposes, so their architecture is closed and static. The open source routers, on
the other hand, tend to be too experimental for production networks. XORP aims
to be flexible, open source router software suitable for research and despite of
its experimental nature, stable enough to be connected to a production network.
Thus, with XORP the researchers are able to do the main development work and
testing in the laboratories and the final testing in a real network on the same
platform. [HHKO3]

Originally XORP was targeted for network edge routers, whose capacity does
not normally differ much from a conventional PC. In addition, on the edges of
the network, the routing tables are relatively small and the amount of interfaces
is reasonable. Since the early days, XORP has been deployed also in the network
core. The current objective of XORP is to become a software that could be used as
a basis of all kinds of routers. [HHKO03]



3.5 XORP 31

3.5.1.1 Router Features

In order to meet the requirements which are set for a general core of various types of
routers, XORP needs to implement a great amount of features. The software is not
ready yet, since the implementation is only half-way, but there is an extensive list of
existing and forthcoming features. The list includes different routing protocols, net-
work management tools and forwarding path support. The current version supports
routing protocols like BGP4, OSPF, PIM-SM, IGMPv1 and IGMPv2, and in the
future more unicast and multicast protocols will be implemented. All protocols are
at the moment tested only with IPv4, but XORP has been designed to work also
with IPv6. Network management is currently handled via a command line interface,
but there are plans for SNMP and WWW interfaces. As a forwarding path, XORP
can use a common Unix forwarding path or a Click router forwarding path. Adding
a support for alternative forwarding paths is in progress. [XOR03|

3.5.1.2 Extensibility

For a router that is used in research, extensibility is a key issue. Every structural
level of a router from packet forwarding to protocols needs to be extensible. Sufficient
extensibility is achieved by taking care that there are well-defined interfaces in all
points where the extensions could be attached to and by implementing easy-to-
use APIs to all interfaces. The router should not limit the amount of coexistent

extensions as long as there are no interference between them. [HHKO03]

3.5.1.3 Performance

Forwarding performance is an essential aspect for any router, no matter whereabouts
in the network it is located. For the forwarding path which has to handle every
packet that enters the system the performance issue is critical, while the upper
layers of the router prioritise other matters. In XORP, the sufficient performance
level is achieved with the Click router software. XORP can use a forwarding path
constructed of Click elements which provide good performance. In addition, Click
can increase the flexibility, configuration abilities and hardware support of a XORP
router. [HHKO03|



3.5 XORP 32

3.5.1.4 Robustness

XORP is designed so that if a routing process crashes, other processes will not be
affected. The routing and coordinating processes run in the user space of the Unix
system and they are all protected from each other. If a crash happens, the system
cleans up after the dead process, so that there are no harmful traces left to distract
other processes. The robustness is an important matter also in the forwarding path,
but there it is not possible to use the same memory-based protection methods as in
the user space. However, if the forwarding path is constructed of the Click elements,

the necessary robustness is achieved. [HHKO03]

3.5.2 Architecture

Internally the XORP architecture is modular. The system is divided into two sub-
systems, upper and lower one, of which the upper subsystem is split further into
several modules consisting of various functional blocks. The upper level subsystem
is also called a user level subsystem, as it runs in the user space of Unix. All routing
protocols and management functionalities are located in the user level subsystem.
The architecture of the user level XORP is a multi-process architecture, where every

routing protocol has one process. [HHKO03|

3.5.2.1 XRLs

Messages between the XORP processes are carried by XORP Resource Locators
(XRLs). The format of XRLs is similar to URLs: in the beginning there is the
protocol which is the type of IPC (Inter-Process Communication) transport, and
after that there are the name of the communication party, the name of the used
method and a list of arguments. Furthermore, it is possible to define the desired
type of the response. [HHKO03|

The original idea of XRLs was to hide the protocols inside the IPC frame-
work. The aim was to enable the addition of new protocols to the XORP system
simply by writing the necessary elements to the XRL client library. The library
is an essential component for the operation of XRLs. When the process sends
an XRL message, it is caught by the XRL library that is linked to all XORP
processes. The library examines the XRL parameters and invokes the required IPC

transport mechanism. The library also takes care of the response or a possible error



3.5 XORP 33

condition. [HHKO3]

3.5.2.2 Process Model

The subsystems consist of various processes as can be seen in Figure 3.4. The lowest
level is the kernel subsystem which consists of the forwarding engine. The forwarding
path is built on the Click elements. [HHKO03]

Management processes

Unicast [<==d RIB =~ | Multicast

routing routing

protocols A protocols
FEA |«——

i

Forwarding engine (CLICK elements)

Figure 3.4. XORP process model (simplified from [HHK03])

The Forwarding Engine Abstraction (FEA) manages the forwarding path and hides
all its details from the processes above. The FEA provides a common interface
for the routing processes to the forwarding path and keeps the router forwarding
table up to date. FEA also takes care of the networking interfaces by managing
them and passing information on their state and actions to the routing processes.
Usually all information crossing the user and kernel subsystem boundary goes

through the FEA, but in some special cases the processes are allowed to bypass the
FEA. [HHKO03|

The current version of XORP implements both unicast and multicast routing
protocols. Unicast routing processes use the Routing Information Base (RIB) to
propagate the calculated routes. The RIB decides whether the route should be
passed to the forwarding path or to the other routing processes. The RIB keeps
track on who has sent which route, and with this information it maintains a copy of
the forwarding table. Multicast routing protocols need the RIB only occasionally,
because the protocols manage the routing tables themselves. The RIB is provided
only the information which routes are capable of multicasting. In Figure 3.4 the
dashed arrows represent the communication which does not take place with all

protocols in the routing protocol block. [HHKO03]



3.6 Linux Traffic Control 34

The management processes block contains all management functionality of
the router. XORP router manager process, called rtrmgr, is responsible for the
router on the whole. It monitors the processes, starts new and restarts the failed
ones, all according to the configuration. It keeps the router components running
and configures them. The command line interface provides a user access to the
router for configuration and information collecting purposes. The IPC finder is
needed by the XRLs in communication between the processes. All XORP processes
need to inform the finder where they are located, so that the finder is always aware
of which processes exist and where. If the finder notices that the information of
a process is not up-to-date, it can advice the process to send the valid contact
information. When a process wants to communicate with another process, it does
it via an XRL. The XRL library captures the message and consults the finder in
order to get the name of the actual communication protocol. When the library
has received the information, it is able to take care of the rest of the process

communication. [HHKO03]|

3.6 Linux Traffic Control

Linux operating systems include a built-in traffic control environment [Alm99] which
provides a great variety of mechanisms for traffic management. The environment
consists of the kernel parts which contain the actual traffic control functions, and
the user-space applications which are used in commanding and configuring the
kernel elements. Linux traffic control implements the most common queuing and
policing mechanisms as well as the necessary components to support IntServ and

DiffServ architectures.

Traffic control has been included in the Linux distribution since the kernel
version 2.2. The improved implementation of traffic control called Linux traffic
control next generation (tcng) [Alm02| has advanced to the version teng-9f which
was released in June 2003. It has not yet been integrated to the Linux distribution

but it is available via the tcng home page in the Internet [tcn03].

3.6.1 Architecture

The architecture of Linux traffic control has a layered structure as shown in Fig-

ure 3.5. The traffic control subsystem resides in the kernel space, while the rest



3.6 Linux Traffic Control 35

of the components are located in the user space. Traffic control utility (tc utility)
is situated in the user space between the kernel traffic control block and the user

user or
application

applications. [Alm99|

user tc utility
space

kernel kernel traffic control
space

Figure 3.5. [Alm02] Architecture of Linux traffic control

In Linux traffic control implementation, the classification is taken care by several
distinct components, while the queue management and scheduling are performed by
a single component called a queuing discipline (qdisc). The qdiscs together with the
class, filter and policing components are located in the kernel traffic control block.
The relationship between the qdiscs, classes and filters is a hierarchical structure,
where one qdisc is a root and classes are its children. Filters can be attached either
to the classes or to the qdiscs. More complex configurations, where the classes have
their own inner qdiscs and other classes as children, are also allowed. The fourth
component, policing, is a functional component, not an element as the three others

can be seen. Policing can be performed in different ways and by several elements.
[Alm99]

3.6.2 Queuing Disciplines

The queuing discipline can be either classful or classless. A classful qdisc can
contain classes which are allowed to contain further classes and qdiscs. It is also
possible to attach filters to the classes and qdiscs. A classless qdiscs operates always
without classes and filters. Linux traffic control implements several classless and
classful qdiscs, including tail-drop FIFO, RED FIFO, Priority Queuing and an
improved CBQ called Hierarchical Token Bucket (HTB) [Dev03]. [tcO1]

Qdiscs implement functions for packet enqueuing, dequeuing and dropping,
and for qdisc configuration initialisation, changing and destroying. Collecting

statistics is obligatory for the qdiscs, and the required information includes the



3.6 Linux Traffic Control 36

cumulative number of bytes enqueued, packets enqueued and packets dropped, as
well as the present queue length. Each instance of a queuing discipline has a unique
name, a 32 bits long two-piece number, on every interface. The number is of format
magjor:minor, where each part is 16 bits long and the minor number has always the
value zero. The major number is called a handle and it is needed if the qdisc has
child classes. [Alm99]

3.6.2.1 Classes

A classful qdisc uses classes to create different traffic profiles. The classes do
not actually handle the packets, as they only provide the conditions for traffic
differentiation. The class functions include operations like changing and deleting
of the classes, changing of the qdisc and information gathering about the current
configuration. [Alm99, tc01]

Classes have two names: a user-defined class ID and an internal ID which is
given by the parent qdisc. Both names are unique inside the queuing discipline. The
class ID has the same structure as a qdisc ID, major:minor. The major number is
the number of the parent qdisc and the minor number identifies the class inside
the qdisc. The internal ID is of a different type than the class ID, and it can be
a pointer or an index, for example. The internal ID is the name that the kernel
normally uses when referring to the class. In special cases, different classes that

obviously have different class IDs, may have the same internal ID. [Alm99|

3.6.2.2 Filters

Filters collaborate with classes and define which packet belongs to which class.
Although filters are tied to classes, depending on the implementation, they can be
attached either to classes or to qdiscs. The possible types of the filters are generic
and specific. A generic filter can divide the packets into different classes alone, no
matter how many classes there are. Under a single qdisc there is a need for only
one generic filter. A specific filter can capture only one type of packets, thus if
specific filters are used, every class needs at least one filter to collect the packets.
The functions to control filters include filter initialisation, changing and deleting,

as well as printing statistics and parameters of the filter. [Alm99]

In the system configuration, the filters are stored in the class specific or qdisc
specific list. The order of the filters is determined by the filter priorities which are



3.6 Linux Traffic Control 37

arranged in ascending order. Therefore, if there are two or more filters for the same
protocol, they need to have different priorities. Filters do not have filter IDs in the
same way as classes do. Instead, they contain a list of arguments that specifies
the filter. The arguments are the name of the class or qdisc which the filter is
attached to, the protocol and the priority in the filter list. Internally filters have
elements which are controlled through their identification names called handles. If
the element needs to be identified outside the filter, it can be done with the filter
argument list combined to the handle. [Alm99]

3.6.2.3 Policing

Linux traffic control is able to perform policing in five different ways along the
forwarding path. The policing decision can be made by filters which pass the in-
formation to the queuing discipline. The gdisc has then the final responsibility to
decide whether to take the action or not. Policing can take place also in the ingress
interface, where the nonconforming packets are dropped before they have used any
more resources. The filters are used to select the packets to be dropped. Discarding
a packet in the enqueuing operation is another alternative, and it takes place if the
qdisc is not for some reason able to enqueue the packet. Packet can also be dropped
inside a nested qdisc if there is a need to make room for a more important packet.
For the same reason a packet which has already been successfully enqueued may be
discarded from the queue. [Alm99|

3.6.3 Traffic Control Usage

Linux traffic control is used via command line commands. The user application is
called tc, and it is invoked with the command ’tc’. The application commands can
concern about a queuing discipline, a class or a filter. The options inside the tc
commands are add, remove, change, replace and link. All of them are common to

qdiscs, classes and filters, except ’link’ which is used only for qdiscs. [tcO1]

3.6.4 Linux Traffic Control Next Generation - tcng

Although the Linux traffic control architecture is not very old, it has certain weak-
nesses especially with usability, extensibility and performance. In 2001, a project

called Traffic Control Next Generation was launched in Swiss Federal Institute of



3.6 Linux Traffic Control 38

Technology and currently the project continues in the Internet as a voluntary work.
The aim of the project is to tackle the problems discovered in Linux traffic control
and implement an improved traffic control which is called tcng after the project
name. [Alm02]

3.6.4.1 New Architecture

The old traffic control has a three layered structure, as shown in Figure 3.5. The
new traffic control, whose architecture is illustrated in Figure 3.6, adds one layer
between the tc utility and the user. The layer is a traffic control compiler called tcc,
whose aim is to make the configuration of tcng user-friendly. It takes scripts written
in the tcng language as an input and translates them into the tc language commands
which are brought to the underlying tc layer. The tcng language resembles Perl and

C which makes the language more understandable and more flexible than the old tc

User or other inputs
application |

command language. [Alm02]

tcng language — |
tcc

tc language — | |
user tc utility o
space o
------------------------------------- ---- other outputs
kernel :
space kernel traffic control

Figure 3.6. [Alm02] Architecture of Linux tcng

To avoid faulty or illegal commands to reach the tc level, the scripts are automat-
ically checked in the tcng level before the translation. The checking is done by
simulating the effects of the configuration in the user space with a simulator called
tcsim. The simulator copies the tc layer and kernel traffic control subsystem codes,
adds some simulator code around them and thereby creates an authentic testing

environment. As the output, the simulator creates a trace of all events. [Alm02]

Teng enables the replacing of the kernel traffic control block with a third-

party software. The usage of hardware accelerators is also possible. Teng translates



3.6 Linux Traffic Control 39

the output from the user space system suitable for the alternative traffic control
module in the kernel. Hence, if there is a need to make modifications to the input
configuration and scripts because of the new kernel module, the modifications are
likely to be small. [Alm02]



Chapter 4

Alternate Queuing Framework

4.1 Introduction

Alternate Queuing (ALTQ) [ChoO1] is a traffic management software for BSD Unix
operating systems. It has a similar operation philosophy to Linux Traffic Control,
although ALTQ is more versatile than Linux TC. ALTQ implements several mech-
anisms for controlling traffic, including various queuing disciplines and RSVP and
DiffServ support, as well as a number of tools for gathering statistics and monitoring
the traffic. It offers a modular and extendable platform for researchers studying the
QoS mechanisms and related issues. This chapter introduces ALTQ), its architec-
ture, design goals and capabilities. The aim is to give the basic knowledge of the
software which has been used as a basis for the Policy Control Agent implementation

presented in the next chapter.

4.2 ALTQ History and Current Status

The history of ALTQ dates back to year 1997 when the designer of the software, Ken-
jiro Cho from Sony Computer Science Laboratory in Japan, made the first version
of ALTQ publicly available. A year later a group of Japanese companies launched
the KAME project, which studies IPv6, IPSec and state-of-the-art networking
issues in BSD environment, and the development of ALTQ was transferred under
the project. In addition to the KAME integrated component, ALTQ was released
as a standalone software. The latest version is 3.1 and it was published in 2002. The
software is freely distributable and available in the Internet. [Cho98, kam04, Cho03]



4.3 Design goals 41

The current version of ALTQ was built on FreeBSD version 4.5. In the newer
FreeBSD versions, ALTQ requires some kernel patches in order to work properly.
NetBSD and OpenBSD already have ALTQ integrated in the operating system.
Since its first release ALTQ has been actively deployed into several research projects

and at present it is used in various projects worldwide. [Cho03]

4.3 Design goals

The name of ALTQ, Alternate Queuing, indicates the main purpose of the software.
The BSD operating system does not implement any other queuing disciplines than
a FIFO queue, but this bias is hard to go around, because there is no way to add
new queuing disciplines to the system. ALTQ does not only provide a number of
ready-made alternative queuing disciplines but also a method to introduce new
ones. The feature is valuable for the researchers, who need the research platform
to be as flexible and extensible as possible. Another important element is the
versatility of the software. ALT(Q has been designed to support a variety of queuing
disciplines and other QoS mechanisms, and the list of supported functions has been

improved for every release. [ChoO1]

Attempts have been made to keep the implementation of ALTQ simple enough.
Simplicity, stability and robustness are key factors for the systems connected to
production networks, and a simple design helps to achieve the required stability
and robustness. Production networks have been taken into account in the design
of ALTQ, because the software is intended for research use both in the laboratory

environment and in the operational networks. [Cho98]|

4.4 Features

ALTQ provides a framework for different QoS functionalities. The emphasis is on
the queuing disciplines, but ALT(Q supports also some other traffic engineering
mechanisms. If the set of queuing discipline algorithms does not include the required
one, ALTQ allows the addition of the new queuing disciplines. The programmers
are encouraged to use the FIFOQ template as a basis for their own queuing
discipline implementations. Changes can be made practically to any part of the
system, so the researchers are able to adapt the ALT(Q system suitable for their



4.4 Features 42

experiments. [ChoO1]

The current version of ALT(Q implements six queuing disciplines including
FIFOQ, PRIQ, CBQ, WFQ, HFSC and JoBS, and three queue management
algorithms including RED, RIO and Blue [Cho03]. ECN (Explicit Congestion

Notification) mechanism is supported experimentally.

FIFOQ (First In First Out queuing) is the simplest queuing method in ALTQ
consisting of a FIFO queue and tail-drop queue management. It is aimed mainly for
template use when implementing new queuing disciplines. [Cho01] PRIQ (Priority
queuing) adds 16 priority levels to FIFO queuing. The idea is that the higher
priority class gets always the service first. [alt99a] CBQ (Class Based Queuing)
[FJ95] provides partitioning and link capacity sharing among traffic aggregates
based on a hierarchical class tree. Each class is assigned an own queue, and child
classes are allowed to borrow the excessive capacity of their parents. [Cho02] WFQ
(Weighted Fair Queuing) [DKS89| is an approximation of a theoretical model
of an ideal scheduling mechanism, where the packets are prioritised according to
the earliest transmission finishing time. Several variations of WFQ exist, and in
ALTQ, WFQ implements a Weighted Round-Robin scheduler and a set of queues,
each with a certain weight indicating its share of the link capacity. [Cho01] HFSC
(Hierarchical Fair Service Curve) [SHNO0O| is designed to support both link-sharing
and real-time services. It bases its operation on two so called service curves for
the real-time and link-sharing criteria, and implements independent scheduling
mechanisms for both types of service. [Cho02] JoBS (Joint Buffer Management and
Scheduling) [LC00] can provide hop-by-hop service guarantees for traffic aggregates.
The guarantees are realised with bandwidth allocation, and their type can be either
absolute or proportional. [Cho02]

RED (Random Early Detection) [FJ93] is an active queue management mechanism
which implements congestion notification. RED observes the average queue length
and starts dropping packets with an increasing probability after a certain threshold.
In ALTQ, RED is used in the experimental implementation of another congestion
notification method, ECN (Explicit Congestion Notification). An enhanced version
of RED is RIO (RED In/Out) [CF98] which implements several parallel RED
queues. In ALTQ, RIO is implemented according to the Assured Forwarding
definition [HBWW99| with three precedence levels. [alt99a] Blue [FKSK02] is an
active queue management algorithm using packet loss and link utilisation as the
basis of congestion handling.



4.5 ALTQ Tools and Applications 43

The traffic conditioning elements provide the functionalities required by Diff-
Serv in the input interface of the router. The elements consist of simple elements
that are built for only one action and more complex elements that are able to
choose from several actions according to certain conditions. Classifiers and meters
belong to the latter group. ALT(Q implements three complex conditioning element:
a token bucket meter |BBGS02|, two-rate three-colour marker (trTCM) [HG99|
and time-sliding window three-colour marker (TSWTCM) [FSNO0O| which were all
introduced in Chapter 2. The simple elements perform the same action to every
incoming packet which can be passing the packet, marking the packet with a certain
DSCP value or dropping the packet. Shapers which also belong to the DiffServ
conditioning elements are not currently supported in ALTQ. If shapers are needed,
they can be simulated by using the queuing disciplines. [Cho01]

The BSD operating systems do not implement a traffic control module, which is
a necessity for the RSVP daemon program (rsvpd). ALTQ has included a traffic
control module since the first version and thus opened up a possibility to use RSVP
in the BSD platform. The lack of the traffic control module in BSD was considered
so critical that integrating such a module into ALT(Q was one of the original design
goals. [Cho01]

4.5 ALTQ Tools and Applications

The QoS mechanism implementations reside in the kernel space of the operating
system. Above them in the user space there are many kinds of tools for configuring
and monitoring the underlying mechanisms. In addition to the stand-alone programs,
ALTQ provides an application programming interface (API) as a part of the software

architecture.

4.5.1 ALTQ Daemon - altqd

The ALTQ management tool called altqd is used for configuring the QoS mech-
anisms. It is a stand-alone program which enables the ALTQ functions in the
kernel and sets the parameters according to the given commands. Altqd reads the
primal setup from a configuration file and initialises the system. Afterwards, the
configuration can be modified through a command line interface, if ALTQ is in the

interactive mode, or via ALTQ API commands from an external program. [alt99b]



4.5 ALTQ Tools and Applications 44

Altqd is responsible for taking care of the QoS components in the kernel
space by enabling, configuring, reconfiguring and disabling them. When altqd is
launched, it wakes up the QoS routines and turns the router into an ALTQ router,
and when it is shutdown, it stops the routines and the router returns to the normal
state. As default, altqd detaches after initialisation and runs as a daemon with the
same initial configuration. If altqd is invoked to the debug mode, it does not detach
but opens a command line which can be used for giving management commands
and thereby changing the configuration on-the-fly. In addition, in both modes altqd
serves the monitoring tools by providing them information about the state and
functions of the QoS components. [alt99b, ChoO01]

4.5.2 Statistics and Monitoring

Providing information on the ALTQ system and component states and functioning
is essential for debugging and program development. There is a common monitor-
ing tool called altgstat, which displays real-time statistics of queuing discipline and
traffic conditioning elements. Discipline specific monitoring tools are also available,
and they can be used as stand-alone programs as well, although their main purpose
is to gather information for altgstat. In addition, altqgstat is able to display the cur-
rent component structure in the ALTQ configuration, according to the information
provided by altqd. [Cho01]

4.5.3 Application Programming Interface

The libaltq library which plays the main role in the ALT(Q management architecture
is built from varying components located in three layers, as shown in Figure 4.1.
The upmost layer includes the parser and the command interpreter module which
reads and interprets the configuration file and the commands given through the
command line. The middle layer consists of the Queue Command (QCMD) API
and the lowest layer of the Queue Operation (QOP) API. QCMD and QOP layers
are divided vertically into a common module and a discipline specific module.
Below the layers, there are the system call interface and functions which handle the

communication with the kernel. [ChoOl]

The QCMD API is principally meant to be used by the parser, but also programs

that do not need detailed control over the QoS components are capable of using



4.5 ALTQ Tools and Applications 45

parser/
command
interpreter
gqcmd API v \ gqcmd API rsvpd TCif
| gcmd to qop | gcmd to qop | rsvp to cbg/hfsc |
J
qgop API 1 l v lqop API
|
discipline B discipline
independent | specific state
state management
management
A
discipline
dependent
syscalls

——— SyStem call interface

queuing discipline

common module dependent module

Figure 4.1. [Cho01] The libaltq library

it. [ChoO1] The actual API is nevertheless the QOP API which contains more
complete functions to control the behaviour of the software. The QCMD API is
actually a simplified QOP API, since the QCMD functions only provide a different
interface to the QOP functions. The simplicity of the QCMD functions is based
on the required parameters, which are mainly strings, whereas the QOP functions

include strings, pointers and various structures as parameters.

The QOP API provides for both the ALTQ package programs and the user-
written programs a common interface to the functions controlling the QoS
components. The API also makes it possible to use a single configuration file for all
ALTQ configurations. The QOP functions, and therefore also the QCMD functions,
belong either to the common module or to some discipline specific module. The
common module consists of functions that are common to all disciplines and can
be used with any of them. Enabling and disabling ALTQ are examples of such
functions. The discipline specific functions require parameters that are unique to
a particular discipline. Thus, the functions can be used only with the discipline
assigned to them. [ChoO1]

In the QCMD layer, next to the QCMD common and discipline specific modules,



4.6 ALTQ Architecture 46

there is a place for additional APIs. Currently there are two of them, rsvpd Traffic
Control interface (TCif) and DiffServ Policy Enforcement Point (PEP). Both work
as interpreters by translating the incoming parameters into the discipline specific

parameters. [Cho01]

4.6 ALTQ Architecture

The architecture of ALTQ can be presented with two nested models. The topmost of
them is the abstract model of ALTQ functionalities and their location in the traffic
forwarding path inside the router. Below the abstraction there is the actual imple-
mentation which consists of several components attached to the operating system.
Both the traffic control model and the implementation model explain the ALTQ

architecture from their own point of view, completing each other.

4.6.1 ALTQ Traffic Control Model

The main parts of the ALTQ architecture are the framework, forwarding mech-
anisms and management mechanisms. The framework draws the outlines of the
system and creates the interfaces towards the operating system. The framework
does not know anything about the QoS operations, it just implements abstractions
of the available QoS mechanisms and offers the operating system a common
interface to all of them. [ChoO01]

The forwarding mechanisms are the heart of the ALTQ system, for they im-
plement the actual QoS functionalities. The mechanisms are separated into two
groups, one consisting of queuing elements and the other consisting of traffic
conditioning elements. Queuing elements include queuing disciplines, whereas
traffic conditioning elements include classifiers and markers, for example. [Cho01]

The forwarding mechanisms are small and simple and they reside in the ker-
nel, as they need to be efficient. The management mechanisms, on the contrary, are
not so small and definitely not simple, and they operate in the user space. Their task
is to control and manage the forwarding mechanisms. The management mechanisms
consist of different types of tools and programs for configuring and monitoring the
traffic management, like the ALTQ daemon altqd and the altgstat program. [ChoO01]



4.6 ALTQ Architecture 47

QoS management > admission
mechanisms .| QoS control
manager | traffic control
~ | database
user ] T
kernel
packet
scheduler
classifier buffer
e > > :l I —>
—J
input traffic output
driver conditioner| forwarding output queuing driver
¥ “
‘QoS forwardingj

mechanisms

Figure 4.2. [Cho01] ALTQ traffic control model

The ALTQ traffic control model is shown in Figure 4.2. The QoS manager containing
the management mechanisms resides in the user space of the operating system and
communicates with the admission control mechanisms and with the traffic control
database. The QoS manager has a control over the kernel-located forwarding mech-
anisms which in the figure are divided in two blocks. The traffic conditioning block
handles the incoming packets. It classifies and meters them, and either marks or
drops them according to the customer contract. The output queuing block includes
the scheduling mechanisms and the packet classification operations. [ChoO1]

4.6.2 ALTQ Implementation Model

One of the main goals in ALTQ implementation was to change the existing
operating system code as little as possible. However, especially the output queuing
required a lot of modifications to the BSD networking code and the network drivers.
The output queuing was implemented as a switch from the common kernel code
to the ALTQ queuing discipline code, as illustrated in Figure 4.3. The switch
was attached to the BSD network interface abstraction called if output. The
ALTQ queuing discipline code exists in the kernel parallel to the original queuing
code, thus when ALTQ is not enabled, the switch is ignored and the kernel uses

the original queuing structure. The enqueue operation queues the packets and is



4.6 ALTQ Architecture

48

responsible for the related traffic shaping actions, whereas the dequeue operation
handles packet scheduling. [Cho01]

application

user
/ < i N
kernel [ socket TCP cdnr dev socket TCP altq dev
i control! v , control
o > ip_forward ip_output :
ip_input oy ¢ !
. ~—>| traffic if_output \
conditioning Wue v
ifqueue output
queuing
e, dequeue
device device
driver driver
A v

Figure 4.3. [Cho01] ALTQ system implementation model

The same type of solution as in the queuing implementation was made with the

traffic conditioning. A hook for traffic conditioning code was inserted into the

kernel code, and when ALTQ is enabled, all traffic flows through the conditioning

component. The forwarder abstraction ip_ forward connects the conditioning to the

queuing and scheduling and thus forms the ALTQ router forwarding path. [ChoO1]

The QoS operations are controlled by the QoS manager, which uses the cor-

responding kernel devices to command the traffic conditioning and output queuing

blocks. Traffic conditioning is reached through cdnr dev and output queuing

through altq dev. In reality, all queuing disciplines have special devices in kernel,

hence CBQ uses cbg dev, for example. |[ChoOl]



Chapter 5

Policy Control Agent

5.1 Introduction

The adaptive policy-based network prototype consists of several parts which are
combined together. The network includes routers, database servers and mechanisms
for traffic classification and measurement. In the edge routers, the QoS functions
are realised with ALTQ software. The ALT(Q configuration parameters are updated
based on the traffic measurements and stored into the database. The currently valid
ALTQ configuration parameters are kept safe in another database.

The database server containing the ALT(Q parameters is called a Policy Server.
Because ALTQ and the server are not capable of communicating with each other,
there is a need for a block that takes care of the parameter and other information
passing between them. The block is a software called a Policy Control Agent,
which is located in the edge routers. This chapter describes the architecture and
functionality of the Policy Control Agent and also gives some viewpoints to the

implementation issues.

5.2 Overview of the Policy Control Agent

The main task of the Policy Control Agent is to create a communication channel
between the Policy Server and ALT(Q. Therefore, in the architectural model the lo-
cation of the Agent is between the Policy Server and ALTQ, but in practice it resides

inside the edge router. All edge routers have their own Policy Control Agents, thus



5.2 Overview of the Policy Control Agent 50

each router communicates independently with the Policy Server. The information
flow model in Figure 5.1 shows the communication chain from the Policy Server to
ALTQ.

(filters) (profiles) (classes)

Edge router

Figure 5.1. Model of the information flow from the Policy Server to ALT(Q

The Policy Server contains a set of MySQL databases which store information
about the current configuration of ALTQ as well as the latest updates to the
configuration parameters. At the moment there are three separate databases: the
class database, the profile database and the profile filter database. The profiles
are based on the service contracts made with the customers and they define the
behaviour of the edge routers in the input interface. The class database contains the
CBQ configuration parameters needed in the edge router output interfaces and in
the core routers. The databases are accessed via a special interface written in Perl.
The actual communication between the router and the databases is transparent
to the Agent, since it uses the functions provided by an external database access
library. The library functions take care of the connection establishment to the Policy
Server and making queries to the databases. The updated ALTQ configuration
parameters are returned as lists to the Policy Control Agent which stores them

temporarily into its local databases.

The communication between the Policy Control Agent and ALTQ is handled
via the ALTQ API. The API, which is described in more detail in Chapter 4,
includes commands to control ALTQ and change its configuration. The Agent reads
the parameters which it has got from the Policy Server and uses them in the ALTQ
APT function calls. ALTQ functions reply to the configuration modification with
an error code which indicates whether the command was executed successfully. At
the moment, the error codes are mostly used for debugging, but in the future the

Agent might include an error detecting system based on the ALTQ error codes.



5.3 Implementation Issues 51

The Policy Control Agent can be configured only when it is not running.
Once the Agent has been invoked, the interaction between the outside world and
the Agent is minimal. The Agent does not take any commands while running,
but for debugging reasons it prints some information and statistics of the current

actions to the standard output, usually on the screen.

5.3 Implementation Issues

The main goal in the development of the Policy Control Agent was to implement
a working prototype, which included all essential functionalities. Therefore, the
emphasis was in the operational matters, not in the elegancy of the implementation.
Simplicity, flexibility and expandability were the main criterias in the design
decisions. The performance of the Agent depends on the performance of the Policy
Server and on the capacity and reliability of the communication link between them.
The most time-consuming operation in the Policy Agent itself was assumed to be
the maintenance of the local databases.

The Policy Control Agent was designed to work in FreeBSD 4.5 and with
Perl 5.005_03. The FreeBSD platform was a natural choice, since ALTQ is written
for FreeBSD and therefore the edge routers of the network also run FreeBSD. The
version of FreeBSD was frozen to 4.5 firstly, because of ALTQ and secondly, to

avoid the compatibility problems caused by operating system and software updates.

5.3.1 Language

The languages used in the implementation of the Agent were C and Perl. The part of
the Agent that communicates with the Policy Server was written in Perl. There were
two reasons why Perl was chosen: firstly, communication with the databases requires
many operations on strings, which are easy to implement in Perl, and secondly, Perl
was suitable also in the Policy Server side. Thus, Perl was agreed to be the language
of the interface between the Policy Server and the Agent. Majority of the Agent
code was written in C, because it is the language used also in the ALTQ API.



5.3 Implementation Issues 52

5.3.2 Communication with ALTQ

ALTQ provides a two-layered API for the external programs. The structure and
functionality of the ALTQ API is described in Chapter 4. The function calls that
the Agent uses belong to the QCMD API which despite of its simplicity provides
all necessary functionalities. Sticking to the QCMD commands spares the Agent

and the Policy Server from handling various data structures and parameters, which
are needed with the QOP APL

To create the communication channel ALT(Q is invoked inside the Policy Control
Agent. This does not affect the functionality or performance of ALTQ, but it gives
the wrapper program, the Policy Control Agent, a possibility to have full control
over ALTQ. As ALTQ runs inside the Policy Control Agent process, it terminates
when the Agent terminates. The other way round, the Agent can disable ALTQ

and keep running itself.

There are three important concepts in the ALTQ configuration. First there
are classes which in our case are CBQ classes and located in the core routers and
in the output interfaces of the edge routers. Secondly there are profiles, called also
conditioners, which reside in the input interfaces of the edge routers and define the
actions that have to be taken for the certain kind of incoming traffic. Finally there
are filters which are traffic classifying rules attached either to classes or profiles. An
overview of CBQ and conditioning is given in Chapter 2.

5.3.3 Internal Databases

The Policy Agent maintains two internal databases called a modification database
and a maintenance database. Together the databases are referred to local databases
in distinction from the the Policy Server databases. The local databases are
located in the edge routers and every Policy Control Agent is responsible for the
maintenance of its own databases. Both databases consist of a directory tree, which
has files as its leaves. The files are common text files and each of them contains
one parameter value. The parameter name is not included into the file contents but
the file is named after the parameter. The core structure of the databases is static,
but the number of stored classes, profiles and filters can be arbitrary. The directory
path from the database root to the parameter tells where the parameter belongs to
in the ALTQ configuration scheme. Thus, the directory structure can be seen as a

navigation map of the database.



5.4 Architecture 53

The modification database works as a temporary storage for the parameters
received from the Policy Server. Classes, profiles and profile filters all have the
corresponding directories in the database, as can be seen in Figure 5.2. In the
profile directory, the login subdirectory contains the profiles of the customers who
have recently connected to the network and need their profiles to be added to
the edge router ALT(Q configuration. The logout directory includes the customer
profiles that can be removed from the ALTQ configuration, since the customers
have disconnected from the network. There are no profile parameters in the logout
directory, only the names of the profiles, since it is the only information needed to
delete profiles. The profile filters are divided into the add and remove directories,
which are located under the corresponding profile directory. Both directories exist
only if there are filters to be added or removed. The class branch is simpler than
the profile related branches, because the classes are not added or removed, only
their parameters are modified. The class filters are static and cannot be changed at
all, so there is no place reserved for them in the database. In Figure 5.2, the static

directories are bolded, and the files containing the actual parameters are italicised.

The effective ALTQ configuration parameters are stored into the maintenance
database, whose structural model is presented in Figure 5.3. The purpose of the
database is to keep the static parameters safe and outside of the ever changing mod-
ification database, and also to provide backup parameters in a case of an error. The
database structure is quite alike to the modification database, although the struc-
ture is a bit simpler. Classes, class filters, profiles and profile filters have their own
directory branches of which the class filter branch is completely static. The other
branches are updated every time when the ALT(Q configuration has been changed
successfully. Like in Figure 5.2, also in Figure 5.3 the parameter files are italicised

and the static directories and files are bolded.

5.4 Architecture

In the operational level, the Policy Control Agent architecture consists of four func-
tional modules which all perform different tasks. As Figure 5.4 shows, three modules
have a close relationship with each other and the local databases, while one module
communicates only with one local database inside the Agent. The triplet Main Mod-
ule, ALTQ Communication Module and Local Database Management Module takes
care of configuring ALTQ, which is the main task of the Policy Control Agent. The

Policy Server Communication Module is actually only an auxiliary module but ex-



5.4 Architecture

54

parameter1
class1
< parameter?2
class
parameter1
class?2
parameter2

i parameter1
rofile1
. < P < parameter2
login

arameter1
profile2< P

profile parameter2
profile3
L logout <
modification )

profile4

filter 1 parameter1

add < parameter2

filter2 < parameter1

orofile1 parameter2

filter3 parameter1

parameter2

remove < filtera parameter1

. parameter2

pfilter

filter5 parameter1

add < parameter2

filters parameter1

orofile2 parameter2

filter7 parameter1

parameter2

remove < filters parameter1

parameter2

Figure 5.2. Reference model of the modification database



5.4 Architecture

parameter1
class1
parameter2
class
parameter1
class2
parameter2
arameter1
class1 — class1_filter1 <p
. parameter2
cfilter
. parameter1
class2 — class2_filter1
parameter2

i parameter1
rofile1
. . P < parameter?2
maintenance profile

arameter1
profile1_filter1 <_*
file1 parameter2
rofile
P parameter1

profile1_filter2
parameter2

pfilter
parameter1

profile2_filter1
file2 < parameter2
profile

] i parameter1
profile2_filter2

/\U/\/\/\
3
=
N
o]
8
Q
3
o
at

parameter2

Figure 5.3. Reference model of the maintenance database



5.4 Architecture 56

tremely necessary, because it handles the parameter passing from the Policy Server
to the local database.

POLICY CONTROL LOCAL
AGENT Local Database N\ DATABASES
Management Module \\
Ay Maintenance
ALTQ )| ALTQ Communication|—>| Main Module Database
Module - N ——
\ Modification
- Database
Policy Server /

Communication A
Module

A
|

Policy Server

Figure 5.4. Architectural model of the Policy Control Agent

The Policy Control Agent is a single runnable C program apart from the Policy
Server Communication Module which is an individual Perl program. The communi-
cation between the C modules operates through function calls, but currently straight
communication between the Policy Server Communication Module and the rest of
the Agent is not needed. Hence, the Main Module which controls the two other mod-
ules in the triplet is not able to have any influence on the operation of the Policy

Server Communication Module.

5.4.1 Main module

The Main Module is the topmost module in the module hierarchy. It ties the
functionalities provided by the other modules together and in that way builds
up the system called Policy Control Agent. Therefore, the Main Module has a
control over the Agent, excluding the Policy Server Communication Module, and
besides it works as a communication link between the local databases and the
ALTQ Communication Module. In the code level, the Main Module includes the
definitions for the major data structures, interfaces and other parameters used
throughout the Policy Control Agent.

The first task of the Main Module is to take care of the initialisation of
ALTQ when the Policy Control Agent is invoked. Forwarding the parameters that

the Policy Server Communication Module has received from the Policy Server



5.4 Architecture 57

is the other main task of the Main Module. The parameters are located in the
modification database, from where the Main Module reads them and stores them
into the data structures. The filled structures are passed as function call arguments
to the ALTQ Communication Module, which uses the parameters in the ALTQ API
function calls. The third task of the Main Module is to maintain the information of

the class hierarchy, so that the class tree can be rebuilt when needed.

5.4.2 ALTQ Communication Module

The module that interacts with ALTQ is called the ALTQ Communication Module.
The module has two tasks: to initialise ALTQ and to modify the ALTQ configu-
ration based on the commands and parameters received from the Main Module.
The ALTQ Communication Module does not handle the parameters itself. It is the
responsibility of the Main Module to read the parameters from the local databases
and place them into the correct data structures. The structures are forwarded to
the ALTQ Communication Module as function call arguments, thus they can be
used in the ALTQ API function calls without modifications.

The ALT(Q Communication Module includes all functions necessary to con-
trol ALTQ. Besides initialisation of the ALTQ software there are functions for
adding and removing profiles and profile filters, modifying classes and adding class
filters. ALTQ supports configuration changing on-the-fly, and the new configura-
tions are in effect as soon as they are installed. No rebooting of ALTQ, not to

mention the whole router, is required.

5.4.3 Local Database Management Module

The function of the Local Database Management Module is to keep the local
databases in order. It removes the parameters that are not needed anymore from
the modification database and updates the maintenance database according to the
changes in the ALTQ configuration. The modification database is cleaned up af-
ter every ALT(Q modification round, because the database should contain only the
static components when the Policy Server Communication Module starts writing
the new parameters into it. The maintenance database contains the backup copies
of the current ALTQ configuration parameters, so the database has to be updated
after every modification in the configuration.



5.5 Operation of the Policy Control Agent 58

5.4.4 Policy Server Communication Module

The only module that is not controlled by the Main Module is the Policy Server
Communication Module. It is an individual program written in Perl, and it is not
in any way dependent on the other Policy Control Agent modules. The module
works as a link between the Policy Agent local databases and the Policy Server
databases. Its task is to establish a connection to the Policy Server with certain
intervals, fetch any new configuration parameters it may have and store them into the
modification database. The module does not implement the Policy Server interface
itself. Instead, it uses an external library which includes functions for getting the

different parameters from the Policy Server.

5.5 Operation of the Policy Control Agent

Both programs inside the Policy Control Agent work in continuous loops. The loops
start when the Agent is launched and they keep running until the Agent is shut-
down. The idea behind the Agent operation is that the programs take turns in
executing. First the Policy Server Communication Module writes the new ALTQ
parameters to the modification database and only after it is done, the Agent main
loop starts reading the parameters and modifying the ALT(Q configuration. In the
meantime, the Policy Server Communication Module waits for its turn. Since there
is no communication between the programs, the mutual exclusion was implemented
with timers. However, there is still a danger of a race condition, if the normal oper-
ation of the modules is disturbed by network congestion, for example. The files are
protected with locks during the operations, but at the moment there is no possibility
to prevent the reading and writing modules to access the same database at the same
time. One way to avoid such situations would be to use a lock file in the root of the
database tree. The file includes the ID of the process that is currently accessing the
database. The other process willing to access the database has to wait until the first

process has exited the database and removed its ID from the lock file.

5.5.1 Overview

The initialisation of ALTQ starts on the operation of the Policy Control Agent.
ALTQ is initialised with a single API command, which launches the ALTQ program

and makes it read the configuration file altq.conf. Because the aim is to modify the



5.5 Operation of the Policy Control Agent 59

ALTQ configuration dynamically, the configuration file can be extremely simple, but
it is still required in ALT(Q initialisation process. When ALTQ is up and running,

the Agent enters the main loop, as represented in Figure 5.5.

ALTQ initialisation

i ing<«— .
profile removing " main loop

profile adding

|

filter removing

|

filter adding

class modification

................................

Figure 5.5. The basic operation of the Policy Control Agent

In the main loop, the profile modifications are examined first. To avoid possible
overlaps, the removal of the profiles is carried out before the addition. The profile
filters are operated next, in the same order as the profiles. The final step is to
modify the classes after which the execution of the program pauses for a while and

then starts again from the beginning of the main loop.

At the moment, the error cases with the router and the Agent are noted but
they are not handled properly. The maintenance database is meant to provide
backup copies of parameters in case of errors, but in the current Agent implemen-
tation the feature has not yet been taken into use. If the malfunction that requires
reconfiguration of ALTQ happens during the database updating process, extra care
has to be taken of that the information read from the database is consistent. If
the router restarts when the Agent is running, the Agent is launched anew and
its operation starts from the beginning. However, a mechanism that restores the
previous configuration and harmonises the configuration and the local databases

has not yet been implemented.



5.5 Operation of the Policy Control Agent 60

5.5.2 Profile Operations

The main operations for the profiles are adding and removing. The Agent searches
the modification database and if there are parameters in the profile login directory,
there are profiles to be added. Likewise, if the profile logout directory is not empty,
there are profiles to be removed. The outlines of the addition and removal processes

are presented in Figure 5.6.

are there profiles to be removed?

NO ¥ YES

read the parameters of one profile from the modification database <«
remove the profile from the ALTQ configuration

remove the profile parameters from the maintenance database

remove the'parameters of the profile filters from
the maintenance database

remove the profile parameters from the modification database

are there more profiles to be removed?

vy ¥ NO LYES
are there profiles to be added?
NO Vv YES

read the parameters of one profile from the modification database <«
add the profile to the ALTQ configuration

store the profile parameters into the maintenance database

remove the profile parameters from the modification database

are there more profiles to be added?
| lNo LYES

\
* continue *

Figure 5.6. Adding and removing profiles in the Policy Control Agent

When the profile is removed, its parameters are first read from the modification
database. Parameters needed for removing a profile are the name and interface of
the profile. The parameters are stored into a data structure which is forwarded
to the ALTQ Communication Module. The module removes the profile from the
ALTQ configuration. The profile parameters do not include information about
whether the profile is a new one to be added or an old one to be removed. Therefore,
the Local Database Management Module is informed by the Main Module, if the
profile belongs to the login or logout profiles. Because the profile is a logout-profile,

its parameters are removed from both local databases. If the profile has any filters,



5.5 Operation of the Policy Control Agent 61

they are automatically removed from the ALTQ configuration at the same time
when the profile is removed. Thus, the filter parameters are removed from the
maintenance database, too. If there are more profiles stored under the logout
directory in the modification database, the profile removal loop starts from the

beginning. Otherwise the program moves to the profile additions.

The parameters for the profiles to be added are read from the modification
database and placed into a special data structure. Unlike in the profile removal
process, all provided parameters are now needed. The data structure is forwarded
to the ALT(Q Communication Module which takes care of adding the profile to the
ALTQ configuration. The Main Module informs the Local Database Management
Module that the profile is a login-profile, hence the profile parameters are stored
into the maintenance database and removed from the modification database. If
there are more profiles to be added, the addition loop starts from the beginning. In

other case, the Agent main loop moves forward.

5.5.3 Filter Operations

The filter operations consist of adding and removing profile filters. Because in the
ALTQ configuration the filters and the profiles are tied together, the profiles cannot
be ignored in the filter operations. The filter changes are examined for one profile
at a time, mostly because of the structure of the modification database. The filter

addition and removal process is outlined in Figure 5.7.

If the profile has filters that need to be removed, first the filter parameters are
read from the modification database. Currently all the filter parameters are stored
into the data structure, although only the name of the filter and the profile it is
attached to are actually needed. The name of the interface is also required, but as
the filter parameters do not provide the information, it has to be read from the
profile parameters in the maintenance database. The parameters are forwarded
to the ALTQ Communication Module which removes the filter from the ALTQ
configuration. Like in the profile operations, the Main Module informs the Local
Database Management Module about the type of the filter. The filter parameters
are then removed both from the maintenance and modification database. If the
profile has more filters that need to be removed, the removal process is started

again. If not, the program continues with the filter additions.

The parameters of the new filter are read from the modification database



5.5 Operation of the Policy Control Agent

are there profiles with filter changes?
NO v YES

examine one profile

are there filters to be removed?

NO v YES

read the parameters of one filter from the modification database <«—
remove the filter from the ALTQ configuration

remove the filter parameters from the maintenance database

remove the filter parameters from the modification database

are there more filters to be removed?

vy ¥ NO LYES
are there filters to be added?
NO v YES

read the parameters of one filter from the modification database <«—
add the fﬁter to the ALTQ configuration

store the+filter parameters into the maintenance database
remove the filter parameters from the modification database

are there more filters to be added?

¥ NO LYES
are there more profiles to be examined?
l NO LYES
Y
* continue *

Figure 5.7. Adding and removing filters in the Policy Control Agent



5.5 Operation of the Policy Control Agent 63

and stored into the data structure. The ALTQ Communication Module takes again
care of the addition of the filter to the ALTQ configuration according to the given
parameters. The Main Module provides the type of the filter to the Local Database
Management Module which stores the parameters of the newly added filter into the
maintenance database and removes them from the modification database. If there
are more filters waiting for the addition, the process is started from the beginning.
Otherwise, the search moves one level higher to find out if there are more profiles
that have filter modifications. When the last profile and its filters are handled, the
Agent main loop continues forward.

5.5.4 Class Operations

Class operations include only the modification of the existing class. Classes are
special cases in the ALTQ configuration and also in the Policy Control Agent imple-
mentation, since the class structure is static. In theory, all class parameters can be
modified, but in practice, the only parameter that is modified is the bandwidth. As
Figure 5.8 shows, the class modification consists of only one functional block, unlike
the filter and profile operations.

Modifying a class is a more complex operation than any of the filter or profile
operations. The class is modified by replacing the old class with a new class
containing the new parameters. Therefore, the operation requires removing and
adding the modified class. However, a class cannot be removed if it has any
child classes. So all child classes need to be removed first, before the actual
class can be replaced with a new one. After the replacement, the underlying
class hierarchy has to be built anew and also the possible class filters have to
be added to the ALTQ configuration. In the modification operation, the old
class needs to be removed before adding a new class, because in the ALTQ con-

figuration, there cannot be two classes with identical filters present at the same time.

The class modification process starts with the reading of the parameters from the
modification database. As the ALTQ configuration is equal in all CBQ interfaces,
one class is modified throughout the interfaces before moving on to the next class.
The Main Module stores the structure of the class hierarchy, and if the class has
any child classes, the ALT(Q Communication Module is ordered to remove them
temporarily. After that, the class itself is removed. If the class or any of its child
classes has filters, they are automatically removed at the same time as their host
class is deleted. The modified class is added to the ALTQ configuration, and if



5.5 Operation of the Policy Control Agent

64

are there classes to be modified

\

NO ¥ YES

read the parameters from the modification database «——

v

examine one interface -

does the class have child classes?

l NO y YES

remove all child classes from the ALTQ configuration
remove the+class from the ALTQ configuration
add the moiiified class to the ALTQ configuration
were any child class removed?
NO ¥ YES
l add all child classes to the ALTQ configuration
are there more interfaces to examine?

¥ NO LYES
store the class parameters into the maintenance database

remove the class parameters from the modification database

does the modified class have filters?
NO ¥ YES

4

o the child classes have filters?
NO ¥ YES

add all filtfrs of the child classes to the ALTQ configuration

Q

Y
are there more classes to be modified?

add all filters of the modified class to the ALTQ configuration

) lNO LYES

*continue*

Figure 5.8. Class modifications in the Policy Control Agent



5.5 Operation of the Policy Control Agent 65

any child classes were removed earlier, they are now added back. If there is more
than one class interface, the previous operations are performed in all of them
before moving forwards. When all interfaces have been handled, the modified
class parameters are stored into the maintenance database and removed from
the modification database. If the modified class has filters, they are added to all
interfaces. In addition, the possible filters of temporarily removed child classes are
added back to the configuration. If there are more classes waiting to be modified,
the class modification process is run again. After the class modifications, the Agent
is ready to start a new loop, as shown in Figure 5.5.

5.5.5 Receiving New Parameters

The updated ALTQ configuration parameters are transferred from the Policy Server
to the edge router via the Policy Server Communication Module. The functions for
making database queries are implemented in an external library. There are separate
functions for accessing the different databases in the Policy Server, thus the Policy
Server Communication Module makes three queries to the Policy Server databases.
In the outline of the process, in Figure 5.9, the external functions are written with
italic fonts.

The class parameters are handled first. If the parameter list received from the Pol-
icy Server is empty, there are no class modifications. Otherwise, the parameters
are stored into the modification database class by class. The profile parameter list
which is received next actually consists of two lists. The first list includes the login-
profiles and the second list includes the logout-profiles. If there are parameters in the
login-list, they are stored into the modification database under the login directory.
Likewise, the parameters in the logout-list are stored into the modification database
under the logout directory. If either of the lists is empty, it means that there are no
such profile modifications. The last list to handle is the filter list. Like the profile list,
also the filter list consists of two lists: one for filters to be added and one for filters
to be removed. If the addition list is not empty, the filter parameters are stored into
the modification database under the add directory. The parameters in the removal
list are stored under the remove directory. Also in this case, either or even both of
the lists can be empty, if there are no such filter modifications.



5.5 Operation of the Policy Control Agent

get the class parameter list

is the list non-empty?
NO ¥ YES

read the parameters of one class from the list «——
store the parameters into the modification database
are there more classes in the list?

y Y NO LYES
get the profile parameter list

is the login list non-empty?
NO ¥ YES

read the parameters of one profile from the list <«<——

store the parameters under the login directory
in the modification database

are there more profiles in the list?

y ¥ NO LYES
is the logout list non-empty?
NO v YES

read the parameters of one profile from the list <«<——

store the parameters under the logout directory
in the modification database

are there more profiles in the list?
v ¥ NO LYES

get the filter parameter list

is the addition list non-empty?
NO ¥ YES

read the parameters of one filter from the list <———

store the parameters under the add directory
in the modification database

are there more filters in the list?

v ¥ NO LYES
is the removal list non-empty?
NO V¥ YES

read the parameters of one filter from the list <«——

store the parameters under the remove directory
in the modification database

are there more filters in the list?
) lNO LYES

\
* continue *

Figure 5.9. Operations of the Policy Server Communication Module



Chapter 6

Policy Control Agent Measurements

6.1 Introduction

The FreeBSD-based ALTQ/Policy Control Agent router was put under various
tests in order to define the system performance. The aim was to conclude the
current state of the router implementation and to point out the issues which needed
further development. In the measurements, only one router was tested, although
the future target was to install the Policy Control Agent to all ALTQ edge routers
in the prototype network.

In this chapter, the test cases and the testing environment are introduced.
The results from the measurements are presented and analysed case by case.
Finally, the overall performance and functionality of the Policy Control Agent is

discussed.

6.2 Test Setup

All experiments were made with one router which was connected to the prototype
network but did not serve as a router in it. The router functionalities of the sys-
tem were strictly limited for testing. Figure 6.1 shows the basic test setup. Two
special testing devices with dedicated hardware and software were used in the mea-
surements. They were exploited as full-featured performance test systems in some
measurements, but in most cases they served only as traffic generators. The devices

were connected to the router-under-test one at a time, and the decision of which one



6.2 Test Setup 68

to use in each test was made based on the device suitability and ease-of-use in the
measurement in question. Due to the present FreeBSD hardware, only two of the

four available network interfaces were enabled for testing purposes.

testing ALTQ/ prototype

. Policy Control network
device Agent router

Figure 6.1. Test setup in the network

ALTQ was configured in two network interfaces which were dedicated for testing.
The actual configuration varied a little between some test cases, but the basic con-
figuration stayed the same throughout all measurements. In the input interface, the
traffic conditioning was taken care of by token buckets and two-rate three colour
markers (trTCM), and the queuing method used in the output interface was Class
Based Queuing (CBQ) with tail-drop, RED and RIO queue management mecha-

nisms.

6.2.1 Router Hardware and Software

The hardware of the router was a standard PC hardware with AMD 1300 MHz
processor, 256 MB memory and 30 GB hard disk. The network interfaces consisted
of one D-Link 4-port network interface card which could operate in both 10 Mbps
and 100 Mbps Ethernet networks.

The operating system of the router was freely distributable Unix clone called
FreeBSD, version 4.5. Both the operating system and its version were chosen
because of the requirements of the ALT(Q software. ALTQ 3.1 which was the latest
version of the software was designed for FreeBSD 4.5 and was not known to cause
any problems in that operating system version. The newer versions of FreeBSD
were reported not to be fully compatible with the software without patching.



6.2 Test Setup 69

6.2.2 Measurement Tools

General measurements were carried out with the Spirent Communications Smart-
Bits 600 network performance analysis system. SmartBits is a device consisting of
special hardware for measurement purposes, and it can be connected with cross-over
cables to one or several devices to be tested. The testing software was Spirent
Communications SmartFlow which was designed for QoS testing with SmartBits.
It is able to measure for example throughput, frame loss and different latency
characteristics from the traffic that SmartBits generates to the test network. The
traffic generator creates UDP-based packets, whose attributes - header type and
content, for example - are defined by the user. [Spi01]

The other device used in general measurements was the Spirent Communica-
tions Adtech AX/4000 test system [Com]. AX/4000 has been developed for
performance and QoS testing of broadband technologies, and although its basic
functionality resembles SmartBits, it is much more versatile. Like SmartBits,
AX/4000 was connected with cables to the tested device or system. AX/4000 was
needed in the measurements, because it was able to gather more detailed statistics
than SmartBits. It was used in the latency test which studied the latency variations
in changing network conditions and therefore required measuring the latency at
short intervals. The AX /4000 control software was also able to draw a real-time
graph of the latency which made the progress of the ongoing measurement easy to
follow.

With both testing devices, the bit rate was chosen to be 10 Mbps, the same
as in the test network. The other option could have been to choose 100 Mbps
connection, because that was supported both by the tested router and by the
testing devices. Although the main reason for the decision was to make the results
valid also in the prototype network, the other weighty reason was that the network
card in the router was a 4-port card which worked more reliably with a smaller bit

rate.

In the modification and Policy Server Communication Module measurements,
SmartBits was used as a background traffic generator. The purpose of the traffic
was to keep the router processor busy, not necessarily to pass through the router.
The actual measurements were performed inside the Agent software independently
of the traffic. The modification measurements used a standard C library function
‘gettimeofday’ which expressed the current time of the system clock with the

accuracy of microseconds. The time that the Agent spent in some operation could



6.3 Testing Procedure 70

be calculated as a difference between two timestamps. The function was also
available for Perl, so it was used in the measurements with the Policy Server
Communication Module. The timestamps were not written into a file but printed
to the screen in order to avoid the disk operation overhead in the results. The other
timestamping function in use was ’getrusage’ which was also a standard C library
function. It measured the time that the predefined function spent in the user and
system operations. The fine-grained time-usage information was needed in the I/O

operation measurements.

6.3 Testing Procedure

The target of the measurements was to find out the key figures of the Policy Control
Agent performance. The main emphasis was on the trends, not on the absolute time
values. The reference points were defined with the baseline tests which consisted
of general router testing without ALTQ. In the ALTQ router tests, all the Policy
Control Agent functionalities were tested with and without background traffic. The
hypothesis was that the overall performance drops if the router needs to handle
packets at the same time when making changes to the ALTQ configuration or
handling the local databases. Because the functionality of the Agent included plenty
of disk writing and reading operations, the other assumption was that the I/O
operations form one of the major bottlenecks of the Agent performance. Therefore,
the affect of the disk operations were studied more closely. In all test cases the
measurements were repeated at least five times in order to improve the reliability

of the results. The final results are averages of the individual measurement results.

Due to the restrictions of the testing devices, background traffic was always
UDP-based traffic with modified packet headers. Although TCP packets were used
in the background traffic, neither of the testing devices was able to establish real

TCP connections. Thus, the traffic was connectionless in every case.

6.3.1 General Performance

The general performance tests were carried out with SmartBits testing device and
SmartFlow software. In the tests, the router was first configured as a normal
FreeBSD router without ALTQ. The aim of the measurements was to find out the
performance of a 'clean’ system and therefore get the baseline values for later test-

ing. The same baseline measurements were executed with the ALTQ/Policy Control



6.3 Testing Procedure 71

Agent router to define the basic performance of an ALTQ system. ALTQ was con-
figured so that it did not disturb the measurements by dropping packets because of

the capacity restrictions.

6.3.1.1 Throughput

In SmartFlow, the maximum throughput was defined to be the maximum trans-
mission rate at which the router can forward the traffic without any frame loss.
SmartFlow calculated the frame loss by comparing the number of transmitted and
received frames, and if there were lost frames, the test failed. The throughput test
started at the user defined traffic load which was increased in every iteration round
until there were dropped packets. After the first failed round the test continued
as binary (scaled) search as long as the final rate between the last successful and

failed test rounds was found. [Spi01]

Throughput was measured for three router configurations: general FreeBSD
router, ALTQ/Policy Control Agent router with a simple and light ALTQ con-
figuration and ALTQ/Policy Control Agent router with a more complex and
heavy ALTQ configuration. All router configurations were tested with two traffic
variations. First, the traffic consisted of 1024-byte UDP packets, and then of
128-byte UDP packets. Thus, totally there were six test cases.

6.3.1.2 Latency

The latency measurements determined the minimum, maximum and average
latency of the transmitted packets at different traffic loads. SmartFlow defined
the latency to be the difference between the transmit timestamp and the receive
timestamp in the frame. The latency was calculated from one port to another
unidirectionally and only for the received frames. The testing procedure started
from the load percentage defined by the user which specified the traffic load relative
to the wire capacity. The duration of the test rounds was changeable and specified
in seconds. After each round the load percentage was increased until the maximum
defined load was reached. [Spi01]

Latency was measured at 1 Mbps intervals starting from 1 Mbps and ending
at 10 Mbps. For the traffic with 1024-byte packets the granularity was enough, but
for the traffic with 128-byte packets an additional test had to be performed. In the
new test, the latency was measured between 200 kbps and 1600 kbps at 200 kbps



6.3 Testing Procedure 72

intervals. Thereby, the traffic with 1024-byte packets was measured at ten points
and the traffic with 128-byte packets at 17 points.

6.3.1.3 Packet Order

The aim of the packet order test was to define how well the ordinary FreeBSD
router and ALTQ router were able to maintain the correct packet order. In
SmartFlow, the packet order was observed in the frame loss test. SmartBits marked
each transmitted frame with a sequence number which was examined when the
frames were received from the tested router. If the sequence number was equal to
one more than the sequence number of the previous frame, SmartFlow considered
the received frame to be in sequence. If the sequence number was inequal to the
reference number, the frame was out of sequence. The out-of-sequence frames could
be caused by the packet reordering in the router as well as frame loss. Therefore, if
there were lost frames, the number of out-of-sequence frames was not valid for the

packet order measurement purposes. [Spi0l]

The measurements were performed with an ordinary FreeBSD router and
with an ALTQ router which contained a simple ALTQ configuration. The traffic
used in the measurements consisted of 128-byte UDP packets. The traffic load was
1 Mbps in the beginning and it was increased by 1 Mbps until it reached 10 Mbps.

6.3.2 Profile Modifications

In a real network, a profile is added every time a user logs in and removed when he
logs out. The support for mobility of the users is therefore implemented with the
profile operations. The profile modifications are assumed to happen comparatively
often, and usually they are related to filter operations. This is natural, since if a
profile is deleted, also all its filters are deleted, and adding a profile without any
filters is useless. However, the profile measurements without filters were needed in

order to find out the time spent in deleting or adding profiles alone.

The three observed time consumers were ALTQ, the local databases and the
complete Agent loop. In case of ALTQ, the time that ALTQ used in adding or
removing one profile was measured. In the local databases, the point of interest was
the time that was spent in the database operations when one profile without filters

was added and when one profile with zero, one or two filters was removed. In the



6.3 Testing Procedure 73

loop measurements the observed cases were adding and removing 1, 2, 3, 4, 20, 50,
100 and finally 200 profiles without filters.

All cases were studied both with and without background traffic. When traf-
fic was required, SmartBits was used as a traffic generator. In the ALTQ and
database measurements, the traffic load was 10 Mbps and the packets were
1024-byte UDP and TCP packets. In the Agent loop measurements, the packet size
was reduced to 128 bytes to load the processor even more.

6.3.3 Filter Modifications

Adding and removing filters are the most common Policy Control Agent operations.
Therefore, it is important that they are as fast as possible. The aim of the filter
measurements was to conclude the current performance of the filter operations, so

that the need for optimisation could be resolved.

In the filter measurements, the time usage of ALTQ), the local database management
and the Agent loop was measured, thus the testing procedure resembled the profile
measurements. In the ALT(Q measurements, the time that was spent by ALTQ in
adding and removing one filter was observed, so one profile was required in the
ALTQ configuration. In the local database measurements, one filter was added to
the local database and removed from there. The Agent loop was measured for the
time spent in adding and removing 1, 2, 3, 4, 20, 50, 100 and 200 filters. Filters
were added under one profile and after each addition loop all filters were deleted.

Therefore, all addition loops started from the clean configuration.

The background traffic was generated with SmartBits and in the ALTQ and
local databases test cases, it was 10 Mbps of 1024-byte TCP and UDP packets. In

the loop measurements the packet size was reduced to 128 bytes.

6.3.4 Class Modifications

The class modification testing procedure differs from the profile and filter measure-
ments due to the complexity of the class modification operation. The total time
used in one class modification can be measured, but it will be valid only for the
prevailing test case and configuration. The class modification time depends on the
place of the class in the CBQ hierarchy and the number of the class filters, thus the



6.3 Testing Procedure 74

results cannot be generalised.

The ALTQ and local database measurements could be performed, because
the results were independent of the CBQ configuration. In the ALTQ measure-
ments, one class without child classes and class filters was added to the ALTQ
configuration and removed from there. In the local database measurements, the
parameters of one class were modified. Because the CBQ hierarchy inside the the
router was static, there was no need to measure the time consumption of the class
addition and removal operations separately.

The test cases were studied both with and without background traffic. The

10 Mbps background traffic was generated with SmartBits and it consisted of
1024-byte TCP and UDP packets.

6.3.5 Policy Server Communication Module

The Policy Server Communication Module was written in Perl and it forms an
independent program inside the Policy Control Agent. The module is not controlled
by the Main Module like the other modules. The Policy Server Communication
Module has two tasks: to communicate with the Policy Server and to write the
parameters into the modification database. The data handling abilities of the
module were measured, but the performance of the communication between the
module and the Policy Server was out of the scope of this study. Although the
module operates with one internal database, it does not perform as many disk
operations as the rest of the Agent. Yet, because writing to disk was considered
time-consuming, it was necessary to examine the time spent in the database

operations.

In the measurements, a profile, filter and class were added to the modifica-
tion database one at a time. Before every addition, the database was cleaned from
the parameters so that it consisted only of the static components. Thus, in all
test cases the situation was like in the worst case, because the necessary directory
hierarchy needed to be created from the beginning. Since the traffic handling at the
same time with the operations was supposed to have an effect on the performance,
the measurements were done both with and without background traffic. The traffic
generated by SmartBits consisted of TCP and UDP packets at the rate of 10 Mbps
and with the packet size of 1024 bytes.



6.3 Testing Procedure 75

6.3.6 Latency Behaviour during Modifications

The filter modifications were exploited in an additional latency test performed
with Adtech AX/4000 testing device. The aim of the test was to find out, what
happened to the packets during the heavy ALT(Q configuration modifications. The
assumption was that during the inconsistent state in the configuration, ALTQ
would try to keep the packets queued rather than drop them. Thus, the variation of
the latency before, after and during the configuration modifications was measured.
The measurements consisted of adding and removing 1, 50, 250 and 750 filters.
There were two profiles in the ALTQ configuration and both of them were assigned
their own set of filters. In the measurements, first a certain number of filters were
added under one profile, then the same number of filters were added under the
other profile, and finally all filters were removed from the configuration at the same
time. The filters were added and removed in turns, so that the filters were added to
the clean configuration. Only the last part of the measurement made an exception:

additional 750 filters were added on top of already configured 750 filters.

The traffic created by the testing device consisted of four streams of 128-
byte TCP or UDP packets at the bit rate of 500 kbps. Therefore, the total traffic
load was 2 Mbps. The load was defined low, because it was necessary to get
all packets through the router. With a low traffic load, it could be observed, if
the router dropped packets solely because of the modification, not because of a
temporary congestion. In addition, it was expected that if the latency increased,
it would show also with lower traffic loads. The traffic streams and the ALTQ
configuration were chosen so that one stream was always outside and one always
inside the defined profiles. The other two streams were either inside or outside the
profiles, depending on the added filters. The purpose was to take different situations
into account, as it was not known beforehand if there were any differences in the

latency behaviour between them.

The results were stored on a per stream basis. The short-time average la-
tency, the number of lost packets and the number of reordered packets were logged
at 0.1-second interval. The AX /4000 control software saved the results into a special
result file which could be converted into a text file.



6.4 Measurement Results 76

6.3.7 Effect of the I/O Operations

It was assumed that the management of the local databases would cause the main
overhead of the Policy Control Agent. In order to define the actual effect on the
Agent performance, some of the earlier measurements were repeated, this time with
the function ’getrusage’ which provided detailed timestamping. The timestamps
showed the time the process had spent for the user and system mode operations by
far. The system mode operations consisted of the disk operations required by the
Agent, whereas the actual Agent functions belonged to the user mode operations.
The proportion of the user time to the system time was supposed to show the time

consumption of the I/O operations in relation to the rest of the Agent process.

The measurements were realised as Agent loops starting from the baseline
measurement with no modifications. The loop without any changes provided the
reference values for later measurements. In the other measurements, profiles and
filters were added and removed in the series of 1, 20, 50, 100 and 200. Background
traffic was not present in the test cases, because the aim was to find out the real

performance values without any additional stressing of the router.

6.3.8 Summary of the Testing Procedure

The testing procedure is summarised in Table 6.1. The test cases are divided into
groups according to the topic. The first column presents the topics and brief names
of the tests. The measurements were performed either with or without the Agent,
so the content of the column Agent can be yes, no or yes/no if the measurements
covered both cases. The traffic was either required or not. The traffic load and the
packet size of the traffic are characterised in the Traffic type column. The number

of modified profiles, filter or classes is shown in the Number of items column.

6.4 Measurement Results

The purpose of the measurements was to define the basic performance of the
ALTQ/Policy Control Agent router. The aim was to use the results for giving
insight into the capabilites and limitations of the router and also for finding the
functionalities of the Agent which needed further development. Thus, the relations

between the results were considered more important than the comparisons with



6.4 Measurement Results

77

Test case Agent | Traffic | Traffic type Number of items
General performance

Throughput yes/no yes var., 128/1024 B

Latency yes/no yes var., 128/1024 B

Packet order yes/no yes var., 128/1024 B

Profile modifications

ALTQ yes yes 10 Mbps, 1024 B | 1

Local databases yes yes 10 Mbps, 1024 B | 1 with 0-2 filters
Agent loop yes yes 10 Mbps, 128 B | 1-4/20/50/100/200
Filter modifications

ALTQ yes yes 10 Mbps, 1024 B | 1

Local databases yes yes 10 Mbps, 1024 B | 1

Agent loop yes yes 10 Mbps, 128 B | 1-4/20/50/100/200
Class modifications

ALTQ yes yes 10 Mbps, 1024 B | 1

Local databases yes yes 10 Mbps, 1024 B | 1

Policy Server

Comm. Module

Adding a profile yes no 1

Adding a filter yes no 1

Adding a class yes no 1

Latency caused

by modifications

Agent loop

with filters yes yes 2 Mbps, 128 B 1/50/250/750

I/0 operations

Adding a profile yes no 1/20/50/100/200
Adding a filter yes no 1/20/50/100/200
Removing a profile yes no 1/20/50/100/200
Removing a filter yes no 1/20/50/100/200

Table 6.1. Summary of the testing procedure



6.4 Measurement Results 78

external performance values. The majority of the main results are illustrated as
figures to show the trend of the results. Only the minor results and the results that

did not produce a clear enough graph are listed in tables.

The operating system included several processes which required processor
time every now and then. In addition, there were some daemon processes which
needed their share of the processor time. Thus, all measurement results that
were calculated as a difference between the operation starting and finishing time
contained always some overhead caused by the operating system and daemon
processes. The processes which had a chance to affect to the results are listed in
Table 6.2. Most of the processes seldom needed the processor time, but some of the
processes were more active. Especially sshd consumed the processor time, because
the router was controlled through an ssh connection.

Process name Purpose

sshd SSH daemon

ntpd Network Time Protocol (NTP) daemon
cron executes scheduled commands

syslogd logs system messages

csh shell

getty (8 processes)

virtual terminals

inetd

socket listener (internet 'super-server’)

adjkerntz manages CMOS and kernel clocks
syncer (kernel) filesystem synchroniser
bufdaemon (kernel) virtual memory buffer daemon
vanlru (kernel) flushes and frees vnodes
pagedaemon (kernel) pagination daemon

init (kernel) process control initialisation
swapper (kernel) system scheduler

vmdaemon (kernel) virtual memory daemon

Table 6.2. Operating system and daemon processes running in the tested router

6.4.1 General Performance

The general performance tests included throughput, latency and packet order mea-
surements. The first two measurements consisted of two traffic cases both with three



6.4 Measurement Results 79

router configuration variations which are listed in Table 6.3. The packet order mea-
surements were performed for test cases 1a, 1b, 2a and 2b.

Test Case | Packet Size | Configuration

Case la 128 bytes no ALTQ

Case 1b 128 bytes ALTQ with simple configuration
Case 1c 128 bytes ALTQ with complex configuration
Case 2a 1024 bytes no ALTQ

Case 2b 1024 bytes ALTQ with simple configuration
Case 2¢ 1024 bytes ALTQ with complex configuration

Table 6.3. Traffic in the different test cases

In the test cases 1la and 2a ALTQ was not enabled, so the tested router was an
ordinary FreeBSD router. In the other test cases, ALTQ was enabled with a cer-
tain configuration. The test cases 1b and 2b used a simple configuration which in
practice meant one profile with one filter in the input interface. On the contrary,
in the test cases 1c and 2c the ALTQ configuration was complex and heavy - more
than one hundred profiles and more than five thousand filters altogether. The CBQ
configuration in the output interface was designed to be as simple as possible, and
it was kept the same in all four ALTQ related test cases.

6.4.1.1 Throughput

The throughput measurements were performed with SmartBits hardware and Smart-
Flow software. The results of each test round were taken from SmartFlow, and Figure
6.2(a) presents the calculated averages of the individual throughput values. Figure

6.2(b) shows throughput as packets per second.

As can be seen from Figure 6.2(a), the test cases la and 1b produced nearly the
same throughput - slightly over 7 Mbps. Similar situation can be seen in the test
cases 2a and 2b, although the actual throughput was higher than in the previous
case, over 9 Mbps. Results in the cases 1c and 2c differed greatly from the earlier
ones. In the case 2c¢, the throughput was only 6 Mbps, which is about 30% less than
in the cases 2a and 2b. The case 1c was even worse, since the throughput was no
more than 700 kbps. The result was only 10% of the earlier cases 1a and 1b.

The throughput presented as bit rate does not give a clear picture of the ef-



6.4 Measurement Results

10000

9000 -

8000

7000

6000 -

kbps

4000

3000 -

2000

10001

8000

7000

6000

5000

pps

4000

3000

2000

1000

5000

la 1b lc 2a 2b  2c
(a) Throughput presented as kbps
la 1b 1c 2a 2b  2c

(b) Throughput presented as packets per second

Figure 6.2. Throughput in different test cases




6.4 Measurement Results 81

fect of ALTQ on the results. Thus, Figure 6.2(b) illustrates the throughput
calculated as packets per second and makes it possible to compare the performance
of ALTQ in diverse test cases. In the test cases la, 1b, 2a and 2b, the results varied
greatly between the different packet sizes, but in the test cases 1c and 2c the results

were nearly the same.

The original assumptions were that the complex ALT(Q configuration and
small packet size of the traffic would decrease the throughput. As Figure 6.2(a)
shows, both factors were alone enough to decrease the throughput notably, and
together their influence was drastic. ALTQ itself did not seem to have any men-
tionable affect on the throughput results, but as can be seen from Figure 6.2(b), a
heavy configuration changed the situation. The size of the effect depended on the
configuration because of the ALTQ architecture. ALTQ examines every incoming
packet to see if it matches to any of the filters. The filters are stored into a simple
list structure which ALTQ scans from top to bottom until it finds the match.
If there is no match, ALTQ goes through the list for nothing. ALT(Q does not
implement a sophisticated searching algorithm for filters which could prevent it
from wasting time with huge filter lists. In the test, the ALTQ configuration and
the traffic were chosen so that none of the packets matched to any of the filters.
Thus, ALTQ searched the list in vain and consumed the maximum amount of

processing time for every packet.

The results presented in Figure 6.2(b) indicate that the bottleneck in the
packet processing is ALTQ, not the I/O hardware. The number of processed
packets per second were nearly the same with both packet sizes when the ALTQ
configuration was complex, thus the configuration plays more important role than
the packet size. Searching the filter list causes the majority of the packet processing
time and adds a processing delay independent of the packet size to every packet.
In the other test cases, the number of processed packets per second varied greatly
between the packet sizes. If Figure 6.2(a) and Figure 6.2(b) are compared to each
other, it can be seen that in the cases 1a and 1b, ALTQ was doing its best but was
not able to process the packets faster than at the rate of 7.5 Mbps. In the cases
2a and 2b, the highest possible throughput in a 10 Mbps link was reached with a

small number of processed packets per second, because of the bigger packet size.



6.4 Measurement Results 82

6.4.1.2 Latency

The latency measurements for the test cases 2a, 2b and 2c¢ consisted of one set of
measurement rounds. At first, the traffic load was set to 1 Mbps, and in each round
it was increased by 1 Mbps. In the end, the traffic load was 10 Mbps which was the

maximum wire capacity. Figure 6.3 illustrates the results.

70 T T T T T T T T ]
“© no ALTQ
60| —=%— ALTQ simple
- ALTQ complex
50}
401
(2]
1S
30t
*
20t
10 iy
: : : ‘ : : ‘// _9
=== % —&—&

10 20 30 40 50 60 70 80 90 100
traffic load (%)

Figure 6.3. Latency for traffic consisting of 1024-byte packets

For the test case 1c, the test set of the previous latency test was not sufficient alone.
The additional set was needed between 200 kbps and 1600 kbps, because it was
assumed that the delay of the test case would increase more rapidly in that area.
Since the results were supposed to be comparable inside the traffic case, the same
additional measurements were performed also for the test cases la and 1b. At first,
the traffic load was set to 200 kbps and it was increased with 200 kbps intervals
round by round to 1600 kbps.

The results in Figure 6.4 show clearly, that the assumption of the quick increase
of the latency in the case 1c was correct. At the traffic load of 1 Mbps (10%) the
latency jumped from less than 2 ms to nearly 70 ms, after which it grew slowly.
The next jump occured at 7 Mbps (70%), when the latency of the test case 2c
increased from 3 ms to nearly 70 ms. After that, the growth of the latency was
only moderate. The other four test cases were quite alike in the latency behaviour.
The differences showed only at 10 Mbps traffic load, where the test case 1la reached
33 ms, 1b 25 ms, 2a 7 ms and 2b 25 ms. With the lower traffic loads, the latency

values varied from 0.5 ms to 3 ms.



6.4 Measurement Results 83

80 T T T T

701

of | - . [ e nALTQ -
: : —*- ALTQ simple
50t || B ALTQ complex | - A

A0 T

ms

200

TOF

) ) 100
traffic load (%)

Figure 6.4. Latency for traffic consisting of 128-byte packets

The results in Figure 6.3 and Figure 6.4 show how closely related latency
was to throughput. If the latency measurement results are compared to the
throughput results, it can be noticed that the latency jumped upwards when the
traffic load exceeded the maximum throughput of the test case. The reason for
the behaviour is the same as with throughput: a complex ALTQ configuration and
traffic consisting only of mismatching packets caused a huge processing time per
packet. The packet queues filled up when the traffic load reached the maximum
throughput and after that the router was forced to start dropping packets. Packet
discarding increased the latency considerably which shows as a jump in the result
graphs.

6.4.1.3 Packet Order

The purpose of the packet order measurements was to find out, how well the
router could maintain the correct packet order. The test was run with an ordinary
FreeBSD router and with an ALTQ/Policy Control Agent router. The assumption
was that both routers could forward the packets in correct order. As expected,
the results indicated no packet reordering for 1 Mbps — 10 Mbps traffic load with
128-byte and 1024-byte packets, unless there was also frame loss.

Packet reordering in the router without any frame loss may happen for vari-



6.4 Measurement Results 84

ous reasons which are not always errors [BPS99]. In a router built on a general PC
hardware, reordering may still indicate a problem in packet forwarding more often
than in a router with special hardware. However, both the ordinary FreeBSD router
and the ALTQ/Policy Control Agent router were able to forward the packets in the

correct order which gave a good starting point for further measurements.

6.4.2 Profile Modifications

The profile modification measurements consisted of three individual parts. In the
first two, the performance of ALTQ and the local database management were
measured, and in the third part, the target was to define the overall performance

of the Policy Control Agent profile modification process.

In the ALTQ test cases, one profile was added to the ALTQ configuration
and removed from there. The measurements were done first without traffic and
then with 10 Mbps background traffic using 1024-byte packets. Similar traffic was
used also in the local database measurements. The test case included adding one
profile without filters and removing one profile first with zero, then with one and
finally with two filters attached to it.

Test Case Without traffic (ms) | With traffic (ms)
ALTQ

Adding a profile 0.290 0.475
Removing a profile 0.297 0.513

Local databases

Adding a profile 1.988 3.379
Removing a profile (no filters) 1.662 2.609
Removing a profile (1 filter) 2.131 3.490
Removing a profile (2 filters) 2.997 4.710

Table 6.4. Performance times of ALTQ and the local database management in the

profile modifications

Both profile operations seem to take the same time inside ALTQ, as shown in Table
6.4. However, the local database management spent more time in adding one profile
than removing one. It was clear that removing filters together with a profile would
require more processing compared to the removal of a profile without filters. The
measurement results confirmed the expectation. Background traffic was presumed
to increase the operation time, and according to the results, it added an overhead



6.4 Measurement Results 85

of approximately 60%.

The overall performance of the profile modifications was examined with a se-
ries of profile additions and removals. The test set consisted of 1, 2, 3, 4, 20, 50,
100 and 200 profiles, and the measurements were done both without traffic and
with 10 Mbps background traffic consisting of 128-byte packets. Initially, the ALTQ
configuration did not contain any profiles on the traffic conditioning interface, and
the measurements were performed in such order that the profiles were always added
to the clean configuration. So in the results which are illustrated in Figure 6.5,

there is no overhead caused by the underlying ALTQ configuration.

2500 T T . : : : : : :
-6—- add - no traffic !
—B- add - traffic

2000 }H =V~ remove - no traffic
—%— remove —traffic \

1500

ms

1000

500

-— -
—_—
= - .

—_— - -
P

0 20 40 60 80 100 120 140 160 180 200
number of added/removed profiles

Figure 6.5. Performance times of the profile modification loop

The solid lines in the graph represent the profile adding operations and the
dashed lines the profile removing operations. Although the time consumption of
all operations increases nearly linearly, it took more time to add profiles than to
remove them. For example, removing 200 profiles without traffic took less than 600
ms, while adding the same number of profiles took almost 1800 ms. Background
traffic introduced varying overheads in different measurement points. When the
number of added profiles was at most four, the overhead was roughly 70%. For
removed profiles the overhead for the same measurement points was around 50%. At
20 added and removed profiles, there was a spike in the overhead - in both cases the

overhead was over 100%. After that, the overhead decreased near or even below 50%.

The results show that in both cases the processing time grew nearly linearly.



6.4 Measurement Results 86

In addition, with small number of profiles doubling the number of handled filters
did not double the processing time. When the number of profiles grew, also the
processing time increased somewhat rapidly. ALTQ used the same amount of time
for adding and removing one profile, but adding a profile to the local databases
takes more time than removing a profile. The reason could be that writing data to
the disk is more time-consuming than removing data from the disk. The difference
between the operation processing times cumulated when the number of profiles
grew, so that finally profile adding was clearly more time-consuming operation than

profile removing.

6.4.3 Filter Modifications

The filter modification measurements consisted of the same three parts as the
profile modification measurements. They included ALTQ and the local database
management performance measurements, as well as defining the overall filter

modification capabilities.

In the ALTQ test cases, one filter was added to the ALTQ configuration and
removed afterwards. As the filters always needed a profile or a class to be attached
to, the initial ALTQ configuration included one profile in the traffic conditioning
interface. Otherwise the configuration of the output interface was clean. The local
database management was tested by letting it handle one filter which was to be
added and one filter which was to be removed from the ALT(Q configuration. In
both measurements, the background traffic consisted of 1024-byte packets at the
bit rate of 10 Mbps.

Test Case Without traffic (ms) | With traffic (ms)
ALTQ

Adding a filter 0.280 0.526
Removing a filter 0.272 0.520

Local databases

Adding a filter 2.249 4.522
Removing a filter 1.699 3.645

Table 6.5. Performance times of ALT(Q) and the local database management in the

filter modifications

The results in Table 6.5 show that the time spent by ALTQ in adding and

removing one filter is nearly the same. Instead, the local database manage-



6.4 Measurement Results 87

ment needs more time for adding a filter than for removing one. The overhead
caused by the background traffic is quite high in all cases. For the ALTQ measure-

ment results it is about 90% and for the local database results as much as over 100%.

The performance of the Agent in the filter modifications was studied with
the same series of adding and removing operations as in the profile modification
measurements. The test set consisted of 1, 2, 3, 4, 20, 50, 100 and 200 profiles to
add or to remove. The measurements were carried out so that the adding of the
profiles was always done to the clean ALTQ configuration. All measurements were
performed first without background traffic and later with 10 Mbps background
traffic consisting of 128-byte packets. The behaviour of the operations is visualised
in Figure 6.6, where the solid lines represent the filter adding and the dashed lines

the filter removing operations.

2500

-6~ add - no traffic
—-8- add - traffic : : : : : : 1]
2000 H =Vv- remove —notraffic | ... T
—%- remove - traffic

1500

<O—*

ms

1000

500

0 i Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180 200

number of added/removed filters

Figure 6.6. Performance times of the filter modification loop

As the figure shows, the filter adding and removing operations without the back-
ground traffic consumed nearly the same amount of time. It took 9 ms to add one
filter and 8 ms to remove it. Further, adding 200 filters took 1280 ms and removing
them 1200 ms. The time-usage of the operations increased almost linearly, even
when there was background traffic. The traffic caused approximately 70% overhead
to both operations when the number of filters was at most four. When 20 filters
were added or removed, the overhead jumped to 130% but dropped way below 70%

already in the next measurement point.



6.4 Measurement Results 88

The processing times of the filter adding and removing operations were fairly
similar throughout the test case. However, the overhead caused by the background
traffic in the last measurement points was bigger for the adding operations than
for the removing operations. The time-usage in the other cases increased less than
linearly which was desired, because filter modifications are the most common

operations of the Agent.

6.4.4 Class Modifications

The class modification measurements consisted only of the ALTQ and local database
management tests. The overall performance test was omitted because the results
would have been valid only for one certain configuration. The testing procedure had
also other differences to the previous test cases. The performance of ALTQ was
measured the same way as with the profiles and filters, but the local database mea-
surements consisted of only one test. In the Agent implementation, the classes are
static, and therefore only their parameters can be modified - the classes themselves
cannot be added or removed. Thus, the database management performance was mea-
sured by changing the parameters of one class. All measurements were performed
first without background traffic and later with 10 Mbps traffic load consisting of
1024-byte packets.

Test Case Without traffic (ms) | With traffic (ms)
ALTQ

Adding a class 0.281 0.417
Removing a class 0.248 0.428

Local databases

Modifying a class 1.345 2.066

Table 6.6. Performance times of ALT(Q) and the local database management in the

class modifications

The measurement results which are listed in Table 6.6 show that the class addition
and removal operations in ALTQ took nearly the same amount of time. The

background traffic created approximately 50% overhead to all results.

The Agent loop measurements were not suitable for the class modifications
which impeded defining the performance of the operation. The time spent for a
class modification operation is difficult to estimate, but the more child classes the
class has and the more filters are present in the subtree, the longer the modification



6.4 Measurement Results 89

takes. Thus, if the frequency of the class modifications is expected to be higher
than moderate, the class structure should be simple enough.

6.4.5 Policy Server Communication Module

The Policy Server Communication Module fetches the new ALT(Q configuration
parameters from the Policy Server and stores them into the modification database.
As the performance of the communication between the Policy Server and the
Communication Module was outside the scope of this study, only the database

handling was examined.

In the measurements, one profile, one filter and one class were added into
the modification database. The parameters were given to the Communication
Module as static program parameters. The database was emptied between the mea-
surements, so that it consisted only of the static components. Thus, the situation
was the worst possible, because in each case, the Policy Server Communication
Module had to create the whole directory hierarchy for the parameters. The results
presented in Table 6.7 include the measurements done without background traffic
and with 10 Mbps traffic load of 1024-byte packets.

Test Case Without traffic (ms) | With traffic (ms)
Adding a profile 2.004 3.704
Adding a filter 2.002 3.182
Adding a class 1.753 3.054

Table 6.7. Performance times for updating the modification database by the Policy

Server Communication Module

As can be seen from the results, the addition of a filter and a profile to the database
took the same amount of time, but they were slower operations than the addition
of a class. The difference can be explained with the varying number of parameters
and complexity of the directory hierarchy. A class has only five parameters and its
directory tree in the modification database is low. A profile has eight and a filter
six parameters, and also their directory trees in the modification database are deep.
The background traffic causes 60-80% increase to the operation execution time and

evens up the time differences.

Storing one profile and one filter into the modification database took the

same amount of time, while storing one class took a little less time than the other



6.4 Measurement Results 90

operations. The reason was assumed to be, as already mentioned, the difference
in the number of parameters and in the database hierarchy. However, the test
cases described the worst situation where the database contained only the static
directories. Storing the next filter for the same profile as before would have taken
less time, because most of the directory hierarchy would have already been created.
The same applies for the profiles. As the reference model of the modification
database in Figure 5.2 in Chapter 5 shows, each class is stored right under the
static ’class’ directory. Hence, the time that is spent storing one class into the
database is approximately the time that is used for storing one profile or filter into

the database when the necessary directory hierarchy already exists.

6.4.6 Latency Behaviour during Modifications

Filter modifications were used also in a supplementary latency test whose purpose
was to define how the latency was affected by the modification operations. The test
was performed with Adtech AX/4000 testing system. It was configured to create
four 500 kbps traffic streams, each consisting of 128-byte TCP or UDP packets. One
of the streams was always inside a profile defined in the ALTQ configuration and
another stream was one always outside of all profiles. Two remaining streams were
either outside or inside some profile, depending on the configured profile filters. The
AX /4000 control software was configured to log the average latencies, packet loss
and packet reordering per stream every 0.1 second and draw a real-time graph of

them to the screen.

In the measurements, 1, 50, 250 and 750 filters were added and removed in
turns under two profiles. The test case was divided into four separate parts based on
the number of handled filters. The first three parts consisted of two filter addition
and one filter removal cases. The fourth part consisted of three filter addition cases.
The assumption was that the effect of the modifications would increase case by
case, because it was expected to be dependent on the number of filters. Figure 6.7
and Figure 6.8 illustrate the latency of the stream which stayed always inside one
profile in the ALTQ configuration. Figure 6.7 presents the case with 250 filters and
Figure 6.8 the case with 750 filters.

There are six different events that can be pointed out from the latency graph in
Figure 6.7. The events are marked with numbers to the picture. In cases 1) and
3), 250 filters were stored into the modification database by the Policy Server
Communication Module. In cases 2) and 4), the filters were added to the ALTQ



6.4 Measurement Results 91

800 . . . . . .

700

600

500

400

microseconds

300

200

100

0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

seconds

Figure 6.7. Latency behaviour in the case of 250 modified filters

configuration. In case 5), the filters that were to be removed from the configuration
were stored into the modification database, and in case 6), the filters were removed
from the ALT(Q configuration. In the last two cases the number of filters was 500.

All six cases presented in Figure 6.7 required processor time, thus they slowed
down the normal operation of ALTQ. The packets needed to be queued extra time
which increased the packet latency. According to the results, the ALTQ operations
disturbed the packet forwarding most. The adding operations increased the packet
latency even more than the removing operations, although the number of filters in

the latter case was twice the number of filters in the former case.

Figure 6.8 shows the behaviour of the latency when the number of handled filters
was tripled from the previous measurements. The numbers in the figure refer
to different operations. In case 1), 3) and 5) in Figure 6.8 the Policy Server
Communication Module stored 750 filters into the modification database. In cases
2) and 4), the filters were added to the ALTQ configuration under two different
profiles. In case 6), the filters were added to the ALTQ configuration under one
profile and on top of the previously configured 750 filters.

Compared to the previous results, the modification database operations stood

out clearly, and the influence of all operations stretched longer, as can be seen



6.4 Measurement Results 92

800 . . . . . .

700

600

500

400

microseconds

300

200

100

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140

seconds

Figure 6.8. Latency behaviour in the case of 750 modified filters

in Figure 6.8. However, the maximum latency did not increase during the ALTQ
operations despite the grown number of the filters. The maximum latency stayed
during all operations at approximately 0,7 ms which was the maximum latency
value also in the previous measurements. The same behaviour could be seen also in
the latencies of the other three traffic streams. When compared the results of the
stream presented above with the results of three other streams, no clear difference
can be pointed out.

Packet loss and the number of reordered packets were measured throughout
the test. Because the traffic load was low, it was assumed that the packet loss
as well as the number of reordered packets would be small or even nonexistent.
The results showed that the assumption was correct. No packet loss or reordering

occured during the measurements.

The results indicate that the operations had an effect to the latency behaviour, as
expected. The more there were operations, the more their influence showed in the
results. In the test cases with one and 50 filters, the operations did not cause any
clear effect on the latency behaviour. Still, the modification operations were allowed
to use only a certain amount of the processor time. The increase of the maximum
latency stopped at 0,7 ms and the total processing time of the operations started

to grow, instead.



6.4 Measurement Results 93

ALTQ was able to pass the measurements without dropping packets, although
there were traffic flows whose classification changed on-the-fly because of the
modifications. Thus, at least with moderate traffic loads, ALTQ manages to handle

all incoming packets during the modification process.

6.4.7 Effect of the I/0O Operations

The first target of the I/O operation measurements was to define the time-usage of
the disk operations. It was expected that the disk operations would be the worst
time-consumers in the modification operations. The second target was to define the
difference between the real processing time of the operations and the 'wallclock’

time used in the previous modification measurements.

The I/O operation measurements were performed for the profile and filter
modification tests. The tests consisted of adding and removing 1, 20, 50, 100 and
200 profiles and filters, thus the number of measurement points was smaller than in
the earlier test cases. The detailed timestamping function ’getrusage’ was used for
providing the time consuming of the Agent process. No background traffic was used

in the measurements, because the aim was to define the basic performance values.

The results for the profile removing are illustrated in Figure 6.9. The user
time shows the time spent in processing in the user mode, and the system time
declares the time consumption of the disk operations. The total time is a calculated
sum of the user and system times. The wallclock time which was measured already

in the earlier test tells the complete execution time of the operations.

As can be seen from the results, the disk operations (system time) used always more
time than the Agent software operations in the user mode. Both times increased
linearly, and also the wallclock time grew nearly linearly. The difference between
the total processing time and the wallclock time indicated clearly that the results
from the earlier modification results had quite much air in them. The time between
the lines was used by the operating system and daemon processes listed in Table
6.2 earlier in this chapter. Especially the ssh daemon consumed processing time,
because the router was configured through an ssh connection. In practice, there
were always one or two ssh sessions open. In addition, context switches between the
user and kernel modes required processing time which was not included into the

total processing time. As ALTQ operates in the kernel mode and the Agent in the



6.4 Measurement Results

94

600 T T T T T T T T T

—%- user : : : : : : : -
|| ¥ system e
5001 _o- total ‘ ‘ ‘ ‘ ‘ 7

-A- wallclock : : : : -

400

ms
\

- e —

.-
Y —
. -
.-
.-
V-
. -
. -
T —
T —
—

300

200

<O

100

—_
——
—
—

% - — e - ¥ - ——— 5 ==~ T T 7" *

0 20 40 60 80 100 120 140 160 180 200
number of removed profiles

Figure 6.9. Performance of the profile removing operation measured with detailed

timestamping

user mode, context switching happened often.

Table 6.8 summarises the total (actual) processing times and the wallclock

times for the different Agent operations. The number of handled profiles or filters

is presented on top of the column.

Test Case 1 20 50 100 200
Profile adding

total 3.066 | 43.869 | 103.880 | 210.555 | 476.006
wallclock 8.538 | 76.897 | 208.013 | 564.970 | 1776.079
Profile removing

total 2.349 | 25.874 | 63.269 | 102.323 | 206.442
wallclock 6.436 | 48.369 | 107.304 | 229.567 | 578.501
Filter adding

total 4.088 | 43.045 | 98.137 | 220.732 | 468.226
wallclock 8.884 | 74.464 | 267.952 | 695.696 | 1284.938
Filter removing

total 3.367 | 35.464 | 79.196 | 150.788 | 273.996
wallclock 8.024 | 62.030 | 212.276 | 681.670 | 1206.856

Table 6.8. The wallclock and actual processing times (ms) of the operations

The summarised results show the clear difference between the actual processing



6.4 Measurement Results 95

times and the wallclock times. The adding operation processing times and, on
the other hand, the removing operation processing times are close to each other.
This indicates the already mentioned difference between the time-consumption of
writing to the disk and deleting from the disk. If the wallclock times of the different
cases are compared to each other, it can be noticed that after all they do not differ
greatly from each other. The only exception is the profile removing case which takes
much less time than the other operations. The simplest assumption is that for some
reason the profile removing does not cause as many context switches as the other
operations. The profile removal and addition test were made in parallel, so it is not
very likely that during the profile removal tests there were less processes than usual
requiring processor time. However, because the sources of the extra time-usage were

not studied closer, no actual conclusions can be made from the results.

The size of the unveiled differences between the actual processing times and
the wallclock times seem to impugn the earlier measurement results. The actual
processing times give a totally different impression of the performance of the Agent
than the modification measurement results. However, either the new results do not
tell the whole truth. The gap between the times include also operations like context
switches which are part of the Agent process, so the difference is not plain overhead
caused by other processes. Thus, when estimating the performance of the Agent,

the total processing times can be used as basis, but they are not enough alone.

6.4.8 Conclusions from the Measurements

Due to the overhead caused by the external processes the modification measurement
results cannot easily be generalised. The results are directly valid only for the system
which contains the same hardware and software combination as the tested router.
The results are still usable in the prototype network, because the edge routers are
similar to the tested router. If the results are applied outside the prototype network,
their limitations need to be taken into account. Although the results include some
overhead caused by other processes, they do not show randomness. Naturally, the
results of individual measurements vary from each other, but the difference stays
small enough to maintain the trend. Also the throughput and delay measurement
results suffer from the overhead, but the rest of the results are less problematic,

either because of the nature of the measurement or the nature of the results.

One approach to the Agent performance is to contemplate the operation pro-

cessing times in relation to the frequencies of the operations. The more common



6.4 Measurement Results 96

the operation is, the faster it should be completed. The class modifications are
estimated to happen quite seldom, so in that sense the operation does not have
to be extremely fast. On the other hand, when the class tree is in an inconsistent
state, as it is during the modification operation, it affects all outgoing traffic
on the interface. Hence, the performance of the class operation should be at
least moderate. The profile operations are needed when a customer enters or
leaves the network, so the frequency of the operations depends on the number
of users accessing the network through the edge router. Good customer service
presumes that when the customer enters the network, the network connection is
available as soon as possible. This sets performance requirements also for the profile
operations. The filter operations are expected to be the most common operations
of the Agent. They are executed in certain time intervals, so one filter modifica-

tion round may include even hundreds of filters. Thus, the operations need to be fast.

ALTQ seems to manage all operations nearly in an equal time (see Table
6.4, Table 6.5 and Table 6.6). Therefore, the differences between the performance
times are created by the local database management and the rest of the Agent
process. The current performance of the different operations is enough for testing
purposes in the prototype network, but if and when the performance values need to
be improved, there are several issues that can be reconsidered. The implementation
of the local databases is one of them. If the parameters were stored into the virtual
disk in the system memory, there would be no need for time-consuming physical
disk operations. In addition, the number of context switches could be reduced to
a minimum. The filter handling routines in ALTQ could also be improved. With
a sophisticated searching algorithm the time that ALT(Q uses in searching the
matching filter could be considerably reduced. Another option could be arranging
the filters to the list according to the popularity. Sorting the filters like this would
already be possible, because in the prototype network, the filter generation process
knows the traffic volumes for each filter. The sorting could also be performed by
adding packet counters to the filters and sort the filters according to the gathered
information. In general, improving the filter handling in ALTQ would affect not
only the modification operations but also the throughput. Yet another point of view
is to take a look at the router as a whole; how it could provide more processing
resources for the ALTQ and Agent processes. The simplest action is to shut down
all processes that are not necessarily needed. In our case, special hardware is not
considered, because the edge routers of the prototype network are supposed to use
general PC hardware.



Chapter 7

Conclusions

Differentiated Services (DiffServ) seems to be a promising QoS architecture, and
it has already been deployed in the Internet to some extent. However, the original
DiffServ architecture is not able to adapt to the changes in traffic load and types,
and it does not support the users moving around and changing their network access

point.

Our adaptive policy-based network prototype includes the support for mobil-
ity as well as the adaptability to the changes in the network conditions. The
DiffServ functionalities in the edge routers were realised with an ALTQ traffic
management software, introduced in Chapter 4, and our aim was to design a
mechanism that would dynamically reconfigure ALTQ according to the traffic
and customer changes. The control software implemented for the edge routers to
communicate with ALTQ is called a Policy Control Agent, presented in detail in
Chapter 5. The new ALTQ configuration parameters are calculated elsewhere in the
network based on the traffic measurements and stored into the centralised database
server called a Policy Server. The task of the Policy Control Agent is to retrieve
the parameters from the Policy Server and reconfigure ALTQ.

As described in Chapter 5, the Policy Control Agent consists of four func-
tional modules and two local databases containing the current ALT(Q configuration
parameters and the new, not yet installed parameters. The new parameters are
fetched from the Policy Server by the Policy Server Communication Module which
stores the parameters into the database. The Main Module reads the parameters
from the database and passes them to the ALT(@Q Communication Module which
uses the parameters to reconfigure ALTQ. The Local Database Management Module

keeps the local databases up-to-date by removing the old entries and modifying



98

the definition of the current configuration according to the changes. The triplet
Main Module, ALTQ Communication Module and Local Database Management
Module forms a combination which is controlled by the Main Module. The Policy
Server Communication Module is an independent part of the Agent, as it is not

commanded by any other module.

The current implementation of the Policy Control Agent is only the first
working prototype, but it already includes all the necessary functionalities for
operating in the network. However, before installing the Agent into the edge routers
in the prototype network, a single ALTQ/Policy Control Agent router was put
under several performance tests, as described in Chapter 6. The purpose of the tests

was to find out if the Agent was suitable for further testing of the prototype network.

The majority of the test cases related to modification of the ALTQ configu-
ration, but also general performance tests consisting of throughput, latency and
packet order measurements were run. In the modification tests, all features of the
Policy Control Agent were examined one at a time by adding and removing from
one up to even several hundred profiles, profile filters and CBQ classes in turns.
The results indicated that the overall performance of the Agent was good and the

time-usage of the Agent process increased at most linearly in all test cases.

The general performance tests showed what happened to the packet forwarding
performance with different ALTQ configurations and also during the configuration
modifications. The results of the throughput test revealed that the greatest perfor-
mance bottleneck was the packet processing in ALTQ. A complex and heavy ALTQ
configuration together with a small packet size seemed to create a deadly mixture
for the packet forwarding performance. The increase of the packet size increased
the throughput measured in bits per second but not in packets per second. This
observation proved that the bottleneck was really ALTQ, not the limitations of
the I/O buses, for example. The latency measurement results illustrated clearly
that the packet latency increased substantially during the ALTQ configuration

modifications. The more there were changes, the more distinct were the effects.

In general, the results showed that there are some issues in the Policy Con-
trol Agent that need refinement, but no major performance problems caused by the
Agent turned up. Thus, the Agent already suffices well for the network-wide testing
at the moment, without any changes. The Agent implementation will be improved
and optimised in the course of time according to the results from the previously

described and forthcoming tests. The possible actions to increase the Agent and



99

ALTQ performance were discussed more thoroughly in Section 6.4.8.

The work with the Policy Control Agent is only beginning. The next step is
to install the Agent to all edge routers in the prototype network and test the
software in a real network environment using real traffic. The bits and pieces
that were implemented independently are soon to be combined together to form
the mechanism that controls and configures the prototype network. The final
target with the Policy Control Agent is to integrate it as a seamless part of this

mechanism.



Bibliography

[ABG*01]

[ADF*01]

[ADLY95]

[Alm99|

[AlmO2]

|alt99a|
[alt99b]

[BBCT9g]

[BBGS02]

[BCS94]

D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow.
RSVP-TE: Extension to RSVP for LSP Tunnels. Technical report,
IETF, Dec 2001. RFC 32009.

L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas.
LDP Specification. Technical report, IETF, Jan 2001. RFC 3036.

J.S. Ahn, P.B. Danzig, Z. Liu, and L. Yan. Evaluation of tcp vegas:
emulation and experiment. SIGCOMM Compututer Commununication
Review, 25(4):185-195, 1995.

W. Almesberger. Linux Network Traffic Control - Implementation
Overview. In 5th Annual Linuxr Expo, pages 153-164, May 1999.

W. Almesberger. Linux Traffic Control - Next Generation. In 9th
International Linuz System Technology Conference, pages 95-103, Sep
2002.

altq.conf - altq configuration file. FreeBSD manual page, Sep 19909.
altqd - altq daemon. FreeBSD manual page, Sep 1999.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services. Technical report, IETF, Dec
1998. RFC 2475.

Y. Bernet, S. Blake, D. Grossman, and A. Smith. An informal man-

agement model for diffserv routers. Technical report, IETF, May 2002.
RFC 3290.

R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet
Architecture: an Overview. Technical report, IETF, Jun 1994. RFC
1633.



BIBLIOGRAPHY

101

[BPS99)

[CFog]

[Cho98|

|ChoO1]

[Cho02]

|ChoO03|

[Com]

[CS03]

[DBCF95]

|Dev03]

[DKS89)

[FJ93]

[FJ95]

J.C.R. Bennett, C. Partridge, and N. Shectman. Packet reordering
is not pathological network behavior. IEEE/ACM Transactions on
Networking, 7(6):789-798, 1999.

D. Clark and W. Fang. Explicit Allocation of Best-Effort Packet De-
livery Service. IEEE/ACM Transactions on Networking, 6(4):362-373,
Aug 1998.

K. Cho. A Framework for Alternate Queuing: Towards Traffic Manage-
ment by PC-UNIX Based Routers. In USENIX 1998 Annual Technical
Conference, pages 247-258, Jun 1998.

K. Cho. The Design and Implementation of the ALTQ Traffic Manage-
ment System. PhD thesis, Keio University, 2001. 155 pages.

K. Cho. Altq tips, Feb 2002.

K. Cho. ALTQ: Alternate Queuing for BSD UNIX. Web page, May
2003. URL:<http://www.csl.sony.co.jp/person/kjc/programs.html>.

Spirent Communications. Ax/4000 broadband test system. Web page.
URL:<http://www.spirentcom.com >.

M. Carson and D. Santay. Nist net - a linux-based network emulation
tool. SIGCOMM Computer Communications Review, 33(3):111-126,
Jul 2003.

N. Davies, G.S. Blair, K. Cheverst, and A. Friday. A network emulator
to support the development of adaptive applications. Technical report,
Department of Computing, Lancaster University, 1995.

M. Devera. Htb  home. Web  page, Dec 2003.
URL:<http://luxik.cdi.cz/ devik/qos/htb/>.

A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queuing algorithm. In Symposium proceedings on Communications

architectures € protocols, pages 1-12, Sep 1989.

S. Floyd and V. Jacobson. Random Early Detection gateways for Con-
gestion Avoidance. IEEE/ACM Transactions on Networking, 1(4):397—
413, Aug 1993.

S. Floyd and V. Jacobson. Link Sharing and Resource Management
Models for Packet Networks. IEEE/ACM Transactions on Networking,
3(4):365-386, Aug 1995.



BIBLIOGRAPHY 102

[FKSKO02] W. Feng, D. Kandlur, D. Saha, and Shin K. The BLUE Active Queue
Management Algorithms. IEEE/ACM Transactions on Networking,
10(4):513-528, Aug 2002.

[FSNOO| W. Fang, N. Seddigh, and B. Nandy. A Time Sliding Window Three
Colour Marker (TSWTCM). Technical report, IETF, Jun 2000. RFC
2859.

|Gay96] M. Gaynor. Proactive Packet Dropping Methods for TCP Gateways.
Draft, Nov 1996.

[HBWW99| J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forward-
ing PHB Group. Technical report, IETF, Jun 1999. RFC 2597.

[HG99] J. Heinanen and R. Guerin. A Two Rate Three Color Marker. Technical
report, IETF, Sep 1999. RFC 2698.

[HHKO03] M. Handley, O. Hodson, and E Kohler. XORP: An Open Platform
for Network Research. SIGCOMM Computer Communications Review,
33(1):53-57, Jan 2003.

[ipf00] ipfw - controlling utility for ip firewall and traffic shaper. BSD manual
page, Feb 2000.

[IT94] ITU-T. Terms and definitions related to quality of service and network
performance including dependability. Technical report, ITU-T, 1994.
ITU Recommendation E.800.

[JNP99] V. Jacobson, K. Nicholas, and K. Poduri. An Expedited Forwarding
PHB. Technical report, IETF, Jun 1999. RFC 2598.

[kam04] Kame project home page. Web  page, Jan 2004.
URL:<http://www.kame.net />.

|Kil99] K. Kilkki. Differentiated Services for the Internet. Macmillan Technical
Publishing, 1999. 356 pages. ISBN 1-57870-132-5.

[KMC*00] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F.R. Kaashoek. The
Click Modular Router. ACM Transactions on Computer Systems,
18(4):263-297, Aug 2000.

[L.CO00] J. Liebeherr and N. Christin. Buffer management and scheduling for
enhanced differentiated services. Technical Report CS-2000-24, Univer-
sity of Virginia, Aug 2000.



BIBLIOGRAPHY

103

[Luo00]

[0SNO03]

[PD00]

|Riz97|

[Riz98)

[Riz02]

[RVCO1]

[SHN0O|

[SPGY7]

[Spi01]

[tcO01]

[tcn03]

[WanO01]

[Wro97|

M. Luoma. Simulation Studies of Differentiated Services Networks.
Helsinki University of Technology, 2000. Licentiate Thesis. 109 pages.

National Institute of Standards and Technology
(NIST). NIST Net home page. Web page, Jan 2003.
URL:<http://snad.ncsl.neist.gov /itg/nistnet />.

A.L. Peterson and B.S. Davie. Computer Networks - A Systems Ap-
proach. Morgan Kaufmann Publishers, 2nd edition, 2000. 747 pages.
ISBN 1-55860-577-0.

L. Rizzo. Dummynet: a simple approach to the evaluation of network
protocols. SIGCOMM Computer Communications Review, 27(1):31-
41, Jan 1997.

L. Rizzo. Dummynet and Forward Error Correction. In Proceedings of
Freenix 98, 1998, Jun 1998.

L. Rizzo. Dummynet. Web  page, Jun 2002.
URL:<http://info.iet.unipi.it/ luigi/ip_dummynet/>.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switch-
ing Architecture. Technical report, IETF, Jan 2001. RFC 3031.

I. Stoica, Zhang H., and T.S.E. Ng. A hierarchical fair service curve
algorithm for link-sharing, real-time, and priority services. IEEE/ACM
Transactions on Networking, 8(2):185-199, 2000.

S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed
Quality of Service. Technical report, IETF, Sep 1997. RFC 2212.

Spirent Communications. SmartFlow User Guide, 2001.

Tc - show/manipulate traffic control settings. Linux manual pages, Dec
2001.

Project home page, Jun 2003. URL:<http://tcng.sourceforge.net/>.

Z. Wang. Internet QoS: Architectures and Mechanisms for Quality of
Service. Morgan Kaufmann Publishers, 2001. 239 pages. ISBN 1-55860-
608-4.

J. Wroclawski. Specification of the Controlled-Load Network Element
Service. Technical report, IETF, Sep 1997. RFC 2211.



BIBLIOGRAPHY 104

[XOR03]  XORP Project. XORP Design Overview. Technical report, Interna-
tional Computer Science Institute, Jun 2003.

[ZBHJ97] L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation
Protocol (RSVP) - Version 1 Functional Specification. Technical report,
IETF, Sep 1997. RFC 2205.



