
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Jari Huttunen

Measurements on Di�erentiation of Internet Tra�c

Master's thesis submitted in partial ful�llment of the requirements for the
degree of Master of Science in Technology
Supervisor: Professor Raimo Kantola
Instructor: Marko Luoma, Lic.Sc.(Tech.)
Espoo, 13th January 2005

Helsinki University of Technology Abstract of Master's Thesis

Author: Jari Huttunen
Title: Measurements on Di�erentiation of Internet Tra�c
Date: 13th January 2005 Number of pages: 85
Department: Department of Electrical and Communications Engineering
Professorship: S-38 Networking Technology
Supervisor: Professor Raimo Kantola
Instructor: Marko Luoma, Lic.Sc.(Tech.)
The use of real-time applications in the packet networks is setting new require-
ments for the packet delivery. The current best-e�ort model in the Internet does
not facilitate control over important characteristics such as delay, jitter and packet
loss, which is needed for the proper operation of applications with real-time re-
quirements.

The main focus during the last years on providing QoS in IP networks has been in
the area of the Di�erentiated Services (Di�Serv) architecture. Di�Serv provides
the necessary tools for implementing better service to the Internet in a scalable
way. Scalability is an essential requirement for all Internet services.

Di�Serv is a framework that describes the main components and mechanisms for
realizing QoS. The framework gives quite a lot of freedom for how the implemen-
tation is done and what are the di�erentiation principles. This has created a lot
of research and arguments about how the Di�Serv network should be actually
implemented.

This thesis studies the di�erentiation issues in the Di�Serv network. Di�er-
entiation in this work is based on the idea of separating tra�c with di�erent
characteristics (e.g. UDP and TCP) into distinct forwarding classes. The �rst
part of this work presents the motivation for application based di�erentiation
and describes the Di�Serv architecture as well as some other ways of providing
QoS in the Internet. Also two well known Di�Serv implementations for general
purpose PC hardware will be presented. The last part of this work presents
measurements that we have conducted in an isolated Di�Serv network using
ALTQ as the QoS engine. ALTQ/CBQ is used to provide a class based isolation
among di�erent tra�c types.

Keywords: Di�erentiated Services, Measurement, ALTQ

Teknillinen Korkeakoulu Diplomityön tiivistelmä

Tekijä: Jari Huttunen
Otsikko: Mittauksia Internet-liikenteen eriyttämisestä
Päiväys: 13. tammikuuta 2005 Sivumäärä: 85
Osasto: Sähkö- ja tietoliikennetekniikan osasto
Professuuri: S-38 Tietoverkkotekniikka
Valvoja: Professori Raimo Kantola
Ohjaaja: TkL Marko Luoma
Reaaliaikasovellusten käyttö pakettipohjaisessa tietoverkossa asettaa uusia vaa-
timuksia pakettien välitykselle. Nykyään käytössä oleva best-e�ort Internet-
malli ei tarjoa mahdollisuutta kontrolloida viivettä, viiveen vaihtelua eikä
pakettihukkaa, mikä tarvittaisiin reaaliaikapalvelujen kunnollisen toiminnan
takaamiseksi.

Pääpaino viime vuosina palvelunlaadun tuomisella IP-verkkoihin on ollut Di�er-
entiated Services (Di�Serv) arkkitehtuurin ympärillä. Di�Serv tarjoaa tarvittavat
työkalut, joiden avulla voidaan rakentaa parempaa palvelua Internetiin skaalautu-
valla tavalla. Skaalautuvuus on välttämätön kriteeri toteutuksille, jotka liitetään
osaksi Internet-arkkitehtuuria.

Di�Serv on kehysrakenne, joka kuvailee pääkomponentit ja mekanismit palvelun-
laadun toteuttamiseksi. Di�Serv kuitenkin jättää varsin paljon vapautta ja
tulkinnanvaraa kuinka itse toteutus tulisi tehdä ja mitkä ovat eriyttämisperi-
aatteet. Tämä on luonut paljon Di�Serv-arkkitehtuuriin liittyvää tutkimusta ja
sen myötä myös kiistelyä siitä, kuinka Di�Serv-pohjainen tietoverkko tulisi itse
asiassa toteuttaa.

Tämä opinnäytetyö tutkii eriyttämisperiaatteita Di�Serv-verkossa. Eriyttäminen
tässä työssä pohjautuu ajatukseen erottaa liikenne luonteensa perusteella (esim.
UDP ja TCP) omiin liikenneluokkiinsa. Työn ensimmäinen osa esittää mo-
tivoinnin sovelluspohjaiseen eriyttämiseen sekä kuvailee Di�Serv-arkkitehtuurin
ja muita tapoja palvelunlaadun toteuttamiseen Internetissä. Myös kaksi yleisesti
Di�Serv-toteutusta PC-arkkitehtuurissa käydään läpi. Työn loppuosa esittää
mittaukset, jotka on suoritettu eristetyssä ALTQ:n avulla toteutetussa Di�Serv-
verkossa. Mittauksissa käytettiin ALTQ:n CBQ-toteutusta saavuttamaan
luokkapohjainen eriyttäminen eri liikennetyyppien välillä.

Avainsanat: Eriytetyt palvelut, Mittaus, ALTQ

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aims and scope of this work . 2
1.3 The structure of the thesis . 3

2 Quality of service 4
2.1 What is quality of service? . 4
2.2 Motivation and bene�ts of implementing QoS 4
2.3 QoS models for IP networks . 5

3 Di�erentiated Services 9
3.1 Per Hop Behavior . 10

3.1.1 Assured forwarding . 10
3.1.2 Expedited Forwarding 11

3.2 Di�Serv building blocks . 11
3.2.1 Classi�cation . 12
3.2.2 Conditioning . 12

3.3 Active queue management . 13
3.3.1 Random early detection 13

3.4 Scheduling . 14
3.4.1 First Come First Served 15
3.4.2 Round Robin scheduling 15
3.4.3 Class Based Queueing 15
3.4.4 CBQ implementation in ALTQ 17

4 Di�erentiation of Internet tra�c 18
4.1 Application characteristics and utility 18

4.1.1 Elastic applications . 18

i

Contents

4.1.1.1 The battle between mice and elephants 19
4.1.2 Real-time applications 21

4.1.2.1 Video . 22
4.1.2.2 Voice . 23

4.2 Mixing the tra�c . 24

5 Implementing Di�erentiated Services 25
5.1 Gap between theory and reality 25
5.2 Alternate Queueing . 25

5.2.1 ALTQ Design . 26
5.2.2 Implementation issues 26

5.2.2.1 Queue operations 26
5.2.2.2 Output bu�er model 27
5.2.2.3 E�ect of kernel timer resolution 29

5.3 Linux Tra�c Control . 29
5.3.1 Linux Tra�c Control - Next Generation 31

5.3.1.1 The tcng language 31
5.4 ALTQ vs. Linux TC . 32

6 Tra�c tracing and analysis tools 35
6.1 Packet capturing . 35
6.2 Tcptrace . 36
6.3 SmartBits . 36
6.4 Altqstat . 36

6.4.1 Modi�cations to altqstat 36
6.5 Perl scripts . 37

7 Measurement setup 38
7.1 Overview . 38
7.2 Technology and topology . 38
7.3 Baseline delay measurements . 39
7.4 Tra�c sources . 40

7.4.1 Voice over IP . 40
7.4.1.1 Perceptual Speech Quality Measure 41

7.4.2 Video streaming . 41
7.4.3 World Wide Web . 43

ii

Contents

7.4.4 File Transfer Protocol 44
7.4.5 Background tra�c . 47

7.5 Bu�er management . 47
7.5.1 Setting the bu�er size 48

7.6 Clock synchronization . 48
7.6.1 Network Time Protocol 48

7.7 Delay emulation . 49
7.7.1 Dummynet . 49

7.8 Measurement procedure . 51
7.9 Terminology . 51

7.9.1 Delay . 51
7.9.2 Jitter . 51
7.9.3 Packet loss . 52
7.9.4 Throughput . 52

8 Results 53
8.1 The level of di�erentiation . 53

8.1.1 Best E�ort model . 53
8.1.2 Two class model . 57
8.1.3 Three class model . 59
8.1.4 Four class model . 62

8.2 Di�erentiation principle . 64
8.3 Provisioning aspects . 68
8.4 Symmetry of di�erentiation . 75

9 Conclusions and discussion 79

Bibliography 82

iii

Acronyms

ACK Acknowledgement
AF Assured Forwarding
ALTQ Alternate Queueing
API Application Program(ming) Interface
AQM Active Queue Management
BA Behavior Aggregate
BE Best E�ort
BSD Berkeley Software Distribution
CBQ Class Based Queueing
CBR Constant Bit Rate
CPU Central Processing Unit
CRUDE Collector for Real-time UDP Data Emitter
Di�Serv Di�erentiated Services
DRR De�cit Round Robin
DSCP Di�erentiated Services Code Point
EF Expedited Forwarding
EWMA Exponentially Weighted Moving Average
FCFS First Come First Served
FEC Forwarding Equivalency Class
FIFO First In First Out
FTP File Transfer Protocol
GOP Group of Pictures
HTTP Hyper Text Transfer Protocol
IETF Internet Engineering Task Force
IntServ Integrated Services
IP Internet Protocol
ITU-T International Telecommunication Union-Telecommunication
LRS Label Switched Router
LSP Label Switched Path
MF Multi Field

iv

Acronyms

MPEG Moving Picture Experts Group
MPLS Multi Protocol Label Switching
NRT Non Real Time
NTP Network Time Protocol
P2P Peer to Peer
PC Personal Computer
PHB Per Hop Behavior
PSQM Perceptual Speech Quality Measure
QoS Quality of Service
RAM Random Access Memory
RED Random Early Detection
RR Round Robin
RSVP Resource Reservation Protocol
RT Real Time
RTT Round Trip Time
RUDE Real-time UDP Data Emitter
SSH Secure Shell
TC Tra�c Control
TCP Transmission Control Protocol
UDP User Datagram Protocol
VBR Variable Bit Rate
VoIP Voice over IP
WRR Weighted Round Robin
WWW World Wide Web

v

Chapter 1

Introduction

1.1 Background

The tra�c volume and the variety of applications in the Internet have evolved
many changes since the early days. Originally, Internet was a rather small
network for connecting academic institutions. The main applications used
those days were �le transfer and email. These applications do not have strict
requirements on the delay or available bandwidth in the network and they can
adapt quite well to changes in the network load. In addition, as the amount
of users and tra�c was low, the network was able to provide adequate quality
of service (QoS) for the users by using a simple best e�ort scheme. Best e�ort
means that the network does it best to deliver packets to the destination but
it cannot give any guarantees on the service quality and the service is the same
for all packets.

The situation today is di�erent in many ways. Internet has become a commu-
nication media for all the people and the amount of tra�c in the network has
grown to a level where packet delays and drops are inevitable. Also many new
applications have been born that require more than the original best e�ort
Internet is capable of providing. The deployment of multimedia services such
as voice over IP, video streaming and conferencing in the Internet will need
control over packet loss and delay which is lacking in the best e�ort model.
In addition to real-time applications also some interactive data applications
exist that require better predictability in order to give good user experience.
Such an application is www, the killer application from the 90's. Web brows-
ing requires fast response times or otherwise the user gives up and aborts

1

Chapter 1. Introduction

the connection. The slowdown in web page download has already created the
de�nition of "world wide wait".

To overcome these problems di�erent QoS architectures have been developed.
The most promising architecture appears to be di�erentiated services [BBC+98].
Di�erentiated services allows a scalable way of providing control on network re-
sources in the Internet. Scalability is the key issue when adopting new services
to the Internet.

1.2 Aims and scope of this work

The research challenge in this thesis was to create an isolated fully functioning
Di�Serv capable network with tra�c sources and study di�erentiation princi-
ples and mechanisms through tra�c measurements.

Many simulation and experimental studies have been done in the area of Inter-
net tra�c di�erentiation. However, most of these works include very simpli�ed
tra�c models, topologies, and analyzing methods. To get a better understand-
ing of the Di�Serv mechanisms, following design principles were used when
building the testbed:

Create a Di�Serv capable network including several edge and core routers.

Emulate carefully di�erent tra�c types (Video, VoIP, WWW and FTP).

Create paths with dissimilar RTT.

Make analysis at user level and network level

Use dedicated measurement hardware for accurate one-way delay mea-
surements.

The main goal of this thesis is to determine through measurements the ap-
propriate principle on how tra�c di�erentiation should be done, the level of
di�erentiation that is needed and also study the performance and limitations
in the implementation. This thesis does not handle the concepts of access
policing or QoS routing.

2

Chapter 1. Introduction

1.3 The structure of the thesis

Chapter 2 begins with an introduction to the concept of Quality of Service
and gives the motivation on why QoS should be realized. At the end of this
chapter, di�erent models for implementing QoS will be introduced.

Chapter 4 explains the concept of utility and the characteristics of di�erent
Internet applications. In addition, the interference between applications and
di�erent di�erentiation principles will be discussed.

Chapter 3 presents the key components in the Di�Serv architecture.

Chapter 5 discusses the problems that arise when implementing Di�Serv func-
tionality into real world hardware. Also two most well known Di�Serv imple-
mentations will be presented.

Chapter 6 describes the tools and methods that were used in the measurements
and analysis.

Chapter 7 presents the measurement environment and the emulated applica-
tions.

Chapter 8 contains the measurement results and the analysis.

Chapter 9 concludes this work and gives summary and conclusions from the
measurement results.

3

Chapter 2

Quality of service

2.1 What is quality of service?

The concept of quality of service (QoS) is hard to de�ne with only some sen-
tences. The term QoS is rather ambiguous and a lot of debate can be brought
out what it really means. ITU-T recommendation E.800 [IT94], formally de-
�nes QoS as: "The collective e�ect of service performance which determines
the degree of satisfaction of a user of the service". This de�nition presents
QoS as an attempt to satisfy the user demands with a service that ful�lls
his/her needs. Ful�lling this may not be always easy as di�erent users may
have di�erent expectations on quality: some users are more demanding than
others.

The concept of QoS can be also thought from the service provider's point of
view. In that case, QoS means that the service the provider is giving to its
customers ful�lls certain quality measures. Typical measures in the packet
networks are packet loss, delay, delay variation, and bandwidth. These pa-
rameters can be measured and used to give an overview of the current QoS in
the network.

2.2 Motivation and bene�ts of implementing QoS

When the Internet was born in the beginning of 80's, the concept of QoS
was not that important. The main objective was to create a robust network
that could deliver successfully data packets. This was adequate while tra�c

4

Chapter 2. Quality of service

volumes were low and applications did not have strict real-time requirements.
However, many applications have born after those times that require controlled
delay or/and bandwidth behavior from the network. The current best e�ort
network is very often not capable of satisfying the requirements from these
applications and therefore also not capable of satisfying the customers using
those applications.

The bene�ts that QoS can provide can be thought from two perspectives: 1)
user and 2) service provider. For the user QoS means the possibility to get
better service from the network and the ability to use applications that have
di�erent requirements. For instance, telephony in Internet does usually not
perform well enough due to the need for strict delay control that is lacking
in the single service network. From the operator's point of view QoS is a
possibility to make more revenue as it can o�er a wider range of services for
the user and give certain guarantees regarding the service quality. If QoS is
implemented well it will also help to make a better use of the network resources
and therefore utilize the existing network more e�ciently.

2.3 QoS models for IP networks

We focus here on four well-known architectural models for implementing QoS
in the IP networks:

Over-provisioned Best E�ort network

Integrated Services (IntServ)

Multiprotocol Label Switching (MPLS)

Di�erentiated Services (Di�Serv)

Over-provisioning

Over-provisioning is a way to provision the link bandwidths in a way that
tra�c load never or very rarely exceeds the link capacity. The idea of over-
provisioning is simple and therefore it is widely used as a way to increase the
QoS level in the networks. Over-provisioning, however, results usually in a low
network utilization as the Internet tra�c is bursty in nature. In addition, by

5

Chapter 2. Quality of service

over-provisioning too much, the QoS levels hardly improve anymore1 and it
becomes very cost-ine�cient way of providing QoS.

Integrated Services

The Integrated Services architecture [BCS94] is based on an idea of making
resource allocations in order to meet the user and application requirements.
The reservations are made on per-�ow basis so that assured bandwidth and
delay can be guaranteed to applications.

The main components in the IntServ model are shown in Figure 2.1 [Wan01].
The model can be separated into two logical parts: the control plane and the
data plane. The control plane is responsible of setting up the reservations while
the data plane forwards data packets based on the reservations state acquired
from the control plane.

Resource reservations are handled with a speci�c signaling protocol, the Re-
source Reservation Protocol (RSVP)[BZB+97]. The reservation process begins
with a �ow speci�cation where an application characterizes its tra�c �ow and
QoS requirements. The reservation setup is sent to the router where it inter-
acts with a routing module and the admission control. Routing module is used
to determine the next hop for the reservation forwarding. Admission control
checks whether there are enough resources to satisfy the request. When the
reservation setup is ready, the information for the reserved �ow is stored into
the resource reservation table. The information in the resource reservation
table is used in the data plane to con�gure packet scheduling and the �ow
identi�cation module. The �ow identi�cation module �lters packets belonging
to �ows with reservation and passes them to appropriate queueing disciplines.
The packet scheduler shares the resources to the �ows based on the reservation
information. [Wan01]

Despite that IntServ was developed already about ten years ago it has been de-
ployed only in some Intra-networks. The main reason for the failure of IntServ
is the lack of scalability. The setting of state in all routers along a path is non-
scalable and non-workable administratively as most of the Internet data �ows
are short in lifetime. In addition, in IntServ, autonomous system or provider
boundaries are considered to be essentially invisible. IntServ expects that
reservation state can be delivered across administrative boundaries without
any problems. This would require Internet wide peering agreements.

1See Chapter 4 for details how performance of an application depends on the network
parameters

6

Chapter 2. Quality of service

Flow identification Packet scheduler

Resource reservation table

Reservation setup agent

QoS routing agent Admission control

Control plane

Data plane

Figure 2.1: Main components in the IntServ architecture

Multiprotocol Label Switching

Multiprotocol Label Switching (MPLS) [RVC01] is an architecture developed
by IETF for improving routing performance in IP networks. MPLS can be
thought of as a way of combining the �exibility of network layer routing and
the e�ciency of link layer switching. MPLS also brings connection-oriented
properties for IP networks in a scalable way.

Conventional routing in IP networks is based on an idea that every router
in the path examines the packet header and makes an independent decision
about the next hop. The main idea in MPLS is to simplify this process so that
routers do not need to perform an address lookup for every packet. The next
hop is determined in MPLS by using a �xed length label in the packet header.
[RVC01]

As an IP packet arrives to an MPLS domain, the header is examined and it is
assigned a small label. This label is used to set the Forwarding Equivalency
Class (FEC) for the packet. The FEC is a group of IP packets, which are
forwarded in the same manner. The MPLS capable label-switched routers
(LSRs) use the label to determine the next hop and the corresponding new

7

Chapter 2. Quality of service

label. When the existing label is changed to a new one the packet can be
sent to the next hop. The path along which MPLS packet traverses is called a
label-switched path (LSP). Since the mapping between labels is �xed at each
LSR, the LSP is actually determined by the initial label value at the ingress
LSR. When the packet arrives at the egress point of the MPLS domain, the
MPLS header will be removed. The basic operation of an MPLS network is
illustrated in Figure 2.2. [Wan01]

Host A

Host B

Host C

Host D

MPLS domain

LSR 1
Ingress

LSR 2

LSR 3

LSR 4
Egress

IP

IP IP 13 IP 23

IP

IP
IP 12 IP 56

Figure 2.2: Basic operation of an MPLS network

Di�erentiated Services

As IntServ was found to be a non-scalable solution for implementing QoS
in the IP networks, IETF designed a new more scalable QoS service model
called Di�erentiated Services (Di�Serv) [BBC+98]. Di�Serv gives up the idea
of providing end-to-end guaranteed service and focuses on providing better
than best e�ort service. The Di�Serv architectural model is explained in more
depth in Chapter 3

8

Chapter 3

Di�erentiated Services

Di�erentiated Services (Di�Serv) [BBC+98] is an architecture based on the
idea of grouping tra�c �ows into a �nite number of tra�c classes. As Di�-
Serv is based on aggregates, it o�ers a scalable way of providing QoS, which
was lacking in the IntServ architecture that uses state-based reservations of
resources for individual tra�c �ows.

Di�Serv network has two types of routers: edge routers and core routers (Fig-
ure 3.1).

Customer A

Customer B

ISP 1 ISP 2

Core router

Edge router

Figure 3.1: Di�erentiated service network consisting of edge and core routers

The complexity in the Di�Serv network is located in the edge routers where
tra�c volume is relatively low. The low data volume makes it possibly to
make packet processing with rather low overhead. The packet processing at
the edge routers includes classi�cation, policing, and conditioning actions. For

9

Chapter 3. Di�erentiated Services

every packet, a DSCP 1 value is set that de�nes the forwarding behavior for
the packet in the core network.

Core routers are simple compared to edge routers and their job is to do for-
warding based on the DSCP coding. In other words, the queueing behavior is
determined by the value in the DSCP �eld. This queueing behavior is called
per hop behavior (PHB).

3.1 Per Hop Behavior

A Per Hop Behavior (PHB) [BCF00] describes the treatment for tra�c be-
longing to a certain behavior aggregate at an individual network node. The
di�erentiation between di�erent PHB's is obtained by looking at the DSCP
�eld in the IP packet's header. Many PHB's have been proposed and some
of them have been also standardized. We focus here on two commonly used
standardized PHB's: Assured Forwarding and Expedited Forwarding.

3.1.1 Assured forwarding

Assured Forwarding (AF) PHB [HBWW99] de�nes four independent forward-
ing classes for IP packet delivery. Within each AF class one of the three
di�erent drop precedences can be assigned to IP packets (Figure 3.2). The
drop precedence of a packet can be used to determine the importance of a
packet within the AF class. In case of congestion, packets with low drop
precedence are favored and packets with high drop precedence are more likely
to be discarded.

The forwarding assurance of a packet depends on three factors: [HBWW99]

Provisioning i.e. the resources allocated to the AF class where the packets
belong to.

Current load of the AF class.

Drop precedence of a packet (in a case of congestion).
1A Di�erentiated Service Code Point (DSCP) is encoded in the most signi�cant 6 bits of

the ToS byte contained in the IP header

10

Chapter 3. Di�erentiated Services

AF11 AF21 AF31 AF41

AF12 AF22 AF32 AF42

AF13 AF23 AF33 AF43

Class

Drop probability

Figure 3.2: AF classes with di�erent drop precedences [Luo03]

3.1.2 Expedited Forwarding

Expedited Forwarding (EF) PHF [JNP99] aims to provide a low delay, low
jitter, low loss and assured bandwidth service and is therefore intended to be
used with applications like Voice over IP and video conferencing. To be able
to provide low delay and low jitter service the packets belonging to the EF
group need to encounter empty or very short queues. Ensuring short queues
means that the arrival rate of EF packets must not exceed the service rate at
the interface.

3.2 Di�Serv building blocks

Di�Serv model includes two conceptual elements in the ingress point of the net-
work: classi�cation and conditioning. Conditioning includes numerous func-
tional elements that are used to implement conditioning actions. (Figure 3.3)

Metering

Marking Shaping /
dropping

Classification

Packets in Packets out

Conditioning

Figure 3.3: Tra�c conditioning components

11

Chapter 3. Di�erentiated Services

3.2.1 Classi�cation

Packet classi�cation is a process where packets are identi�ed and separated
for further processing based on the information in the packet header. There
are two kinds of classi�ers used for tra�c classi�cation: Behavior Aggregate
(BA) classi�er and Multi-Field classi�er (MF). BA uses only the DSCP �eld
for classi�cation whereas MF uses a combination of �elds of the IP header
(e.g. source address and source port). MF is usually used at the edges of the
network for packet classi�cation and BA in the core of the network due to its
simplicity.

3.2.2 Conditioning

Conditioning is an important element in the Di�Serv model that may contain
the following functional components [BBC+98]: metering, marking, shaping
and dropping. Conditioning is used to ensure that on average each behavior
aggregate will get the agreed service.

Metering is a process to determine whether the behavior of a packet stream is
within the speci�ed pro�le. The output result of metering is used to trigger
events in other conditioning blocks. There are many estimators that can be
used for implementing metering. The most known and widely used estimator
in the packet networks is the Token Bucket estimator.

Token Bucket is a relatively simple algorithm that can be described by two
parameters: Token generation rate (R) and size of the token bucket (S) (Figure
3.4). The tokens arrive at the bucket with rate R. The size of the bucket
describes the maximum burst size that can be sent to the link. Over�owed
tokes can not be stored, they are simply discarded. To send a packet size of B
the corresponding amount of tokens are reduced from the bucket. Each token
represents some number of bytes and the packet can be sent if enough tokens
exist in the bucket. If there are not enough tokens in the bucket, the packet is
either shaped or simply dropped.

Marking is a process where packets are marked to belong to a certain ser-
vice class. Marking is usually done at the edges of the network where some
prede�ned DSCP value is set to the packet header.

Shaping is a process where packets are delayed in order to get the tra�c stream
�t to a prede�ned pro�le. Dropping has similar objectives as shaping but it

12

Chapter 3. Di�erentiated Services

Bucket
size (S)

Token rate (R)

Token
bucket

Token

Figure 3.4: Token bucket estimator

drops packets in order to get the tra�c stream into compliance with the pro�le.

3.3 Active queue management

Queues are essential in the routers as they smooth bursty tra�c in order to
avoid packet loss. Queue management de�nes the policy which packets are
dropped in the case of congestion. The simplest, and still widely used, dropping
policy is tail-drop (a.k.a drop-tail). Tail-drop simply drops incoming packets
when the bu�er �lls up. Unfortunately, when dealing with persistent conges-
tion tail-drop performs badly and may lead to higher delays, bursty packet
drops, bandwidth unfairness and to a global oscillation of tra�c sources. To
face these problems a number of active queue management (AQM) algorithms
have been proposed. Active queue management is a pro-active approach of
informing the sender about the congestion before the bu�ers over�ow.

3.3.1 Random early detection

Random Early Detection (RED) [BCC+98] is the most studied active queue
management algorithm in the Internet. RED was developed to provide better
fairness, maximize the link utilization and to avoid global synchronization.
[FJ93]

RED uses the average queue size as the indication of emerging congestion. The
average queue size is calculated using the exponentially weighted moving aver-
age (EWMA) algorithm. The use of EWMA makes it possibly to distinguish
between short time bursts and long time congestion. The RED mechanism

13

Chapter 3. Di�erentiated Services

begins to drop packets with increasing probability p_drop when the minimum
threshold value th_min is exceeded. The dropping probability will increase
with a linear behavior from zero to a maximum value p_max until the upper
threshold value th_max is reached. After this point RED falls to a simple
tail-drop algorithm by dropping all the packets (Figure 3.5).

Avg queue size

1

p_max

th_min th_max

p_drop

0

Figure 3.5: RED dropping function behavior

3.4 Scheduling

Scheduling is an event that decides the order of packets to be served from
di�erent queues. Scheduling algorithms can be categorized in many ways. A
typical way is to divide scheduling schemes to work conserving and non-work
conserving.

A work conserving scheduler is never idle if there are packets to be served. This
means that a work conservative scheduler can e�ectively utilize the network
resources. A non-work conserving scheduler can be idle even though there
are packets to be served. Therefore, a non-work conserving scheduler usually
utilizes network resources worse than a work conserving scheduler [LY99]. Non-
work conserving schedulers may also yield to higher end-to-end delays. How-
ever, non-work conserving schedulers have some properties that make them
suitable for QoS networks. The most important advantages are 1) control over
delay jitter2 and 2) rate control. Controlled delay jitter is important for cer-
tain applications with hard real-time requirements (e.g. Voice over IP). Rate
control enforces a tra�c stream to conform to its pro�le before forwarding it

2Delay jitter is de�ned as di�erence between the largest and the smallest delay

14

Chapter 3. Di�erentiated Services

to the scheduler. Thus, the use of rate control usually makes the scheduler
non-work conserving.

3.4.1 First Come First Served

First Come First Served (FCFS) is the dominant scheduling algorithm used in
the Internet serving best e�ort service. In FCFS packets are served based on
the order they arrive; �rst packet in is �rst served out. The advantage of FCFS
is its simplicity and therefore it can be easily implemented. The drawback of
FCFS scheduling is that it can not really provide any delay or throughput
guarantees and is therefore not well suited for networks providing QoS.

3.4.2 Round Robin scheduling

Round Robin (RR) is an old, rather simple, and widely used scheduling algo-
rithm designed especially for time-sharing systems. In RR, a small time slice
is allocated for each process. These processes are kept in a circular queue and
served until the task is accomplished. RR can be used in routers to give each
class a service time of one time slice during each round. The best solution in
terms of fairness would be a bit-by-bit Round Robin scheduling where one bit
of each �ow is served per round. This is, however, not practical and can not
be implemented e�ciently. A simple RR implementation is packet-by-packet
Round Robin that schedules one packet from each class per round. If the
time slice is not equal between the classes, the scheduling algorithm is called
Weighted Round Robin (WRR). WRR works well if the packet size is �xed or
the average packet size for a �ow is known. Otherwise WRR is not able to
allocate bandwidth fairly [Wan01]. De�cit Round Robin (DRR) [SV95] is sim-
ilar to WRR but it takes into account variable packet sizes by using a de�cit
counter. The de�cit counter is used to keep track of the unused time slices for
the class from the previous rounds. The unused time slices can be added at
the next round to the current time slice. If the class is idle, the unused time
slices will be discarded as the class has wasted its opportunity to send packets.

3.4.3 Class Based Queueing

Class Based Queueing is a method of hierarchical link-sharing proposed by
Sally Floyd [FJ95]. CBQ can be used to share the bandwidth among dif-

15

Chapter 3. Di�erentiated Services

ferent agencies, protocols, and tra�c types on a link in a controlled fashion.
The network resources are divided into a tree-like class structure. Root class
contains all the resources on the link that can be shared among intermediate
classes. Intermediate classes form logical groupings that specify how resources
are divided to the leaf classes. Leaf classes are the actual tra�c classes and
therefore all packets sent out of the link must �rst be queued in one of the leaf
classes (Figure 3.6).

The CBQ scheduling mechanism can be divided into two operational parts:
the general scheduler and the link sharing scheduler. The general scheduler
is used when none of the leaf classes have exceeded their assigned resources.
The link sharing scheduler is activated when some of the leaf classes use more
than the assigned amount of resources. When a class is sending more than its
share of the bandwidth, it is said to be overlimit and it must be regulated3.
If a class sends less than the assigned bandwidth it is said to be underlimit.
CBQ includes a borrowing mechanism that allows tra�c classes to utilize the
unused bandwidth by other classes. This means that in some cases a class can
send even in an overlimit situation.

root class

intermediate classes

leaf classes

100 %

40 % 60 %

10 % 30 % 30 % 10 %20 %

Figure 3.6: A CBQ resource sharing structure example
3A class is said to be regulated if packets are scheduled using link sharing scheduler

16

Chapter 3. Di�erentiated Services

3.4.4 CBQ implementation in ALTQ

ALTQ [Cho99] includes an implementation of CBQ that has all the mechanisms
introduced by Sally Floyd [FJ95]. ALTQ/CBQ is a testbed that has been
widely used in the networking science for prototyping new queueing disciplines.

The ALTQ/CBQ includes the implementation of Weighted Round Robin and
Packet Round Robin to be used as the general scheduler. A modi�ed top-
level link sharing algorithm is used for the link-sharing scheduling. It should
be noted that even though ALTQ is announced to use WRR as the general
scheduler it actually employs DRR in its source code.

By default, ALTQ/CBQ provides �xed provisioning of resources to each class
and thus the excess bandwidth can not be distributed among other classes.
To be able to exploit the excess resources ALTQ/CBQ introduces an option
borrow. With the borrow option a class is allowed to borrow the excess band-
width from its parent. A class can borrow if its parent is underlimit or if it has
an underlimit ancestor. This can lead to a non-work conserving behavior in
some cases. Non-work conserving service can be avoided by using the e�cient
option that enables a class in an overlimit situation to send a packet even if
all its ancestors at that moment are also overlimit. [RG99]

17

Chapter 4

Di�erentiation of Internet tra�c

4.1 Application characteristics and utility

There are many ways to divide applications into di�erent groups. One way is
to make a distinction between elastic and real-time applications [She95]. For
each group qualitative utility functions can be shown that present properties
of applications on a qualitative level (Figure 4.2, 4.3 and 4.4). Utility func-
tions describe how the performance of an application depends on the network
parameters (e.g. delay and bandwidth).

Another way of characterizing the di�erences between applications is to divide
them to delay sensitive and bandwidth sensitive (Figure 4.1). There are, how-
ever, applications that are both delay and bandwidth sensitive. An example of
such an application is interactive video conferencing that requires at the same
time low delay and high bandwidth in order to work properly. VoIP is an
application that is very delay sensitive and requires a guaranteed bandwidth
without packet loss1

4.1.1 Elastic applications

Examples of elastic applications are TCP based protocols for �le transfer like
P2P and FTP. For elastic applications, it is typical that the increase in net-
work resources enhances the performance of an application but in a rather
conservative way. The elastic applications bene�t from increased bandwidth

1See Section 4.1.2.2 for more details about voice tra�c.

18

Chapter 4. Di�erentiation of Internet tra�c

Delay sensitive

Bandwidth sensitive

VoIP

P2P
FTP
e-mail

Interactive video

Streaming video

x

x

x

Figure 4.1: Delay and bandwidth sensitive applications

but they are able to operate with only a minimal amount of network resources.
This behavior is illustrated in Figure 4.2 that presents the utility function for
elastic applications.

Utility

Bandwidth

Figure 4.2: Utility function for elastic applications

4.1.1.1 The battle between mice and elephants

It is a well-known fact that the Internet tra�c is heavy tailed [PF95]. This
means that most of the Internet tra�c is carried by a small number of long
lasting connections (elephants) while a large portion of the connections are
short in lifetime (mice). Typical elephants are P2P applications and FTP
�le transfers. They are more robust to changes in the network resources: a

19

Chapter 4. Di�erentiation of Internet tra�c

user does not usually mind if downloading a large �le takes some seconds or
even some minutes longer. However, the applications using short connections
are usually interactive in nature meaning that they need their data within a
certain time limit. A typical application with interactive requirements is the
Word Wide Web (WWW). A user expects a page to load within some seconds
after which the user resets the connection as there seems to be no reply2.

In a congested network, the performance of a short connection can collapse
and a user browsing the Internet may have to wait a long time downloading
even a small text �le. The reasons for collapse in the performance can be found
from the operation of TCP, the transport protocol used in WWW. The three
major factors in TCP that may a�ect on the performance of short connections
are: [GM01]

In the beginning of a transfer the sending window is initiated conserva-
tively to the minimum possibly value regardless of the available network
resources.

For short connections the expiration of a retransmission timer is usually
the only way to detect packet loss because the duplicate ACK mechanism
requires some time (several packets) to activate. The use of a duplicate
ACK for packet loss detection is usually much more e�cient than using
a timeout timer.

TCP uses the RTT estimate to calculate the retransmission timeout.
As for the �rst control and data packets, no sampling data is available,
TCP has to use an initial timeout value that has usually very high value
(several seconds). Losing these packets can cause a long timeout during
which TCP is unable to send any data.

There are also measurements [TMW97][FRC98] that reveal that short connec-
tions are bursty in nature which may a�ect the performance of long lasting
connections due to occasional packet drops. Due to these facts, we can con-
clude that short and long TCP connections are interfering with each other and
they should be separated.

2The user patience threshold is measured to be 15 seconds for WWW downloads after
which the user hits the stop/reload button in the browser [Peu02]

20

Chapter 4. Di�erentiation of Internet tra�c

4.1.2 Real-time applications

Real-time applications can be categorized into two main groups: hard real-time
and soft real-time. Applications with hard real-time requirements are those
that need their data within a strict delay bound. Data arrived late has no value
and it can be simply discarded. Typical applications with hard real-time re-
quirements are applications with conversational properties. Such applications
are for instance telephony and video confererencing. The utility function for
applications with hard real-time requirements is shown in Figure 4.3. As long
as bandwidth requirements are met, the application performance is constant.
However, when the available bandwidth drops below the operational point the
queues �ll up and the performance falls straight to zero.

Transferring data from a hard real-time application over a network has very
strict requirements on one-way delay in order to maintain the conversation bi-
directional3. In addition the variation in delay (jitter) should be within limits.
A small amount of jitter can be compensated by using a playback bu�er whose
purpose is to absorb variations in delay and provide a smooth play out. The
disadvantage of the playback bu�er is that it increases the total end-to-end
delay.

Utility

Bandwidth

Figure 4.3: Utility function for applications with hard real-time requirements

Applications with soft real-time requirements are more robust to changes in
delay and bandwidth as hard real-time applications. Typical soft real-time
applications are streaming media applications that do not require two-way
communication. With streaming media, the playback bu�er can be large com-

3One-way delay should be less than about 300 ms in order to maintain a bi-directional
conversation [LPY98]

21

Chapter 4. Di�erentiation of Internet tra�c

pared to video conferencing, as there is no need for bi-directional communi-
cation. This relaxes the strict delay requirements as packets can be delayed
quite a lot without any signi�cant meaning to the operation of the application.
Soft real-time applications can be further divided into delay-adaptive and rate-
adaptive. Delay adaptive applications are rather tolerant for occasional delay
variations and packet drops. Rate-adaptive applications are able to adjust
their transmission rate in the case of network congestion. The utility curves
for soft real-time applications in Figure 4.4 show that the drop in performance
is not that sharp as with hard real-time applications (Figure 4.3).

Utility

Bandwidth

(a) Delay-adaptive applications

Utility

Bandwidth

(b) Rate-adaptive applications

Figure 4.4: Utility functions for applications with soft real-time requirements

4.1.2.1 Video

Video tra�c has an operation area ranging from some kbps to several Mbps.
The large scale in transmit rate is due to several di�erent compression and
encoding schemes. In addition, the content of the video material has sometimes
a large in�uence on the required transfer rate. More complex scenes and motion
in the picture requires more data in order to obtain a certain level of quality.

The encoding scheme has a big in�uence on the characteristics of the video
stream. The encoding schemes can be divided into two categories: 1) constant
bit rate (CBR) and 2) variable bit rate (VBR). CBR video maintains the
transfer rate during the transmission on the same level varying only little
over time. On the other hand, VBR video may have peak values that di�er
many Mbps from the average rate. In that sense CBR video encoding is more
predictable and eases the network resource provisioning needed for the video
transfer. Despite that, VBR is a more commonly used encoding scheme in

22

Chapter 4. Di�erentiation of Internet tra�c

video transfer than CBR. This is because with VBR encoding one can achieve
better quality with the same available bandwidth as with CBR. Unfortunately,
VBR encoding scheme has, due to its bursty nature, usually a low utilization
degree if the data rate is high.

Many di�erent compression schemes have been developed for di�erent pur-
poses. H.261 and H.263 are examples of compression algorithms that have
been developed for low bit rate video transfer like video conferencing. MPEG-
4 is an example of compression algorithm that enables coding of video and
audio material at high quality. MPEG-4 results usually in a very variable bit
rate stream as can be seen in Figure 4.5 that presents the bandwidth usage of
a movie compressed with MPEG-4 using high quality.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 10 20 30 40 50 60

B
itr

at
e

(b
it/

s)

Time (s)

Video streaming, unloaded BE network

Figure 4.5: An example of bandwidth usage of a MPEG-4 compressed video

4.1.2.2 Voice

Voice is a typical example of an application with hard real-time requirements.
The voice terminals generate a relatively low bit rate stream with �xed size
packets (usually quite small) depending on the used codec. For instance, a
G-723.1 codec can generate as low as 5.3 kbps stream with decent quality.
Regardless the used codec, the tra�c stream is typically at most only some
tens of kbps. The tra�c generated from voice terminals can be reduced even
more by using silence detection4 at the end terminals. This, however, increases
the variability and therefore lowers the predictability of the voice stream.

4Silence detection is a method for identifying and removing the silent parts from the
audio signal when the user does not speak.

23

Chapter 4. Di�erentiation of Internet tra�c

4.2 Mixing the tra�c

It is natural that mixing the applications (elastic and real-time) discussed be-
fore may have signi�cant interference issues due to very di�erent tra�c char-
acteristics and requirements. This interference makes it di�cult to guarantee
the operation of various tra�c types in a single network. The most vulnerable
for interference are real-time applications with hard requirements, as they need
some amount of resources to perform and can not adjust to network congestion
as elastic applications. However, there is also interference even between short
and long TCP �ows as was explained in section 4.1.1.1.

The interference between di�erent application types have been studied in
[Luo00][TNC+01]. These studies show through simulations and experiments
that the di�erent tra�c types are interfering each other and that they should
be separated.

24

Chapter 5

Implementing Di�erentiated
Services

5.1 Gap between theory and reality

A real system has various limitations and complexities introduced by the soft-
ware and hardware. Especially when implementing mechanisms in a general-
purpose hardware a number of limitations arise. For instance a standard PC is
designed to be a robust system for various di�erent types of tasks. An extra ef-
fort is usually devoted to error handling and exceptional processing that lowers
the performance. Also backward compatibility is important in a multipurpose
environment and a lot of historical legacy from the long incremental evolution
can be found in the software and hardware. Original design principles in the
hardware and the operating system can set limitations that are, if not impos-
sible, at least very di�cult to overcome. Quite often these important issues
are overlooked by the research people when designing a new theoretical model
to be used in the real systems. [Cho04]

5.2 Alternate Queueing

ALTQ [Cho99] is a framework for the BSD systems to support a wide range of
QoS components. ALTQ started as a challenge to implement theoretical QoS
mechanisms into an open source operating system running on a standard PC
hardware. ALTQ was originally designed to be a common research platform for
tra�c managing for the research community. Through the years, it has evolved

25

Chapter 5. Implementing Di�erentiated Services

into a tra�c managing subsystem that has been used by various people and
organizations also for daily operational use. [Cho04]

5.2.1 ALTQ Design

The ALTQ framework can be divided into three major components:

Interface to the operating system.

QoS components.

Management tools in the user space.

The interface to the operating system component includes the functionalities
to interact with the hardware and to actually make use of the QoS mechanisms.
The QoS components are the building blocks that actually provide QoS. These
include di�erent queueing disciplines, tra�c conditioning, scheduling etc. The
management tools are located in the user space to o�er an interface for the user
or other management softwares. Through this interface, ALTQ can be con�g-
ured and the status of a queueing discipline observed. The system architecture
of an ALTQ tra�c control model is presented in Figure 5.1.

5.2.2 Implementation issues

In this section, some mismatches between theoretical models and the real im-
plementations are discussed in the ALTQ case.

5.2.2.1 Queue operations

In theory, a queue model needs only two simple operations, namely enqueue
and dequeue. A packet is enqueued when it is stored to the queue. The
packet is dequeued when removed from the queue to be sent out to the output
interface. In real implementations, these two operations usually are not enough
and additional operations are needed in order to cope with various situations.

ALTQ introduces a set of new queue operations to support di�erent types of
queueing disciplines. These new queue operations had to be implemented in the
network drivers, as the existing queue model was not �exible enough for other

26

Chapter 5. Implementing Di�erentiated Services

QoS
manager

input
driver

traffic
condi-
tioner

forwarding output queueing

buffer

output
driver

user space

kernel space

packet
scheduler

classifier

Figure 5.1: ALTQ system architecture [Cho04]

than FIFO queues. An important new queue operation is the poll operation
that can be used to peek at the next packet to be dequeued. Luckily, for
most of the drivers, the modi�cations for queue operations are straightforward
macro replacements but the amount of supported drivers due to modi�cations
is limited. [Cho01] [Cho04]

5.2.2.2 Output bu�er model

A typical theoretical output bu�er model includes only a single queue for each
output link. This is, however, not true in a real PC system that includes two
distinct output bu�ers located in the software and hardware. The software
output bu�er is realized by the operating system, which we can manipulate
quite easily. However, the other bu�er located in the network card is harder
to control and it can have a signi�cant impact to the performance such as
increased delay and bursty dequeues.

Most network cards have a large bu�er to maximize link utilization. This
makes e.g. a delay constrained scheduler useless as packets can be delayed a
long time in the device bu�er before transmitting them to the wire. Thus, no

27

Chapter 5. Implementing Di�erentiated Services

guarantees on delay can be given even to the high priority packets. When the
device bu�er is large, the packets are dequeued from the queue to the device
bu�er in a bursty manner as a large number of packets are dequeued at the
same time. This reduces also control of the scheduler over the order of the
packets. [Cho04]

Usually minimizing the number of interrupts in the network card is recom-
mended as it lowers the CPU load. However, when using a queueing scheme
that needs a �ne grained operation, frequent interrupts are needed. Frequent
interrupts enable the packet scheduler to be work conserving that is essential
when maximizing link utilization.

To overcome the problems caused by the imperfect output bu�er model ALTQ
introduces a component called a token bucket regulator between the network
card and the queueing discipline (Figure 5.2). The idea of the token bucket
regulator is to regulate the amount of packets to be bu�ered in the device
bu�er. The amount of dequeued packets can be controlled by the tokens.
Tokens arrive to the token bucket at the average token rate. A packet can be
dequeued as long as there are enough tokens in the token bucket. For every
dequeue operation tokens in the bucket are subtracted by the size of the packet.
The size of the token bucket can be used to control the size of the bursts i.e.
the number of packets to be dequeued at the same time. The token bucket
size is automatically set by the ALTQ based on the interface bandwidth but
the user can also con�gure it manually.

Packet

Queueing
discipline

Link

Token
bucket
regulator

Network
card

Classifier

Figure 5.2: ALTQ output queue model [Cho04]

28

Chapter 5. Implementing Di�erentiated Services

5.2.2.3 E�ect of kernel timer resolution

The kernel operates in the rhythm of an internal clock that interrupts at regular
intervals called ticks. A typical value for the kernel clock is 100 or 1000 Hz
and it can be con�gured in FreeBSD using the HZ variable located in the
kernel con�guration �le. The precision of the clock a�ects on some operations
in the tra�c management. For instance, when performing tra�c shaping,
the granularity of the kernel usually plays an important role. It is clear that
tra�c shapers need to be able to transmit waiting data packets at precisely
calculated points of time in order to perform in a satisfying manner. If we
consider a kernel with a 100 Hz timer, the accuracy of tra�c shaping would
be 10 ms. On a 100 Mbps Ethernet this means that we are able to send 125
packets of size 1000 bytes during the timer interval. This is too coarse and
accurate tra�c shaping in many cases is not possible. Therefore, the timer
interval in kernel should be less than the packet transmission time.

The kernel timer plays a crucial role in the ALTQ/CBQ implementation. The
internal clock frequency de�nes the minimum time between interrupts and
therefore a�ects the minimum suspension time. The suspension time is the
time during which the class is not able to borrow. The suspension time is
calculated in clock ticks (Figure 5.3). Therefore, for a 100 Hz clock it means
a minimum suspension time of 10 ms, which is usually too coarse. The higher
the frequency of the internal clock is, the smaller the minimum suspension time
can be. High clock rate can cause too much system overhead and therefore
the value should not be set too high. The optimum kernel clock frequency is
related to the clock rate of the processor; the higher the CPU clock rate the
higher the kernel clock can be set.

5.3 Linux Tra�c Control

Support for Di�erentiated Services on Linux is part of the more general Tra�c
Control (TC) architecture. TC includes a set of mechanisms and queueing
operations to control incoming and outgoing tra�c on a router. Linux TC
includes basic building blocks that can be used to execute traditional tra�c
control actions (de�ned in Section 3.2) in the Di�Serv architecture.

The tra�c control in the Linux kernel can be divided into the following major
components: [Alm99]

29

Chapter 5. Implementing Di�erentiated Services

Minimum class
suspension time

Time

Time

100 Hz clock

200 Hz clock

10 ms

Figure 5.3: The e�ect of kernel timer on a suspension time of a class [RG99]

Queueing disciplines

Classes

Filters

Policing

Queueing discipline is an essential element in the Linux tra�c control that
controls how packets are enqueued on the device including scheduling and
queueing operations. Queueing disciplines can be nested as shown in Figure
5.4. Filters can be used to di�erentiate packets into di�erent classes.

The individual tra�c control components are manipulated from the user space
by using a tc con�guration utility. The location and the role of each component
need to be expressed in every con�guration command leading to redundancy
and hard to read con�guration �les. In other words, tc lacks the functionality
of presenting the structure of tra�c control components in an intuitive way.
Therefore con�guring tra�c control through tc can be considered rather hairy
leading easily to miscon�gurations. An example of tc con�guration is shown
in Figure 5.5 where two FIFO queues are created with priority queueing. As
can be seen already this simple con�guration is rather hard to read. The issue
of complicated con�guration has lead to a project called Linux tra�c control
next generation (tcng) that tries to solve this problem.

30

Chapter 5. Implementing Di�erentiated Services

Filter1

Filter2

Filter3

Queueing discipline (q_disc)

q_disc

q_disc

Class1

Class2

Figure 5.4: Nested queueing disciplines with two classes

5.3.1 Linux Tra�c Control - Next Generation

Linux tra�c control next generation is a project that aims to extend the ex-
isting tra�c control in Linux to a compact and more user-friendly form. To
achieve this tcng adds another abstraction layer between the tc con�guration
language and the user/application as shown in Figure 5.6. [Alm02]

The tra�c control compiler (tcc) is used to translate con�guration scripts
written in the new tcng language to a common internal representation. From
this representation, the commands in the tc language are generated. This kind
of layering has bene�ts, as it does not require any changes to the original kernel
or tc utility. [Alm02]

5.3.1.1 The tcng language

The tcng language has a C-like syntax that enables a more structured and easy
to understand way to create con�guration scripts. The con�guration begins
with the interface name following with the role (ingress or egress) and the
entire classi�cation. An example of a tcng script is shown in Figure 5.7 which
will be translated to a tc form presented in Figure 5.5. Compared to tc syntax
tcng o�ers a compact and easy to understand way of creating con�gurations.

31

Chapter 5. Implementing Di�erentiated Services

tc qdisc add dev eth0 handle 1:0 root dsmark indices 4 \
default_index 0

tc qdisc add dev eth0 handle 2:0 parent 1:0 prio

tc qdisc add dev eth0 handle 3:0 parent 2:1 bfifo limit 20480

tc qdisc add dev eth0 handle 4:0 parent 2:2 bfifo limit 102400

tc filter add dev eth0 parent 2:0 protocol all prio 1 tcindex \
mask 0x3 shift 0

tc filter add dev eth0 parent 2:0 protocol all prio 1 handle 2 \
tcindex classid 2:2

tc filter add dev eth0 parent 2:0 protocol all prio 1 handle 1 \
tcindex classid 2:1

tc filter add dev eth0 parent 1:0 protocol all prio 1 \
handle 1:0:0 u32 divisor 1

tc filter add dev eth0 parent 1:0 protocol all prio 1 \
u32 match u8 0x6 0xff at 9 offset at 0 mask 0f00 \
shift 6 eat link 1:0:0

tc filter add dev eth0 parent 1:0 protocol all prio 1 \
handle 1:0:1 u32 ht 1:0:0 match u16 0x50 0xffff at 2 \
classid 1:1

tc filter add dev eth0 parent 1:0 protocol all prio 1 \
u32 match u32 0x0 0x0 at 0 classid 1:2

Figure 5.5: tc script example implementing two FIFO queues with priority
queueing [Pap04]

5.4 ALTQ vs. Linux TC

ALTQ and Linux TC are similar in some ways. Both implementations de�ne
queueing disciplines and a set of queue operations. The Di�Serv components
can be loaded dynamically as kernel modules. The main di�erences come from
the architectural di�erences in the kernel. Linux has a network device layer
that can be used to abstract the underlaying device driver. This means that
the queueing operations can be done within the device layer and modi�cations
only need to be done in this layer. In FreeBSD, such abstraction layer does

32

Chapter 5. Implementing Di�erentiated Services

Kernel Traffic Control

TC utility

TCC

User or
Application

Kernel
space

User
space

Tc language

Tcng language

Figure 5.6: Tra�c control in Linux in the next generation model

dev "eth0" {
egress {

class (<$high>) if tcp_dport == PORT_HTTP;
class (<$low>) if 1;

prio {
$high = class (1) {

fifo (limit 20kB);
}

$low = class (2) {
fifo (limit 100kB);

}
}

}
}

Figure 5.7: tcng example implementing two FIFO queues with priority queue-
ing

not exist. As a result, modi�cations need to done to the device drivers. This
is unfortunate as it lowers the amount of supported device drivers.

ALTQ includes an API that can be used to dynamically change the con�gu-
ration parameters. This makes it easier to utilize QoS components from the
upper layer programs. Linux TC does not have such an API.

33

Chapter 5. Implementing Di�erentiated Services

Table 5.1: Comparing FreeBSD ALTQ and Linux TC
ALTQ Linux TC

Need to modify network drivers Device layer abstraction
Hardware bu�er transparency Hardware bu�er is a problem

Documented No good documentation available
Con�guration scripting language Original TC di�cult to con�gure

Di�Serv components as kernel module Di�Serv components as kernel module
ALTQ API No API available

A major drawback in Linux TC is that it does not take into account bu�ering
at driver level. Large bu�ers at driver level may negate the e�ect of the
scheduler by delaying higher priority packets. In other words, a large bu�er
in the network card can spoil the whole idea of delay di�erentiation if the
o�ered load is more than the physical link capacity. As explained in Section
5.2.2.2 ALTQ employs a token bucket regulator between the scheduler and the
network card to solve this problem.

The summary of comparison between ALTQ and Linux TC is presented in
Table 5.1.

34

Chapter 6

Tra�c tracing and analysis tools

This chapter describes the tools that were used in the measurements and after
measurements for post processing the captured data.

6.1 Packet capturing

Tcpdump1 is a tool for capturing the network tra�c. Tcpdump is a popular
packet capture utility that stores the packet traces to a widely used pcap
format. Tcpdump was used in the measurements to capture the TCP/IP
headers of packets for later analysis.

Tra�c capture was performed both at the receiving and sending side of the
tra�c sources. Because the link speed in the network is as low as 10 Mbps,
the use of Tcpdump creates only a minimal interference to the system. When
using higher link speeds the packet capture should be done on the same LAN
as the receiver but not on the same machine. This could be done e.g. by
using a splitter that mirrors the tra�c to the packet capturing machine. The
Tcpdump capture �les were analyzed with a Tcptrace tool described in section
6.2

1Available from http://www.tcpdump.org

35

http://www.tcpdump.org

Chapter 6. Tra�c tracing and analysis tools

6.2 Tcptrace

Tcptrace 2 is a command line tool written by Shawn Ostermann at Ohio Uni-
versity for analysis of packet capture �les. Tcptrace can be used to produce
both numerical and graphical information about throughput, round trip times,
window advertisement etc. The graphs can be viewed and processed to EPS
format by using a graphing tool called xplot3.

6.3 SmartBits

In order to improve the precision in one-way delay and jitter measurements
the use of a specialized measurement device capable of time stamping in the
hardware is highly recommended. Therefore, SmartBits 600 (SMB-600) was
used for accurate delay measurements. SMB-600 provides 10 ns resolution
for time stamping and displays the results with 1 µs accuracy. SMB-600 was
equipped with one 10/100 Base T Ethernet (6 port) SmartMetrics card.

6.4 Altqstat

Altqstat is a user space program for ALTQ to get status on the queueing
discipline. With altqstat it is possible to trace queue lengths, packet drops,
transferred bytes etc. Altqstat is run in the user space that communicates with
the kernel through an API. Normally altqstat is used for debugging purposes
to understand better what is happening in the system. As our needs are a bit
di�erent, some modi�cations had to be done to the altqstat code.

6.4.1 Modi�cations to altqstat

Two modi�cations needed to be done to the original altqstat program:

Increasing the internal resolution

Modifying the output formatting for easier post processing
2Available from http://irg.cs.ohiou.edu/software/tcptrace/
3Available from http://www.xplot.org/

36

http://irg.cs.ohiou.edu/software/tcptrace/
http://www.xplot.org/

Chapter 6. Tra�c tracing and analysis tools

The resolution in the altqstat is normally one second. This polling interval can
be set by using the -w (wait) parameter. This is, however, too coarse for our
needs and therefore the resolution was increased to one microsecond by replac-
ing a function sleep() with a more accurate usleep() function. However, using
a microsecond resolution increases the system overhead due to I/O operations
and creates very large log �les. Hence, altqstat was used in the measurements
with a 10 ms resolution.

The output formatting in altqstat is good for interactive observations but
bad for post processing. Therefore, the output formatting was modi�ed to a
format that is easy to parse and process. A tabulator separated column style
was chosen as the output format. These �les can be visualized directly using
e.g. Gnuplot graphing tool.

6.5 Perl scripts

Numerous Perl scripts were written in order to parse di�erent log �les and to
process data to a desired format. Perl is a high-level programming language
with excellent �le and text manipulation facilities. This makes it particularly
suitable for our data processing needs.

37

Chapter 7

Measurement setup

7.1 Overview

For the measurements, an isolated fully functioning Di�Serv network with
various tra�c sources was built. ALTQ tra�c management software was used
in all experiments to provide the support for di�erentiated services.

7.2 Technology and topology

The measurement network was built on a standard PC hardware with Ether-
net interfaces. This technology was chosen due to its low price and �exibility.
PC o�ers a good platform for research and development with low cost and
�exibility to make changes both to the hardware and software. The network
includes altogether 20 PCs. The network topology was designed to have cross-
ing tra�c and dissimilar delay paths. With the available hardware, we ended
up with the topology presented in �gure 7.1.

The routers in the network are 1.3 GHz AMD machines with 256 MB of RAM.
These routers use a FreeBSD 4.5 operating system that is patched with ALTQ
using 1000 Hz kernel clock. The routers have four 10/100 Mbps Ethernet
interfaces that are con�gured to 10 Mbps full-duplex mode. Therefore, the
link speed in the network is 10 Mbps and the maximum transfer unit is 1500
bytes.

38

Chapter 7. Measurement setup

Dummynet

VoIP (a)

VoIP (b)

www (c1)

Video (c)

ftp (c1)

www (c2)

ftp (c2)

www (c3)

bg (b)

bg (a)
ftp (s1)

www (s)

ftp (s2)

Video (s)

ALTQ5

ALTQ2

ALTQ3

ALTQ4

ALTQ1

core1

core3

core2

www (c1)
www (s)www (c2)

www (c3)

Video (c) Video (s)

VoIP (a) VoIP (b)

ftp (c1) ftp (s1)

ftp (c2) ftp (s2)bg (a) bg (b)

Figure 7.1: Measurement network topology and connection pairs

7.3 Baseline delay measurements

SmartBits was used to determine end-to-end delay in an unloaded network
(Figure 7.1) and to verify that the delay emulation using Dummynet really
works. This will give us also the baseline when analyzing the delay measure-
ments. In this measurement UDP packets of size 1024 B are sent at the rate
of 10 kbit/s bi-directionally during one minute. The one-way-delay in an un-
loaded BE network (altq daemon disabled) is described in table 7.1. The delay
with altq daemon enabled is shown in table 7.2. We can see that the aver-
age delay in the high delay path is about 35 ms and 3.5 ms in the low delay
path. The delay emulation appears to work properly. Enabling altq daemon
increases the average delay by less than 0.1 ms.

Table 7.1: End-to-end latency in the unloaded BE network
Min delay (ms) Avg delay (ms) Max delay (ms)

ALTQ1→ALTQ3 34.40 34.84 35.29
ALTQ3→ALTQ1 34.42 34.82 35.30
ALTQ5→ALTQ4 3.55 3.59 3.68
ALTQ4→ALTQ5 3.55 3.58 3.61

39

Chapter 7. Measurement setup

Table 7.2: End-to-end latency in the unloaded network with ALTQ
Min delay (ms) Avg delay (ms) Max delay (ms)

ALTQ1→ALTQ3 34.476 34.907 35.339
ALTQ3→ALTQ1 34.596 34.962 35.364
ALTQ5→ALTQ4 3.6363 3.6639 3.7171
ALTQ4→ALTQ5 3.6399 3.6683 3.7212

7.4 Tra�c sources

A motivation for tra�c generation was to produce a realistic mix of applica-
tions found in the modern Internet that covers the basic tra�c types. The
testbed includes several tra�c generators capable of emulating a wide range of
applications. These tra�c generators are used to create both constant bit rate
(CBR) and variable bit rate (VBR) tra�c. As a transport protocol we use
UDP or TCP depending on the application type. All TCP tra�c is created
by using standard PC hardware running Linux or FreeBSD operating system
in order to provide a full TCP stack. Also additional dedicated measurement
hardware (SmartBits 600 and Adtech AX/4000) was used to create UDP based
tra�c and to measure accurately one-way delay and delay variation. The char-
acteristics of tra�c generator PCs are presented in Table 7.3.

Table 7.3: Tra�c generator PCs used in measurements
CPU (MHz) OS RAM (MB)

Video (c) Intel 133 Linux 2.4.20 32
Video (s) Intel 133 Linux 2.4.20 64
www (c1) Intel 133 Linux 2.4.20 32
www (c2) Intel 133 Linux 2.4.20 32
www (c3) Intel 133 Linux 2.4.20 32
www (s) AMD 1300 FreeBSD 5.0 256
ftp (c1) AMD 1300 FreeBSD 4.5 256
ftp (c2) Intel 433 Linux 2.4.20 256
ftp (s1) Intel 133 Linux 2.4.20 64
ftp (s2) Intel 133 Linux 2.4.20 32

Controller Intel 433 W2k 128

7.4.1 Voice over IP

SmartBits 600 with the SmartVoIPQoS test application was used to generate
packets that simulate the call patterns of voice tra�c. With SmartVoIPQoS,
we were able to simulate several users using VoIP services and determine the

40

Chapter 7. Measurement setup

achieved quality of service. We used G-711 µ-law codec with 20 ms framing
time. This combination produces packets of size 218 bytes with a constant
transmission rate of 87.2 kbps (50 packets/s). We emulated altogether 20
simultaneous voice calls with bi-directional behavior.

7.4.1.1 Perceptual Speech Quality Measure

The overall quality of a telephone conversation can be determined based on
the metrics that the measurement device is capable of measuring i.e. packet
loss, one-way delay, and jitter. These metrics can be mapped to a Percep-
tual Speech Quality Measure (PSQM) voice scoring system. PSQM (ITU-T
recommendation P.861) is a scoring system that illustrates the overall qual-
ity through one quantity. It was originally developed to test audio codecs
but it has been also widely used for evaluating VoIP systems. PSQM is a
more objective method than MOS for scoring voice quality and is the method
SmartVoIPQoS uses to rate voice quality. The basic operation of the PSQM
process is shown in Figure 7.2. The PSQM algorithm compares the original
signal with the signal that has been through the coding and decoding process
and outputs the PSQM score.

The mapping between measurement results and the PSQM values is done by
SmartVoIPQoS using a prede�ned PSQM matrix. This matrix is created by
applying PSQM values from low to high for test signals with various levels
of impairment (packet loss, jitter). The PSQM values range from 0 (most
desirable) to 6.5 (least desirable). The PSQM values are a�ected by packet loss,
jitter and the type of codec used. With the G.711 codec, the best achievable
value is 0.4.

PSQM scores can be roughly converted into a MOS value. A PSQM score of
0 (very good quality) translates to a MOS value of 5, and a PSQM value of
6.5 (very bad quality) translates to a MOS value of 1.

7.4.2 Video streaming

RUDE (Real-time UDP Data Emitter)1 was used to transmit a real time traf-
�c pattern to the collector for RUDE (CRUDE). RUDE/CRUDE is capable
of time stamping the packets with 1 µs resolution. The tra�c pattern was

1Available from http://rude.sourceforge.net/

41

http://rude.sourceforge.net/

Chapter 7. Measurement setup

Input speech

DecodingCoding

Objective
quality
measurement
by PSQM

Input signal
 (reference)

Output
signal

Transform from
PSQM objective
scale to
subjective scale

Estimated
MOS score

PSQM
score

Figure 7.2: PSQM testing process

generated from a publicly available video trace [FR00]. We used a video trace
from a movie 'Mr. Bean'. This movie was encoded with the MPEG-4 video
codec with 25 frames/s and a Group of Pictures (GOP) of I BB P BB P BB P
BB. The mean bit rate for the video stream was 130 kbps with a peak rate of
595 kbps. The video stream data rate pro�le using a 100 ms resolution during
the �rst minute is shown in �gure 7.3. We can see the bursty nature of the
MPEG-4 encoded video. This is due to the highly varying frame size within
I B and P frames as can be seen in Figure 7.4 that presents a histogram and
a cumulative distribution function for video packet sizes. To avoid fragmen-
tation the original movie frames exceeding the MTU were split into smaller
pieces.

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

B
itr

at
e

(b
it/

s)

Time (s)

Figure 7.3: Video data rate pro�le in an unloaded BE network

42

Chapter 7. Measurement setup

0 500 1000 1500
0

20

40

60

80

100

120

140

160

Packet size (B)

n

Histogram for video streaming packet size

(a) Packet size histogram

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet size (B)

F
(x

)

CDF for video streaming packet size

(b) Cumulative distribution function for packet sizes

Figure 7.4: Packet size histogram and empirical cumulative distribution func-
tion for video packets

7.4.3 World Wide Web

To model HTTP client-server transactions we used a real WWW-server (Apache
2.0) with Siege2 clients. Siege is a benchmarking utility that can be used to
simulate a large number of users from the same client machine. Siege clients
were con�gured with the following parameters:

2Available from http://www.joedog.org/siege/index.php

43

http://www.joedog.org/siege/index.php

Chapter 7. Measurement setup

Reading time: Reading time is the time between two consequent page
request i.e the time the user uses to read the page before fetching another
page. A random number between 0 and 12 seconds was used as a reading
time.

Concurrent users : Concurrent users de�nes the number of users that
communicate with the web server. It should be noted that as it takes a
time for the user to read the page, this parameter does not represent the
amount of concurrent sessions. The number of concurrent users was set
to 55. This creates about 20 concurrent sessions and 500 page fetches
per client during the measurement period.

Object size: The object size de�nes the size of a page in bytes in the web
server. The object size was modeled as a geometric distribution with a
mean size of 10 kB.

Protocol : The protocol can be chosen between HTTP 1.0 and HTTP 1.1.
HTTP version 1.0 was used in all experiments.

The throughput pro�le of a Siege client (www c1) is shown in Figure 7.5. As
object sizes are small and the user idles during the reading time, the tra�c
generated is very bursty in nature. The packet size distribution is shown in
Figure 7.6.

250000

200000

150000

100000

50000

 50.000 s 40.000 s 30.000 s 20.000 s 10.000 s0 s

bytes/second

time (s)

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
����

��

��

��

��

��

��

��

��

��

��
��

��

����

��

��

��

��

��

��

��

��

��

�

total
�

80 ��

Figure 7.5: WWW client throughput in an unloaded BE network with 300 ms
resolution

7.4.4 File Transfer Protocol

FTP connections were modelled with a client-server application called Kilent-
Server written in Perl by Markus Peuhkuri. This application was modi�ed to

44

Chapter 7. Measurement setup

0 500 1000 1500
0

1000

2000

3000

4000

5000

6000

Packet size (B)

n

Histogram for HTTP packet size

(a) Packet size histogram

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet size (B)

F
(x

)

CDF for HTTP packet size

(b) Cumulative distribution function for packet sizes

Figure 7.6: Packet size histogram and empirical cumulative distribution func-
tion for HTTP packets

better emulate FTP transactions. An additional byte counter was included
to the Kilent-Server application in order to easily create di�erent size tra�c
transfers. Each FTP client establishes 20 connections to the server machine.
This emulates 20 users downloading a single �le from the server. The �le sizes
were geometrically distributed with a mean size of 3 MB. As the �les are rather
large, the majority of packets sent in the network are either of the size of the
MTU or 40 bytes (acknowledgements) as can be seen in Figure 7.7.

45

Chapter 7. Measurement setup

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3
x 10

4

Packet size (B)

n

Histogram for FTP packet size

(a) Packet size histogram

40 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet size (B)

F
(x

)

CDF for FTP packet size

(b) Cumulative distribution function for packet sizes

Figure 7.7: Packet size histogram and empirical cumulative distribution func-
tion for FTP packets

The throughput of an FTP client (ftp c1) in the measurement network without
other tra�c is plotted in Figure 7.8. We can see that the ftp client is able to
make almost the full use of the resources, as there are no idle times as was the
case with the WWW client.

46

Chapter 7. Measurement setup

1000000

800000

600000

400000

200000

0
 40.000 s 30.000 s 20.000 s 10.000 s0 s

bytes/second

time (s)

�

�

�

������

�

������������

�

�

�

������

�

������������

�

�

�

������

�

������������

�

�

�

������

�

������������

�

�

�

������

�

�

�

����������

�

�

�

������

�

�

�

����������

�

�

�

������

�

�

�

����������

�

�

�

������

�

�

�

����������

�

�

�

������

�

��

����������

�

�

�

������

�

�

�

����������

�

�

�

�����

�

�

�

�

����������

�

�

�

�����

�
�

��

���������

�

�

�

�

�����

�

��

�

���������

�

�

�

�

�����

�

�

�

�

���������

�

�

�

�

�����

�

�

�

�

���������

�

�

�

�

�����

�

�

�

�

�������

�

�

�

�

�

�

�����

��

��

�������

�

�

�

�

�

�

�����

�

�
�

�

�������

�

�

�

�

�

�

�����

�

�

�

�

�������

�

�

�

�

�

�

�����

�

�
�

�

�������

�

�

�

�

�

�

�����

�
�

�
�

�������

�

�

�

�

�

�

�����

���
�

�������

�

�

�

�

�

�

�����

���

�

����

�

��

�

�

�

�

�

�

�����

�

�

�

�

����

�

��

�

�

�

�

�

�

�����

�
�

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�
��

��

�

�

�

��

�

�

�

�

�

�

�����

��

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�
�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�
�

�

��

�

��

��

�

�

�

�

�

�

�����

��

�

�

��

�
�

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�

�
�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

��

�

�

��

��

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�
�

�

��

�

�

�

�

�

�

�����

�
�
�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

���

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

��

�

��

�

�

�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�
�

��

�

�

�

�

�

�

�����

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

���

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�
�

��

�
�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�
�
�

��

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�

�
�

�
�

�

�

�

�

�

���

�

�

�

�

�

�

��

��
�

�

�

�

�

�

�

�

�

���

�

�

�

�
�
�

��

�

�

��

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

���

�

�

�

�

�
�

��

�

�

�
�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

����

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

���

�

�

�

��

�

��

�
�

�

���

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

���

�

�

�

��

�

��

�

�

��
�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�
��

��

�

�

�

�

�

�

���

�

�

��

�

�

��

�

�

��

�

�

�

�

�

�

�

���

�

�

��

��

��

�

�
�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�

�
�
�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

���

�

�

�

�

�

�

�
�

�
�

�

�

�

��

�

�

�

�

���

�

�

�

�

�

�

�

�

��

�
�

�

�

��

�

�

�

���

�

�

��

�

�

�

�

�
��

�
�

�

�
�

�

�

�

���

�

�

�

�
�

�

�

�

�

�
�

�
�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�
�

��

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

��

�
�
�

��

�

�

�

�

�
��

�
�

��

�

�

�

�

��

�

�

�

�
�

�

�

�

�
�
���

�

��

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

��

�

�
��

�

�

�

�

��

���

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

���

�

�

��

�

�

�

�

��

��

�

�
�
�

�

�

�

�
�
�

�

�

�
�

�

�

�

�

��

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�
�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

��

�

��

�

�

�

�
�
�

���

�

�
�

�

�

�

�

�

��

�

��

�

�

�

�

�

�
�

��
�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

��

�

�
�

�

�

�

�
�
��

�

�

�

�

�

�

�

��

�

�

�

�

��

�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

��
�

�
�
�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�
�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

��

�

�

�

��

�

��

�

�

�

�

�

�

��

�
��

�

�

�

�

�

�

�

�

�
�
�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�
�
�
�
�

�

�

�

�

�
�

�

�

��

��

��

�

�

��
��

�

�
�

�

�

�

�
�

�

�

����

��

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�
�

��
�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�

�

���

�

�

�
�

��

�

�

�
�

�

�

�

�

�

�

��

�

�

��

�

�

�
�
��

�
�
�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�
�

�

��
�
�

�

�

�

�

�

�

�

�
�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

��

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�
�

��

�

�

�

�

�

��

�

�

�

��

�
�

�

�
�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�
�

�

�

��

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�
�
�

�

��

�

�

�

�

�

��

�

��
�

�

��
�
�
��

��
�

�

�

�

�

�

�

�
�

�

�

��
��

�
�
�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
��

�

�

�

�

�

�

�

�

�
�����

�
�
�
��

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�
�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�
�
�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

��

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�
��

���

�

�

�

�
��

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

��
�
�
�

�

�
�

�

�

�

�

�

�

�
�

�
�

�

�
�

�

�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

���

�

�

�

�

���

��
�

�

�

��

�

�

���
���

�

�

�

�

�

�

�
���

�

�

��

�
�
������

�

�

�

�

�

�

�

�

�

�

�

�

���

�
���
���

�

�

�

�

�

�

�

�

�

�

��

�����4258 �4259 �4260 �4261 �4262 �4263

�

�

�

�

�

�
�

��

��

��4254 �4255 �4256 �4257 ������

�

�

�

�

�

�

�

��

�

�

4252 �4253 ����

�

total

�

4244

�

20

�

4245
�

4246 �

4247
�

4248 �

4249 �

4250 �4251 ��

�

�

�

�

��
����

Figure 7.8: FTP client throughput (per connection and total) in an unloaded
BE network with 300 ms resolution

7.4.5 Background tra�c

The Adtech AX/4000 tra�c generator was used to create UDP/IP tra�c to the
network. Adtech's IP generator was con�gured to create a Markov modulated
poisson process with random bursts. The packet size was modeled with a
quad-modal distribution (i.e. four Gaussian distributions superimposed). This
tra�c type does not aim to model any particular application. It is used to
create upstream congestion to the network.

7.5 Bu�er management

The bu�er sizes for tra�c classes at the router's output link were chosen to
satisfy two operational aspects. For real-time tra�c, a small bu�er size with
a simple tail drop algorithm was used in order to provide minimum latency.
For TCP based tra�c a bigger bu�er using the RED algorithm was used to
enable high link utilization and to prevent synchronization. The widely used
"rule-of-thumb" [VS94] was used as a reference for setting the bu�er size to
a reasonable level for TCP sources. The rule states that the delay-bandwidth
product describes the required bu�er size. This holds quite well for low-speed
links with only few TCP connections. However, recent studies have shown that
the rule-of-thumb for setting the size equal to the bandwidth-delay product is
outdated and incorrect for high-speed routers serving highly aggregated tra�c
[BSM04][AKM04]. The maximum bu�er size in ALTQ/CBQ that can be set
for a class is 200 packets.3

3The maximum bu�er size can be increased by modifying the sources and recompiling
the kernel

47

Chapter 7. Measurement setup

7.5.1 Setting the bu�er size

The bu�er length can be set in ALTQ using the maxdelay parameter. ALTQ
calculates the bu�er size (in packets) based on the given maxdelay, average
packet size and the bandwidth assigned for the class using the equations 7.1
and 7.2. NS_PER_MS and NS_PER_SEC are scaling factors where the
former refers to 106 and the latter to 109. Due to this strange way of setting
the bu�er size in ALTQ, we need to calculate it beforehand and con�gure it
to ALTQ through the maxdelay parameter. The default value of 1500 bytes
for average packet size was used in all measurements.

Bufsize = (maxdelay∗NS_PER_MS)/(nsPerByte∗avg_pkt_size) (7.1)

nsPerByte = 1/bandwidth ∗NS_PER_SEC ∗ 8 (7.2)

7.6 Clock synchronization

The system clocks at di�erent network nodes do not necessary show the same
time and often they run even with di�erent frequency. This is usually the case
when dealing with the timing functionality built inside the PC hardware. In
our measurement network, we have two di�erent needs for clock synchroniza-
tion:

Scheduling of events at the same time.

Measuring one-way delay in the network.

7.6.1 Network Time Protocol

Network Time Protocol (NTP) is a widely used architecture for synchronizing
time among distributed client and server machines. NTP was �rst described
in RFC 958 [Mil85] but it has evolved many changes after that. The newest
standardized version of a full NTP architecture is version 3 [Mil92]. NTP
version 4 is a signi�cant revision of the NTP standard, which is also the current
development version.

48

Chapter 7. Measurement setup

NTP version 4.1.0-8 is used in the test network for clock synchronism. One of
the tra�c generator PCs (ftp s1) is acting as the NTP server. All other PCs
in the network are synchronized to this server by running a NTP daemon that
polls the server machine and adjust the local clock to the same time. The clock
o�set during 24 hours period is shown in Figure 7.9. We can see that the o�set
oscillates within about -1 ms and + 1 ms. Therefore, by using the local clock
in the server machine as a reference clock we achieve about 1 ms accuracy.
For a higher accuracy, we could use e.g. a Global Positioning System (GPS)
receiver as the reference clock.

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

O
ffs

et
 (

s)

Time (s)

Figure 7.9: Clock o�set during 24 hours period

7.7 Delay emulation

An important factor when evaluating the achieved performance in the network
is the e�ect of end-to-end delay. Our test network has a very low end-to-end
delay and the delay is about the same in all tra�c paths. Therefore, we needed
to arti�cially create delay to our network for certain paths. For delay creation
we used the dummynet [Riz97] network emulator.

7.7.1 Dummynet

Dummynet is a tool for emulating queue and bandwidth limitations, delays,
packet losses, and multipath e�ects. Dummynet is integrated into the FreeBSD

49

Chapter 7. Measurement setup

operating system but it can be used also as a standalone version that �ts on a
�oppy disk.

The emulation of limited network resources is carried out in the dummynet by
passing the packets through two control queues, namely R-queue and P-queue.
A P and R queue pair is needed in each communication direction. These queues
are located between the protocol layer under observation and the lower layer
(Figure 7.10). The R and P queues are used to implement a communication
link called a pipe. The following processing rules are used when exchanging
tra�c between two protocol layers: [Riz98]

Packets are �rst inserted in the R-queue bounded by the maximum queue
size simulating the e�ect of limited size bu�er. A queueing policy (usually
FIFO with taildrop) is used to de�ne which packets are inserted to the
queue.

Packets are transferred from the R-queue to the P-queue at a maximum
rate of B bytes per second simulating the bandwidth limitations on the
communication media.

Packets remain in the P-queue for a prede�ned amount of seconds in
order to emulate delay on the link. After packets are delayed they are
moved to the next layer in the protocol stack.

Application

Network

Protocol
 stack

R-queue

P-queue

Figure 7.10: The operation principle in dummynet

Dummynet was used in the core of our network to create a high delay path.
Therefore two clients, www(c3) and ftp(c2) are connected to the server through

50

Chapter 7. Measurement setup

the low delay path whereas the other clients are using the high delay path
(Figure 7.1).

7.8 Measurement procedure

The PC-based tra�c sources were scheduled to begin their transmission at
the same time. A one-minute warm-up period was used before the actual
measurements. VoIP tra�c was started about 7 seconds from the beginning of
measurement as a 45 second burst. The measurement period was 60 seconds
during which the data was collected. The data was post-processed o�ine after
the measurements. Measurements were repeated �ve times in order to get
statistical validity.

7.9 Terminology

7.9.1 Delay

One-way delay is computed from the receiver (Rx) and transmit (Tx) time
stamps by simply calculating the di�erence as noted in equation 7.3.

Delay = (Rx timestamp) − (Tx timestamp) (7.3)

7.9.2 Jitter

Jitter is calculated by comparing the delay of each packet and its subsequent
packet. Let's assume we have a �ow containing packets 1,2,3,4 and so on.
The jitter for each subsequent packet pair (individual jitter) is calculated as:
[Inc01]

Jitter1,2= ‖Packet 2's (Rx Time - Tx Time) - Packet 1's (Rx Time - Tx Time)‖

Jitter2,3= ‖Packet 3's (Rx Time - Tx Time) - Packet 2's (Rx Time - Tx Time)‖

Jitter3,4= ‖Packet 4's (Rx Time - Tx Time) - Packet 3's (Rx Time - Tx Time)‖

...

51

Chapter 7. Measurement setup

The average jitter is then de�ned as:

Average jitter =

∑
individual jitters

total number of packets received
(7.4)

7.9.3 Packet loss

Packet loss is de�ned as a ratio between received (Rx) and sent (Tx) packets:

Packet loss =
Tx packets−Rx packets

Tx packets
∗ 100% (7.5)

7.9.4 Throughput

The throughput is the amount of data transferred from one place to another
in a speci�ed amount of time:

Throughput =
Data transferred

Transfer time
(7.6)

In this work we use two di�erent throughput de�nitions, namely per connection
and aggregate throughput. Per connection throughput de�nes the throughput
for an individual connection (during its lifetime) whereas aggregate throughput
presents the total throughput for all connections.

52

Chapter 8

Results

8.1 The level of di�erentiation

This section presents the results from the measurements where we increase the
level of di�erentiation step by step. From these measurements we want to get
the answer to the following questions:

How many tra�c classes are needed?

What tra�c types need to be separated?

Table 8.2 shows the classi�cation of tra�c into classes and the provisioning
in di�erent di�erentiation levels. The provisioning in these measurements is
done in a conservative way. We knew the amount of real-time tra�c and used
this information when provisioning the real-time class. It should be noted that
2% of the link bandwidth is reserved for the control tra�c. ALTQ requires a
control class always to be de�ned. The control class is used here to transmit
tra�c initiated from SSH and NTP. The delivery of NTP packets is essential
in order to keep the clocks in synchronism. Dropping policies and bu�er sizes
are shown in Table 8.1.

8.1.1 Best E�ort model

The measurements were made �rst in a conventional best e�ort (BE) network
meaning that there is no di�erentiation between data �ows. This is the situa-
tion on the current Internet. Previous studies [Luo00][AL03][LA04] have shown

53

Chapter 8. Results

Table 8.1: Queue management algorithm and bu�er size (packets) for tra�c
classes

VoIP Video HTTP FTP
1 class RED (215)
2 classes FIFO (15) RED (200)
3 classes FIFO (15) RED (70) RED (130)
4 classes FIFO (5) FIFO (10) RED (70) RED (130)

Table 8.2: Provisioning of the link capacity in the measurements
VoIP Video HTTP FTP

1 class 9.8 Mbps
2 classes 3.0 Mbps 6.8 Mbps
3 classes 3.0 Mbps 2.0 Mpbs 4.8 Mbps
4 classes 2.0 Mbps 1.0 Mbps 2.0 Mbps 4.8 Mbps

that three or four tra�c classes are needed. These results were derived from
simulations that used similar tra�c patterns as in this experimental study.

Figure 8.1 shows the queue length and dropped packets (cumulative) using 10
ms resolution at the bottleneck link. We can see how RED is trying to keep
the average queue length low by dropping packets before the bu�er over�ows
(early drops in Figure 8.1(b)). Despite that, the bu�er is constantly �lling up.
This causes extra delay for interactive applications and lowers the throughput
of elastic applications due to packet drops.

Figure 8.2 presents the one-way delay for subsequent packets in a video stream
plotted in a xy-diagram. The variation in delay (jitter) can be observed from
the deviation of points from the line y=x. We can see that the delay is spread
to a large area varying from about 40 ms to 310 ms with about 180 ms center.
For an application with hard real-time requirements like video conferencing,
the delay is too much to overcome through bu�ering. For a video streaming
with non bi-directional behavior, a large playback bu�er could compensate the
high delay. However, high packet loss (7 %) lowers the quality of streaming
video to a very low level.

The statistics for VoIP are shown in Table 8.3. The one-way delay is on
average 180 ms that varies between the minimum (92 ms) and maximum (250
ms) value. Average packet loss for VoIP tra�c is 9.7 %. The high packet loss
combined with a jitter of 5.5 ms yields a PSQM score of 2.9. The high PSQM
and delay values indicate that the use of telephony is impossible in a single
class case.

54

Chapter 8. Results

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

(a) Queue length in the BE case

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000

D
ro

pp
ed

 p
ac

ke
ts

Sample #

Forced
Early

All

(b) Cumulative packet drops in the BE case

Figure 8.1: Queue length and packet drops in the BE case

A sequence number plot for a FTP connection downloading a �le is shown in
Figure 8.3. The throughput can be observed from the slope of the curve. The
decreasing gradient indicates a reduced data rate.

Figure 8.4 shows the per object (connection) and aggregate (client) through-
puts for the TCP clients. We can see that FTP clients are getting more
bandwidth than WWW clients. This is due to idle times between the page
requests in the HTTP connections and therefore FTP is capable of utilizating
the bandwidth resources more e�ciently. The connection throughput for the
FTP clients is higher than for the WWW clients as the long lasting TCP con-
nections have reached the steady state. The short-lived WWW connections
operate mainly in slow start mode and therefore are not able to e�ciently

55

Chapter 8. Results

Table 8.3: VoIP statistics (minimum delay, average delay, maximum delay,
jitter, packet loss and PSQM) in the best e�ort model

Min delay Avg delay Max delay Jitter Ploss PSQM
1 56.80 183.24 231.40 5.56 10.44 3.01
2 55.51 177.97 233.19 5.28 8.39 2.81
3 145.12 184.48 305.91 5.57 10.33 3.00
4 143.61 184.39 244.79 5.46 10.03 2.97
5 57.75 179.91 243.61 5.45 9.43 2.90

Avg 91.76 ms 182.00 ms 251.78 ms 5.46 ms 9.72 % 2.94
Stdev 48.03 2.92 30.85 0.12 0.84 0.08

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
el

ay
 (

s)

Delay (s)

Figure 8.2: Delay and jitter for video streaming in a BE network

2167200000

2167000000

2166800000

2166600000

2166400000

 50.000 s 40.000 s 30.000 s 20.000 s 10.000 s0 s

sequence number

time (s)

O3
�

OOO
�

ORO3
�

�

�

�

�

OO
�

3
�

�

�

O3
�

OO
�

OOO
�

3
�

�

O3
�

�

�

�

O3
�

�

OO
�

3
�

ROOO3
�

�

OO3
�

�

�

O
�

3
�

�

O3
�

O
�

O3
�

�

O3
�

O3O3
�

�O
�

OOOO3OOO
�

OO
�

OOOOOOOO�3
�

�

�
�

SYN
�

Figure 8.3: Sequence number plot for a ftp connection

utilize the available bandwidth when �le sizes are small.

The e�ect of dissimilar round-trip times can be easily observed from the Figure
8.4 (a). Connections using the low delay path (ftp2 and www3) are behaving
more aggressively and they receive about two times larger throughput than
the connections using the high delay path. This behavior is due to the rate of

56

Chapter 8. Results

window opening, which is faster with short RTT connections1.

-100

-50

0

50

100

150

200

250

300

350

400

1 class

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(a) Connection throughput

100

1000

10000

1 class

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(b) Aggregate throughput

Figure 8.4: Connection and aggregate throughput in best e�ort model

8.1.2 Two class model

The next step was to separate the real-time (RT) tra�c from non real-time
(NRT) tra�c by adding one tra�c class. We assigned 30 % of the bandwidth
for the real-time applications (Table 8.2) and observed if this would be enough
to bring the utility of these applications to an operational level. This means
that the over-provisioning factor is about 1.5. As UDP based tra�c is not
elastic, we can quite easily calculate the amount bandwidth that is needed.

1See [Luo00] for details about e�ect of RTT to TCP operation

57

Chapter 8. Results

For the TCP based tra�c, the provisioning is much more di�cult as TCP tries
to use all the available bandwidth and without access policing it is possible to
achieve that. The CBQ link-sharing tree is shown in Figure 8.5. The classes
are not allowed to borrow excess bandwidth from each other.

Root

NRTRT

10Mbps

30% 68%2%

Control

Figure 8.5: CBQ link sharing hierarchy for the two class model

The one-way delay inside the tra�c classes is shown in Figure 8.6. Delay in
the RT class is bounded to about 40 ms with some minor peaks that can be
compensated by bu�ering. This is however not the case in the NRT class
where the delay is oscillating between 40 ms and 220 ms. This large oscillation
is usually too much for delay sensitive applications with hard requirements.
The oscillation comes from the operation of TCP that tries to �nd the ideal
sending rate. The delay rises when TCP increases the sending rate to a level
that causes queues to �ll up. By separating the real-time tra�c from the elastic
TCP tra�c, we can improve the predictability and control over delay.

Delay and jitter for video tra�c is shown in Figure 8.7. The delay is centered
around 40 ms and not spread to a wide area as was the case in the best e�ort
model (Figure 8.2). By applying an extra class for the real-time tra�c, we also
get rid of the packet loss that degraded the quality earlier to a very low level.

Table 8.4 shows that the use of telephony in the real-time class is possible.
There is no packet loss and delay and jitter are within acceptable limits. PSQM
score is 0.4, which is the best we can achieve with our G.711 codec. In addition
the variation in the results between measurement rounds is reduced dramat-
ically. This is due to over provisioning in the RT class that makes the class
behavior more predictable.

Figure 8.8 reveals that the increased quality of service in the real-time class
does not come free: over provisioning in the real-time class lowers the through-

58

Chapter 8. Results

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 10 20 30 40 50 60

D
el

ay
 (

s)

Time (s)

RT
NRT

Figure 8.6: Delay for real-time (RT) and non real-time (NRT) class

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 8.7: Delay and jitter for video tra�c in the two class model

put of FTP connections. However, WWW clients do not su�er from this and
their bandwidth usage is almost the same as in the BE case. What should
be especially noted is the fact that di�erentiation helps to lower the variance
in the connection throughput and we are able to maintain a more uniform
throughput. This is important as the service becomes more predictable and
steadier.

8.1.3 Three class model

We �rst studied the interference between delay and bandwidth sensitive ap-
plications and separated real-time tra�c from the elastic tra�c. Now we

59

Chapter 8. Results

Table 8.4: VoIP statistics (minimum delay, average delay, maximum delay,
jitter, packet loss and PSQM) in the two class model

Min delay Avg delay Max delay Jitter Ploss PSQM
1 30.65 34.09 42.99 1.92 0.00 0.40
2 30.62 34.17 43.79 1.93 0.00 0.40
3 30.64 34.16 43.75 1.92 0.00 0.40
4 30.60 34.13 43.59 1.93 0.00 0.40
5 30.59 34.17 44.77 1.91 0.00 0.40

Avg 30.62 ms 34.14 ms 43.78 ms 1.92 ms 0.00 % 0.40
Stdev 0.03 0.03 0.64 0.01 0.00 0.00

-100

-50

0

50

100

150

200

250

300

350

400

1 class 2 classes

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(a) Connection throughput

100

1000

10000

1 class 2 classes

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(b) Aggregate throughput

Figure 8.8: Connection and aggregate throughput in the two class model

examine the interference between the short and long TCP �ows2. In these
2The interference with the short and long TCP connections was explained in Section

4.1.1.1

60

Chapter 8. Results

Table 8.5: VoIP statistics (minimum delay, average delay, maximum delay,
jitter, packet loss and PSQM) in the three class model

Min delay Avg delay Max delay Jitter Ploss PSQM
1 30.50 35.46 46.06 2.70 0.00 0.40
2 30.51 35.60 46.03 2.75 0.00 0.40
3 30.51 35.56 46.09 2.77 0.00 0.40
4 30.52 35.43 46.19 2.65 0.00 0.40
5 30.51 35.52 45.50 2.70 0.00 0.40

Avg 30.51 ms 35.51 ms 45.97 2.71 ms 0.00 % 0.40
Stdev 0.01 0.07 0.27 0.05 0.00 0.00

measurements, we separate the WWW and FTP tra�c to their own classes
and provide one class for real-time tra�c as in the earlier case. The link shar-
ing hierarchy is shown in Figure 8.9. An extra middle class is created to keep
the depth of the leaf classes equal from the root. FTP and WWW sources
are allowed to borrow bandwidth from each other. The provisioning for the
real-time (RT) class was kept the same as in the two-class model.

Root

NRTRT

10Mbps

30% 68%

30% 20% 48%

(borrow)(borrow)

WWWFTPVideo/
VoIP

2%

Control

Figure 8.9: CBQ link sharing hierarchy for the three class model

As can be seen in Figure 8.10 the throughput for WWW connections increases
when WWW tra�c is separated to its own class. The most notable thing is the
behavior of the client www3 that tries to grasp most of the resources available
in its class. The variance in the connection throughput with this client is also
very high.

The addition of the class for WWW tra�c increases slightly the delay and
jitter for VoIP tra�c (Table 8.5). The increase in jitter and delay is however
so small that it has no e�ect to the overall quality and the PSQM score is still
0.4. Also the video experiences very similar results as in the two-class model.

61

Chapter 8. Results

-200

0

200

400

600

800

1000

1200

1 class 2 classes 3 classes

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(a) Connection throughput

100

1000

10000

1 class 2 classes 3 classes

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(b) Aggregate throughput

Figure 8.10: Connection and aggregate throughput in the three class model

8.1.4 Four class model

The �nal thing we wanted to see in the level of di�erentiation was whether
voice and video could be mixed together. To study this we separated the voice
and video to a di�erent class. We assigned 20 % from the link bandwidth for
voice and 10 % for video tra�c as can be seen in Figure 8.11. The borrowing
is enabled up to the middle class but not up to the root.

The delay in the voice and video class with a di�erent number of tra�c classes is
shown in Figure 8.12. There are no big di�erences between the delay behavior
except in the best e�ort case (1 class) where the delay is over 180 ms for
both video and VoIP. Table 8.6 shows that packet loss is zero in all levels of

62

Chapter 8. Results

Root

NRTRT

10Mbps

30% 68%

20% 20% 48%

(borrow)(borrow)

WWWFTPVoIP Video

10%

(borrow) (borrow)

2%

Control

Figure 8.11: CBQ link sharing hierarchy for the four class model

Table 8.6: Packet loss (%) for real-time tra�c
VoIP Video

1 Class 9.7 7.27
2 Classes 0 0
3 Classes 0 0
4 Classes 0 0

di�erentiation beginning from the two class model. The separation of video
and voice did not seem to provide any advantage. The situation might have
been di�erent if we would have aggregated many video streams together or
used a video stream with higher bandwidth usage.

The throughput for TCP based tra�c sources are shown in Figure 8.13. There
are no big changes in throughput when we add the fourth class. The aggregated
throughput for all tra�c sources is shown in Table 8.7. We can see that with
more than one tra�c class, the bottleneck link is not well utilized. We did not
allow real-time tra�c and non real-time tra�c to borrow bandwidth resources
from each other. As we had about 1 Mbps over-provisioning in the real-time
class, the link is not totally utilized. The borrowing issues are studied in more
depth in Section 8.3.

The queue lengths for di�erent tra�c classes are presented in Figure 8.14. The
queue in the video class is empty all the time. In the VoIP class some packets
are occasionally bu�ered which is re�ected as increase in delay and jitter.

63

Chapter 8. Results

20

40

60

80

100

120

140

160

180

200

1 class 2 classes 3 classes 4 classes

D
el

ay
 (

m
s)

Video
VoIP

Figure 8.12: One-way delay and jitter for di�erent levels of di�erentiation

Table 8.7: Throughput for tra�c sources (kbps)
1 class 2 classes 3 classes 4 classes

FTP1 2412.4 2075.6 1973.4 2022.3
FTP2 4019.9 3242.4 2991.7 2994.6

WWW1 457.0 368.3 508.9 502.8
WWW2 444.2 441.6 512.3 502.8
WWW3 486.8 457.8 530.9 523.4
VoIP 1574.5 1744.0 1744.0 1744.0
Video 120.9 130.0 130.0 130.0
Total 9515.7 8459.7 8391.2 8419.9

8.2 Di�erentiation principle

The service di�erentiation in the Di�erentiated Services network can be done
in many ways. One of the popular models for service di�erentiation is the so-
called Olympic Service Model that consists of three classes. These are called
from highest to lowest quality class as gold, silver and bronze. The gold class
is the highest quality class that is intended to provide better service for packet
forwarding than silver class. Same kind of relationship is between the silver,
and bronze class: silver class should provide a better probability for timely
forwarding than bronze class. This provisioning model can be coupled with a
pricing scheme that makes a higher quality class more costly for the user. This
way a network provider can o�er better quality of service for the people that
are willing to pay more.

The gold class is intended for people who want to use real-time services and be
able to transfer large �les quickly. The gold class would be interesting for P2P

64

Chapter 8. Results

-200

0

200

400

600

800

1000

1200

1 class 2 classes 3 classes 4 classes

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(a) Connection throughput

100

1000

10000

1 class 2 classes 3 classes 4 classes

B
it

ra
te

 (
kb

ps
)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(b) Aggregate throughput

Figure 8.13: Connection and aggregate throughput in four class model

users and therefore the number of FTP connections in this class is set quite
high. Silver class is for those who are willing to pay some extra to get better
service but not as much as the gold class users. Bronze class is the lowest
forwarding class designed for a basic Internet usage.

The tra�c sources were modi�ed so that the emulated users were divided into
di�erent pricing classes. Therefore, the total tra�c volume in the network is
about the same as in the earlier cases. The division into price classes and
their provisioning is presented in Table 8.93. The classes are set to borrow the
excess bandwidth from the parent class. The queue management is shown in

3Values are number of data �ows for VoIP, Video and FTP. For WWW the number of
emulated users is shown.

65

Chapter 8. Results

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

VoIP

(a) VoIP class

-1

-0.5

0

0.5

1

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

Video

(b) Video class

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

WWW

(c) WWW class

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

FTP

(d) FTP class

Figure 8.14: Queue lengths for tra�c classes in the four class model at the
bottle neck link

Table 8.8: Bu�er size and queue management algorithm for di�erent price
classes

Price class Bu�er size (packets) Algorithm
Gold 15 RED
Silver 70 RED
Bronze 130 RED

table 8.8. For higher quality classes the queue length is smaller.

Earlier studies [Luo00][LA04][AL03] have shown that di�erentiation based on
application type gives better overall utility than the di�erentiation based on
price. The Olympic Service Model has been argued not to be appropriate for
real-time tra�c [BLS01].

Figure 8.15 gives the per connection and per client throughput for all three
price classes. We can see that there are no big di�erences in obtained per
connection throughput between service classes. Especially with the WWW
connections, the di�erence is marginal. This means that the end users in all
classes would be experiencing similar service from the network for the elastic
applications regardless of the service class they have been contracted. The

66

Chapter 8. Results

Table 8.9: The division of tra�c into price classes
Price class Provisioning VoIP Video WWW FTP

Gold 55% 10 1 10 10
Silver 33% 8 0 30 8
Bronze 10% 2 0 15 2

aggregated throughput graph reveals that the FTP clients are using most of
the bandwidth allocated for the gold class. These elastic TCP �ows use the
available bandwidth in the class leaving below minimum amount of network
resources for the real-time applications needed to perform well. This means
that the level of di�erentiation needed for real-time applications to work well
is lost.

10

100

1000

Gold Silver Bronze

B
itr

at
e

(k
bp

s)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(a) Connection throughput

10

100

1000

10000

Gold Silver Bronze

B
itr

at
e

(k
bp

s)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(b) Aggregate throughput

Figure 8.15: Connection and aggregate throughput in olympic service model

67

Chapter 8. Results

Table 8.10: Packet loss for real-time tra�c
VoIP Video

Gold 4.7 6.8
Silver 8.5 -
Bronze 4.6 -

The bu�er over�ow in the class can be observed in Figure 8.16 that presents
the queue length at the bottleneck link. The queues are constantly �lling up
as a result of TCP connections that use the available bandwidth in the class.
Elastic TCP connections are capable of adapting to packet loss and increased
delay and still operate. Unfortunately, this does not hold for real-time tra�c.
Figure 8.17 shows the one-way delay for video and VoIP streams. We can
see that none of the tra�c classes is capable of providing a controlled delay
behavior. The delay budget needed for conversational communication is used
by the network due to packet bu�ering. High delay combined with packet
loss values shown in table 8.10 yields that decent real-time communication is
impossible in all service classes (gold, silver and bronze).

The basic idea of an olympic service model is good. It is fair that the user
who pays more gets also better service from the network. However, an olympic
service model does not take into account the requirements of the applications
nor the interference caused by mixing di�erent application types.

8.3 Provisioning aspects

Network provisioning is the key aspect impacting the achieved quality that
Di�Serv is capable of o�ering. A proper allocation of resources can give high
network utilization and provide good quality of service for the users.

We wanted to see how well the borrowing mechanism in CBQ could help to
increase the network utilization in a badly provisioned case. There is usually
a gap between theoretical models and real implementations due to limitations
in software and hardware.[Cho04] Therefore, we also need to evaluate the be-
havior caused by the implementation issues.

In the �rst scenario, the CBQ mechanism in the routers is con�gured with the
link sharing hierarchy presented in Figure 8.18 without borrowing bandwidth
between classes. A leaf class can send until it has used its round-robin alloca-
tion or it becomes overlimit. In the second scenario, we enable the borrowing

68

Chapter 8. Results

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

(a) Gold

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

(b) Silver

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Sample #

(c) Bronze

Figure 8.16: Queue length at the bottle neck link for di�erent classes

mechanism up to the top class. Borrowing helps in the resource provisioning,
as we do not need to know the exact bandwidth allocation beforehand. When
borrowing is enabled, a class can keep on sending in an overlimit situation if

69

Chapter 8. Results

160

180

200

220

240

260

280

300

320

Gold Silver Bronze

D
el

ay
 (

m
s)

Video
VoIP

Figure 8.17: The delay and delay variation for the real-time applications

Figure 8.18: CBQ link sharing hierarchy

70

Chapter 8. Results

Table 8.11: Provisioning for the measurement (Mbps)
VoIP Video HTTP FTP

Borrow o� 3.0 3.0 2.8 1.0
Borrow on 3.0 3.0 2.8 1.0
E�cient 3.0 3.0 2.8 1.0

Borrow on2 3.0 3.0 1.9 1.9

Table 8.12: Throughput for tra�c sources (kbps)
Borrow o� Borrow on Borrow on+e�cient borrow on2

FTP1 352.9 477.6 2228.2 750.4
FTP2 584.1 917.6 3946.8 1792.8

WWW1 506.5 539.1 498.0 527.4
WWW2 542.7 542.2 504.9 532.6
WWW3 558.2 565.6 523.5 556.8
VoIP 1744.0 1744.0 1726.4 1744.0
Video 130 130 130 130
Total 4418.4 4916.1 9557.8 6034.0

there are excess resources in the parent class and it has not consumed its round
robin allocation. With the e�cient parameter, the ALTQ/CBQ can make the
borrowable classes work-conserving. In that case, the scheduler is capable of
sending as long as it has backlogged packets even if not all classes are eligible to
send. The measurements were made with two di�erent provisioning presented
in table 8.11. The real-time (RT) class is intentionally over-provisioned by a
factor about three leading to a high under-provisioning in the non-real-time
(NRT) class. The queue management is handled in the same way as in section
8.1.

Figure 8.19 gives the per connection and per client throughput values with
di�erent borrowing scenarios. When borrowing is disabled, the long lasting
FTP connections are getting their share of the bandwidth but not more as can
be expected. The WWW connections make a bad utilization of the resources
due their bursty nature. During the idle times, the available resources can not
be used in other classes. In addition the excess resources in the real-time class
are simply wasted. When borrowing is enabled, the throughput of the WWW
connections stays almost at the same level as without borrowing indicating
saturation. This means that WWW-clients are not able to create more tra�c
due to idle times between page fetches. However, the FTP connections are
getting a lower throughput than could be expected. This can be explained
by how the borrowing mechanism in the ALTQ/CBQ has been implemented.
When the class is overlimit, it is suspended. The suspension time (i.e. the time
during which the class can not borrow) depends on the class bandwidth share:

71

Chapter 8. Results

10

100

1000

10000

borrow off borrow on borrow on+efficient borrow on2

B
itr

at
e

(k
bp

s)
 FTP1
 FTP2

WWW1
WWW2
WWW3

(a) Connection throughput

100

1000

10000

borrow off borrow on borrow on+efficient borrow on2

B
itr

at
e

(k
bp

s)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(b) Aggregate throughput

Figure 8.19: Connection and aggregate throughput in di�erent borrowing sce-
narios

72

Chapter 8. Results

20

40

60

80

100

120

140

160

180

borrow off borrow on borrow on+efficient borrow on2

D
el

ay
 (

m
s)

Video
VoIP

Figure 8.20: The delay and delay variation for the real-time applications

a smaller class gets a longer suspension time. This behavior favors large classes
during the borrowing procedure and lowers the throughput in small classes.
To minimize the e�ect of the suspension time the measurements were repeated
with the e�cient option enabled and with equal class bandwidths for FTP and
WWW without the e�cient option. With the e�cient option, the throughput
of the FTP connections increases signi�cantly (Figure 8.19). This, however,
lowers the throughput of the WWW connections and predictability of FTP
connections. With the equal class bandwidth shares for FTP and WWW
tra�c the FTP connections can make a better use of the excess capacity.

The aggregated throughput for all tra�c sources is shown in Table 8.12. We
can see that the total link utilization varies a lot between di�erent borrowing
scenarios. Only in the e�cient scenario the link can be totally utilized as
the total throughput for TCP and UDP tra�c is almost 10 Mbps. Without
borrowing the link utilization is as low as 46 %.

Figure 8.20 shows the delay and delay variation for the real-time applications.
We can see that borrowing increases the jitter in all scenarios. This variation
in delay can be compensated by using a playback bu�er at the end terminal.
However, in the work-conserving scenario (third column) packet delays of the
order of 150 ms combined with 1 % packet loss are degrading the quality of
applications with hard real-time requirements below the operational level.

The CBQ borrowing mechanism in action is shown in Figure 8.21 that presents
the number of borrows for FTP and WWW during the measurement period.

73

Chapter 8. Results

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000 5000 6000

B
or

ro
w

s
(n

)

Sample #

FTP
WWW

Figure 8.21: The number of borrows for FTP and WWW classes

As the real-time class was highly over provisioned there are no borrows in VoIP
or video class. The number of borrows for FTP is linear over the time and is
clearly limited by some mechanism. ALTQ includes a mechanism to prevent
a class from borrowing too much. When a class is overlimit, it is suspended.
The suspension time is calculated using the kernel timer and therefore the
resolution of the kernel clock is relevant4.

ALTQ/CBQ has many parameters that a�ect on the CBQ operation. Aver-
age packet size is a parameter that has an e�ect on the achieved throughput
accuracy. If the packet size is set too large, a class in not able to achieve its
target rate. On the other hand, if the average packet size is too small, a class
can send more tra�c that is has been contracted. Usually it is safe to set the
average packet size to the size of the MTU as we did in our measurements.
ALTQ/CBQ has also minburst andmaxburst parameters that can be used to
set the size of a burst. In general, ALTQ/CBQ is parameter sensitive and thus
di�cult to tune for optimal performance.

The kernel timer plays a crucial role in the ALTQ/CBQ. This internal clock
de�nes the minimum time between interrupts and therefore a�ects the mini-
mum suspension time. The higher the frequency of the internal clock is, the
smaller the minimum suspension time can be. High clock rate can cause too
much system overhead and therefore the value should not be set too high. The
default value for kernel timer in FreeBSD is 100 Hz. In our experiments we

4The e�ect of kernel timer was explained in more detail in Section 5.2.2.3

74

Chapter 8. Results

Table 8.13: Provisioning of network resources (Mbps)
Control RT HTTP FTP

BE 0.2 3.0 2.0 4.8
Same 0.2 3.0 2.0 4.8
RT 0.2 3.0 2.0 4.8

Control 0.7 2.5 2.0 4.8

used a 1000 Hz internal clock, which still seems to be too low for a proper
borrow operation in ALTQ. Therefore, a value higher than 1000 Hz for the
kernel timer should be considered to be set when using an e�cient PC.

8.4 Symmetry of di�erentiation

In a di�erentiated services network the return path of a TCP connection can be
symmetric or asymmetric. The selection of the right return path has in�uence
on the TCP performance as the delay and loss of acknowledgement (ACKs)
packages will cause TCP to slow down the transfer speed. In this experiment,
we study the e�ect of delivering data and ACKs in a di�erent class.

To get a better understanding of the relation of ACKs to the throughput we
performed measurements that transferred ACKs in:

Lowest quality class (BE)

Same class as data packets

Real-time (RT) tra�c class

Control tra�c class

Table 8.13 presents the network resource provisioning used in these measure-
ments. It should be noted that when delivering ACKs in the control class
some resources are moved from the RT class to the control class. Borrowing is
enabled in all cases up to the top level (Figure 8.18).

The tra�c load to the return path was generated with Adtech AX/4000 that
emulated the tra�c patterns from the HTTP and FTP sources.

Figure 8.22 shows the connection and aggregate throughput for TCP connec-
tions. The most notable e�ect is the degradation of the throughput for the

75

Chapter 8. Results

www1 client when delivering ACKs in the BE (FTP) class. The upstream con-
gestion causes packet loss and increased delay that is most notable in the lowest
quality class. When delivering ACKs in the other than BE class the di�erences
are minimal. This is in contradiction with the simulations performed earlier
on this matter [KS99]. These simulations showed that the appropriate choice
of the ACK class has a big in�uence on the throughput. In our measurements
this was however not true. The increased forward path congestion lowered the
achieved throughput and the selection of an ACK class did not seem to have
big importance. The di�erent results between the simulations might be caused
by the di�erent tra�c mix and set up. In the simulations, only FTP sources
were modeled whereas we used a much wider variety of tra�c. Also in the
simulations, the FTP sources created the congestion to the network whereas
we used unresponsive UDP �ows at the return path.

Figure 8.23 shows the e�ect of ACKs to delay for the real time tra�c. For VoIP
tra�c both communication paths (from a→b and b→a) are shown. Delay in
VoIP from user a to b is about 10 ms higher in all cases. In addition, the jitter
is higher in every case from a to b. Especially high (about 50 ms) the delay is
when the ACKs are delivered in the RT class. This is not surprising as ACKs
increase the utilization within the RT class that is re�ected as an increased
delay.

The delay in the return path for di�erent tra�c classes when transferring
ACKs in the same tra�c class is shown in Figure 8.24. We can see that the
delay behavior is quite di�erent between tra�c classes. The most uniform
delay behavior can be found from the highest priority class (RT class) where
the average is delay is about 50 ms. The average delay in the WWW class is
about 90 ms but due to busty tra�c in this class the variation in delay values
is high. In the lowest quality class (FTP class), the average delay is about 220
ms.

76

Chapter 8. Results

10

100

1000

BE Same RT Control

B
itr

at
e

(k
bp

s)
 FTP1
 FTP2

WWW1
WWW2
WWW3

(a) Connection throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

BE Same RT Control

B
itr

at
e

(k
bp

s)

 FTP1
 FTP2

WWW1
WWW2
WWW3

(b) Aggregate throughput

Figure 8.22: Connection and aggregate throughputs in case of asymmetric
paths

77

Chapter 8. Results

30

35

40

45

50

55

60

BE Same RT Control

D
el

ay
 (

m
s)

Video
VoIP a->b
VoIP b->a

Figure 8.23: Video and VoIP packet delay in case of asymmetric paths

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60

D
el

ay
 (

s)

Time (s)

(a) Real-time class

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60

D
el

ay
 (

s)

Time (s)

(b) WWW class

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60

D
el

ay
 (

s)

Time (s)

(c) FTP class

Figure 8.24: Delay in tra�c classes for return path

78

Chapter 9

Conclusions and discussion

In this work network measurements were carried out in an isolated environ-
ment. The testbed included Di�Serv capable ALTQ routers and several tra�c
generators that were used to create tra�c with di�erent characteristics to the
network. The tra�c mix in the network consisted of VoIP, video, WWW, FTP,
and background tra�c.

The following main aspects were studied in the measurements: the level of
di�erentiation, di�erentiation principle, di�erentiation aspects, and the sym-
metry of di�erentiation. An objective was to �nd the correct ways of doing the
di�erentiation and to see the problems that reside in the actual implementa-
tions. Another important objective was to compare the measurement results
to the simulation results conducted earlier in the same area.

The measurements showed that the di�erentiation has to be done on the ap-
plication basis. Applications with di�erent characteristics interfere with each
other and they need to be separated. The separation between UDP and TCP
tra�c is essential if the network is not highly over-provisioned. The popular
olympic services model that does not take tra�c characteristics into consider-
ation is badly suited for tra�c di�erentiation.

Two tra�c classes is the minimum that is needed to provide decent real-time
communication in a congested network. In that case, elastic data tra�c trans-
ferred over TCP need to be separated from the UDP tra�c with real-time
requirements. When di�erentiation is added between short TCP �ows and
long TCP �ows, the packet loss can be lowered and throughput increased.
The separation of VoIP and video tra�c did not seem to have a big impact.

79

Chapter 9. Conclusions and discussion

As was expected, some limitations and problems were found from the imple-
mentation. The biggest problems with ALTQ/CBQ were dealing with the
borrowing feature. Not all excess bandwidth could be utilized and thus some
resources were simply wasted in an overlimit situation. The theoretical aspect
of CBQ is good, but in practice, it appears to be too complex and hard to
implement. ALTQ/CBQ relies too much on kernel timers and that is a ma-
jor �aw in the implementation. We increased the resolution of the kernel in
the measurements from the default value of 100 Hz to 1000 Hz to obtain a
better precision. Maybe, a kernel with 10 kHz timer would have performed
better. It should be studied how high the resolution of the kernel can be
increased without noticeable overhead to the system. The borrowing mech-
anism in ALTQ/CBQ should be rewritten in order to make it perform well.
ALTQ/CBQ is also quite parameter sensitive, which makes it di�cult to �ne-
tune for all scenarios.

The symmetry of di�erentiation measurements showed that the selection of the
ACK class was not very signi�cant for the achieved throughput. TCP appeared
to be quite robust to changes in the return path. The most noticeable e�ect
was the degradation of the throughput when delivering ACKs in the best e�ort
class. In that case, the upstream congestion caused packet delays and loss that
was most noticeable in the lowest quality class.

The measurements veri�ed the simulation results [Luo00][Ant03] and sup-
ported the idea that the tra�c characteristics have to be taken into consid-
eration, in order to satisfy the application requirements. The measurements
showed also the importance of the resource allocation. The provisioning of the
tra�c classes can not be static as sometimes it is very di�cult to estimate
the tra�c volume. The amount of tra�c in the network usually also varies
quite a lot, which can lead to a low utilization. Therefore, a dynamic way of
provisioning the network resources is essential. CBQ tries to achieve this by
providing the borrowing feature.

The problems in ALTQ/CBQ dealing with adaptive resource allocation raises
interest on adaptive scheduling1. A very promising adaptive scheduler is the
delay bounded HPD which has been shown to achieve the targeted provisioning
goal well in the simulations [AL03][AL04]. Delay bounded HPD measures
both short and long-term queueing delays for adapting the resource allocation.
HPD is a simple algorithm compared to CBQ and it can be implemented quite

1The basic idea of adapting scheduling is to dynamically adjust the class resources de-
pending on tra�c conditions

80

Chapter 9. Conclusions and discussion

easily.

81

Bibliography

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick Mckeown. Sizing
router bu�ers. In Proceedings of ACM SIGCOMM 2004, 2004.

[AL03] Johanna Antila and Marko Luoma. Scheduling and quality di�er-
entiation in di�erentiated services. In Proceedings of MIPS 2003,
pages 119�130, November 2003.

[AL04] Johanna Antila and Marko Luoma. Adaptive scheduling for im-
proved quality di�erentiation. In Proceedings of MIPS 2004, pages
143�152, 2004.

[Alm99] Werner Almesberger. Linux network tra�c control - implementa-
tion overview. White paper, April 1999.

[Alm02] Werner Almesberger. Linux tra�c control - next generation.
11th International Linux System Technology Conference, October
2002.

[Ant03] Johanna Antila. Scheduling and quality di�erentiation in di�eren-
tiated services. Master's thesis, Helsinki University of Technology,
April 2003.

[BBC+98] Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng
Wang, and Walter Weiss. An architecture for di�erentiated ser-
vice. Technical Report RFC 2475, IETF, December 1998.

[BCC+98] Bob Braden, David Clark, Jon Crowcroft, Bruce Davie, Steve
Deering, Deborah Estrin, Sally Floyd, Van Jacobson, Greg Min-
shall, Craig Partridge, Larry Peterson, K. K. Ramakrishnan,
Scott Shenker, John Wroclawski, and Lixia Zhang. Recommen-
dations on queue management and congestion avoidance in the
internet. Technical Report RFC 2309, IETF, April 1998.

[BCF00] Scott Brim, Brian Carpenter, and Francois Le Faucheur. Per hop
behavior identi�cation codes. Technical Report RFC 2836, IETF,
May 2000.

[BCS94] Bob Braden, David Clark, and Scott Schenker. Integrated services
in the internet architecture: an overview. Technical Report RFC
1633, IETF, June 1994.

82

Bibliography

[BLS01] Albert Banchs, Olga Leon, and Sebastian Sallent. The olympic
service model: Issues and arhcitecture. In Quality of Future In-
ternet Services, volume 2156, pages 24�26, September 2001.

[BSM04] Dhiman Barman, Georgios Smaragdakis, and Ibrahim Matta. The
E�ect of Router Bu�er Size on HighSpeed TCP Performance.
In IEEE Globecom 2004 - Global Internet and Next Generation
Networks, November 2004.

[BZB+97] Bob Braden, Lixia Zhang, Steve Berson, Shai Herzog, and Sugih
Jamin. Resource reservation protocol (rsvp) � version 1 func-
tional speci�cation. Technical Report RFC 2205, IETF, Septem-
ber 1997.

[Cho99] Kenjiro Cho. Managing tra�c with ALTQ. In Proceedings
of USENIX 1999 Annual Technical Conference. USENIX, June
1999.

[Cho01] Kenjiro Cho. The Design and Implementation of the ALTQ Traf-
�c Management System. PhD thesis, Keio University, January
2001.

[Cho04] Kenjiro Cho. Fitting theory into reality in the altq case. In
Proceedings of ASIA BSD conference. USENIX, March 2004.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways
for congestion avoidance. ACM/IEEE Transactions on Network-
ing, August 1993.

[FJ95] S. Floyd and V. Jacobson. Link-sharing and resource manage-
ment models for packet networks. IEEE/ACM Transactions on
Networking, 3(4):365�386, 1995.

[FR00] Frank H.P. Fitzek and Martin Reisslein. Mpeg-4 and h.263 video
traces for network performance evaluation. Technical report,
Technical University Berlin, October 2000.

[FRC98] Anja Feldmann, Jennifer Rexford, and Ramón Cáceres. E�-
cient policies for carrying Web tra�c over �ow-switched networks.
IEEE/ACM Transactions on Networking, pages 673�685, 1998.

[GM01] Liang Guo and Ibrahim Matta. The war between mice and ele-
phants. Technical Report 2001-005, Boston University, Computer
Science Department, May 2001.

[HBWW99] Juha Heinänen, Fred Baker, Walter Weiss, and John Wroclawski.
Assured forwarding phb group. Technical Report RFC 2597,
IETF, June 1999.

[Inc01] Spirent Communications Inc. Smartvoipqos user guide, August
2001.

83

Bibliography

[IT94] ITU-T. Recommendation e.800 - terms and de�nitions related to
quality of service and network performance including dependabil-
ity, August 1994.

[JNP99] Van Jacobson, Kathleen Nichols, and Kedarnath Poduri. An ex-
pedited forwarding phb. Technical Report RFC 2598, IETF, June
1999.

[KS99] Stefan Köhler and Uwe Schäfer. Performance comparison of dif-
ferent class-and-drop treatment of data and acknowledgements
in di�serv ip networks. Technical Report 237, University of
Würzburg, Institute of Computer Science, August 1999.

[LA04] Marko Luoma and Johanna Antila. Di�erentiation of the internet
tra�c. In Proceedings of ICN 2004, February 2004.

[LPY98] Marko Luoma, Markus Peuhkuri, and Tomi Yletyinen. Quality of
service for ip voice services - is it necessary? In Internet Routing
and Quality of Service, pages 242�253, November 1998.

[Luo00] Marko Luoma. Simulation studies of di�erentiated services net-
works. Licentiate thesis, Helsinki University of Technology, 2000.

[Luo03] Marko Luoma. S-38.180 quality of service in
internet. Lecture slides, 2003. Available at
http://www.netlab.hut.�/opetus/s38180/s03/slides/.

[LY99] Jörg Liebeherr and Erhan Yilmaz. Workconserving vs. non-
workconserving packet scheduling: An issue revisited. In Proceed-
ings of IEEE/IFIP International Workshop on Quality of Service
(IWQOS), pages 1484�1492. USENIX, May 1999.

[Mil85] David Mills. Network time protocol (ntp). Technical Report RFC
958, IETF, September 1985.

[Mil92] David Mills. Network time protocol (version 3). Technical Report
RFC 1305, IETF, March 1992.

[Pap04] Panagiotis Papadimitriou. Linux tra�c control essentials, tcng
overview, study of a token bucket scenario. WWW, June 2004.

[Peu02] Markus Peuhkuri. Internet tra�c measurements � aims, method-
ology, and discoveries. Licentiate thesis, Helsinki University of
Technology, 2002.

[PF95] Vern Paxson and Sally Floyd. Wide area tra�c: the failure
of Poisson modeling. IEEE/ACM Transactions on Networking,
pages 226�244, 1995.

[RG99] Fulvio Rizzo and Panos Gevros. Operational and performance
issues of a cbq router. ACM Computer Communication Review,
pages 47�58, October 1999.

84

Bibliography

[Riz97] Luigi Rizzo. Dummynet: a simple approach to the evaluation
of network protocols. ACM Computer Communication Review,
27(1):31�41, 1997.

[Riz98] Luigi Rizzo. Dummynet and forward error correction. In Pro-
ceedings of Freenix 98, June 1998.

[RVC01] Eric C. Rosen, Arun Viswanathan, and Ross Callon. Multipro-
tocol label switching architecture. Technical Report RFC 3031,
IETF, January 2001.

[She95] Scott Shenker. Fundamental design issues for the future inter-
net. IEEE Journal on Selected Areas in Communication, 13:1176�
1188, September 1995.

[SV95] M. Shreedhar and George Varghese. E�cient fair queueing using
de�cit round robin. In Proceedings of SIGCOMM 1995, pages
231�242, 1995.

[TMW97] K Thompson, G.J Miller, and R. Wilder. Wide-area internet
tra�c patterns and characteristics. IEEE/ACM Transactions on
Networking, pages 10�23, 1997.

[TNC+01] Fouad Tobagi, Waël Noureddine, Benjamin Chen, Athina
Markopoulou, Chuck Fraleigh, Mansour Karam, Jose-Miguel
Pulido, and Jun ichi Kimura. Service di�erentiation in the In-
ternet to support multimedia tra�c. Lecture Notes in Computer
Science, 2170:381+, 2001.

[VS94] Curtis Villamizar and Cheng Song. High performance tcp in
ansnet. SIGCOMM Comput. Commun. Rev., (5):45�60, 1994.

[Wan01] Zheng Wang. Architectures and Mechanisms for Quality of Ser-
vice. Morgan Kaufmann Publishers, 2001.

85

	Introduction
	Background
	Aims and scope of this work
	The structure of the thesis

	Quality of service
	What is quality of service?
	Motivation and benefits of implementing QoS
	QoS models for IP networks

	Differentiated Services
	Per Hop Behavior
	Assured forwarding
	Expedited Forwarding

	DiffServ building blocks
	Classification
	Conditioning

	Active queue management
	Random early detection

	Scheduling
	First Come First Served
	Round Robin scheduling
	Class Based Queueing
	CBQ implementation in ALTQ

	Differentiation of Internet traffic
	Application characteristics and utility
	Elastic applications
	The battle between mice and elephants

	Real-time applications
	Video
	Voice

	Mixing the traffic

	Implementing Differentiated Services
	Gap between theory and reality
	Alternate Queueing
	ALTQ Design
	Implementation issues
	Queue operations
	Output buffer model
	Effect of kernel timer resolution

	Linux Traffic Control
	Linux Traffic Control - Next Generation
	The tcng language

	ALTQ vs. Linux TC

	Traffic tracing and analysis tools
	Packet capturing
	Tcptrace
	SmartBits
	Altqstat
	Modifications to altqstat

	Perl scripts

	Measurement setup
	Overview
	Technology and topology
	Baseline delay measurements
	Traffic sources
	Voice over IP
	Perceptual Speech Quality Measure

	Video streaming
	World Wide Web
	File Transfer Protocol
	Background traffic

	Buffer management
	Setting the buffer size

	Clock synchronization
	Network Time Protocol

	Delay emulation
	Dummynet

	Measurement procedure
	Terminology
	Delay
	Jitter
	Packet loss
	Throughput

	Results
	The level of differentiation
	Best Effort model
	Two class model
	Three class model
	Four class model

	Differentiation principle
	Provisioning aspects
	Symmetry of differentiation

	Conclusions and discussion
	Bibliography

