\ TEKNILLINEN KORKEAKOULLU

TEKNISKA HOGSKOLAN
HELSINE]I UNIVERSITY OF TECHNOLOGY

Comparison Between Pre-Computation and
On-Demand Computation QoS Routing with
Different Link State Update Algorithms

Haifeng Zhu

Master's thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Engineering

Espoo, Finland
November 2003
Super visor Professor Raimo Kantola

Instructor Ph.D. Peng Zhang

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF
DEPARTMENT OF COMPUTER SCIENCE MASTER'STHESIS
AND ENGINEERING

Author: Haifeng Zhu

Title: Comparison Between Pre-Computation and On-Demand Computation QoS
Routing with Different Link State Update Algorithms

Date: 23.10.2003 Number of Pages: 57

Department: Department of Computer Science and Engineering

Professorship: S-38 Network Laboratory

Supervisor: Professor Raimo Kantola

Instructor: Ph.D. Peng Zhang

As an extension to the current Best Effort service in the Internet, QoS routing may play an
important role in providing quality guaranteed service. Extra cost is introduced by QoS
routing. The cost mainly includes path computation cost and the cost for maintaining a QoS
routing table.

This thesis begins with a brief introduction to the QoS routing, and then the issue of
inaccurate routing information and its impact on network performance are discussed. After
that, the pre-computation routing algorithm and the on-demand computation routing algorithm
are presented, followed by the comparison between these two algorithms.

In order to run the simulations for this thesis, extensions to QRS simulator were made by
adding new components and a Traffic Generator. Two new routing algorithms were added to
smulate the pre-computation and the on-demand computation algorithms, respectively. By
running simulations for these two algorithms with different link state update algorithms, the
network performance is analyzed. Four different periodsin PB and four thresholds in TB have
been chosen for the simulations. Based on the ssimulation results, a conclusion is drawn: the
frequency of link state update can affect the network performance and it costs significantly.
Smaller link state update period or threshold can improve the network performance by
reducing the inaccuracy in routing nformation, but the cost will also increase with more
frequent link state updates. Thus, the update triggering policy should be chosen carefully.

Keywords: Quality of Service, QoS Routing, Pre-Computation, On-Demand Computation,
Link State Update, Inaccurate Rouging Information

Acknowledgments

It is my fortune to have accomplished my thesis that was started in March 2003 in the
Networking Laboratory of Helsinki University of Technology. This is adso my latest

achievement after more than two years of hard working.

| have been working hard to achieve this, but | clearly know that without the help, assistance

and support from my senior, friends and family, | wouldn’t have completed this thesis.

First of dl, I sincerely thank my supervisor, Professor Raimo Kantola, who has been a pioneer
and leader in this field of research, for giving me the opportunity in carrying out this work, and

the support during the work.

My sincere thanks should also be given to my instructor, Dr. Peng Zhang, for his brilliant ideas,
his giving me such a cherishing chance of doing the thesis under his direct help and instruction.

| have been deeply moved by his devotion to research work and his unselfish help for others.

Finaly, | would like to give my thanks to my dearest wife and my parents in China for their

full support; my friends in Finland and colleagues in the Networking Laboratory for their help.

Table of Contents

ACKNOWLEDGMENT S ittt e e e e e e e e e et e e e e e e e e aeatarn s aaeeeeeenes I
TABLE OF CONTENTS ..ottt et s s e e e e et s e e e e e e e e te e e e e e e e e e e aaes e neeeeeeeeeetnnnneeees 11
TABLE OF FIGURES ...ttt e e e e e e e e e e e e et e e e e e e e e e et bt s eeeeeaeeaes Vv
A C R ONY M S i ettt e e et ettt e e e et et et e e e e e et e et raeeaee ettt aaaaaeaannn VIl
O 1 N I 0 15 16 I 1 LS 1
R R = 7 Xl o 10 N o 1
A 5 {0 10 11N 2
1.3 PATH COMPUTATION ALGORITHM S, .11t tttiee ettt ettt eeeteeet s estasesaasesetsesanseetnseeesnsaesnaaetnsessnaesnaaes 4
1.4 INACCURATE ROUTING INFORMATION ..eeutttuuieeeeeserststnnseeesessessnsnnssaeeeesessssnnnnaseessesssssnnnaaaeeeees 4
1.5 PURPOSE AND SCOPE OF THE THESIS . ttttuuetttttueeetttueeeettneeeettneeeestneeeestneesestneeessnnneeeennnneaaens 6
1.6 THE STRUCTURE OF THE THESIS. ... ieiittettttiiieeeeeseeetstiseeeeesesststannsaaeeesssssstnnnsaaeessessssnnnnaaaaeeees 7

2 PRE-COMPUTATION VS. ON-DEMAND QOS ROUTING......cuttiiiiieieieeeiiiie e ee e e 8
2.1 PRE-COMPUTATION QOS ROUTING ...cuuuiiiiitieteiti ettt e ettt e ettt e s eea e e e et s e e eea e e enna e eeranns 8
2.2 ON-DEMAND QOS ROUTINGciiuuiiitiieitieeitt ettt e e et e e et s e et e et e s et e e st e e et esaneeanaeatneeernaasennns 10
2.3 THE COMPARISON BETWEEN THESE TWO ALGORITHMS ...uuiiiitieeeiiii e eeeiin e eeesiaeeeeainneeeesinneaeees 12

3 THE SIMULATION ENVIRONMENT ...ttt e e e e a s 15
3.1 BASICINFORMATION ABOUT QRS (QOS ROUTING SIMULATOR)....ccevvvurrnnnisseeererennnnnnnneeaesenennnns 15
3.2 NEW ROUTING ALGORITHM S.. . tttitiitiieetieeeti ettt e eeaseeetsesaas e et e sata s essn e e et s esaneeeneaetseeenneennnns 17
3.21 The Pre-Computation Routing Algorithm...........ccooiieiiiiiici e 17
3.2.2 The On-Demand Computation Routing Algorithm.............ccceoviiiiiiiiiiii e 20

3.3 THE TRAFFIC GENERATOR .ttt ttttttueettttnteesettaessestneesestnaesestnaesestneeeestnaesessnseeeessnseeressnseeeens 21

4 SIMULATION RESULTSAND ANALY SIS, .. it 25
o N I = = = o= o 1K@) 2 PPN 25
4.2 THEMATRIX 25 2TOPOLOGY ..tuuittetunieteutunetestnnsesesssnsetesssnetesssnetessnnaressnnerersarerare 26
42.1 Basic information of the tOPOIOgY.euuurririe et e e e e e e e e e e e eaene 26
422 The RESUIt AN @NAIYSIS.....eeeeiiiiiiiiieiieiiiiei ettt ettt ettt ee et et et e ee e et et eeeeeeeeeeeeeeeeeeeeeeeeeees 27
4.2.3 (0] 11 T o PR 35

4.3 THEMATRIX 3*3TOPOLOGY ..itvuuiiuuiiietnieetneeetnestueeesnetetseesneeetnsersneeanetetreesaeeranersnaeennares 36
43.1 Basic information of the tOPOIOgY...........cuuuriiiiii e e e e eaaee 36
4.3.2 The RESUIt aNA @NAIYSIS. ... ooeeeiieeeiiiie e e e e e e e e e e e e e e eraraaeeeeeaes 36
4.3.3 (001 111 T o USSP 43

4.4 THEMATRIX 4% ATOPOLOGY ..eeetevututunieseeesteeuusnnnieseeeeeeetsnssnaaeeesesasssnnnaseeeeerenssnnnnaeaeseeennnes 44
441 Basic information of the tOPOIOGY.cuuurririe ettt eeeeee 44
4.4.2 The RESUIt AN @NAIYSIS.ceeeiieeiiiiie e e e e e e et e e e e e e e e et e eeee e 45
4.4.3 (0] o 11T o PP 51

5 CONCLUSIONSAND FUTURE WORKoutiiiiiiiiiiiieiii e

51 (@00] N[0 WU LT) 1=
52 O O] VA =

REFERENCES

Tableof Figures

FIGURE1 THE FLOWCHART FOR COMPUTATION OF THE BF ROUTING TABLEcvvvuiiieeeieeciriiiieseeeeeennnnns 19
FIGURE2 THE FLOWCHART FOR THE ON-DEMAND COMPUTATION ALGORITHM ...ccvvuniiiiiinneeeeiieeeeeninnnns 21
FIGURE 3 INTERNATIONAL COMPRESSION STANDARDS [22]uuvuuiuniniiininiiinnnnniiinnnnnnnnnnnnnnnnnnnnnnnnnnns 24
FIGUREZ THE TREE TOPOLOGY ..tuuuiieeteteettutunseeesaseeetesnnnaseeasesessssnnaaeeeseeenssssnaneeeeeenessnnnnnneeereremnnes 25
FIGURES THE MATRIX 2¥ 2T OPOLOGY ..vtuiiittniettneeetiseesueetnsetstnseesneaetnsassnnsessesetseesnseesnserenneeenneeenns 26
FIGURE6 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=100MS......ceuitniiniieieieieeieeen, 27
FIGURE7 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=200MS........coiviiiiiieeiiiineeeiiinnnnn 28
FIGURE8 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=500MS........ccvviiviiiineiiciieeneenn, 29
FIGURE9 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=1000MS........ccvvvvieeiiiineeeeiinnnn, 29
FIGURE 10 THE PERIOD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT PERIODS
(PRE=COMPUTATION) ...ttt ttttttttiiseseeeeeeatetsanseseeesesasstana s aseeeeeeessssan s asaeaseeesstnnn s saeaseessssnnnaseeaseresnnes 30
FIGURE 11 THE PERIOD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT PERIODS (ON-DEMAND)
31
FIGURE12 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=10%..........ceevvernnnnn. 31
FIGURE 13 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=40%............0vvvvenen. 32
FIGURE 14 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=60%..........cc0vvvneene. 33
FIGURE1S5 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=80%..........ceevvernnn.. 33
FIGURE16 THE THRESHOLD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT THRESHOLDS
(PRE=COMPUTATION) ..ttt tttetttttuseseeeeeeetessnnaeseaeseeesssnsnasaeeeeeeesssssnaaaeeeeeeesssnnnseeeeeeenssnnnaseeeeeeennnns 34
FIGURE 17 THE THRESHOLD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT THRESHOLDS
(@ T =Y 7N N) P 34
FIGURE18 THEMATRIX 3*3TOPOLOGY ...uiiiiruuneiiiuinietettinetttuiaesestneesetineesstsneeestiseeastinseeeennnns 36
FIGURE 19 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=100MS.......cvvveviiiniiiniiieinnnen, 37
FIGURE20 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=200MS.......cccvvieiiiiiineeeiiinnnn, 37
FIGURE 21 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=500MS........ccvviviiiiiiieiieeinee, 38
FIGURE 22 THE PERIOD-BA D LINK STATE UPDATE METHOD, PERIOD=1000MS0cvniviiiieieeeeneen 38
FIGURE23 THE PERIOD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT PERIODS
(PRE=COMPUTATION) ..ttt ettt ettt ettt e e e et e aaaaaaaaaaaans 39
FIGURE24 THE PERIOD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT PERIODS (ON-DEMAND)
39
FIGURE 25 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=10%.......c..ccvvvnennn. 40
FIGURE26 ~ THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=40%..........vevvernnnn. 41
FIGURE27 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=60%.........cccceverennns 41
FIGURE28 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=80%..........ceevvvrnnnnn. 42
FIGURE 29 THE THRESHOLD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT THRESHOLDS
(PRE=COMPUTATION) ...t ttttettttiseseeeseeatetaaseseaeseeasstana s aseeeeeeassssansaseeaeeesssannn s saeaeeessssnnnsnsaeeeeresnnns 42
FIGURE30 THE THRESHOLD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT THRESHOLDS
(ON=DEMAND) ettt 43
FIGURE3L THE MATRIX 4* ATOPOLOGY ..vvtuuuieeesseesuusnnnseeeeeseeesssnnnaseeeseeemssnnnaaeeeseenmsnnnnnaeeereeemnne 44
FIGURE 32 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=100MS........ocvviviiiiiieiieeanesn 45

FIGURE 33 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=200MS........ccviiviiiiiieieieeinen, 46
FIGURE 34 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=500MS......c.ccviieieiiiieieeeenan 46
FIGURE35 THE PERIOD-BASED LINK STATE UPDATE METHOD, PERIOD=1000MSc0uvveeiirinneerirnnnnn. 47
FIGURE36 THE PERIOD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT PERIODS

(PRE=COMPUTATION) ..ttt tttetttttseseeeeeeetessnnseseeeseeasssnsnaaaeeeseeesssssnaaeeaeeeesssnnnaeeereeenssnnnnaseeererennnns 47
FIGURE37 THE PERIOD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT PERIODS (ON-DEMAND)

48

FIGURE38 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=10%..........ceevvernnn.n. 48
FIGURE 39 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=40%...........cevvvenneen. 49
FIGURE4A0 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=60%..........ceeevvvnnnn. 49
FIGURE 41 THE THRESHOLD-BASED LINK STATE UPDATE METHOD, THRESHOLD=80%...........c0vvvvenen. 50
FIGURE42 THE THRESHOLD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT THRESHOLDS

(PRE-COMPUTATION) ettt tettttiseseeeseeetesnanseseeeseeaesssnnaaaeeeseeesssssnsasaeeseeesssnnnaseeeseeesssnnnnnseeeeerennnns 50
FIGURE43 THE THRESHOLD-BASED LINK STATE UPDATE METHOD WITH DIFFERENT THRESHOLDS

[T I3 - N) PP 51

Vi

Acronyms

BE Best Effort

BF Bellman-Ford

DiffServ Differentiated Services

DV Distance Vector

ECB Equal Class Based

FGTT Flow Global Topology Table
FRT Flow Routing Table

GTT Global Topology Table
IntServ Integrated Services

P Internet Protocol

LAN Local Area Network

LS Link State

LSA Link State Advertisement
LTT Local Topology Table

PB Period-Based

QoS Quality of Service

QOSPF QoS Open Shortest Path First
QRS QoS Routing Simul ator

RM Resource Management

RSVP Resource Reservation Protocol
RT Routing Table

B Threshold-Based

TCP Transmission Control Protocol
uCB Unegual Class Based

VII

K7

X Helsinki Uriversity of Technology, Networking Laboratory

1 Introduction

1.1 Background

TCP/IP, which is widely used nowadays in networks including the Internet, was originally
designed as a Best Effort (BE) transmission protocol. The best effort service seemed enough in
the early stages of the Internet when most of the applications were limited in data sharing,
including services as email service and web browsing. With the rapid development of the
Internet, more and more new applications have appeared, including online games, real-time
multimedia, voice over IP, video conference etc. These new applications have a common
traffic characteristic: they need something that traditional BE network can not provide, in fact,
they require certain grade of Quality of Service (QoS), e.g., packet loss, delay, jitter and
bandwidth guarantees [1].

On the other hand, most of the Telecom operators have both data traffic and voice traffic in
their networks, and they have to maintain a packet switching network for the data traffic and a
circuit switching network for the voice traffic. Maintenance of these two different networks
needs more hardware, human resources and training of employees, thus it is costly. So more
investments have been put into the IP network and more voice traffic has been transferred to
the IP network by using the voice over IP technology. For example, packet data traffic in the
AT&T network is about eight times as big as the amount of its voice traffic, and $3 billion will
be invested in 2003 to transform the whole AT& T network into a pure 1P-Based network [2].
Obvioudly, the IP network that can take over the traffic from the circuit switching network or

other substitutes should provide QoS guarantees.

7

X Helsinki Uriversity of Technology, Networking Laboratory

1.2 QoS Routing

Different kinds of Internet QoS architectures have been developed to achieve the required QoS
inan IP network, e.g., Integrated Services (IntServ) and Differentiated Services (DiffServ). No
matter which architecture is used, QoS routing may play an important role in the network that
supports the QoS.

Routing for the Best Effort traffic, e.g. OSPF and RIP, use the shortest path to forward packets
without considering the delay or bandwidth of the path. This is not enough for routing the
traffic with bandwidth requirements. The QoS routing makes an extension to current
Best- Effort routing. To be able to dea with the quality guaranteed traffic, QoS routing
algorithm has to compute multiple paths for integrated-services, or consider the quality

constrains (e.g. delay, bandwidth) when making routing decision [21].

To enable the nodes to make routing decisions, information exchange that makes it possible for
the node to acquire link state information in the network is necessary. In general, there are two
kinds of information exchange techniques. Link State (LS) and Distance Vector (DV).

Distance vector is not discussed here.

There are different ways of advertising the link state information [3] [5] [8] [13] [16]:

In case of Period-Based (PB) Link State Updates, the link state information is broadcasted
based on a predefined period. In this way, the loads on the network and routers introduced by
link state updates are independent of the link state changes in the network, but other routers

will not detect any significant changes until the period ends.

The following three methods trigger the link state update when the change in the link is big

enough. Whether the change is big enough or not can be measured either by absolute value of

X Helsinki University of Technology, Networking Laboratory

bandwidth or the percentage of change happened with the previous broadcasted bandwidth.
The absolute value depends on the classes that the available bandwidth is divided into. There
can be Equal Class Based updates (ECB) and Unequal Class Based updates (UCB).

These methods will make sure that significant changes to the link state will be broadcasted to
the network in time, thus improving the accuracy of the link state information, but this may
lead to heavier load for the routers. When the network is unreliable, for coping with the loss of
link state update packets, a timer needs to be added to prevent too long periods between
updates. When the network is unstable, for preventing too high frequency of updates from

overburdening the network, a timer with a preset hold-time can also be added.

In Threshold-Based (TB) Link State Updates, the information is to be broadcasted when the
change in the link is bigger than the predefined threshold. A certain percentage of previous
broadcasted bandwidth is set as the threshold. BO stands for the previous bandwidth, Bl isthe
new bandwidth and th is the threshold in percentage, if |(B1 -B0)/BO |>th, then the update will
be triggered.

In Equal Class Based Updates, the available bandwidth has been divided into several classes of
equal size: (0, B), (B, 2B), (2B, 3B)...When the change to the bandwidth of acertain link isbig

enough to make it move from one class to another, an update will be triggered.

In Unequal Class Based Updates, the available bandwidth has been divided into several classes
of unequal size. Typically, exponential class size is implemented where the size of base class
(B) and the factor (f) are defined, and then the bandwidth will be divided to: (0, B), (B, (f+1)B),
((f+1)B, (f2+f+1)B)... like the previous one, the update is triggered when the border of the

classis crossed.

7

X Helsinki Uriversity of Technology, Networking Laboratory

1.3 Path Computation Algorithms

There are aso different ways of computing the path [3]:

In the Pre-Computation Algorithm, the path from each vertex to al of the destinations is
computed periodically or after certain number of link state updates. Then when a node initials a
request, it just picks a path from the stored routing table. Thus the cost of computing paths for

the whole network can be shared by several requests.

In the On-Demand Computation Algorithm, the path to a certain destination is computed every
time a request is initiated. So computing the path to the specified destination is what needs to

be done.

These two agorithms both have advantages and drawbacks. They are described further more in

the next Chapter.

1.4 Inaccurate Routing Information

Non-optimal routes normally occupy more links than the optima one. This wastes the
resources of the network and introduces more delays to the packets. Thus, the utilization and
performance of the network are affected by the quality and correctness of the path selection.
The path selection depends not only on the algorithm and criteria of routing, but also on the

accuracy of the link state information.

The link state information, representing the resource and status of the nodes and links in the
network, is spread over the network by using the Link State Advertisements (LSAS). If an LSA
is sent whenever a change happens to the link or node and ro LSA packet is logt, then the link

state information kept by each router will be accurate. But broadcasting the LSAs for all

7

X Helsinki Uriversity of Technology, Networking Laboratory

changes is infeasble due to the huge overhead to the network, especidly in a large size
network or highly dynamic network that tends to have more frequent changes. Thus, as we
have mentioned above, the link state information will be updated either periodically or be
triggered by significant changes in a practical implementation. Between two subsequent
updates, the link state information maintained by each router may not represent some changes
happened to the network, and in an unreliable network, the LSA packets may also get lost, so
the link state information of the network can not always be updated accordingly. So sometimes,

the routing decision has to be made based on inaccurate link state information.

The accuracy of the link state information for routers depends on the frequency of link state
updates, while the frequency of link state updates is decided by the senditivity of the update
triggering policy. Obviously, more accurate information can be achieved by increasing the
sengitivity of triggering policy, for example, shortening the period in PB, lowering the
threshold in TB, decreasing the class size in ECB and UCB. But improvements in accuracy
gained from implementing the above methods will have to be paid by burdening more update

traffic and more computation overhead on the network.

When the routing information is inaccurate, the path selection based on the information may be
nonoptimal, or even incorrect. Non-optimal path selection decreases the utilization of the
network and incorrect path selection leads to more blocking that damages the network

performance.

There are also some other reasons that can lead to inaccuracy of the routing information, for
example, temporal conditions like congestion in the network, and information aggregation in a

large network [6][7]. These are not studied in this thesis.

7

X Helsinki Uriversity of Technology, Networking Laboratory

1.5 Purpose and scope of thethesis

Both on-demand QoS routing and pre-computation have pros and cons depending on some
factors such as network size, traffic requests and so on. It is normaly regarded that the
on-demand QoS routing algorithm is suitable for small-scale networks while the
pre-computation agorithm for large-scale networks. Also, the on-demand QoS routing
algorithm is more suitable for networks where requests arise infrequently while the
pre-computation algorithm for networks where requests arise very frequently. Nevertheless,
there have been many ondemand QoS routing agorithms but a few pre-computation
algorithms presented in recent years. Considering network diversities, it is unclear yet how to
apply these two different routing algorithms into a real network, for example, whether the
common claims are true, to how much frequency of requests the on-demand algorithm can

work well, to how big network the pre-computation network should be used, etc.

Our study aims to investigate these problems and intends to present some observations how
these algorithms can dffer in terms of network performance when given various network
environments, e.g., link state updating agorithms, network size, traffic, etc. Thus, our work can

be used for guiding the deployment of either routing algorithms in real networks.

K7

X Helsinki Uriversity of Technology, Networking Laboratory

1.6 Thestructureof thethesis

The rest of the thesisis organized as follows:

In Chapter 2, we give some further discussion about the Pre-Computation and the On-Demand

computation algorithms, followed by a brief comparison.

In Chapter 3, descriptions are given about the simulator we are using as well as the extension to

the smulator that we have made in order to carry out the smulations for this thesis

The results from the simulations and the performance analysis are presented in Chapter 4. The
simulations are carried out in the networks with different topologies. In order to find the
influence of inaccurate link state information upon networks with different traffic loads, in
each topology, we run the simulations with different routing algorithms, different link state

update methods and different periods or thresholds.

In Chapter 5, we give the conclusions.

K7

X Helsinki Uriversity of Technology, Networking Laboratory

2 Pre-Computation vs. On-Demand QoS Routing

Depending on the path computation triggering criteria, there are two main QoS path

computation algorithms, i.e. the Pre-Computation and the On-Demand computation algorithm.

For the pre-computation algorithm, the path computation can be triggered either periodically or
when a path cannot be found from pre-computed results for a request. For the on-demand

computation algorithm, the path computation is triggered when a new request arrives.

2.1 Pre-Computation QoS Routing

To cope with different requirements of QoS requests, there must be a QoS specific routing
table for the QoS guaranteed traffic that is similar to the routing table used for the best effort
traffic. When pre-computing the paths, the QoS requirement is unknown, thus the QoS specific
routing table may have several paths for a specific source-destination pair due to different
kinds of QoS requirements. For instance, for the traffic that has a bandwidth requirement,
requests may need different amount of bandwidth, which may lead to different routing
selections. While it is impossible to make an entry for any possible required bandwidth, a
practical approach is to group the requests into several classes. Those requests in the same class
have a similar bandwidth requirement, and then, for each class in a source-destination pair, the
route is pre-computed and stored in the QoS routing table. Another approach does rot classify
requests. On the contrary, it records the bandwidth of route with minimum hops as well as
those routes with more hops but having a larger amount of bandwidth. For an incoming request,
the route with minimum hops will be checked first. And if the bandwidth is not enough, then

other routes with more hops will be checked. [4]

Advertisements of the link state information and the computation of the paths consume a

considerable amount of network resources, for example, the bandwidth of links for information

7

X Helsinki Uriversity of Technology, Networking Laboratory

exchange, processing capability of routers for route computations and memory for storage of
the routing table. These are al resource consuming. More frequent path computation increases
the quality of path selection, but it consumes more network resources and increases the
complexity of implementation. In alarge backbone network, these overheads can be significant.
Then controlling these overheads requires a careful trade-off between routing accuracy and

complexity [9].

In general, the pre-computation algorithm has the following advantages [10]:

Firstly, the pre-computation algorithm has better scalability. When the network gets bigger, the
number of nodes and links in the network will increase accordingly. More nodes and links tend
to have more changes, thus the number of LSAs for keeping the link state information in each
node grows more, and the processing load for path computation based on the information also

increases.

For periodical pre-computation, the number of path computation in the pre-computation
algorithm is independent from the number of requests in the network. Typically, networks with
larger size have more requests in a unit time, the pre-computation algorithm, which can make

the computation load shared by several requests, can reduce the overall computation load.

Secondly, the pre-computation algorithm is fault tolerant. There may be failures of nodes or
links in networks, and a solution can be bypassing those failure parts by using alternative
routes. By using pre-computation, the alternative routes can be computed in advance to handle

the failures.

Thirdly, the pre-computation algorithm can improve the performance in busy time. During the
busy time, there may be much more requests than on average. Since the paths have been

computed and stored in the routing table in advance, comparing with computing the path on

7

X Helsinki Uriversity of Technology, Networking Laboratory

demand, picking a ready path from the QoS routing table saves time in handling the requests.

Thus, the pre-computation is more robust in dealing with bursts of traffic.

Finaly, the pre-computation algorithm can improve load balancing. In the pre-computation
algorithm, severa routes are computed in advance for the same destination, and then the
available resources can be alocated to different requests more efficiently. Thus the traffic in

the network can be balanced by directing different requests to different aternative routes

properly.

Above al, the pre-computation algorithm is considered as a solution to improve the scalability
and the response time, to reduce the processing load to the network by sacrificing certain grade
of routing quality. By computing the route for each destination in advance, the algorithm can
reduce the respond time for requests. It can also reduce the overall computation load to the
network in a considerable level when the number of the requestsis high. Such kind of advance
computation is not rather time critical, so it can be done in a background process to balance the

network-processing load. [10]

But the pre-computation for al the destinations may waste lots of resourcesif only afew of the
pre-computed paths are used. For example, in the ad hoc network, each node is more likely to
communicate with only a few nearby nodes, so pre-computing paths to all destinations is

unnecessary and inefficient.

2.2 On-Demand QoS Routing

The pre-computation routing algorithm trades the quality of routing decision for lower
processing load to the routers and less bandwidth consumption to the links. However, with the
development of computer hardware and transmission technologies, the cost for processing

capability of routers and the cost for bandwidth have been becoming more affordable. Then, in

10

7

X Helsinki Uriversity of Technology, Networking Laboratory

order to get better quality of route selection, the onrdemand routing algorithm, which has been

blamed for its high computation overhead, can now be deployed on a larger scale.

By using the latest link state information that is available in the network, the On-demand
computation can make better routing decisions than the pre-computation due to the improved

accuracy of routing information.

Unlike the pre-computation algorithm, the on-demand computation does not need to compute
the routes to al destinations or for different QoS requirements. The ondemand path
computation is carried out only on the arrival of arequest. Thus, the destination is specified. As
to the QoS traffic with bandwidth requirement, the required bandwidth is also known. So only
one path that fits the QoS requirement to the certain destination is necessary to be computed.
The computation algorithm can be simpler compared to the computation of multiple paths to

different destinations in pre-computation.

According to the above description, path is only computed every time a new request is initiated.
For the networks with fewer requests, the ondemand computation can be an efficient

algorithm due to lower processing load by less path computations.

Thus, without the maintenance of the QoS routing table and less path computations, the
implementation of the onrdemand computation algorithm is much simpler compared to that of
the pre-computation algorithm. The path computed is not necessary to be stored in the routing

table for the future use, so the storage for the routing table can also be saved. [4]

With some extensions to the ondemand computation, the cost and the number of path

computations can be reduced.

A path caching architecture is discussed in [4]. In this architecture, there is a path cache for

storing the paths that are computed on demands of the previous requests. To each new request,

11

7

X Helsinki Uriversity of Technology, Networking Laboratory

the on-demand computation is triggered only if the route needed can’t be found from the path
cache. After the computation, new path will be added into the path cache for future use. The
result of simulations in [4] shows that the path cache reduces the processing cost while the

storage of cache is comparable to or even more than that of the pre-computation algorithm.

A further study about path cache can be found in [11]. This paper studies the trade-off between
the cost and the network performance by using different granularities for cache. The smulation
results show that networks with proper selected hybrid granularity scheme for cache performs

well with proper amount of storage.

2.3 The Comparison between these two algorithms

Both of these two algorithms have advantages and drawbacks. The selection of an algorithm
should take into account the following: network size and network characteristics, for example,

stability, reliability and number of requests, etc.

The comparison between these two algorithms is discussed below. There are extensions to
on-demand computations, including path caching, which can improve the performance by
using extra storage. This can be considered as an approach between these two agorithms. Yet,

it is not discussed here.

The Storage: Compared to the on-demand computation, the pre-computation algorithm needs

extra storage space for the storage of multiple paths.

The Complexity: For the pre-computation algorithm, paths for different destinations and
different QoS requirements must be computed. But for the on-demand computation algorithm,
only one path needs to be computed under the request of a certain QoS requirement and

destination.

12

K7

X Helsinki Uriversity of Technology, Networking Laboratory

The extra storage for the routing table and more path computations make the pre-computation

algorithm more complicated in implementation.

The Processing Load: In the pre-computation algorithm, the path computation overhead can
be shared by several requests, so in the network with many requests, the overall computation
overhead can be diminished. But in other Situations, for example, in the Ad Hoc network,
nodes tend to communicate only with nearby nodes, or with networks with fewer amounts of
requests. Most of the pre-computed paths may never be used. Thus, the pre-computation

algorithm wastes lots of processing capability.

While in the ondemand computation, path computation is needed for every request. Those
networks with many requests will generate large computation overheads. This is the main

obstacle for its scalability.

Thus, the selection of algorithm depends on the size and the characters of network.

The Quality of Path Selection: For the pre-computation algorithm, there is a period between a
path computation and handling of a request and it depends on the frequency of the path
pre-computation. Y et, changes may appear during this period, thus when handling the request,
the routing information has become inaccurate. And paths stored in the routing table based on

inaccurate routing information can be nonoptimal or invalid.
For the on-demand computation, paths are computed based on the latest routing information,

i.e. path computations are always based on more precise routing information. Thus the quality

of path selection is better.

13

7

X Helsinki Uriversity of Technology, Networking Laboratory

Compared with picking up path from the routing table, the on-demand computation takes more
time in path sdection than the pre-computation agorithm. This introduces more delay to

packets.
In this thesis, we compare these two algorithms by running simulations with different link state

update algorithms. Four periods in period-based and four thresholds in threshold-based are

chosen to carry out the simulations.

14

K7

X Helsinki Uriversity of Technology, Networking Laboratory

3 The Simulation Environment

A brief introduction to the ssmulator we used to carry out the simulations is given here. Some
extensions to the simulator that were necessary for our simulations are also introduced,
including new routing algorithms and a new traffic generator for generating the traffic with

QoS requirements.

3.1 Basic Information about QRS (QoS Routing Simulator)

In this thesis, we use QRS as our routing simulator. It was developed at Helsinki University of
Technology for the evaluation and comparison of QoS routing algorithms in IP networks.
Networks with different topologies are modeled with configuration files, and then the results
exported from the simulator can be checked from the log files [8] [13].

QRS models the network as a combination of different kinds of components. For example, the
component “Node” represents the practical nodes, using parameter “delay to process a packet”
to represent the processing speed and “Buffer space” to represent the buffer. The “Link”

component represents the links with characteristics of bandwidth and propagation delay [8].

The “Real-time Traffic’ component initiates traffic with QoS Constrains, i.e. bandwidth
requirement. It contains source and sink that are connected to the source nodes and the sink
nodes respectively. The routing algorithms are implemented in the “QOSPF’ component, and
the implementations of these two new routing algorithms are added into this component. Every
node has a “QOSPF”’ component to maintain the routing information. The functionality of
signaling path setup is smulated by the “RSVP’ component. The “RM” component is

responsible for the resource reservation. Every node has a“RSVP’ and a“RM” component [8].

15

7

X Helsinki Uriversity of Technology, Networking Laboratory

With these components, the basic procedure for the set-up of aflow is like this. Node requests
RSVP for flow set-up, and then RSVP inquires QOSPF for information about the next hop,
after that, RSVP sends PATH message to the next hop acording to the reply from QOSPF,
finally, if an acknowledgement from the destination is received, RSVP requests RM to reserve

the resources.

A certain number is allocated for every Main “Quality of Service Open Shortest Path First”
(QOSPF) action in the ssimulator to simulate the practical cost in real implementation as shown
in Table 1 below. During the process of simulation, the total sum comes from adding up al the

costs of involved actions.

Name Cost Description
DEFAULT_QOSPF PROC_COST 100 | Processing of QOSPF
DEFAULT_RM_QOSPF_PROC_COST 50 | Processing of QOSPF Resource

M anagement

DEFAULT RSVP_QOSPF_PROC_COST 10 | Check message in RSVP

DEFAULT_RSVP_QOSPF COMP_PROC | 150 | Computation of routing tables
COST

DEFAULT LS BROADCAST COST 20 | Broadcast the Link State information

DEFAULT_BROADCAST_PKT_COST 10 | Broadcast the packet

DEFAULT_QOSPF_COST 100 | Periodically computation of routing
table

DEFAULT_QOSPF LOOKUP COST 50 | Path lookup from BF Routing Table

DEFAULT_QOSPF COMP_COST 100 | On-Demand computation of path

Table 1 Costsfor different QOSPF actions

In order to smulate the costs for the path lookup in the pre-computation agorithm and for the
path computation in the on-demand computation algorithm respectively, we add in the last two

parameters in the above table.

With the execution of every step in the simulation, the costs of all of the involved QOSPF
actions are summed up one by one. After finishing the simulation, we can get a summed up

value that is the total cost of all involved actions. And we use this value to ssmulate the costs

16

7

X Helsinki Uriversity of Technology, Networking Laboratory

for flow set-up and for tearing down as well as other activities needed in real networks. In
order to decrease the affect from the size of networks, we divide the cost by the number of

nodes in a certain network, and get the value of cost per node.

3.2 New Routing Algorithms

We developed two new routing algorithms besides the previous ones in QRS. Algorithm 4 uses
the Pre-Computation algorithm and algorithm 5 uses the On-Demand computation algorithm.
Both of these two algorithms are based on the Bellman-Ford (BF) shortest path algorithm and
the pseudo code can be found from [3]. For algorithm 5, only the path to a certain destination is
computed. And as soon as the path with enough bandwidth is found, the calculation stops. [18]
[19]

3.2.1 ThePre-Computation Routing Algorithm

The routing table for the BE traffic is computed periodically, so we add in the computation of
the BF routing table after finishing the BE routing table computation. Then the BF routing
table for this algorithm is computed at the same frequency of the normal routing table.

In every node, there are Routing Table (RT), Flow Routing Table (FRT), Local Topology
Table (LTT), Globa Topology Table (GTT) and Flow Global Topology Table (FGTT). The
RT stores the paths to different destinations. Each entry contains a destination, “next hop” and
the cost. The FRT stores the bandwidth of the link to the next hops. The LTT contains the
information of neighbouring components. The GTT and the FGTT are used for maintaining the

link cost and link bandwidth between different nodes respectively.

17

7

X Helsinki Uriversity of Technology, Networking Laboratory

The Bellman-Ford Routing Table (BFRT) is added to the simulator for our ssmulation. The
BFRT has an entry for each destination. And for each entry, bandwidth and “next hop”

information are stored for different numbers of hops.

The Computation of the BF Routing Table:

=

Initialization: To each node in the BF routing table, set the bandwidths of its neighbouring
nodes to 0 and the “next hop” to NULL.

2. Hop 0 and 1: Hop O is the starting node, so set its bandwidth to INFINITY. Check the
bandwidth and link information from the LTT, and then set the bandwidths and “next hop”

of the nodes that have direct connections with the starting node.

3. Hop 2: Set the bandwidths and “next hop” of the nodes that are directly connected to the

nodes with hop count 1 according to the information in the FGTT.

4. Other nodes. Repeat step 3 to nodes with more hops count one by one until al nodes have

been processed or the hop counting exceeds the maximum value--MAX_HOPS.

18

K7

N Helsinki University of Technology, Networking Laboratory

Start

¥

Set starting
tiode (Hop)

L J

Compute nodes
of Hop 1

-+ i=itl

Compute nodes
of Hop i

(Al nodes are
computed) OF
(i=hAX HOPSH?

Figurel TheFlowchart for computation of the BF routing table

Path Selection based on the BFRT goes as follows: Check the entry for the destination from the
BFRT and go through the entry from hop 1, if there is a bandwidth in the entry of the
destination larger than the required bandwidth, the path is found. Otherwise, finding of the path

fails.

19

K7

X Helsinki Uriversity of Technology, Networking Laboratory

3.2.2 TheOn-Demand Computation Routing Algorithm

The implementation of the On-demand computation is simpler compared to the previous one.
The computing step is similar to the computing of the BF routing table, but the available
bandwidth is compared with the required bandwidth when computing. As soon as the path that

fits the bandwidth requirement is found, the computation will stop.

The process of this algorithm is described as follows:

1. Initidization: Give initia values of “next hop” and bandwidth to each path entry.

2. Hop 1: Compute the nodes with hop count 1, and then, compare the available bandwidth
with the required bandwidth of the specified destination, if the available bandwidth is larger,
then the route is found and path finding stops.

3. Hop 2: First, Compute the nodes with one more hop count compared to the previous ones
and then compare the available bandwidth with the required bandwidth of the specified
destination. When a path with a larger bandwidth is found, then the path needed is found

and the path finding stops.
4. Other Nodes. Repeat step 3 to nodes with more hops count one by one until the path

needed is found, or until the hop number exceeds the MAX_HOPS, or until all of the nodes

have been checked. If the path can’t be found, then the path finding fails and stops.

20

K7

N Helsinki University of Technology, Networking Laboratory

Start

¥

Initialization

A J

Compute nodes

Y

of Hop 1
B Ha _
==rate? i=1
v
Compute nodes
Ves| of Hop i
v

es B

Fmd Rl:lut-e :‘::r&te'? 1 = 1+1

Fail to find route

Figure2 TheFlowchart for the On-Demand Computation Algorithm

3.3 The Traffic Generator

At the beginning, in order to simulate the network performance under different traffic loads, we
used the “Real-time-Traffic” component for producing different amounts of QoS constrained
traffic. But soon we noticed that the results mainly depended on the request scenario of the

“Real-time-Traffic”. With the increasing amount of the traffic, the blocking rate rises quickly

21

7

X Helsinki Uriversity of Technology, Networking Laboratory

from O to 100%. Then we decided to develop a new component, that is, the “ Traffic Generator”,
which can generate requests. By using the “Traffic Generator”, we can control the character of

the generated traffic requests.

The “Traffic Generator” is developed based on the “Real-time-Traffic”, and some of the input

parameters for this component are listed as follows: [8]

Average packet length specifies the size of the packet in byte. In our simulations, this

parameter is always set to 512 bytes.

Average interval of requests specifies the average interval between requests in us. In our

simulations, the traffic load is adjusted by changing the vaue of the interval.

Sandard deviation of requests specifies the standard deviation of requests. This parameter is

set to 100 in our sSimulations.

The time of starting request specifies the time from the start of smulation to the first request
produced in ps. To reserve enough time for the initialization of the simulator, this parameter is

set to 1000 in our simulations.

Interval of traffic producing specifies the source active interval in ps. This parameter is set to

2sin our smulations.

Interval of traffic pausing specifies the source pausing interval in i s. This parameter is set to 1s
in our simulations. Combined with Interval of traffic producing, we set the source to pause one
second after every two second’s producing of real-time packets. Thus, we can control the

percentage of the time for producing traffic.

Average delay between packets specifies the average delay between packets in ps. The traffic

22

7

X Helsinki Uriversity of Technology, Networking Laboratory

load can also be adjusted by changing this parameter. For packet length is 512* 8=4096 bits, to
get 1 Mb/s=1 b/us flow rate requests, the packet should be sent every 4096 ps. Thus, this

parameter is set to 4096 in our simulations.

Maximum flow index and the ‘Minimum flow index” specify the range of the flow index that

can be used by requests. Each request in the network should have a unique flow index.

Minimum flow index is used together with the “Maximum flow index” for defining the range of

the available flow indexes.

Routing method specifies the routing method for the QoS routing. In our simulations, this
parameter is set to 4 or 5, using the pre-computation routing algorithm and on-demand routing

algorithm respectively.

Flow rate specifies the flow rate of the source. Its unit is Byte/s. This parameter should be
synchronized with the “Average delay between packets’, i.e. the traffic loads should be
identical. For example, to get a packet flow with 1 Mb/s flow rate, the Average delay between
packets is set to 4096 and the Flow rate should be set to 125000 corresponding to 1IMb/s.

23

X' Helsinki University of Technology, Networking Laboratory

JPEG H.263 MPEG-1 MPEG-2 MPEG-4
SDLAR% Isonec [ITU-T3615LBC| sosEC ISO/IEC ISO/IEC
10918-1 11172-2 13818-2 14496-2
ITU-T T.81 H.I¥S_‘|Tf|§62|(564 ITU-T H.262
Functionality Compression Low bitrate interactive generic high | generic object-
of compression I Video retrieval | quality video based video
photographic for video from coding coding
images comunication CD-ROM
Source 64 kK x 64 k CIF 352x288 SIF CCIR 601 SQCIF to CCIR
resolution No fixed QCIF 176x144 352x288 720x576 progressive &
{pixels x lines) formats SQCIF88x72 (MP@ML) interlaced
Bit rates N/A 8 kbis to 2 Mb/s =21.856 M =215 M 5 kbis to
[hit/s] px64 khis {CPS) (MP@ML) 4 Mhv/s
min. Data Unit 8 x 8 pels 16 X 16 pels 16 x 16 pels 16 x 16 pels 8 x 8 pels
Temporal N/A forward/ forward/ forward/ forward/
prediction bidirectional backward/ backward/ bidirectional
bidirectional bidirectional
Motion comp. N/A H.263: £ 32/ 0.5 128/ 0.5 2127 (V), resolution
range/ H.261: 15/ 1 * 1023 {(H) dependent;
resolution /0.5 half pel
Rate control No Yes Yes Yes Yes; muli
video objects
Figure3 International Compression Standards[22]

Aswe can see from Figure 3, MPEG-1, which is a standard designed for video CD, has typica
bit rate of about 1.5 Mb/s. While MPEG-2, which is designed for TV broadcasts including
HDTV and DVD, has typica bit rate from 4 to 8Mb/s. And MPEG-4 for interactive
audio-visual communication has typical data rate from 5 kb/s to 4 Mb/s [22]. Onthe other hand,
10Mb/s or 100Mb/s Ethernet is common in atypical Local Area Network (LAN).

In our smulations, we tend to simulate video streams or video conferencing packets flow in a
typical Ethernet LAN. Thus, we set the bandwidth of the links in the network to 20Mb/s, and
the flow rate of the requests generated by our traffic generator to 1 Mb/s.

The requests are initiated and routed on a basis of flow by flow. When the flow rate is 1 Mb/s,
it contains 250 packets of 512 bytes. These 250 packets are considered as a whole and are

routed using the same path.

24

K7

X Helsinki Uriversity of Technology, Networking Laboratory

4 Simulation Resultsand Analysis

The simulations are carried out using different topologies. These topologies include tree

topology, matrix 2*2, matrix 3*3 and matrix 4*4.

We run the simulations by using the PB and the TB routing algorithms. For the PB, the link
state update periods we select are 100ms, 200ms, 500ms and 1000ms. For the TB, the link state
update thresholds we select are 10%, 40%, 60% and 80%. Then for every period and threshold,

simulations with different request rates are run using different algorithms.

4.1 Tree Topology

Figure4 TheTreeTopology

The new routing algorithms are tested firstly in the tree topology. Since the tree topology only
has 4 nodes and three links, and aso because of the random factor in the smulator, the
performance of the two different algorithms only vary a little in different simulations, but no
algorithm has a dominating advantage over the other one. As to the different link date update
periods in the Period-Based link state update method and different thresholds in the
Threshold-Based link state update method, the results are also similar. Thus, since the topology

of the tree is quite smple, we cannot get conclusions about the difference between the two

25

7

X Helsinki Uriversity of Technology, Networking Laboratory

routing algorithms and between different link state update methods. But by trying the tree

topology, we can test the functionality of the ssmulator and debug the newly added routing

algorithms and components.

4.2 TheMatrix 2*2 Topology

4.2.1 Basic information of the topology

e ° =
Rource o °

Figure5 TheMatrix 2*2 Topology

The Matrix 2*2 has four nodes with four links connecting these nodes. The bandwidth of each
link is set to 20Mb/s. The links will never fail, and the flow rate of the source is 1 Mb/s. Traffic
load changes are made by changing the average interval between requests. In this topology, the
average interval between requests is set from 100ms to 30ms, so the corresponding number of

requests per second varies from 10 to 33.33.

26

K7

X Helsinki Uriversity of Technology, Networking Laboratory

4.2.2 TheResult and analysis

The blocking rates and costs for different periods and thresholds are shown as follows:

For the Period-Based Routing Algorithm:

45, 530000
—— Pre- Compniation
4 ¢ 525000
e S20000
I S15000
i o
II: o
o 25 T = 510000
g &
E a0 T . 05000
= L5}
15 1 0000
1 | 425000
—— Pre - Cam prtation,
5T 420000
—#— On-Demand
0% g g g : 485000 g : : :
1667 20.00 25.00 25.57 3333 16 .57 20000 2500 28.57 3333
Humber of Eequests P er Second Mumnber of Eeopests Per Second

Figure6 ThePeriod-Based Link State Update M ethod, Period=100ms

Figure 6 shows the blocking rates and costs of the two algorithms under different traffic loads.
We can see that the network performance of these two different algorithms is almost identical.
The cost of the pre-computation is aways lower than that of the on-demand computation and

the gap between these two algorithms is getting larger with the increase of the request rate.

For the pre-computation algorithm, path computation is done periodically, the computation
overhead does not change for different amounts of requests, but the processing overhead for
handling the requests does. For the on-demand computation algorithm, more requests mean
more computations. Thus, we can see that with the increase of request rate, the costs of these
two algorithms grow, but the cost of the on-demand computation grows quicker due to more

path computations.

27

K7

X Helsinki Uriversity of Technology, Networking Laboratory

455 300000
LI 295000
. 260000
3 283000
g e
o [=gt=]
oo 25 | =
-
4 L 27000
ot =5}
o2 | o
— [=a]
- 15%, ©
: 265000
LR
260000 Pre- Com -
e 255000 —— On-Demand
0% : - : . 250000 . . : .
1667 20,00 25.00 2857 3333 16.67 2000 2500 2857 3333
Humber of Requests Per Becond Number of Fegaests Per Secand

Figure7 ThePeriod-Based Link State Update M ethod, Period=200ms

Figure 7 shows that the results are similar to Figure 6, and these two algorithms do not have
much difference in blocking rates. Compared to the on-demand computation algorithm, the
pre-computation algorithm has lower cost, and the difference between them becomes larger

with the increase of the request rate.

With the link state period of 200ms, the number of link state updates is only half of that with
the period of 100ms. So we can see from this figure, the costs of these two algorithms are much
smaller, they are just a little bit more than half of that in the previous one in which the link

state period is 100ms.

28

X Helsinki University of Technology, Networking Laboratory

Elocking Fate

Blocking Fate

4

I T

30 T

A5 T

L

157

L

5Hor

0%

S

455

408

35

0

a5

L T

157

100

5T

0¥

—&— Pre- Compnt aticn

Cost Per M ode

Humber of Requests Per Second

—i#— Pre- Compaatat ioh
—8— h-Demand

Cogt Per M ode

Humber of Requests P er Secord

160000

140000

120000

100000

20000

anono

40000

20000

100000

Q0000

20000

]

aooon

0000

40000

30000

20000

loaon

—— Pre- Compnt atiox,
—— e Dem and

20.00 2500

Numher of Recests Per Second

The Period-Based Link State Update M ethod, Period=500ms

Figure 8 shows that the costs of the two algorithms are about half of the costs in Figure 7 due
to the same reason as previoudy. With period=500ms, there is still not much difference in

blocking rates for these two agorithms, and the difference between the costs is smaller.

M

—— Fre- Compaxat it
—8— h-Dremand

16467 20,00 2500

Mumber of Regaests Per Second

The Period-Based Link State Update Method, Period=1000ms

7

X Helsinki Uriversity of Technology, Networking Laboratory

From Figure 9, we cannot tell which routing algorithm performs better from the aspect of

blocking rate. The costs of these two agorithms are smaller than previously because of larger

link state update periods.
0% 600000
—— 100ms —*— 100ms
45%: —8— 20(ms —=— 200ms ——
0% $00ms 00000 500ms
1000me 1000m s
3%
= o 40000
] =
o 30% 5
=
b -
.‘g 25%, 2 300000
% 20% E
200000
15%
10%:
100000
5%
0% 0 —
000 1111 1250 1429 1667 2000 2500 2257 3333 10,00 1111 1250 14.20 1667 2000 2500 2857 3333
MNumber of Requests Fer Secord Humber of Requests Per Second

Figure1l0 ThePeriod-Based Link State Update Method with different periods
(Pre-Computation)

When the request rate is lower than 16.67 per second, the blocking rates for the periods of
100ms and 200ms are both 0%. Thus these simulation results ae not shown in Figure 10.
Those results of the request rate lower than 12.5 per second when the period is 500ms are not

showed due to the same reason.

When the link state update periods are 100ms and 200ms, the numbers of link state updates are
1000 and 500 per second respectively, we found that the blocking rates are not much different
between them with different request rates. But when the link state update period is 1000ms,
since the update period is much longer, and more changes may happen during the period
between two subsequent updates, so the inaccuracy of link state information is more serious,

thus the blocking rate is much higher than in other cases.

30

X Helsinki University of Technology, Networking Laboratory

S0%.

45%

0% |

ERN O

Blocking Fate

15%

10%: |

St

0%,

0%t

A5t

0% T

—— 100ms

— 8 — 200 s
S00ms
1000ms

000 1111 1250 14290 1667 2000 2500 2857 3333

Mumnber of Feoquests Per Secord

aoomo

S00000

400000

300000

Cogt Per M ode

200000

100000

—4— 100ms

—E—A00ms
S00ms
1000ms

1000 1111 1250 1429 1667 2000 2500 2857 3333
Mumnter of Recuests Per Secand

Figurell ThePeriodBased Link State Update Method with different periods
(On-Demand)

As we have described above, with different link state update periods, the blocking rates are

almost the same for these two algorithms. Thus, Figure 11 draws out the same conclusion as

Figure 10.

For the threshold-Based Routing Algorithm:

400

IS T

EL

Blocking Fate

10

ave T

0%

a5 T

.

157

QEn000

Q0000

Qa0000

Q50000

240000

Cost Per M ode

Q0000

Q0000

210000

Qo000

2000 2222 25.00 28.57 3333
Mumber of Fecuests P er Second

—#— Pre - Can paxation
—8— In-Demard

20.00

2222

2500

28.57 3333

Mumber of Recuests Per Second

Figure12 TheThreshold-Based Link State Update Method, Threshold=10%

31

7

X Helsinki Uriversity of Technology, Networking Laboratory

Figure 12 shows the blocking rates and costs of the two path computation algorithms with
different traffic loads. The Threshold-Based link state update agorithm is used and the
threshold is 10%. There is not much difference in the blocking rate, and the cost of the

on-demand computation is higher than that of the pre-computation algorithm.

A0 QE0000

35%, 970000

300 Qa0000

25%, 930000

20 240000

Blocking Fate
Cost Per Hode

15%, 90000

103 920000

—#— Pre- Compntation
8 In-Dem and

5% 910000

0%

: : : : S00000 : : : :
2000 1 2500 2.5 3333 2000 nn 2500 2957 3333

Haber of Beguests P er Second Humber o Reguests P e Second

Figure1l3 TheThreshold-Based Link State Update Method, Threshold=40%

When threshold is 40%, the blocking rates of the two agorithms are still amost the same, and

the cost of the on-demand computation is higher than that of the pre-computation agorithm.

32

X Helsinki University of Technology, Networking Laboratory

41,

35,

3 -

Blocking Fate

10

5or

0%

A5

Al -

15% ¢

Qo000

—#— Pre- Compatat it
[|—— -Demand

S00000

0000

GO0000

Sm0000

400000

Cogt Per M ode

00000

200000

100000

2000 2222 25.00 1857 3333
Number of Requests P er Second

20.00

222 2500 1857 333
Mumber of Recpests P er Second

Figure1l4 TheThreshold-Based Link State Update Method, Threshold=60%

When the threshold is 60%, the blocking rates of the two algorithms are still amost identical,

but unlike Figure 12 and 13, there is not much difference between the costs of the

pre-computation and the on-demand computation.

4007

IS

I

Blocking Fate

L

ST

0%

A5 T

.

157

Qoooon

00000

0000

GO0000

500000

4000

Cogt Per Mode

000

200000

100000

2000 2222 25.00 45.57 3333

Hunber of Recuests P er Second

—#— Pre- Compnt atic
—&— Or-Dem and

20.00

2322 2500 28.57 3333
Mumber of Recuests Per Second

Figure1l5 TheThreshold-Based Link State Update Method, Threshold=80%

When threshold is 80%, both of the blocking rates and costs of the two algorithms are close.

33

X Helsinki University of Technology, Networking Laboratory

405

ISk

0%

Blocking Fate

0% ¢

5% r

0%t

25% ¢

0%

L5%

23

KL
—— 1%
—m 4%
. i 60%,
- 80%,
2000 2221 2500 2857 3333

Mumber o Reouests Per Becond

CostPer Mode

1200000

1000000

s00000

aoonng

400000

200000

11

——10%:
—— 4%,
G0
B0

20,00

2222

2500

28.57

3333

Humber of Recuests Per Second

Figure1l6 TheThreshold-Based Link State Update M ethod with different thresholds

(Pre-Computation)

When making comparison between different link state update thresholds, we notice that there is

not much difference between the blocking rates of different thresholds. The costs of

threshold=10% and threshold=40% are similar, and they are higher than the costs of
threshold=60% and threshol d=80%.

40%%

I5%

0%

Blocking Fate

10%.

0%

PR

0%

L%

w
o
—— 0%
" —E 4%
6%,
a0
a0 00 2222 2500 28 57 3333

Mumber of Reguests Per Second

Cogt Per M ode

1200000

1000000

200000

aonng

400000

200000

it i
——10%:
—E— 40
G
a0t
20,00 2222 2500 2857 3333

Humber of Recuests Per Second

Figurel7 TheThreshold-Based Link State Update Method with different thresholds
(On-Demand)

7

X Helsinki Uriversity of Technology, Networking Laboratory

As to the on-demand routing algorithm, there is also not much difference in blocking rates with

different thresholds.

4.2.3 Conclusion

The matrix 2*2 topology is quite smple. It only has four nodes and four links. Fewer nodes
and links tend to have fewer changes, and the changes of link state information can be spread
over the whole network easily. Thus the link state information for periodically pre-computation
of paths tends to be more accurate, and then the blocked requests caused by inaccurate path

sdection is minimized.

So in this simple topology, the on-demand computation does not obviously have better
performance in blocking rate compared to that of the pre-computation algorithm. But due to
more path computations, the cost of the on-demand computation is higher than that of the
pre-computation agorithm, and the difference between them becomes larger with the increase

of the request rate.

In [13], there is a comparison of costs and performances between the PB with period=100ms
and the TB with threshold=20%, and the PB gets lower blocking rate with lower cost. From
our simulation results presented above, we draw a similar conclusion that PB with period
=100ms has nearly equal blocking rate with TB of threshold=10%, but PB has much lower

cost.

35

7

X Helsinki Uriversity of Technology, Networking Laboratory

4.3 The Matrix 3*3 Topology

4.3.1 Basic information of the topology

Figure18 TheMatrix 3*3 Topology

The Matrix 3*3 topology has nine nodes with twelve links connecting these nodes. The
bandwidth of each link is set to 20Mb/s, the linkswill never fail, and the flow rate of sourceis

1 Mb/s. Traffic load changes are made by changing the average interval between requests.
In this topology, node 1 is the source and node 5 is the sink. The average interval between

requestsis set from 100ms to 30ms, so the corresponding numbers of requests per second vary

from 10 to 33.33.

4.3.2 TheResult and analysis

For the Period-Based Routing Algorithm:

36

X Helsinki University of Technology, Networking Laboratory

S0 450000
—4— Pre-Compntation
4% 1| v Dot il
% 476000
5%,

= o HTO00
& =
o 306 [=}

= = 47000
E=I T 5
e £

g Moo
= 205 5

405000

155,
1 466000
—— - i
5% 454000 Prre- Com pratat i
—=— (n-Demard
0% & = 402000
1250 14.29 1667 20,00 25.m 3333 12.50 14.29 1667 20,00 2500 3333
Mumber of B equeas Per Second Humber of Recquests Per Second

Figure1l9 ThePeriod-Based Link State Update Method, Period=100ms

From figure 19, we can see that the blocking rate of the on-demand computation is dlightly
lower than that of the pre-computation. The Pre-computation agorithm has lower cost

compared to the on-demand algorithm, and the difference is getting larger with the increase of

the request rate.
B, 252000
LeSHRE R o 250000
| [—=— O Dvmm annd
3t 248000
e 246000
=] - =
= S 244000
22 =
b
-
=TT 242000
— (=¥
(&1
. E 240000
- 201, ©
: 233000
236000
s — :
23000 -Lompuation
—&— (- Dem and
0% S———— : . . 232000 . . . s .
1250 1420 1667 000 250 3333 1250 1429 1667 2000 2500 3333
Mumber of Eequeds Per Second Mumber of Reguests Per Second

Figure20 ThePeriod-Based Link State Update M ethod, Period=200ms

When period is 200ms, the blocking rate of the onrdemand computation is lower but the cost is

higher compared to that of the pre-computation algorithm.

37

X Helsinki University of Technology, Networking Laboratory

60, 108000
—&— Pre- Compnat ation
—_.
50 Ce Lem ol 106000
417 14000
+H =
o L]
bl =
-
£y k4
.'5 30, & 1000
E b
c 3
20 100000
10, 98000 e —
—8— [ty Dem and
0% = ; ; : : 96000 : ; : : :
1111 1250 1420 1667 200 2500 1111 1250 1429 1667 2000 2500
Mumber of Fequegs Per Second Humber of Recquests Per Becond
Figure21 ThePeriod-Based Link State Update Method, Period=500ms
70, 50000
53000
601
5000
S0
56000
= e
e son = S0
g E
=
g 30 ' il
un]
“ sam W
20
52000
105 1000 —#— Dre- Com prtation
—8— n-Demand
0% , , , , , 0000 , , , , ,
W00 1111 1250 1429 16467 2000 W 1L 1350 1429 167 2000
Humber of R equess Per Second Humber of Requests Per Second

Figure22 ThePeriod-Based Link State Update M ethod, Period=1000ms

Similar to the one with period=200ms, when period=500ms and period=1000ms, the blocking
rates of the on-demand computation are lower but the costs are higher compared to those of the

pre-computation algorithm.

38

X Helsinki University of Technology, Networking Laboratory

O 00000
—a— 100ms —— 100m = » - " & 4
anss b —B— 20me 4350000 | —m— 200m 5
S00ms 400000 H00m ¢
. 1000m 5 1000ms
ikl 350000
_;5 a
us =
200000
a0y =
%‘:' I
..Lud d"_—: 250000 e g we——m
o 30 &
i 5 200000
anss b 150000
100000
0%
0000
0% . P - . . . 0
00 1111 1250 1429 1647 2000 2500 3333 1000 1111 1250 1429 1647 2000 2500 3333
Hutiber of Requests Per Second Hutiber of Reguests Per Second
Figure23 ThePeriod-Based Link State Update Method with different periods
(Pre-Computation)
O G000
—— 100ms —— 100m=
5 — —200ms —B— I00ms
a0% 1 500000
S00ms S0lms [- * + 2 &
1000ms
o b 1000ms
400000
3 i
B 403t =
Eﬂ I
- 2 300000
8 0% B - . = = A
i
© 200000
0%
0% 1000m0
0% - e . . . 0 . . .
1000 1111 1250 1420 1667 2000 2500 3333 000 1111 1250 1420 1667 2000 2500 3333
Mutiber of Fecuests Per Second Hutiber of Fecpests Per Second

Figure24 ThePeriod-Based Link State Update Method with different periods
(On-Demand)

From Figure 23 and 24, we find that the performance in case of period=100ms and
period=200ms have obvious improvements compared to cases when period=500ms and
period=1000ms. And the difference between period=100ms and period=200ms is minor,

period=100ms has much higher cost.

39

7

X Helsinki Uriversity of Technology, Networking Laboratory

When link state update periods are 1000ms and 500ms, the frequencies of link state updates are
low. The changes to the link state information will take more time to be updated. As we have
discussed in the first chapter, the path computation based on inaccurate link state information
makes the path selection nontoptimal or even incorrect. Non-optima path wastes system
resources and incorrect path leads to set-up failure. Thus the blocking rate increases. With the
decrease of the length of the period, the link state information gets more accurate, and the
blocking rate becomes lower. But this improvement is not gained free of charge, the cost aso

increases with the shortening of the link state update period.

For the threshold-Based Routing Algorithm:

A0 00000
—4— Pre- Compnitation
350 || b Dom o 450000
400000
30
350000
E L
5 B 300000
bo =
-
.g 20, 2 230000
=1 w"
—_ 200000
ol o
130000
10
100000
. —#— Pre- Comprtation
3%
0000 —8— (. Dem anid
oy L : : : : 0 : : : : :
14 29 16.67 20000 2222 25.00 28 57 14.29 16.67 20,00 2222 2500 2857
Mumber of Requess Per Second Mumber of Recquests Per Second

Figure25 TheThreshold-Based Link State Update M ethod, Threshold=10%

When threshold=10%, the blocking rates and costs of these two agorithms are amost the
same.

40

X Helsinki University of Technology, Networking Laboratory

Gl

S |

LI

Blocking Fate
g

LA

10

—#— Pre- Com prataticn
—— (n-Demand

0%

1429 16.67 000 2232 25.m 857
Mumber of R ecquests Per Second

Cost Per M ode

250000

200000

150000

100000

0000

—#— Pre-Compntatiom
—8— - Dum and

14.29

1a.67 20,00 2222 2500 2857

Haaber of Recuests Per Secotad

Figure26 The Threshold-Based Link State Update Method, Threshold=40%

When threshold=40%, the blocking rates of these two algorithms are almost the same, but the

on-demand computation algorithm has a little higher cost.

SO

435 1

0%

IS

Blocking Fate

L5

30

a5n

2T

1250 14.m 16 47 20.00 a2
Mumber of Eequeas Per Second

Cost Per Hode

160000

140000

120000

100000

S0000

a0non

40000

20000

—#— Tre- Compratat ot
—=— h-Demand

12.50

14 29 16.67 20000]

Haanber of Recuests Per Becotd

Figure27 TheThreshold-Based Link State Update Method, Threshold=60%

When threshold=60%, the on-demand computation algorithm has lower blocking rate, but its
codt is higher thanthe pre-computation algorithm.

41

X Helsinki University of Technology, Networking Laboratory

S0 160000
M 140000
0%
120000
IS
i a
2 a0t B L0000
=
oo -
.‘g FL 2 a0000
=} | "
m A S o000
L5
40000
10
s 20000 —%— Fre-Comput ation,
v —=— [y Dem amd
% : : : : 0 : : : :
1250 142 1667 20,00 2112 12.30 14 29 16.67 20,00 2112
Mumber of R equests Per Second Haanber of Recuests Per Becotd

Figure28 The Threshold-Based Link State Update Method, Threshold=80%

When threshold=80%, the pre-computation and the on-demand computation algorithm have
smilar performance and cost.

0%, 4500000
—— 1%
45% | _m g, 4000000
5 0%
Lk 3500000
G0%,
% 2000000
5o &
E 0 E
o = 2500000
Boasw E
- = 2000000
2 a0 &
] Lo] 1500000 //%
* —— 10%
10% LOCIoED —m— 4,
e 00000 Lltke
G0
0%, L—i— : : . . . 0 . . : . . .
1250 1429 1667 2000 2322 250 2857 1250 1429 1667 2000 2232 2500 2857
MNumber of Recuests Per Second Humber of Recpests Per Secand

Figure29 TheThreshold-Based Link State Update Method with different thresholds
(Pre-Computation)

In Figure 29, we find that with the pre-computation algorithm, when threshold=10%, the
blocking rate is lower than with other algorithms, but it also has much higher cost. When
threshold=60% and threshold=80%, they have similar performance in blocking rates, and the

difference between their costs is a'so minor.

42

N Helsinki University of Technology, Networking Laboratory

G0%:

0%

40%

Blocking R ate

W0

10%.

—— 1%
—E— 4%
G0
B0

0%

Cost Per Mode

4300000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

00000

B s S

—— 1%
—— 4%
G0%,

8%

1]

0%t

1250 1429 1667 2000 2223 2500 2F5T

Mumber o Regaests Per Becond

2222

25

1429 28.57

MNumber of Reguests Per Second

1250 lag7 2000

Figure30 TheThreshold-Based Link State Update M ethod with different thresholds
(On-Demand)

Figure 30 is similar to Figure 29. When thresnold=60% and threshold=80%, there is no much

difference in the aspects of performance and cost.

4.3.3 Conclusion

The matrix 3*3 topology has nine nodes and twelve links. Compared to the matrix 2*2, it has
more nodes and links, and more nodes and links tend to have more changes that need to be
broadcasted. The broadcasting of more changes needs more processing capability and occupies
more bandwidths. So the overhead is thus increased and the overall blocking rate also becomes
higher. For example, in the PB algorithm, when period is 1000ms and the request rate is 20 per
second, the blocking rate in the matrix 3*3 network is about twice as high as that in the matrix
2*2 network. And the cost of the matrix 3*3 is about twice as high as the cost in the matrix

2% 2.

7

X Helsinki Uriversity of Technology, Networking Laboratory

In bigger size networks, by using more accurate routing information for path computation, the
on-demand computation shows small advantage in the aspect of blocking rate, though the

difference in the performance between the two algorithms is still insignificant.

When the network size is getting bigger, more nodes can share the flow load between one
source-destination pair, thus the average forwarding load for each node gets smaller. In our
simulations, both the matrix3*3 topology and the matrix2*2 topology only have one
source-destination pair, we observe that the cost per node in the matrix3* 3 topology is lower

than that in the matrix2* 2 topology.

4.4 The Matrix 4*4 Topology

4.4.1 Basic information of the topology

(O
(DO~

mOUrCE

Figure31 TheMatrix 4*4 Topology

7

X Helsinki Uriversity of Technology, Networking Laboratory

The Matrix 4* 4 topology has sixteen nodes with twenty-four links connecting these nodes. The
bandwidth of each link is set to 20Mb/s, the links will never fail, and the flow rate of sourceis

1 Mb/s. Traffic load changes are made by changing the average interval between requests.

In this topology, node 1 is the source and node 16 is the sink. The average interval between
reguests is set from 100ms to 40ms, so the corresponding numbers of requests per second vary

from 10 to 25.

4.4.2 TheReault and analysis

For the Period-Based Routing Algorithm:

4 482000
—— Pre- Com paxation
5% [|—e— DpeDemand 447000
I
4aa000
L
g 2 =
e e 465000
Y L]
g a0 .
g 464000
Mmoot o
462000
1
st 462000 —%— Dre Compuatiom
—#— (h-Dem and
0% . . . : : 441000
1420 1667 1218 20,00 2222 2500 14 22 1667 1212 20.00 2222 2500
Humber of Eequests F er Secord Nunber of Reguests P er Second

Figure32 ThePeriod-Based Link State Update Method, Period=100ms

From Figure 32, we can see that the ondemand computation performs better with lower

blocking rate but the cost is higher compared to that of the pre-computation agorithm.

X Helsinki University of Technology, Networking Laboratory

4 239000
EL 232000
E1LA
PEINN]
Eoamf ©
R = 236000
a" u
g o .
8 B 235000
Mol | &3
234000
10+
5 | 233000 —4— Pre-Compntation
—— O Dem arad
03 232000
1429 1657 1813 2000 2232 2500 1429 667 1813 000 23222 2500
Munber of Recuests P er Secord Mumber of Reqaests P e Second

Figure33 ThePeriod-Based Link State Update M ethod, Period=200ms

Like the result in Figure 32, in Figure 33, the on-demand algorithm gets lower blocking rate
while it has higher cost. Compared to the simulations with period=100ms, the increase of the

length of the period significantly reduces the cod.

10 100000
—— Pre- Compnatat ior
—8— [-Demand
s | B9000
QE000
4
K 3
e o 97000
%ﬂ »
35 0 I:E:
] B 96000
m
20 T =
Qa000
100
54000 —+— Pre-Computation
—&— O Dem amd
o L—-— ; ; ; 93000 ; ; ; - -
1000 11.11 12.50 14.20 1667 2000 10.00 1111 1250 4.3 16.67 2000
Mumber of Requests P er Secord Mumber of Regaests P er Second

Figure34 ThePeriod-Based Link State Update Method, Period=500ms

46

X Helsinki University of Technology, Networking Laboratory

Blocking R ate

T

G0

S0

4055

0

20

108,

0%l

Cogt Per Mode

1000 1111

12.50 14.29 la a7 2000

Mumber of Requests Per Becond

000

1500

A1000

0500

0000

49500

45000

43500

48000

S TN

—— Pre- Compnat at i

47500

—8— [(r-Dem and
10.0a 11.11 12.50 14.29 1667 2000
HNumber of Feguests Per Second

Figure35 ThePeriod-Based Link State Update M ethod, Period=1000ms

When period=500ms and period=1000ms, the results are similar, the on-demand algorithm gets

lower blocking rate but higher cost.

Blocking Fate

0%

a0

S0%: |

0%

0% T

0%t

10%: |

0%

—— 100ms

— 8 —200ms
S00ms
1000ms

Cogt Per M ode

000 1111 1250 1429 1667 18.1% 2000 2222 2500

Numnber of Recuests Per Secord

00000

450000

400000

350000

00000

250000

200000

150000

100000

000

—E—200m £
A00m =
1000m s

—4— 100m = N " n " " "

1000 1111 1250 1420 1647 1212 20,00 22223 2500

Mumnter of Fecuests Per Second

Figure36 ThePeriod-Based Link State Update Method with different periods
(Pre-Computation)

47

X Helsinki University of Technology, Networking Laboratory

0% 500000
—— 100ms —4— 100m £ " + - - "
gns || 200ms 430000 1| —m— 200m 5
S00ms 40000 500m. ¢
N 1000ms 1000ms
SlEC 350000
_;5 a
o =
. S 300000
sy | =
-
_‘E 2 250000 A a e e T a
(=]
o 30% "
] (3 200000
amw | 150000
100000
0%
00
R . . 0 —_—
oo 1111 1250 1429 1667 1818 2000 2222 2500 1000 1111 1250 1429 16467 1818 2000 2222 2500
Munber of Requests Per Secord Mumnter of Recaests Per Secand

Figure37 ThePeriod-Based Link State Update Method with different periods
(On-Demand)

From Figure 36 and 37, we can find that when period=1000ms, the performance is quite poor
compared to the performance of other periods, though the cost is a little lower than when
period=500ms. The difference in blocking rate between period=100ms and period=200ms is
small, but when period=100ms, the cost is about twice as high as the cost when period=200ms,

i.e. the small improvement in performance is paid by much higher cost.

For the Threshold-Based Routing Algorithm:

455, 200000
—#— Pre- Compation
% 1| —=— onDemand
250000
L
3 200000
¥ 3
D:: =
o 25 =
5 £ 150000
i (¥
o0 -E
i
155 “ w00
L0
50000
5%, —#— Pre- Comprtation
—— (- Dem amid
0% .. - g g g] g z z
1250 1429 1667 1818 2000 2500 1250 1428 1667 1808 2000 2500
Humber of Eecuests P er Second Munber of Reguests P er Second

Figure38 TheThreshold-Based Link State Update Method, Threshold=10%

X Helsinki University of Technology, Networking Laboratory

From Figure 38, we can find that the blocking rate of the ondemand computation is lower, and

the difference between the costs of these two algorithms is minor. By using the on-demand

computation, the improvement in performance is gained with alittle increase in its cost.

a0

S0 ¢

L1

Blocking R ate
E

L

10

0%

—&— Pre- Com patatice,
—8— On-Demand

1250 1429 16.67 13.13 2000 2500
Nunber of Recuests P er Second

120000

100000

20000

60000

Cost Per Hade

40000

20000

—#— Pre- Comprtation
—B— - Dem amnd

12.50

1429 1667 18.13 20.00 2500

Munber of Feguests Per Second

Figure39 The Threshold-Based Link State Update Method, Threshold=40%

Gl

11

4

Blocking Rate
g

]
7

10

0%

—— Pre- Compaatioh

1000 1111 12.50 1429 1667 2000
Mumber of Recuests P er Second

aoooo

auilili]

il

00

40000

30000

Cost PerMode

20000

10000

—i#— Bre- Compntat ion
—8— h-Demand

10,00

11.11 12.50 14.29 la 67 2000

Mumber of Feguests Per Second

Figure40 TheThreshold-Based Link State Update Method, Threshold=60%

49

X Helsinki University of Technology, Networking Laboratory

The above two figures show similarity with the one when threshold=10%. The on-demand

computation has a minor improvement in blocking rate, and the difference between the costsis

minor.
G 100000
—&— Prre- Com ptation a0a00
S
20000
0000
w YO -
= =
o S a0nnn
i =
N=l b
'g 2 50000
=®
% g 40000
2 |
20000
e | 20000 _
10000 —— Pre-Compratat ity
—&— y-Dremand
0% : : : 0 : : : : :
1000 1111 12.50 14.29 16567 2000 wom 1111 1250 142 16,67 2000
Humber of Recests P er Secord Mauuber of Recuests Per Second

Figure4l TheThreshold-Based Link State Update Method, Threshold=80%

When threshold=80%, both of the blocking rates and the costs of these two agorithms are

about the same.
60%, 200000
—b—10%, ——10%.
—E 403 250m0 —m A0,
A i 6%
B0 S0%.
m 4O g 200000
o &
E.P =
-
B oz B 150000
2 =
= g
g D 100000 N
10%, 0000 ./
0% . . —s : : . 0 : :
000 1111 1250 1420 1667 1213 2000 2500 000 1111 1250 14329 1667 1218 2000 2500
MNumber of Recuests Per Second Munber of Fegquests Per Second

Figure42 TheThreshold-Based Link State Update Method with different thresholds
(Pre-Computation)

50

7

X Helsinki Uriversity of Technology, Networking Laboratory

From Figure 42, we find that when the threshold varies from 40% to 80%, the blocking rates
do not change much, but when threshold=10%, there appears a high decrease in blocking rate

accompanied by a significant increase of cost.

B0, 00000
—— 10% —— 1%
—m 4, —m 4,
6%, 250000 607
B0 80¥,

0%

~
3
=

200000

150000

Blocking Fate
3
ol

Cogt Per M ode

20%

100000 M

0%, 50000

o = — —a : : : 0 : : : : : : :
000 1111 1250 1420 1667 1218 2000 2500 000 1111 1250 1429 1667 1812 2000 2500

MNumber of Recuests Per Second Munber of Requeds Per Second

Figure43 TheThreshold-Based Link State Update M ethod with different thresholds
(On-Demand)

From Figure 43, we can find that the performance and the cost differences between thresholds
60% and 80% are minor. When lowering the threshold to 40% and 10% respectively, the

blocking rates are getting better with a corresponding increase of costs.

4.4.3 Conclusion

From the simulation results of this topology, we can see an obvious improvement in the
blocking rate for the on-demand computation algorithm. The costs are also increased because
of more path computations. The network is apt to have blocks compared to the previous two
topologies. By using the same agorithm, the same link state update algorithm and the same

frequency of link state updates, the matrix 4*4 has higher blocking rate and higher cost.

51

7

X Helsinki Uriversity of Technology, Networking Laboratory

Compared with the matrix 2*2 and the matrix 3*3, the matrix 4*4 topology has more nodes
and links. More path computations are needed and more bandwidth are used for link state
updates. So the total costs are higher while the network has lower capacity for traffic. In bigger
networks, the inaccuracy of routing information tends to be more serious and becomes an

important factor in affecting the blocking rate.

When comparing the cost per node among these three topologies, we find that the cost per node
is getting lower with the increasing of the network size. That is because we have only one
source-sink pair for each topology and more nodes can share the flow load in bigger networks.
For example, for the on-demand routing algorithm, when the link state update period is 100ms
and the number of requests per second is 20, the cost per node is 505,285 in the matrix 2*2

topology, it is 471,612 in the 3*3 topology and it is 464,506 in the 4* 4 topology.

52

K7

X Helsinki Uriversity of Technology, Networking Laboratory

5 Conclusionsand Future Work

5.1 Conclusions

After a brief introduction to QoS routing, we discussed the sources of the inaccurate routing
infformation and their impact upon network performance. Then we presented the
pre-computation routing algorithm and the ondemand computation routing algorithm,

followed by the comparison between these two agorithms.

In order to run the simulations for this thesis, we made extensions to the simulator by adding
new components and a Traffic Generator. We run the ssmulations for these two a gorithms with
different link state update algorithms. Four different periods in the PB and four thresholds in
the TB have been chosen for the simulations. From the simulation results, we discover that, in
smaller size networks, the on-demand computation has no advantage in performance but has
higher cost. The frequency of the link state update can affect the network performance and the
costs significantly. Lowering the link state update period or threshold can improve the network
performance by reducing the inaccuracy of routing information, but the cost will also increase

with more frequent link state updates. The update triggering policy should be chosen carefully.
The size of networks is another important factor for the network performance and the costs.

With the same link bandwidth and same amount of requests, the blocking rate and the cost will

increase with the expansion of the size of networks.

53

7

X Helsinki Uriversity of Technology, Networking Laboratory

5.2 Future Work

For networks operators, before the implementation of any QoS routing agorithm in live
networks, the performance and costs of different QoS routing algorithms with different link
state update triggering policies have to be analysed carefully, and then a proper link state
update algorithm has to be chosen.

From our simulations, we can see that though the difference in performances is minor, the costs
vary significantly for different agorithms. We have discovered that the difference between
different routing algorithms and wpdate triggering policies becomes larger with the increase of
network size. We can make more simulation work with larger and more complicated networks
that model the practical network better. Furthermore, the QRS simulator can be extended with

more traffic models and routing algorithms.

Besides, in our future work, we also want to study other factors that might affect the usage of
the routing algorithms. For example, we need to consider Diff Serv networks where there might

not be any requests, or MPLS networks where requests may arise frequently or infrequently.

K7

X Helsinki Uriversity of Technology, Networking Laboratory

Refer ences

[1] Cisco, “Quality of Service: QoS’,
URL: http://www.cisco.com/warp/public/784/packet/oct02/pdfs/gos.pdf

[2] Allison Taylor, “AT&T to invest $3 hillion in 2003 for global network”
URL: http://www.infoworld.com/article/03/09/11/HNattnetwork_1.html

[3] G. Apostolopoulos et al., "QoS Routing Mechanisms and OSPF Extensions’, RFC 2676,
August 1999

[4] G. Apostolopoulos et a., “On reducing the processing cost of ondemand QoS path
computation”, Journal of High Speed Networks, 7:77-98, 1998

[5] G. Apostolopoulos et a., "Improving QoS Routing Performance Under Inaccurate Link
State Information”, Proceedings of the 16th International Teletraffic Congress (ITC 16),

Edinburgh, United Kingdom, June7-11, 1999.

[6] R. Guerin and A. Orda, “QoS-based Routing in Networks with Inaccurate Information:
Theory and Algorithms’, IEEE/ACM Transaction on Networking, 7(3):350-364, June 1999

[7] D.H. Lorenz and A. Orda, “QoS Routing in Networks with Uncertain Parameters’,
|[EEE/ACM Transactions on Networking, vol. 6, no. 6, December 1998.

[8] P. Zhang and R. Kantola, “QoS Routing Simulator: User’'s Manual (Version 2.1)",
December 2002.

[9] A. Shaikh et al., "Efficient precomputation of quality-of-service routes,” Proc. Workshop
on Network and Operating Systems Support for Digital Audio and Video, July 1998, pp. 15-27

55

7

X Helsinki Uriversity of Technology, Networking Laboratory

[10] A. Ordaand A. Sprintson, “Precomputation Schemes for QoS Routing” IEEE/ACM
Transactions on Networking, Volume 11, Issue 4, August 2003.

[11] Y. Lin et al., "QoS Routing Granularity in MPLS Networks', IEEE Communications
Magazine, Vol. 40, No. 6, June 2002.

[12] G. Apostolopoulos and S. K. Tripathi, "On the effectiveness of path pre-computation in
reducing the processing cost of on-demand qos path computation,” in Proceedings of IEEE

Symposium on Computers and Communication, June 1998.

[13] Z. Ma, P. Zhang, R. Kantola, * Influence of Link State Updating on the Performance and
Cost of QoS Routing in an Intranet”, 2001 |EEE Workshop on High Performance Switching
and Routing (HPSR 2001), Dallas, Texas USA, May 29-31, 2001

[14] P. Zhang and R. Kantola “QoS Routing in DiffServ Networks: Issues and Solutions”,
Technical report, May 2001.

[15] G. Apostolopoulos et al., "Improving QoS Routing Performance Under Inaccurate Link
State Information.” Proceedings of the 16th International Teletrac Congress (ITC'16),
Edinburgh, United Kingdom, June 7-11, 1999.

[16] P. Zhang and R. Kantola “ Designing a New Routing Simulator for DiffServ MPLS
Networks', 2001 SCS Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS2001). July 2001.

[17] G. Apostolopoulos et a., "Implementation and Performance Measurements of QoS

Routing Extensions to OSPF", to appear in Proceedings of Infocomm '99, New Y ork

56

7

X Helsinki Uriversity of Technology, Networking Laboratory

[18] P. Zhang, R. Kantola, Z. Ma. "Design and Implementation of A New Routing Simulator".
2000 SCS Symposium on Performance Evaluation of Computer and Telecommunication

Systems (SPECTS2K). July 16-20, 2000, Vancouver, Canada

[19] C. Alaettinoglu et a., “Design and implementation of MaRS: A routing testbed”, Journal
of Internetworking: Research and Experience, 5(1):17-41, 1994.

[20] S. Nelakuditi et al., "Quality-of-Service Routing without Global Information Exchange'”,
IWQOS 1999.

[21] E. Crawley et d., "A Framework for QoS-based Routing in the Internet”, RFC 2386,
August 1998

[22] Dr. Sebestyen and Dr. Hundt, “Media-Video Coding: Standards’, 2001
URL: http://www- itec.uni-klu.ac.at/~hara d/multimedia/5- Standards- JPEG2000.pdf

[23] Zhangsong Ma, “Performance and Cost Analysis of QoS Routing in an Intranet”, Master
thesis at Helsinki University of Technology, October 2000

57

