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As an extension to the current Best Effort service in the Internet, QoS routing may play an
important role in providing quality guaranteed service. Extra cost is introduced by QoS
routing. The cost mainly includes path computation cost and the cost for maintaining a QoS
routing table.

This thesis begins with a brief introduction to the QoS routing, and then the issue of
inaccurate routing information and its impact on network performance are discussed. After
that, the pre-computation routing algorithm and the on-demand computation routing algorithm
are presented, followed by the comparison between these two algorithms.

In order to run the simulations for this thesis, extensions to QRS simulator were made by
adding new components and a Traffic Generator. Two new routing algorithms were added to
smulate the pre-computation and the on-demand computation algorithms, respectively. By
running simulations for these two algorithms with different link state update algorithms, the
network performance is analyzed. Four different periodsin PB and four thresholds in TB have
been chosen for the simulations. Based on the ssimulation results, a conclusion is drawn: the
frequency of link state update can affect the network performance and it costs significantly.
Smaller link state update period or threshold can improve the network performance by
reducing the inaccuracy in routing nformation, but the cost will also increase with more
frequent link state updates. Thus, the update triggering policy should be chosen carefully.
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1 Introduction

1.1 Background

TCP/IP, which is widely used nowadays in networks including the Internet, was originally
designed as a Best Effort (BE) transmission protocol. The best effort service seemed enough in
the early stages of the Internet when most of the applications were limited in data sharing,
including services as email service and web browsing. With the rapid development of the
Internet, more and more new applications have appeared, including online games, real-time
multimedia, voice over IP, video conference etc. These new applications have a common
traffic characteristic: they need something that traditional BE network can not provide, in fact,
they require certain grade of Quality of Service (QoS), e.g., packet loss, delay, jitter and
bandwidth guarantees [1].

On the other hand, most of the Telecom operators have both data traffic and voice traffic in
their networks, and they have to maintain a packet switching network for the data traffic and a
circuit switching network for the voice traffic. Maintenance of these two different networks
needs more hardware, human resources and training of employees, thus it is costly. So more
investments have been put into the IP network and more voice traffic has been transferred to
the IP network by using the voice over IP technology. For example, packet data traffic in the
AT&T network is about eight times as big as the amount of its voice traffic, and $3 billion will
be invested in 2003 to transform the whole AT& T network into a pure 1P-Based network [2].
Obvioudly, the IP network that can take over the traffic from the circuit switching network or

other substitutes should provide QoS guarantees.
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1.2 QoS Routing

Different kinds of Internet QoS architectures have been developed to achieve the required QoS
inan IP network, e.g., Integrated Services (IntServ) and Differentiated Services (DiffServ). No
matter which architecture is used, QoS routing may play an important role in the network that
supports the QoS.

Routing for the Best Effort traffic, e.g. OSPF and RIP, use the shortest path to forward packets
without considering the delay or bandwidth of the path. This is not enough for routing the
traffic with bandwidth requirements. The QoS routing makes an extension to current
Best- Effort routing. To be able to dea with the quality guaranteed traffic, QoS routing
algorithm has to compute multiple paths for integrated-services, or consider the quality

constrains (e.g. delay, bandwidth) when making routing decision [21].

To enable the nodes to make routing decisions, information exchange that makes it possible for
the node to acquire link state information in the network is necessary. In general, there are two
kinds of information exchange techniques. Link State (LS) and Distance Vector (DV).

Distance vector is not discussed here.

There are different ways of advertising the link state information [3] [5] [8] [13] [16]:

In case of Period-Based (PB) Link State Updates, the link state information is broadcasted
based on a predefined period. In this way, the loads on the network and routers introduced by
link state updates are independent of the link state changes in the network, but other routers

will not detect any significant changes until the period ends.

The following three methods trigger the link state update when the change in the link is big

enough. Whether the change is big enough or not can be measured either by absolute value of



X Helsinki University of Technology, Networking Laboratory

bandwidth or the percentage of change happened with the previous broadcasted bandwidth.
The absolute value depends on the classes that the available bandwidth is divided into. There
can be Equal Class Based updates (ECB) and Unequal Class Based updates (UCB).

These methods will make sure that significant changes to the link state will be broadcasted to
the network in time, thus improving the accuracy of the link state information, but this may
lead to heavier load for the routers. When the network is unreliable, for coping with the loss of
link state update packets, a timer needs to be added to prevent too long periods between
updates. When the network is unstable, for preventing too high frequency of updates from

overburdening the network, a timer with a preset hold-time can also be added.

In Threshold-Based (TB) Link State Updates, the information is to be broadcasted when the
change in the link is bigger than the predefined threshold. A certain percentage of previous
broadcasted bandwidth is set as the threshold. BO stands for the previous bandwidth, Bl isthe
new bandwidth and th is the threshold in percentage, if |( B1 -B0)/BO |>th, then the update will
be triggered.

In Equal Class Based Updates, the available bandwidth has been divided into several classes of
equal size: (0, B), (B, 2B), (2B, 3B)...When the change to the bandwidth of acertain link isbig

enough to make it move from one class to another, an update will be triggered.

In Unequal Class Based Updates, the available bandwidth has been divided into several classes
of unequal size. Typically, exponential class size is implemented where the size of base class
(B) and the factor (f) are defined, and then the bandwidth will be divided to: (0, B), (B, (f+1)B),
((f+1)B, (f2+f+1)B)... like the previous one, the update is triggered when the border of the

classis crossed.
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1.3 Path Computation Algorithms

There are aso different ways of computing the path [3]:

In the Pre-Computation Algorithm, the path from each vertex to al of the destinations is
computed periodically or after certain number of link state updates. Then when a node initials a
request, it just picks a path from the stored routing table. Thus the cost of computing paths for

the whole network can be shared by several requests.

In the On-Demand Computation Algorithm, the path to a certain destination is computed every
time a request is initiated. So computing the path to the specified destination is what needs to

be done.

These two agorithms both have advantages and drawbacks. They are described further more in

the next Chapter.

1.4 Inaccurate Routing Information

Non-optimal routes normally occupy more links than the optima one. This wastes the
resources of the network and introduces more delays to the packets. Thus, the utilization and
performance of the network are affected by the quality and correctness of the path selection.
The path selection depends not only on the algorithm and criteria of routing, but also on the

accuracy of the link state information.

The link state information, representing the resource and status of the nodes and links in the
network, is spread over the network by using the Link State Advertisements (LSAS). If an LSA
is sent whenever a change happens to the link or node and ro LSA packet is logt, then the link

state information kept by each router will be accurate. But broadcasting the LSAs for all
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changes is infeasble due to the huge overhead to the network, especidly in a large size
network or highly dynamic network that tends to have more frequent changes. Thus, as we
have mentioned above, the link state information will be updated either periodically or be
triggered by significant changes in a practical implementation. Between two subsequent
updates, the link state information maintained by each router may not represent some changes
happened to the network, and in an unreliable network, the LSA packets may also get lost, so
the link state information of the network can not always be updated accordingly. So sometimes,

the routing decision has to be made based on inaccurate link state information.

The accuracy of the link state information for routers depends on the frequency of link state
updates, while the frequency of link state updates is decided by the senditivity of the update
triggering policy. Obviously, more accurate information can be achieved by increasing the
sengitivity of triggering policy, for example, shortening the period in PB, lowering the
threshold in TB, decreasing the class size in ECB and UCB. But improvements in accuracy
gained from implementing the above methods will have to be paid by burdening more update

traffic and more computation overhead on the network.

When the routing information is inaccurate, the path selection based on the information may be
nonoptimal, or even incorrect. Non-optimal path selection decreases the utilization of the
network and incorrect path selection leads to more blocking that damages the network

performance.

There are also some other reasons that can lead to inaccuracy of the routing information, for
example, temporal conditions like congestion in the network, and information aggregation in a

large network [6][7]. These are not studied in this thesis.
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1.5 Purpose and scope of thethesis

Both on-demand QoS routing and pre-computation have pros and cons depending on some
factors such as network size, traffic requests and so on. It is normaly regarded that the
on-demand QoS routing algorithm is suitable for small-scale networks while the
pre-computation agorithm for large-scale networks. Also, the on-demand QoS routing
algorithm is more suitable for networks where requests arise infrequently while the
pre-computation algorithm for networks where requests arise very frequently. Nevertheless,
there have been many ondemand QoS routing agorithms but a few pre-computation
algorithms presented in recent years. Considering network diversities, it is unclear yet how to
apply these two different routing algorithms into a real network, for example, whether the
common claims are true, to how much frequency of requests the on-demand algorithm can

work well, to how big network the pre-computation network should be used, etc.

Our study aims to investigate these problems and intends to present some observations how
these algorithms can dffer in terms of network performance when given various network
environments, e.g., link state updating agorithms, network size, traffic, etc. Thus, our work can

be used for guiding the deployment of either routing algorithms in real networks.
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1.6 Thestructureof thethesis

The rest of the thesisis organized as follows:

In Chapter 2, we give some further discussion about the Pre-Computation and the On-Demand

computation algorithms, followed by a brief comparison.

In Chapter 3, descriptions are given about the simulator we are using as well as the extension to

the smulator that we have made in order to carry out the smulations for this thesis

The results from the simulations and the performance analysis are presented in Chapter 4. The
simulations are carried out in the networks with different topologies. In order to find the
influence of inaccurate link state information upon networks with different traffic loads, in
each topology, we run the simulations with different routing algorithms, different link state

update methods and different periods or thresholds.

In Chapter 5, we give the conclusions.
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2 Pre-Computation vs. On-Demand QoS Routing

Depending on the path computation triggering criteria, there are two main QoS path

computation algorithms, i.e. the Pre-Computation and the On-Demand computation algorithm.

For the pre-computation algorithm, the path computation can be triggered either periodically or
when a path cannot be found from pre-computed results for a request. For the on-demand

computation algorithm, the path computation is triggered when a new request arrives.

2.1 Pre-Computation QoS Routing

To cope with different requirements of QoS requests, there must be a QoS specific routing
table for the QoS guaranteed traffic that is similar to the routing table used for the best effort
traffic. When pre-computing the paths, the QoS requirement is unknown, thus the QoS specific
routing table may have several paths for a specific source-destination pair due to different
kinds of QoS requirements. For instance, for the traffic that has a bandwidth requirement,
requests may need different amount of bandwidth, which may lead to different routing
selections. While it is impossible to make an entry for any possible required bandwidth, a
practical approach is to group the requests into several classes. Those requests in the same class
have a similar bandwidth requirement, and then, for each class in a source-destination pair, the
route is pre-computed and stored in the QoS routing table. Another approach does rot classify
requests. On the contrary, it records the bandwidth of route with minimum hops as well as
those routes with more hops but having a larger amount of bandwidth. For an incoming request,
the route with minimum hops will be checked first. And if the bandwidth is not enough, then

other routes with more hops will be checked. [4]

Advertisements of the link state information and the computation of the paths consume a

considerable amount of network resources, for example, the bandwidth of links for information
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exchange, processing capability of routers for route computations and memory for storage of
the routing table. These are al resource consuming. More frequent path computation increases
the quality of path selection, but it consumes more network resources and increases the
complexity of implementation. In alarge backbone network, these overheads can be significant.
Then controlling these overheads requires a careful trade-off between routing accuracy and

complexity [9].

In general, the pre-computation algorithm has the following advantages [10]:

Firstly, the pre-computation algorithm has better scalability. When the network gets bigger, the
number of nodes and links in the network will increase accordingly. More nodes and links tend
to have more changes, thus the number of LSAs for keeping the link state information in each
node grows more, and the processing load for path computation based on the information also

increases.

For periodical pre-computation, the number of path computation in the pre-computation
algorithm is independent from the number of requests in the network. Typically, networks with
larger size have more requests in a unit time, the pre-computation algorithm, which can make

the computation load shared by several requests, can reduce the overall computation load.

Secondly, the pre-computation algorithm is fault tolerant. There may be failures of nodes or
links in networks, and a solution can be bypassing those failure parts by using alternative
routes. By using pre-computation, the alternative routes can be computed in advance to handle

the failures.

Thirdly, the pre-computation algorithm can improve the performance in busy time. During the
busy time, there may be much more requests than on average. Since the paths have been

computed and stored in the routing table in advance, comparing with computing the path on
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demand, picking a ready path from the QoS routing table saves time in handling the requests.

Thus, the pre-computation is more robust in dealing with bursts of traffic.

Finaly, the pre-computation algorithm can improve load balancing. In the pre-computation
algorithm, severa routes are computed in advance for the same destination, and then the
available resources can be alocated to different requests more efficiently. Thus the traffic in

the network can be balanced by directing different requests to different aternative routes

properly.

Above al, the pre-computation algorithm is considered as a solution to improve the scalability
and the response time, to reduce the processing load to the network by sacrificing certain grade
of routing quality. By computing the route for each destination in advance, the algorithm can
reduce the respond time for requests. It can also reduce the overall computation load to the
network in a considerable level when the number of the requestsis high. Such kind of advance
computation is not rather time critical, so it can be done in a background process to balance the

network-processing load. [10]

But the pre-computation for al the destinations may waste lots of resourcesif only afew of the
pre-computed paths are used. For example, in the ad hoc network, each node is more likely to
communicate with only a few nearby nodes, so pre-computing paths to all destinations is

unnecessary and inefficient.

2.2 On-Demand QoS Routing

The pre-computation routing algorithm trades the quality of routing decision for lower
processing load to the routers and less bandwidth consumption to the links. However, with the
development of computer hardware and transmission technologies, the cost for processing

capability of routers and the cost for bandwidth have been becoming more affordable. Then, in
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order to get better quality of route selection, the onrdemand routing algorithm, which has been

blamed for its high computation overhead, can now be deployed on a larger scale.

By using the latest link state information that is available in the network, the On-demand
computation can make better routing decisions than the pre-computation due to the improved

accuracy of routing information.

Unlike the pre-computation algorithm, the on-demand computation does not need to compute
the routes to al destinations or for different QoS requirements. The ondemand path
computation is carried out only on the arrival of arequest. Thus, the destination is specified. As
to the QoS traffic with bandwidth requirement, the required bandwidth is also known. So only
one path that fits the QoS requirement to the certain destination is necessary to be computed.
The computation algorithm can be simpler compared to the computation of multiple paths to

different destinations in pre-computation.

According to the above description, path is only computed every time a new request is initiated.
For the networks with fewer requests, the ondemand computation can be an efficient

algorithm due to lower processing load by less path computations.

Thus, without the maintenance of the QoS routing table and less path computations, the
implementation of the onrdemand computation algorithm is much simpler compared to that of
the pre-computation algorithm. The path computed is not necessary to be stored in the routing

table for the future use, so the storage for the routing table can also be saved. [4]

With some extensions to the ondemand computation, the cost and the number of path

computations can be reduced.

A path caching architecture is discussed in [4]. In this architecture, there is a path cache for

storing the paths that are computed on demands of the previous requests. To each new request,

11
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the on-demand computation is triggered only if the route needed can’t be found from the path
cache. After the computation, new path will be added into the path cache for future use. The
result of simulations in [4] shows that the path cache reduces the processing cost while the

storage of cache is comparable to or even more than that of the pre-computation algorithm.

A further study about path cache can be found in [11]. This paper studies the trade-off between
the cost and the network performance by using different granularities for cache. The smulation
results show that networks with proper selected hybrid granularity scheme for cache performs

well with proper amount of storage.

2.3 The Comparison between these two algorithms

Both of these two algorithms have advantages and drawbacks. The selection of an algorithm
should take into account the following: network size and network characteristics, for example,

stability, reliability and number of requests, etc.

The comparison between these two algorithms is discussed below. There are extensions to
on-demand computations, including path caching, which can improve the performance by
using extra storage. This can be considered as an approach between these two agorithms. Yet,

it is not discussed here.

The Storage: Compared to the on-demand computation, the pre-computation algorithm needs

extra storage space for the storage of multiple paths.

The Complexity: For the pre-computation algorithm, paths for different destinations and
different QoS requirements must be computed. But for the on-demand computation algorithm,
only one path needs to be computed under the request of a certain QoS requirement and

destination.
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The extra storage for the routing table and more path computations make the pre-computation

algorithm more complicated in implementation.

The Processing Load: In the pre-computation algorithm, the path computation overhead can
be shared by several requests, so in the network with many requests, the overall computation
overhead can be diminished. But in other Situations, for example, in the Ad Hoc network,
nodes tend to communicate only with nearby nodes, or with networks with fewer amounts of
requests. Most of the pre-computed paths may never be used. Thus, the pre-computation

algorithm wastes lots of processing capability.

While in the ondemand computation, path computation is needed for every request. Those
networks with many requests will generate large computation overheads. This is the main

obstacle for its scalability.

Thus, the selection of algorithm depends on the size and the characters of network.

The Quality of Path Selection: For the pre-computation algorithm, there is a period between a
path computation and handling of a request and it depends on the frequency of the path
pre-computation. Y et, changes may appear during this period, thus when handling the request,
the routing information has become inaccurate. And paths stored in the routing table based on

inaccurate routing information can be nonoptimal or invalid.
For the on-demand computation, paths are computed based on the latest routing information,

i.e. path computations are always based on more precise routing information. Thus the quality

of path selection is better.
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Compared with picking up path from the routing table, the on-demand computation takes more
time in path sdection than the pre-computation agorithm. This introduces more delay to

packets.
In this thesis, we compare these two algorithms by running simulations with different link state

update algorithms. Four periods in period-based and four thresholds in threshold-based are

chosen to carry out the simulations.

14



K7

X Helsinki Uriversity of Technology, Networking Laboratory

3 The Simulation Environment

A brief introduction to the ssmulator we used to carry out the simulations is given here. Some
extensions to the simulator that were necessary for our simulations are also introduced,
including new routing algorithms and a new traffic generator for generating the traffic with

QoS requirements.

3.1 Basic Information about QRS (QoS Routing Simulator)

In this thesis, we use QRS as our routing simulator. It was developed at Helsinki University of
Technology for the evaluation and comparison of QoS routing algorithms in IP networks.
Networks with different topologies are modeled with configuration files, and then the results
exported from the simulator can be checked from the log files [8] [13].

QRS models the network as a combination of different kinds of components. For example, the
component “Node” represents the practical nodes, using parameter “delay to process a packet”
to represent the processing speed and “Buffer space” to represent the buffer. The “Link”

component represents the links with characteristics of bandwidth and propagation delay [8].

The “Real-time Traffic’ component initiates traffic with QoS Constrains, i.e. bandwidth
requirement. It contains source and sink that are connected to the source nodes and the sink
nodes respectively. The routing algorithms are implemented in the “QOSPF’ component, and
the implementations of these two new routing algorithms are added into this component. Every
node has a “QOSPF”’ component to maintain the routing information. The functionality of
signaling path setup is smulated by the “RSVP’ component. The “RM” component is

responsible for the resource reservation. Every node has a“RSVP’ and a“RM” component [8].

15



7

X Helsinki Uriversity of Technology, Networking Laboratory

With these components, the basic procedure for the set-up of aflow is like this. Node requests
RSVP for flow set-up, and then RSVP inquires QOSPF for information about the next hop,
after that, RSVP sends PATH message to the next hop acording to the reply from QOSPF,
finally, if an acknowledgement from the destination is received, RSVP requests RM to reserve

the resources.

A certain number is allocated for every Main “Quality of Service Open Shortest Path First”
(QOSPF) action in the ssimulator to simulate the practical cost in real implementation as shown
in Table 1 below. During the process of simulation, the total sum comes from adding up al the

costs of involved actions.

Name Cost Description
DEFAULT_QOSPF PROC_COST 100 | Processing of QOSPF
DEFAULT_RM_QOSPF_PROC_COST 50 | Processing of QOSPF Resource

M anagement

DEFAULT RSVP_QOSPF_PROC_COST 10 | Check message in RSVP

DEFAULT_RSVP_QOSPF COMP_PROC | 150 | Computation of routing tables
COST

DEFAULT LS BROADCAST COST 20 | Broadcast the Link State information

DEFAULT_BROADCAST_PKT_COST 10 | Broadcast the packet

DEFAULT_QOSPF_COST 100 | Periodically computation of routing
table

DEFAULT_QOSPF LOOKUP COST 50 | Path lookup from BF Routing Table

DEFAULT_QOSPF COMP_COST 100 | On-Demand computation of path

Table 1 Costsfor different QOSPF actions

In order to smulate the costs for the path lookup in the pre-computation agorithm and for the
path computation in the on-demand computation algorithm respectively, we add in the last two

parameters in the above table.

With the execution of every step in the simulation, the costs of all of the involved QOSPF
actions are summed up one by one. After finishing the simulation, we can get a summed up

value that is the total cost of all involved actions. And we use this value to ssmulate the costs
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for flow set-up and for tearing down as well as other activities needed in real networks. In
order to decrease the affect from the size of networks, we divide the cost by the number of

nodes in a certain network, and get the value of cost per node.

3.2 New Routing Algorithms

We developed two new routing algorithms besides the previous ones in QRS. Algorithm 4 uses
the Pre-Computation algorithm and algorithm 5 uses the On-Demand computation algorithm.
Both of these two algorithms are based on the Bellman-Ford (BF) shortest path algorithm and
the pseudo code can be found from [3]. For algorithm 5, only the path to a certain destination is
computed. And as soon as the path with enough bandwidth is found, the calculation stops. [18]
[19]

3.2.1 ThePre-Computation Routing Algorithm

The routing table for the BE traffic is computed periodically, so we add in the computation of
the BF routing table after finishing the BE routing table computation. Then the BF routing
table for this algorithm is computed at the same frequency of the normal routing table.

In every node, there are Routing Table (RT), Flow Routing Table (FRT), Local Topology
Table (LTT), Globa Topology Table (GTT) and Flow Global Topology Table (FGTT). The
RT stores the paths to different destinations. Each entry contains a destination, “next hop” and
the cost. The FRT stores the bandwidth of the link to the next hops. The LTT contains the
information of neighbouring components. The GTT and the FGTT are used for maintaining the

link cost and link bandwidth between different nodes respectively.
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The Bellman-Ford Routing Table (BFRT) is added to the simulator for our ssmulation. The
BFRT has an entry for each destination. And for each entry, bandwidth and “next hop”

information are stored for different numbers of hops.

The Computation of the BF Routing Table:

=

Initialization: To each node in the BF routing table, set the bandwidths of its neighbouring
nodes to 0 and the “next hop” to NULL.

2. Hop 0 and 1: Hop O is the starting node, so set its bandwidth to INFINITY. Check the
bandwidth and link information from the LTT, and then set the bandwidths and “next hop”

of the nodes that have direct connections with the starting node.

3. Hop 2: Set the bandwidths and “next hop” of the nodes that are directly connected to the

nodes with hop count 1 according to the information in the FGTT.

4. Other nodes. Repeat step 3 to nodes with more hops count one by one until al nodes have

been processed or the hop counting exceeds the maximum value--MAX_HOPS.
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Figurel  TheFlowchart for computation of the BF routing table

Path Selection based on the BFRT goes as follows: Check the entry for the destination from the
BFRT and go through the entry from hop 1, if there is a bandwidth in the entry of the
destination larger than the required bandwidth, the path is found. Otherwise, finding of the path

fails.
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3.2.2 TheOn-Demand Computation Routing Algorithm

The implementation of the On-demand computation is simpler compared to the previous one.
The computing step is similar to the computing of the BF routing table, but the available
bandwidth is compared with the required bandwidth when computing. As soon as the path that

fits the bandwidth requirement is found, the computation will stop.

The process of this algorithm is described as follows:

1. Initidization: Give initia values of “next hop” and bandwidth to each path entry.

2. Hop 1: Compute the nodes with hop count 1, and then, compare the available bandwidth
with the required bandwidth of the specified destination, if the available bandwidth is larger,
then the route is found and path finding stops.

3. Hop 2: First, Compute the nodes with one more hop count compared to the previous ones
and then compare the available bandwidth with the required bandwidth of the specified
destination. When a path with a larger bandwidth is found, then the path needed is found

and the path finding stops.
4. Other Nodes. Repeat step 3 to nodes with more hops count one by one until the path

needed is found, or until the hop number exceeds the MAX_HOPS, or until all of the nodes

have been checked. If the path can’t be found, then the path finding fails and stops.
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3.3 The Traffic Generator

At the beginning, in order to simulate the network performance under different traffic loads, we
used the “Real-time-Traffic” component for producing different amounts of QoS constrained
traffic. But soon we noticed that the results mainly depended on the request scenario of the

“Real-time-Traffic”. With the increasing amount of the traffic, the blocking rate rises quickly
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from O to 100%. Then we decided to develop a new component, that is, the “ Traffic Generator”,
which can generate requests. By using the “Traffic Generator”, we can control the character of

the generated traffic requests.

The “Traffic Generator” is developed based on the “Real-time-Traffic”, and some of the input

parameters for this component are listed as follows: [8]

Average packet length specifies the size of the packet in byte. In our simulations, this

parameter is always set to 512 bytes.

Average interval of requests specifies the average interval between requests in us. In our

simulations, the traffic load is adjusted by changing the vaue of the interval.

Sandard deviation of requests specifies the standard deviation of requests. This parameter is

set to 100 in our sSimulations.

The time of starting request specifies the time from the start of smulation to the first request
produced in ps. To reserve enough time for the initialization of the simulator, this parameter is

set to 1000 in our simulations.

Interval of traffic producing specifies the source active interval in ps. This parameter is set to

2sin our smulations.

Interval of traffic pausing specifies the source pausing interval in i s. This parameter is set to 1s
in our simulations. Combined with Interval of traffic producing, we set the source to pause one
second after every two second’s producing of real-time packets. Thus, we can control the

percentage of the time for producing traffic.

Average delay between packets specifies the average delay between packets in ps. The traffic
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load can also be adjusted by changing this parameter. For packet length is 512* 8=4096 bits, to
get 1 Mb/s=1 b/us flow rate requests, the packet should be sent every 4096 ps. Thus, this

parameter is set to 4096 in our simulations.

Maximum flow index and the ‘Minimum flow index” specify the range of the flow index that

can be used by requests. Each request in the network should have a unique flow index.

Minimum flow index is used together with the “Maximum flow index” for defining the range of

the available flow indexes.

Routing method specifies the routing method for the QoS routing. In our simulations, this
parameter is set to 4 or 5, using the pre-computation routing algorithm and on-demand routing

algorithm respectively.

Flow rate specifies the flow rate of the source. Its unit is Byte/s. This parameter should be
synchronized with the “Average delay between packets’, i.e. the traffic loads should be
identical. For example, to get a packet flow with 1 Mb/s flow rate, the Average delay between
packets is set to 4096 and the Flow rate should be set to 125000 corresponding to 1IMb/s.
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Bit rates N/A 8 kbis to 2 Mb/s =21.856 M =215 M 5 kbis to
[hit/s] px64 khis {CPS) (MP@ML) 4 Mhv/s
min. Data Unit 8 x 8 pels 16 X 16 pels 16 x 16 pels 16 x 16 pels 8 x 8 pels
Temporal N/A forward/ forward/ forward/ forward/
prediction bidirectional backward/ backward/ bidirectional
bidirectional bidirectional
Motion comp. N/A H.263: £ 32/ 0.5 128/ 0.5 2127 (V), resolution
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Figure3 International Compression Standards[22]

Aswe can see from Figure 3, MPEG-1, which is a standard designed for video CD, has typica
bit rate of about 1.5 Mb/s. While MPEG-2, which is designed for TV broadcasts including
HDTV and DVD, has typica bit rate from 4 to 8Mb/s. And MPEG-4 for interactive
audio-visual communication has typical data rate from 5 kb/s to 4 Mb/s [22]. Onthe other hand,
10Mb/s or 100Mb/s Ethernet is common in atypical Local Area Network (LAN).

In our smulations, we tend to simulate video streams or video conferencing packets flow in a
typical Ethernet LAN. Thus, we set the bandwidth of the links in the network to 20Mb/s, and
the flow rate of the requests generated by our traffic generator to 1 Mb/s.

The requests are initiated and routed on a basis of flow by flow. When the flow rate is 1 Mb/s,
it contains 250 packets of 512 bytes. These 250 packets are considered as a whole and are

routed using the same path.
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4 Simulation Resultsand Analysis

The simulations are carried out using different topologies. These topologies include tree

topology, matrix 2*2, matrix 3*3 and matrix 4*4.

We run the simulations by using the PB and the TB routing algorithms. For the PB, the link
state update periods we select are 100ms, 200ms, 500ms and 1000ms. For the TB, the link state
update thresholds we select are 10%, 40%, 60% and 80%. Then for every period and threshold,

simulations with different request rates are run using different algorithms.

4.1 Tree Topology

Figure4  TheTreeTopology

The new routing algorithms are tested firstly in the tree topology. Since the tree topology only
has 4 nodes and three links, and aso because of the random factor in the smulator, the
performance of the two different algorithms only vary a little in different simulations, but no
algorithm has a dominating advantage over the other one. As to the different link date update
periods in the Period-Based link state update method and different thresholds in the
Threshold-Based link state update method, the results are also similar. Thus, since the topology

of the tree is quite smple, we cannot get conclusions about the difference between the two
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routing algorithms and between different link state update methods. But by trying the tree

topology, we can test the functionality of the ssmulator and debug the newly added routing

algorithms and components.

4.2 TheMatrix 2*2 Topology

4.2.1 Basic information of the topology

e ° =
Rource o °

Figure5 TheMatrix 2*2 Topology

The Matrix 2*2 has four nodes with four links connecting these nodes. The bandwidth of each
link is set to 20Mb/s. The links will never fail, and the flow rate of the source is 1 Mb/s. Traffic
load changes are made by changing the average interval between requests. In this topology, the
average interval between requests is set from 100ms to 30ms, so the corresponding number of

requests per second varies from 10 to 33.33.
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4.2.2 TheResult and analysis

The blocking rates and costs for different periods and thresholds are shown as follows:

For the Period-Based Routing Algorithm:
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Figure6  ThePeriod-Based Link State Update M ethod, Period=100ms

Figure 6 shows the blocking rates and costs of the two algorithms under different traffic loads.
We can see that the network performance of these two different algorithms is almost identical.
The cost of the pre-computation is aways lower than that of the on-demand computation and

the gap between these two algorithms is getting larger with the increase of the request rate.

For the pre-computation algorithm, path computation is done periodically, the computation
overhead does not change for different amounts of requests, but the processing overhead for
handling the requests does. For the on-demand computation algorithm, more requests mean
more computations. Thus, we can see that with the increase of request rate, the costs of these
two algorithms grow, but the cost of the on-demand computation grows quicker due to more

path computations.
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Figure7  ThePeriod-Based Link State Update M ethod, Period=200ms

Figure 7 shows that the results are similar to Figure 6, and these two algorithms do not have
much difference in blocking rates. Compared to the on-demand computation algorithm, the
pre-computation algorithm has lower cost, and the difference between them becomes larger

with the increase of the request rate.

With the link state period of 200ms, the number of link state updates is only half of that with
the period of 100ms. So we can see from this figure, the costs of these two algorithms are much
smaller, they are just a little bit more than half of that in the previous one in which the link

state period is 100ms.
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Figure 8 shows that the costs of the two algorithms are about half of the costs in Figure 7 due
to the same reason as previoudy. With period=500ms, there is still not much difference in

blocking rates for these two agorithms, and the difference between the costs is smaller.
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From Figure 9, we cannot tell which routing algorithm performs better from the aspect of

blocking rate. The costs of these two agorithms are smaller than previously because of larger

link state update periods.
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Figure1l0 ThePeriod-Based Link State Update Method with different periods
(Pre-Computation)

When the request rate is lower than 16.67 per second, the blocking rates for the periods of
100ms and 200ms are both 0%. Thus these simulation results ae not shown in Figure 10.
Those results of the request rate lower than 12.5 per second when the period is 500ms are not

showed due to the same reason.

When the link state update periods are 100ms and 200ms, the numbers of link state updates are
1000 and 500 per second respectively, we found that the blocking rates are not much different
between them with different request rates. But when the link state update period is 1000ms,
since the update period is much longer, and more changes may happen during the period
between two subsequent updates, so the inaccuracy of link state information is more serious,

thus the blocking rate is much higher than in other cases.
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As we have described above, with different link state update periods, the blocking rates are

almost the same for these two algorithms. Thus, Figure 11 draws out the same conclusion as

Figure 10.

For the threshold-Based Routing Algorithm:
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Figure12 TheThreshold-Based Link State Update Method, Threshold=10%
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Figure 12 shows the blocking rates and costs of the two path computation algorithms with
different traffic loads. The Threshold-Based link state update agorithm is used and the
threshold is 10%. There is not much difference in the blocking rate, and the cost of the

on-demand computation is higher than that of the pre-computation algorithm.
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Figure1l3 TheThreshold-Based Link State Update Method, Threshold=40%

When threshold is 40%, the blocking rates of the two agorithms are still amost the same, and

the cost of the on-demand computation is higher than that of the pre-computation agorithm.
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Figure1l4 TheThreshold-Based Link State Update Method, Threshold=60%

When the threshold is 60%, the blocking rates of the two algorithms are still amost identical,

but unlike Figure 12 and 13, there is not much difference between the costs of the

pre-computation and the on-demand computation.
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When threshold is 80%, both of the blocking rates and costs of the two algorithms are close.

33




X Helsinki University of Technology, Networking Laboratory

405

ISk

0%

Blocking Fate

0% ¢

5% r

0%t

25% ¢

0%

L5%

23

KL
—— 1%
—m 4%
. i 60%,
- 80%,
2000 2221 2500 2857 3333

Mumber o Reouests Per Becond

CostPer Mode

1200000

1000000

s00000

aoonng

400000

200000

11

——10%:
—— 4%,
G0
B0

20,00

2222

2500

28.57

3333

Humber of Recuests Per Second

Figure1l6 TheThreshold-Based Link State Update M ethod with different thresholds

(Pre-Computation)

When making comparison between different link state update thresholds, we notice that there is

not much difference between the blocking rates of different thresholds. The costs of

threshold=10% and threshold=40% are similar, and they are higher than the costs of
threshold=60% and threshol d=80%.
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As to the on-demand routing algorithm, there is also not much difference in blocking rates with

different thresholds.

4.2.3 Conclusion

The matrix 2*2 topology is quite smple. It only has four nodes and four links. Fewer nodes
and links tend to have fewer changes, and the changes of link state information can be spread
over the whole network easily. Thus the link state information for periodically pre-computation
of paths tends to be more accurate, and then the blocked requests caused by inaccurate path

sdection is minimized.

So in this simple topology, the on-demand computation does not obviously have better
performance in blocking rate compared to that of the pre-computation algorithm. But due to
more path computations, the cost of the on-demand computation is higher than that of the
pre-computation agorithm, and the difference between them becomes larger with the increase

of the request rate.

In [13], there is a comparison of costs and performances between the PB with period=100ms
and the TB with threshold=20%, and the PB gets lower blocking rate with lower cost. From
our simulation results presented above, we draw a similar conclusion that PB with period
=100ms has nearly equal blocking rate with TB of threshold=10%, but PB has much lower

cost.
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4.3 The Matrix 3*3 Topology

4.3.1 Basic information of the topology

Figure18 TheMatrix 3*3 Topology

The Matrix 3*3 topology has nine nodes with twelve links connecting these nodes. The
bandwidth of each link is set to 20Mb/s, the linkswill never fail, and the flow rate of sourceis

1 Mb/s. Traffic load changes are made by changing the average interval between requests.
In this topology, node 1 is the source and node 5 is the sink. The average interval between

requestsis set from 100ms to 30ms, so the corresponding numbers of requests per second vary

from 10 to 33.33.

4.3.2 TheResult and analysis

For the Period-Based Routing Algorithm:
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Figure1l9 ThePeriod-Based Link State Update Method, Period=100ms

From figure 19, we can see that the blocking rate of the on-demand computation is dlightly
lower than that of the pre-computation. The Pre-computation agorithm has lower cost

compared to the on-demand algorithm, and the difference is getting larger with the increase of

the request rate.
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Figure20 ThePeriod-Based Link State Update M ethod, Period=200ms

When period is 200ms, the blocking rate of the onrdemand computation is lower but the cost is

higher compared to that of the pre-computation algorithm.
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Figure22 ThePeriod-Based Link State Update M ethod, Period=1000ms

Similar to the one with period=200ms, when period=500ms and period=1000ms, the blocking
rates of the on-demand computation are lower but the costs are higher compared to those of the

pre-computation algorithm.
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Figure24 ThePeriod-Based Link State Update Method with different periods
(On-Demand)

From Figure 23 and 24, we find that the performance in case of period=100ms and
period=200ms have obvious improvements compared to cases when period=500ms and
period=1000ms. And the difference between period=100ms and period=200ms is minor,

period=100ms has much higher cost.
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When link state update periods are 1000ms and 500ms, the frequencies of link state updates are
low. The changes to the link state information will take more time to be updated. As we have
discussed in the first chapter, the path computation based on inaccurate link state information
makes the path selection nontoptimal or even incorrect. Non-optima path wastes system
resources and incorrect path leads to set-up failure. Thus the blocking rate increases. With the
decrease of the length of the period, the link state information gets more accurate, and the
blocking rate becomes lower. But this improvement is not gained free of charge, the cost aso

increases with the shortening of the link state update period.

For the threshold-Based Routing Algorithm:
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Figure25 TheThreshold-Based Link State Update M ethod, Threshold=10%

When threshold=10%, the blocking rates and costs of these two agorithms are amost the
same.
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Figure26 The Threshold-Based Link State Update Method, Threshold=40%

When threshold=40%, the blocking rates of these two algorithms are almost the same, but the

on-demand computation algorithm has a little higher cost.
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Figure27 TheThreshold-Based Link State Update Method, Threshold=60%

When threshold=60%, the on-demand computation algorithm has lower blocking rate, but its
codt is higher thanthe pre-computation algorithm.
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Figure28 The Threshold-Based Link State Update Method, Threshold=80%

When threshold=80%, the pre-computation and the on-demand computation algorithm have
smilar performance and cost.
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Figure29 TheThreshold-Based Link State Update Method with different thresholds
(Pre-Computation)

In Figure 29, we find that with the pre-computation algorithm, when threshold=10%, the
blocking rate is lower than with other algorithms, but it also has much higher cost. When
threshold=60% and threshold=80%, they have similar performance in blocking rates, and the

difference between their costs is a'so minor.
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Figure 30 is similar to Figure 29. When thresnold=60% and threshold=80%, there is no much

difference in the aspects of performance and cost.

4.3.3 Conclusion

The matrix 3*3 topology has nine nodes and twelve links. Compared to the matrix 2*2, it has
more nodes and links, and more nodes and links tend to have more changes that need to be
broadcasted. The broadcasting of more changes needs more processing capability and occupies
more bandwidths. So the overhead is thus increased and the overall blocking rate also becomes
higher. For example, in the PB algorithm, when period is 1000ms and the request rate is 20 per
second, the blocking rate in the matrix 3*3 network is about twice as high as that in the matrix
2*2 network. And the cost of the matrix 3*3 is about twice as high as the cost in the matrix

2% 2.
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In bigger size networks, by using more accurate routing information for path computation, the
on-demand computation shows small advantage in the aspect of blocking rate, though the

difference in the performance between the two algorithms is still insignificant.

When the network size is getting bigger, more nodes can share the flow load between one
source-destination pair, thus the average forwarding load for each node gets smaller. In our
simulations, both the matrix3*3 topology and the matrix2*2 topology only have one
source-destination pair, we observe that the cost per node in the matrix3* 3 topology is lower

than that in the matrix2* 2 topology.

4.4 The Matrix 4*4 Topology

4.4.1 Basic information of the topology

(O
(DO~

mOUrCE

Figure31 TheMatrix 4*4 Topology
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The Matrix 4* 4 topology has sixteen nodes with twenty-four links connecting these nodes. The
bandwidth of each link is set to 20Mb/s, the links will never fail, and the flow rate of sourceis

1 Mb/s. Traffic load changes are made by changing the average interval between requests.

In this topology, node 1 is the source and node 16 is the sink. The average interval between
reguests is set from 100ms to 40ms, so the corresponding numbers of requests per second vary

from 10 to 25.

4.4.2 TheReault and analysis

For the Period-Based Routing Algorithm:
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Figure32 ThePeriod-Based Link State Update Method, Period=100ms

From Figure 32, we can see that the ondemand computation performs better with lower

blocking rate but the cost is higher compared to that of the pre-computation agorithm.
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Like the result in Figure 32, in Figure 33, the on-demand algorithm gets lower blocking rate
while it has higher cost. Compared to the simulations with period=100ms, the increase of the

length of the period significantly reduces the cod.
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When period=500ms and period=1000ms, the results are similar, the on-demand algorithm gets

lower blocking rate but higher cost.
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From Figure 36 and 37, we can find that when period=1000ms, the performance is quite poor
compared to the performance of other periods, though the cost is a little lower than when
period=500ms. The difference in blocking rate between period=100ms and period=200ms is
small, but when period=100ms, the cost is about twice as high as the cost when period=200ms,

i.e. the small improvement in performance is paid by much higher cost.

For the Threshold-Based Routing Algorithm:
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From Figure 38, we can find that the blocking rate of the ondemand computation is lower, and

the difference between the costs of these two algorithms is minor. By using the on-demand

computation, the improvement in performance is gained with alittle increase in its cost.
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The above two figures show similarity with the one when threshold=10%. The on-demand

computation has a minor improvement in blocking rate, and the difference between the costsis

minor.
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Figure4l TheThreshold-Based Link State Update Method, Threshold=80%

When threshold=80%, both of the blocking rates and the costs of these two agorithms are

about the same.
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From Figure 42, we find that when the threshold varies from 40% to 80%, the blocking rates
do not change much, but when threshold=10%, there appears a high decrease in blocking rate

accompanied by a significant increase of cost.
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Figure43 TheThreshold-Based Link State Update M ethod with different thresholds
(On-Demand)

From Figure 43, we can find that the performance and the cost differences between thresholds
60% and 80% are minor. When lowering the threshold to 40% and 10% respectively, the

blocking rates are getting better with a corresponding increase of costs.

4.4.3 Conclusion

From the simulation results of this topology, we can see an obvious improvement in the
blocking rate for the on-demand computation algorithm. The costs are also increased because
of more path computations. The network is apt to have blocks compared to the previous two
topologies. By using the same agorithm, the same link state update algorithm and the same

frequency of link state updates, the matrix 4*4 has higher blocking rate and higher cost.
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Compared with the matrix 2*2 and the matrix 3*3, the matrix 4*4 topology has more nodes
and links. More path computations are needed and more bandwidth are used for link state
updates. So the total costs are higher while the network has lower capacity for traffic. In bigger
networks, the inaccuracy of routing information tends to be more serious and becomes an

important factor in affecting the blocking rate.

When comparing the cost per node among these three topologies, we find that the cost per node
is getting lower with the increasing of the network size. That is because we have only one
source-sink pair for each topology and more nodes can share the flow load in bigger networks.
For example, for the on-demand routing algorithm, when the link state update period is 100ms
and the number of requests per second is 20, the cost per node is 505,285 in the matrix 2*2

topology, it is 471,612 in the 3*3 topology and it is 464,506 in the 4* 4 topology.
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5 Conclusionsand Future Work

5.1 Conclusions

After a brief introduction to QoS routing, we discussed the sources of the inaccurate routing
infformation and their impact upon network performance. Then we presented the
pre-computation routing algorithm and the ondemand computation routing algorithm,

followed by the comparison between these two agorithms.

In order to run the simulations for this thesis, we made extensions to the simulator by adding
new components and a Traffic Generator. We run the ssmulations for these two a gorithms with
different link state update algorithms. Four different periods in the PB and four thresholds in
the TB have been chosen for the simulations. From the simulation results, we discover that, in
smaller size networks, the on-demand computation has no advantage in performance but has
higher cost. The frequency of the link state update can affect the network performance and the
costs significantly. Lowering the link state update period or threshold can improve the network
performance by reducing the inaccuracy of routing information, but the cost will also increase

with more frequent link state updates. The update triggering policy should be chosen carefully.
The size of networks is another important factor for the network performance and the costs.

With the same link bandwidth and same amount of requests, the blocking rate and the cost will

increase with the expansion of the size of networks.
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5.2 Future Work

For networks operators, before the implementation of any QoS routing agorithm in live
networks, the performance and costs of different QoS routing algorithms with different link
state update triggering policies have to be analysed carefully, and then a proper link state
update algorithm has to be chosen.

From our simulations, we can see that though the difference in performances is minor, the costs
vary significantly for different agorithms. We have discovered that the difference between
different routing algorithms and wpdate triggering policies becomes larger with the increase of
network size. We can make more simulation work with larger and more complicated networks
that model the practical network better. Furthermore, the QRS simulator can be extended with

more traffic models and routing algorithms.

Besides, in our future work, we also want to study other factors that might affect the usage of
the routing algorithms. For example, we need to consider Diff Serv networks where there might

not be any requests, or MPLS networks where requests may arise frequently or infrequently.
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