
 

 

 

 

 

 
   

 
   

 

 

 

 

Yin Wang 

 

 

 

 

Adding Multi-Class Routing into the Differentiated Services 
Architecture 

 

 

 

 

 

 

 

Master’s thesis submitted in partial fulfilment of the requirements for the degree of 

Master of Science in Engineering 

 

Espoo, Finland, November 6, 2004 

 

 

 

 

 

 

 

Supervisor                                            Professor Raimo Kantola 

 

 

Instructor                                               Ph.D Peng Zhang 

TEKNILLINEN KORKEAKOULU 
TEKNISKA HÖGSKOLAN 
HELSINKI UNIVERSITY OF TECHNOLOGY 



 i 

HELSINKI UNIVERSITY OF TECHNOLOGY 

Department of Computer Science and Engineering 
 

ABSTRACT OF MASTER’S THESIS 

 

 

Author: 

Title: 

 

Date: 

Number of Pages: 

 

Yin Wang 

Adding Multi-Class Routing into the Differentiated 

Services Architecture 

November 2004           

89                          

 

Department: 

Professorship:  

 

Department of Computer Science and Engineering 

S-38 Network Laboratory 

 

Supervisor: 

Instructor: 

 

Prof. Raimo Kantola 

Ph.D Peng Zhang 

 

In this thesis, we introduce the multi-class routing (MCR) scheme into the 

differentiated services (DiffServ) architecture in order to alleviate the inter-class 

effects [2] and optimize the network traffic in the DiffServ network.  

  

The thesis begins with the overview of some background knowledge, including the 

DiffServ network, OSPF protocol and some routing algorithms. We describe basic 

concepts and significant principles.  

 

The MCR scheme, which is introduced into the traditional DiffServ architecture, forms 

our MCR DiffServ architecture. The MCR DiffServ architecture focuses on the intra-

DS domain. Different MCR approaches that include static approach and dynamic 

approaches can be used for the MCR DiffServ system. Compared to a traditional 

DiffServ system, our MCR DiffServ system adds the MCR manager module and class-

based route selection block. The implementation of the MCR manager closely depends 

on the routing protocols.  

 

We extend the OSPF protocol to support the MCR capability, and design the software 

architecture for the OSPF with MCR extensions. Based on the Zebra software, our 

OSPF code, which supports the static MCR, is successfully implemented. It can 

provide two independent routing tables created by the SP algorithm and the BSP 

algorithm. Several tests for our OSPF code are used to demonstrate the work of the 

OSPF with MCR extensions.  

 

As a result, our OSPF with MCR extensions can achieve the basic functions of the 

MCR manager for the MCR DiffServ system. The static MCR approach is 

implemented for the MCR DiffServ system. 

 

Keywords: MCR, multiple routing tables, DiffServ, OSPF, MCR DiffServ 



 ii 

TEKNILLINEN KORKEAKOULU 

Tietotekniikan osasto  

DIPLOMITYÖN TIIVISTELMÄ 

 

Tekijä: 

Työn nimi: 

 

Päivämäära: 

Sivumäärä: 

 

Yin Wang 

Moniluokkareititys Eriytettyjen Palvelujen 

Arkkitehtuurissa  

Marraskuu 2004           

89                          

 

Osasto: 

Professuuri:  

 

Tietotekniikan osasto  

S-38 Tietoverkkotekniikka 

 

Työn valvoja: 

Työn ohjaaja: 

 

Prof. Raimo Kantola 

Ph.D Peng Zhang 

 

Tässä diplomityössä esitetään moniluokkareititysmenetelmä (multi-class routing, 

MCR) eriytettyjen palvelujen (Diffserv) arkkitehtuuriin. Tällä menetelmällä 

pyritään välttämään luokkien välistä vaikutusta ja optimoimaan verkon liikennettä 

DiffServ-verkossa. 

 

Työ alkaa katsauksella taustatietoihin, jossa kuvataan DiffServ-verkko, OSPF 

protokolla ja eräät reititysalgoritmit. Lisäksi kuvataan suuri määrä peruskäsitteitä ja 

keskeisiä periaatteita. 

 

Moniluokkareititysmenetelmä, joka on otettu käyttöön perinteisessä DiffServ-

rkkitehtuurissa, muodostaa MCR-DiffServ-arkkitehtuurimme perustan. MCR-

DiffServ-arkkitehtuuri keskittyy intra-DS alueeseen. MCR-DiffServ-järjestelmässä 

voidaan käyttää staattista ja erilaisia dynaamisia lähestymistapoja 

moniluokkareititykseen. Perinteiseen DiffServ-järjestelmään verrattuna, meidän 

MCR-DiffServ-järjestelmämme sisältää myös MCR-hallintamoduulin ja 

luokkapohjaisen reittivalintalohkon. MCR-hallintamoduulin toteutus on läheisesti 

riippuvainen reititysprotokollista. 

 

OSPF-protokolla laajennetaan tukemaan moniluokkareititystä, ja laajennettua 

OSPF: ä varten suunnitellaan ohjelmistoarkkitehtuuri. Staattista 

moniluokkareititystä tukeva OSPF -ohjelmamme toteutetaan onnistuneesti Zebra-

ohjelmiston pohjalta. Reitityksessä voidaan käyttää kahta riippumatonta 

reititystaulua: toinen muodostettu SP-algoritmilla ja toinen BSP-algoritmilla. 

Useiden testien avulla todennetaan toteutuksemme toimivuus. 

 

Lopputuloksena, moniluokkareitityksellä laajennettu OSPF -toteutuksemme voi 

suorittaa moniluokkareitityshallinnan perustehtävät MCR-DiffServ-järjestelmässä. 

Toteutuksessamme käytetään staattista moniluokkareititysjärjestelmää.       

   

Avainsanat: MCR, useita reititystauluja, DiffServ, OSPF, MCR DiffServ 



 iii

Acknowledgments 
 

 

This thesis was done in the Networking Laboratory of the Helsinki University of 

Technology. It is a part of the IRoNet Research Project, which is one of the NETS 

Spearhead Projects. 

 

I have made my best efforts to achieve this. However, I clearly understand that I could 

not have completed this thesis without the help and support from my senior, friends 

and family. 

 

I sincerely thank my supervisor, Professor Raimo Kantola, who is the leader of the 

NETS Spearhead Project, for giving me an opportunity, providing his brilliant ideas 

and supporting my work.  

 

I would like to give my sincerely appreciations to my instructor, Dr Peng Zhang, who 

helps me a lot both on my study and work. 

 

Finally, I would like to give my thanks to my parents, my sister and my brothers in 

China for their full support, to my friends in Finland and to colleagues in the 

Networking Laboratory for their help. Especially, I sincerely thank Lis.Sc Nicklas 

Beijar who kindly helps me translate the Finnish abstract.   

 

 

 

 

                                                                                      Yin Wang 

                                                                                      Espoo, November 2004  

 

 



 iv 

Table of Contents 
 

1. Introduction ................................................................................................. 1 

2. Background.................................................................................................. 3 

2.1 DiffServ..................................................................................................... 3 

2.1.1 DS Domain ........................................................................................ 4 

2.1.2 DS Codepoint (DSCP)........................................................................ 4 

2.1.3 Per-Hop Behaviors (PHBs)................................................................. 5 

2.1.4 Traffic Conditioning........................................................................... 5 

2.1.5 DiffServ Reference Implementation Model ........................................ 6 

2.2 OSPF ......................................................................................................... 7 

2.2.1 OSPF Area and Area Border Router ................................................... 8 

2.2.2 OSPF Sub-protocols ........................................................................... 9 

2.2.3 OSPF link State Advertisements........................................................10 

2.2.4 Calculation of OSPF Routing Table...................................................11 

2.2.5 OSPF Convergence ...........................................................................12 

2.2.6 Extensions to OSPF...........................................................................13 

2.3 Link-state Routing Algorithms..................................................................13 

2.3.1 Dijkstra’s Algorithm .........................................................................14 

2.3.2 SP Algorithm and BSP Algorithm .....................................................15 

2.3.3 Other Hop-by-Hop Routing Algorithms ............................................16 

2.4 Summary ..................................................................................................16 

3. Multi-class Routing (MCR) Based on DiffServ Scheme............................17 

3.1 Related Work............................................................................................17 

3.2 Multi-class Routing scheme ......................................................................18 

3.3 Different MCR Approaches ......................................................................19 

3.3.1 Static MCR .......................................................................................19 

3.3.2 Dynamic Distributed MCR with Time Based Triggering ...................20 

3.3.3 Dynamic Distributed MCR with Significant Event Triggering...........20 

3.3.4 Centralized Dynamic MCR ...............................................................21 

3.4 MCR DiffServ ..........................................................................................22 

3.5 Communication between MCR DiffServ and DiffServ..............................23 

3.6 Design of the MCR DiffServ System ........................................................25 

3.7 Summary ..................................................................................................27 

4. Design of OSPF with MCR Extensions ......................................................29 

4.1 OSPF Protocol Extensions ........................................................................29 

4.1.1 MCR Optional Capability..................................................................30 

4.1.2 Encoding Resources as Extended TOS ..............................................30 

4.1.3 Encoding Bandwidth Resource..........................................................31 

4.1.4 OSPF Packets and LSA Formats .......................................................32 



 v 

4.1.5 Calculation of Routing Tables ...........................................................34 

4.2 Software Architecture ...............................................................................35 

4.3 Discussion ................................................................................................40 

5. Static MCR Implementation Based on Zebra Software............................41 

5.1 Zebra Software Overview .........................................................................41 

5.2 Software Architecture Based on the Zebra OSPF ......................................41 

5.3 BSP Algorithm Implementation ................................................................47 

5.3.1 BSP Intra-area Routing Calculation...................................................48 

5.3.2 BSP Inter-area Routing Calculation...................................................52 

5.3.3 BSP External Routing Calculation.....................................................54 

5.4 ABR Task Manager Implementation .........................................................57 

5.5 MCR-LSA Originator Implementation ......................................................59 

5.6 MCR-LSA Installer Implementation .........................................................60 

5.7 Pre-computation Trigger Implementation..................................................62 

6. Testing .........................................................................................................63 

6.1 Basic Function Test...................................................................................63 

6.2 Pre-computation Trigger Test....................................................................69 

6.3 Route Summarization Test ........................................................................73 

6.4 Multi-path Test .........................................................................................75 

6.5 Discussion ................................................................................................77 

7. Conclusions and Future work ....................................................................78 

7.1 Conclusions ..............................................................................................78 

7.2 Future work ..............................................................................................78 

Reference .............................................................................................................80 

Appendix A. Files of Zebra OSPF Software.......................................................81 

Appendix B. Creation Functions for MCR-LSA Originator .............................83 

Appendix C. All Modified Data Structures and Related Functions ..................84 

Appendix D. VTY Commands ............................................................................86 

 



 vi 

Figures 
 

Figure 2.1:  An example of a DiffServ network ......................................................... 3 

Figure 2.2:  DS codepoint in the TOS field ................................................................ 5 

Figure 2.3:  Traffic conditioning elements ................................................................. 5 

Figure 2.4:  A typical DiffServ node implementation model ...................................... 6 

Figure 2.5:  A multi-AS topology .............................................................................. 8 

Figure 2.6:  A hierarchical topology with multiple areas ............................................ 9 

Figure 2.7:  The Options field...................................................................................10 

Figure 2.8:  The Router-LSA format of the OSPF RFC1583.....................................10 

 

Figure 3.1:  Functions of the MCR scheme...............................................................18 

Figure 3.2:  An example of the MCR DiffServ network............................................22 

Figure 3.3:  An example of communication between MCR DiffServ nodes and 

DiffServ nodes..................................................................................................24 

Figure 3.4:  MCR DiffServ system model.................................................................26 

 

Figure 4.1:  The modified Options format.................................................................30 

Figure 4.2:  The MCR Router-LSA format ...............................................................32 

Figure 4.3:  The MCR Summary-LSA format...........................................................33 

Figure 4.4:  The MCR AS-external-LSA format .......................................................34 

Figure 4.5:  The software architecture of the OSPF with MCR extensions ................35 

 

Figure 5.1:  Zebra system architecture ......................................................................41 

Figure 5.2:  The MCR software architecture of Zebra OSPF software.......................42 

Figure 5.3:  Flow chart of the whole BSP routing table calculation ...........................47 

Figure 5.4:  Flow chart of BSP algorithm for calculating intra-area routes ................49 

Figure 5.5:  Flow chart of the second stage of the BSP calculation procedure ...........51 

Figure 5.6:  Flow chart of calculating BSP inter-area routes......................................52 

Figure 5.7:  Flow chart of the function ospf_bsp_ase_calculate_timer() ....................55 

Figure 5.8:  Flow chart of the function ospf_ase_incremental_update_bsp() .............56 

Figure 5.9:  Flow chart of the function ospf_abr_second_task() ................................58 

Figure 5.10:  The original and the modified structure about Router-LSA ..................60 

Figure 5.11:  The original and the modified function link_info_set() ........................60 



 vii 

Figure 5.12:  The original and the modified function ospf_lsa_install().....................61 

Figure 5.13:  The new function ospf_precompute_trigger() ......................................62 

 

Figure 6.1:  A basic function testing environment.....................................................63 

Figure 6.2:  A route summarization test environment................................................73 

Figure 6.3:  A multi-path test environment ...............................................................76 

 

 

 



 viii 

Tables 
 
Table 4.1:  TOS values for TOS capability and MCR capability ...............................31 

 

Table B.1:  Creation functions for MCR-LSA originator module..............................83 

 

Table C.1:  All modified data structures and related functions ..................................84 

 

Table D.1:  New VTY commands.............................................................................87 

Table D.2:  Modified VTY commands......................................................................89 

Table D.3:  VTY commands with changed displays..................................................90 

 
 
 



 ix 

Acronyms 
 
ABR 

AS 

ASBR 

BA 

BE 

BGP 

BSP 

DiffServ 

DSCP 

DS domain 

EBSP 

EF 

ERT 

ICMP 

LSA 

LSDB 

MCR 

MF 

NRT 

OSPF 

OSPFv2 

PHB 

QoS 

RIP 

RRT 

SP 

SPF 

TOS 

TE 

WSP 

 

Area Border Router 

Autonomous System 

AS Boundary Router  

Behavior Aggregate  

Best Effort 

Border Gateway Protocol 

Bandwidth-inversion Shortest Path 

Differentiated Services 

Differentiated Services Codepoint 

Differentiated Services domain 

Enhanced Bandwidth-inversion Shortest Path 

Expedited Forwarding 

External Routing Table 

Internet Control Message Protocol 

Link State Advertisement 

Link-State Database 

Multi-Class Routing 

Multifield  

Network Routing Table 

Open Shortest Path First 

Open Shortest Path First version 2 

Per-Hop Behavior 

Quality of Service 

Routing Information Protocol 

Router Routing Table 

Shortest Path with the hop count metric 

Shortest Path First  

Type of Service 

Traffic Engineering 

Widest-Shortest Path 

 

 



 

Introduction 

 1 

1. Introduction 
 

With the fast development of network technologies, the number of users dramatically 

increases so that the network traffic quickly increases. In today’s open environments with 

distributed control, the rapid growth of using complicated network services and 

applications further contribute to great expansion of the network traffic. When the 

network traffic is heavy, this can negatively influence different network services or 

applications to some extent because in the Internet packets are handled in the first-in, 

first-served way. There is no guarantee that each packet will be successfully delivered 

through the Internet. More and more new network applications, especially real time 

applications, have appeared. Diverse network services and applications have different 

requirements, such as bandwidth and delay, etc. In the best-effort (BE) IP network 

environment, however, all applications can not work well because of variable queuing 

delays, network congestion and packet losses. Thus, quality of service (QoS) is needed to 

effectively meet the requirements and reasonably allocate network resources. 

 

The DiffServ model has been suggested as a scalable solution to implement the QoS in 

current IP networks [1]. In the DiffServ model, the traffic is divided into various traffic 

classes with specific priorities. Best-effort (BE) class, which is the main traffic in the 

networks, has the lowest priority. Other classes are called QoS classes. The traffic class 

with high priority always acquires more reliable network services than the traffic class 

with low priority by means of a packet scheduling mechanism. The queueing and 

dropping behaviours of packets are controlled and managed in each DiffServ node. 

However, the DiffServ model is originally designed to be decoupled from the IP routing 

mechanism, meaning that in each DiffServ node, the shortest path routing algorithm is 

applied to form a single routing table to forward packets. Regardless of the schedule of 

packets, all packets to the same destination will be delivered through the same route. 

When the network load is very heavy, the QoS class will produce negative influence on 

the BE class because packets of the BE class are more likely to be dropped or delayed 

than those of other classes. This problem is called inter-class effect [2]. 

 

Even though several hop-by-hop QoS based routing algorithms have gradually appeared 

to replace the traditional shortest path (Dijkstra’s) algorithm in order to alleviate the inter-

class effect and reasonably distribute the traffic through the network, QoS for all network 

applications cannot be satisfied at the same time. As we know, different classes could 

have distinct traffic characteristics and diverse QoS requirements. The purpose of each 



 

Introduction 

 2 

hop-by-hop QoS based routing algorithm is to calculate and optimize feasible routes that 

meet specific QoS requirements of an application. A QoS based routing algorithm that 

can satisfy QoS requirements of all applications does not exist. For example, the 

Bandwidth-inversion Shortest Path (BSP) algorithm could be suitable for the traffic that 

needs to achieve high throughput, but it cannot provide the best service for traffic that has 

a strict requirement in packet delay [3].  Thus, the QoS routing algorithms only provide a 

limited solution to QoS. 

 

Optimising the network traffic, especially the BE class traffic, based on a single routing 

table is hard and inefficient to carry out. A physical backup connection link often exists 

between two routers in the network, especially in a backbone network. Moreover, the 

backup connection links have usually high costs so that all the traffic normally traverses 

through non-backup connection links. As the non-backup connection link is broken down, 

the backup connection link will be used to forward packets after recalculating the routing 

table. That is to say, the routing table in each router normally records one route to one 

destination if equal-cost routes to the same destination are not maintained. When network 

congestion occurs in one non-backup connection link, the BE class traffic has to be 

delivered through the same link as the QoS classes even if a second path through the 

physical backup connection link exists. Therefore, a single routing table on each network 

node becomes a barrier to fairly distribute all network traffic over the network. 

 

To address the above problems, there is a need to use multiple routing tables and multiple 

hop-by-hop QoS based routing algorithms in the DiffServ model. We are proposing a 

routing scheme based on the DiffServ, called the Multi-class Routing (MCR) DiffServ 

architecture.  In this thesis, we discuss different MCR approaches that can be used for the 

MCR DiffServ architecture. We design OSPF with MCR extensions. Then, the static 

MCR approach is implemented based on Zebra OSPF software.  

  

The rest of this thesis is organized as follows. In Chapter 2, we first review background 

knowledge about technologies, including QoS DiffServ, OSPF and different routing 

algorithms. Then, the MCR functions and the whole architecture of the MCR DiffServ 

system are discussed in Chapter 3.  Next, the MCR extensions to the OSPF protocol are 

designed in Chapter 4. In Chapter 5, we describe how to implement the MCR extensions 

based on the Zebra software. After that, in Chapter 6, we present testing results of the 

MCR extensions and analyze the feasibility of the MCR DiffServ. Lastly, conclusions and 

further work are described in Chapter 7.    



 

Background 

 3 

2. Background 
 

In this chapter, the background knowledge about technologies, which are related to the 

QoS, is described. Those technologies include the DiffServ model, OSPF protocol and 

several routing algorithms.   

 

2.1 DiffServ 
 

In the DiffServ model, the network traffic is divided into a small number of classes, 

including one BE class and a few QoS classes. The goal of the DiffServ is to provide and 

allocate network services based on classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  An example of a DiffServ network 

 
There are two types of DiffServ nodes in a DiffServ network, which is shown in Figure 

2.1. The nodes located at the boundary of the DiffServ network are called boundary nodes 

or edge nodes, whereas the nodes inside the DiffServ network are called interior nodes or 

core nodes.  

 

Edge nodes are responsible for packet classification and traffic conditioning. All 

incoming traffic is rightly mapped to different forwarding classes at the edge node. Then, 

the traffic must be handled by the traffic conditioning before the packets enter the 

DiffServ network. According to users’ traffic profiles or contract, the edge node exactly 

 

 

Queueing management 
  DS Domain 

 

 Customer 

Network 

B 

 

Parket classification 

Traffic conditioning 

Queueing management 

 

Core node or  

Interior node 

 Customer 

Network 

C 

 

 Customer 

Network 

A 

 

Edge node or  

Boundary node 

Class BE traffic 

Class EF traffic 

A 

B 

C 

D 

E 

F 



 

Background 

 4 

meters users’ traffic, precisely marks a corresponding Differentiated Services Codepoint 

(DS codepoint) into the IP header of each packet and sends those packets into the 

DiffServ network. When a user’s practical traffic exceeds the limitation of its traffic 

profile, the traffic conditioning must carry out the functions of dropping or shaping to the 

user’s traffic. 

 

Core nodes are in charge of providing different traffic classes with variable forwarding 

treatments. Core nodes allocate network resources to distinct traffic classes by means of 

Per-Hop Behaviors (PHBs) that depict the forwarding treatments. One of PHBs is 

selected at each core node in terms of the DS codepoint set in every packet’s IP header by 

a certain edge node.  

 

In the DiffServ network, edge nodes perform different functions from core nodes. Only 

edge nodes keep track of per-class states to execute traffic conditioning, whereas core 

nodes always deal with the network traffic as an aggregate. Traffic policing is performed 

at the edge of the DiffServ network, and the class-based forwarding inside the DiffServ 

network. 

 

In the DiffServ network, all traffic from one source to the same destination traverses 

through the same path because a single routing table exists in each node. In Figure 2.1, 

the BE class traffic and EF class traffic use the same path between the customer network 

A and the customer network C. 

 

2.1.1 DS Domain 
 
A DS domain is composed of a set of contiguous DiffServ nodes, including edge nodes 

and core nodes. Those DiffServ nodes are controlled and managed by the same 

administration. For example, an AS of an ISP can be configured as a DS domain. Within 

a DS domain, the interpretation of the DS codepoints is uniform so that all the traffic with 

the same DS codepoint is provided the same forwarding treatment by DiffServ nodes. 

 

2.1.2 DS Codepoint (DSCP) 
 

DS codepoint (DSCP) is a label, which is used to classify the network traffic in the 

DiffServ network [4]. The DS codepoint must be set to each packet before packets enter 

the DiffServ network. It is placed in the Type of Service (TOS) field of the IP header. The 

DS codepoint occupies the leftmost 6 bits of the TOS field to encode the forwarding 

treatments. The rest of bits in the TOS field are currently unused. Figure 2.2 shows the 



 

Background 

 5 

format of the DS codepoint in the TOS field. The current standard DS codepoint 

allocation is defined in RFC2474. 

 

 

 

 

 

 

Figure 2.2:  DS codepoint in the TOS field 

 

2.1.3 Per-Hop Behaviors (PHBs) 
 
Per-Hop behavior (PHB) describes the forwarding treatment in DiffServ nodes, including 

edge nodes and core nodes. Each PHB is represented by a DS codepoint. PHBs are often 

implemented by buffer management and queueing. Within a DS domain, all packets with 

the same DS codepoint share the same forwarding treatment. 

 

2.1.4 Traffic Conditioning 
 
Traffic conditioning is a more sophisticated mechanism. Only edge nodes need to perform 

the traffic conditioning to their incoming traffic. Figure 2.3 illustrates different elements 

of the traffic conditioning [4]. 

 

 

Figure 2.3:  Traffic conditioning elements 

 

Traffic conditioning functions consist of five elements: 

� Classifier classifies the incoming traffic into diverse classes in terms of some pre-

defined rules. There are two kinds of classifiers, known as behavior aggregate (BA) 

classifiers and multifield (MF) classifiers. BA classifiers separate the traffic based on DS 

codepoints, whereas MF classifiers divide the traffic based on a combination of one or 

more fields in the IP header, such as source IP address and source port. In the traffic 



 

Background 

 6 

conditioning mechanism, the MF classifier is employed to perform the function of packet 

classification. 

� Marker/Remarker places a particular DS codepoint into the TOS field of each 

classified IP packet. Sometimes the remarker may change the DS codepoint of some 

packets as needed. 

� Meter measures the traffic from customers based on their traffic profiles. If the traffic 

does not exceed the profile, the traffic can be sent to the forwarding treatment module. 

� Shaper delays packets from a certain customer in order to meet the traffic rate 

specified by the customer’s traffic profile if the current traffic from the customer exceeds 

the profile. 

� Dropper drops packets that are out-of-profile. 

 

2.1.5 DiffServ Reference Implementation Model  

 

Figure 2.4:  A typical DiffServ node implementation model 

 

Fundamental functions of a DiffServ node can be divided into two modules, including 

traffic conditioning module at the ingress interface and PHB module at the egress 

interface [16]. Two modules are necessarily implemented at the interfaces in an edge 

node, whereas interfaces of a core node are enough to possess the PHB module. A typical 

implementation model of the DiffServ node is shown in Figure 2.4. 

 

At the ingress interface of edge nodes all incoming traffic should be first separated by a 

MF classifier and sent to a traffic conditioner, which is responsible for metering users’ 

 

forwarding 
(route selection 
module) 

 
PHB 

         dropper 
queues 
            marker 

classifier scheduler 

shaper 

 
Traffic  
conditioner 

meter 
dropper 
marker 

classifier 

ingress interface egress interface 



 

Background 

 7 

traffic, marking the corresponding DS codepoint and shaping or dropping the out-of-

profile traffic.  

 

To schedule the packet forwarding, the PHB module, which includes a BA classifier and 

queuing technologies, is implemented at the egress interface of both edge nodes and core 

nodes. Especially, the queuing technologies play an important role in the process of the 

packet delivery. A queuing discipline, which realizes different PHBs, consists of two 

essential elements: packet scheduler and buffer management. When packets reach the 

correct egress interface, the BA classifier classifies them to select one actual PHB based 

on their specific DS codepoints. Then, they are sent to the correct queue. 

 

In the DiffServ implementation model, the process of selecting routes is still based on the 

IP destination address in each packet instead of DS codepoints. A normal packet 

forwarding mechanism is used in the DiffServ implementation model. 

 

2.2 OSPF 
 
Open Shortest Path First (OSPF) is a link-state routing protocol. It is based on the SPF 

algorithm. OSPF version 2 (OSPFv2) [5] is widely supported and used in the current 

Internet.  

 

The OSPF protocol is a dynamic routing protocol. It can recalculate new routes after the 

procedure of the convergence when any change is detected. The procedure of the 

convergence is involved with the traffic of the routing information, the flooding 

procedure and the routing calculation. 

 

Within an Autonomous System (AS) that is an OSPF routing domain, all routers maintain 

an identical link-state database describing the topology of the AS. The link-state database 

is composed of diverse types of link-state advertisements (LSAs). The OSPF protocol can 

rapidly detect any change in the AS topology, exactly synchronize all routers’ link-state 

databases by means of the procedure of flooding and successfully recalculate new routes 

through performing the same routing algorithm. 

 

The same routing algorithm is used in all routers within the AS. The routing algorithm is 

responsible for deploying the link state information stored in the link-state database to 

build up a shortest-path tree with the router as the root. In a routing table, the route to 

each destination in the AS can be formed in terms of the shortest-path tree. 



 

Background 

 8 

 

The OSPF protocol supports a hierarchical network topology. The OSPF routing domain 

can be divided into several groups, which consist of one or more contiguous networks and 

hosts. Such a group is called an area. In a multi-area topology, the routing information 

traffic is reduced, but the inter-area routing calculation is needed. 

 

 

 

 

 

 

 

 

 

Figure 2.5:  A multi-AS topology 

 

The external routing information created by other routing protocols, such as BGP and RIP, 

can be advertised throughout the whole AS. An AS boundary router (ASBR), which 

exchanges routing information with routers belonging to other ASs, is responsible for 

mapping the external routing information into the corresponding OSPF routing 

information. The corresponding routes can be installed into the routing table after the 

external routing calculation is performed. A multi-AS topology is shown in Figure 2.5. 

 

2.2.1 OSPF Area and Area Border Router 
 
The OSPF protocol allows one or more areas within an OSPF routing domain to construct 

a hierarchical topology, which is shown in Figure 2.6. The hierarchical topology, which is 

viewed as a two-level structure, consists of one backbone area and several non-backbone 

areas. The backbone area, which is the special OSPF area 0, distributes link-state 

advertisements among non-backbone areas.  

 
The routes within an area are only determined by the area itself because the topology of 

the area is always hidden from other areas of the Autonomous System. Each area 

maintains its own link-state database. That is to say, routers belonging to the same area 

have an identical link-state database. The link-state routing algorithm is applied to the 

link-state database to create the intra-area routes.  

 

AS 2 

BGP 

RIP 

   

AS1 

 

   

OSPF 

 

BGP 

   

AS3 

 
   

OSPF 

 

AS boundary 

router (ASBR) ASBR 

ASBR 



 

Background 

 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6:  A hierarchical topology with multiple areas 

A router belonging to more than one area is called an area border router (ABR). That 

means the ABR is attached to multiple areas. The ABR possesses a separate link-state 

database for each attached area, and it runs the routing algorithm to the link-state database 

of each attached area in parallel. According to the intra-area routes in the routing table, 

the ABR is in charge of summarizing the routes and creating the Summary-LSAs used to 

calculate the inter-area routes.  

 

2.2.2 OSPF Sub-protocols 
 
The OSPF protocol consists of three sub-protocols: Hello protocol, Database Exchange 

protocol and Flooding protocol. The Hello protocol is used to discover the neighbouring 

routers, establish and maintain the relationship with them. Hello packets are periodically 

sent out on all interfaces to neighbors in order to ensure that communication between two 

neighbors is bidirectional. The Database Exchange protocol is used to synchronize the 

link-state database between two neighbors during the course of building up the adjacency. 

The Flooding protocol is used to distribute the routing information throughout either an 

area or an OSPF routing domain. 

 

To negotiate the optional capability between two neighboring routers, the OSPF protocol 

uses the Options field in the OSPF Hello packets and Database Description packets. The 

Options field is still present in all LSAs (see Figure 2.8). During the process of 

establishing the adjacency, the Options field in the Hello packets allows a router to reject 

another router if a certain capability does not match. Figure 2.7 shows the format of the 

  backbone area 

(area 0) 

 

 area 1 

 

 

   

area 2 

 

Area Border 

Router (ABR) Area Border 

Router (ABR) 

AS1 



 

Background 

 10 

Options field. Now, five bits in the Options octet are defined for OSPFv2. The specific bit 

that represents TOS support does not exist in the OSPFv2.  

 

                                 

 

Figure 2.7:  The Options field 

 

The Flooding protocol defines a reliable and bidirectional procedure. The flooding 

procedure uses Link State Update packets to carry LSAs. Link State Acknowledge 

packets carrying the acknowledgement of each LSA implement the reliability of the 

flooding procedure. In OSPFv2, only AS-external-LSAs (type 5) need to be flooded 

throughout the entire OSPF routing domain. Other types of the LSAs, for example 

Router-LSAs, are flooded within a specific area.  

 

2.2.3 OSPF link State Advertisements 
 

       0                   1                   2                   3 
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |            LS age             |     Options   |       1       |     
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     
       |                        Link State ID                          |    
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           
       |                     Advertising Router                        |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |                     LS sequence number                        |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |         LS checksum           |             length            |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        
       |    0    |V|E|B|        0      |            # links            |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+              
       |                          Link ID                              |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        
       |                         Link Data                             |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        
       |     Type      |     # TOS     |            metric             | 

       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        
       |                         ……                                    |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        

       |      TOS      |        0      |          TOS metric           |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

       |                          Link ID                              | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                         Link Data                             | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                                                               | 
 

      

Figure 2.8:  The Router-LSA format of the OSPF RFC1583 

 

The OSPF protocol defines five types of link state advertisements (LSAs). Every distinct 

LSA type is used to implement different functions. A Router-LSA provides the 

information about connections between two routers or between one router and one 

network. A Network-LSA describes the information about all routers, which connect to 

the same broadcast network. A Summary-LSA originated by the ABR offers the summary 

information about one area’s routes. An AS-external-LSA originated by the ASBR 

unused   unused    DC     EA     N/P     MC      E    unused  



 

Background 

 11 

describes the external routing information that will be flooded throughout an entire OSPF 

routing domain.  

 

To support five service types specified in the IP datagram, the previous version of the 

OSPF protocol [6] originally supports the Type of Service (TOS) based routing. That 

means that more than one metric can be set into the OSPF LSAs.  Figure 2.8 illustrates 

the format of the Router-LSA supporting the TOS. In the Router-LSA format the #TOS 

field represents the number of TOS metrics. The TOS field is set to a codepoint to 

represent a certain TOS. The metric field is set to the normal metric of the link, whereas 

the TOS metric field provides the TOS cost of the link. As a matter of fact, TOS based 

routing is not supported in the OSPFv2 [5]. That means that only one metric is present in 

all LSAs of OSPFv2. 

 

2.2.4 Calculation of OSPF Routing Table  
 
Based on a multi-area network topology, the whole routing table calculation of the OSPF 

protocol consists of the intra-area routing calculation, the inter-area routing calculation 

and the external routing calculation.  

 

In a router, the intra-area routing calculation applies the SPF algorithm (details see next 

section 2.3) to all Router-LSAs and Network-LSAs belonging to the same area to build up 

the shortest path tree with the router as the root. According to the shortest path tree, the 

related intra-area routes are installed into the routing table. The router performs the SPF 

algorithm for each attached area.   

 

Examining each Summary-LSA, the inter-area routing calculation uses the distance-

vector approach to calculate the inter-area routes [7]. The approach to create the inter-area 

routes is to sum up the cost of the route to an ABR and the metric set in the Summary-

LSA originated by the ABR. To avoid inter-area routing loops, the OSPF protocol adopts 

a split-horizon mechanism to the Summary-LSAs’ creation and the inter-area routing 

calculation. It permits ABRs to advertise only Summary-LSAs related to the intra-area 

routes into the backbone area. Moreover, only Summary-LSAs stored in the backbone 

area’s link-state database are examined during the routing calculation in each ABR.  

 

The external routing calculation is performed based on all AS-external-LSAs in the link-

state database. The approach to create the external routes is to sum up the cost of the route 

to an ASBR and the metric set in the AS-external-LSA originated by the ASBR. The 



 

Background 

 12 

approach is similar to the inter-area routing calculation. However, the split-horizon 

mechanism is not needed in the external routing calculation because each AS-external-

LSA is flooded throughout the entire routing domain.  

 

The OSPF protocol supports incremental update calculations for inter-area routing 

calculation and external routing calculation. Receiving a new Summary-LSA or AS-

external-LSA, a router does not recalculate the whole routing table because the route to 

the ABR or ASBR that originates the LSA could already exist in the routing table. In such 

a situation, the intra-area routing calculation is not necessary. 

 

In short, the SPF algorithm is really performed during the intra-area routing calculation. 

However, both the inter-area routing calculation and the external routing calculation 

deploy the distance-vector approach. 

 

2.2.5 OSPF Convergence  
 
The OSPF protocol provides a fast, loop-less convergence [8]. OSPF convergence with 

normal settings takes the time, the range of which is from 30 seconds to 40 seconds 

[17][18]. The practical settings of the OSPF protocol can be extremely less than the 

normal settings [18]. The OSPF convergence consists of two phases [8]. The first phase is 

that the new routing information updates throughout the area or the OSPF routing domain 

by means of the flooding procedure. Please note that this phase includes the process of 

failure detection. The second phase is that the new shortest-path tree is calculated and the 

routing table is updated. During the procedure of the OSPF convergence, different LSAs 

are essential elements transmitted by the flooding procedure and examined by the routing 

calculations. Thus, the number of LSAs has an impact on the OSPF convergence.    

 

A reasonable network topology plays an important role in the OSPF convergence. There 

are two reasons for this. One reason is that it can decrease the number of LSAs. Another 

reason is that the size of the network topology can negatively affect the speed of the 

LSAs’ flooding and the SPF algorithm calculation. The OSPF protocol adopts a multi-

area topology to reduce the LSA traffic and the size of the areas. 

 

Route summarization mechanism can further contribute to reduce the number of 

Summary-LSAs. The goal of the route summarization is to aggregate several routes into 

one single link-state advertisement. A reasonable network topology can facilitate the 



 

Background 

 13 

route summarization mechanism to aggregate addresses. Route summarization is 

normally done by the ABRs. 

 

Incremental updates for inter-area routing calculation and external routing calculation can 

further reduce the time of the SPF calculation. The reason for saving the calculation time 

is that incremental updates can avoid the unnecessary intra-area routing calculation. 

 

In short, the OSPF protocol provides some mechanisms to speed up the procedure of the 

convergence so that it can be used in a large network. 

 

2.2.6 Extensions to OSPF 
 
When the OSPF protocol supports one or more new functions, it may need to be extended 

in some aspects. As we know, the OSPF originally provides five types of LSAs. Several 

new types of LSAs have been defined to support special functions in the OSPF protocol. 

For example, a Type-10 LSA is used to support traffic engineering (TE) in the OSPF 

protocol [9]. The TE in the OSPF protocol is implemented as an independent module. 

 

The extensions to OSPF could influence on some original modules in the OSPF. For 

example, if the format of the existing LSAs is changed, the routing calculation needs to be 

correspondingly modified. But, the structure of the link-state database does not need to be 

altered because an LSA is stored as a whole in the link-state database.  

 

The extensions to OSPF could affect the OSPF convergence. Sometimes the extensions 

may increase new types of link state advertisements for the OSPF protocol so that the 

flooding traffic increases in the flooding procedure. The time of the SPF algorithm could 

be increased since there is a need to check those new LSAs. 

 

In brief, the extensions to the OSPF protocol should produce a minimal impact on the 

original OSPF protocol, including the OSPF convergence. The new function implemented 

in the OSPF should be viewed as an independent module.   

 

2.3 Link-state Routing Algorithms 
 
The OSPF protocol originally supports the Dijkstra’s algorithm as the routing algorithm. 

However, it can support several QoS routing algorithms after the OSPF protocol is 

reasonably extended [10]. 

 



 

Background 

 14 

2.3.1 Dijkstra’s Algorithm 
 
The Dijkstra’s algorithm, called the SPF algorithm, computes the shortest path based on 

the weight function. It is responsible for building up a shortest path tree such that the path 

to each destination has the minimum summary value of the weight function among all 

feasible paths. 

 

The following pseudocode describes the SPF algorithm: 

Algorithm ShortestPath(G, v): 

Input:    A shortest path tree G  

              A root vertex v of G 

Output: D[u] is used for each vertex u of G 

             D[u] is the hop count of a shortest path from v to u in G.  
 

initialize D[v] ← 0 and D[u] ∞ ← +∞ for each vertex v ≠ u 
let Q be a priority queue that contains all of the vertices of G using the value of 

D[u] as keys. The D[u] with the smallest value is listed on top of Q 

while Q ≠ ∅ do {pull u into the cloud C} 

    u ← Q.removeMininumElement() 

    for each vertex z adjacent to u such that z is in Q do 

                         /* perform the relaxation operation on edge (u, z) */ 
if z is not in the cloud C then 

       if D[u] + weight (u,z) < D[z] then 

           D[z] = D[u] + weight (u,z)   
else  

            if D[u] + weight (u, z) < D[z] then 

                           D[z] ← D[u] + weight (u, z)  

                       change the key value of z in Q to D[z] 

return the D[u] of each vertex u. 
      

Cloud C: the algorithm keeps track of the set of vertices for which the distance has been 

computed, called the Cloud C   
 

Weight function: 

       Dijkstra’s algorithm: weight (u,z) = distance between u and z 

       SP algorithm: weight (u,z) = hop count 

       BSP algorithm: weight (u,z) = 1/bandwidth  

    

The Dijkstra’s algorithm can form a shortest path tree started from a root vertex v. It 

computes the distance D[u] for each vertex u. D[u] represents the distance from the root 

vertex v to vertex u. In the algorithm, the cloud C is defined to keep track of the 

collection of vertices, the distance to which has been computed. A priority queue Q is 

used to list a set of D[u] based on their values. The vertex u with the smallest D[u] is 

always listed at the top of the queue Q. The vertex u with the smallest D[u] is removed 

from the queue Q to determine new vertices into the cloud C and update the distance of 

vertices that has adjacency with the vertex u. The algorithm is responsible for updating 

the value of D[u] if a shorter path from v to u is found during the calculation. When the 



 

Background 

 15 

queue Q is empty, D[u], which is the smallest distance for each vertex, has been 

computed.   

 

2.3.2 SP Algorithm and BSP Algorithm 
 

Both SP algorithm and BSP algorithm are essentially Dijkstra’s algorithms. However, the 

weight function of the SP algorithm is different from that of the BSP algorithm. Two 

algorithms can use the pseudocode of Dijkstra’s algorithm with their own weight function. 

Only one cost for each destination is obtained after the algorithm calculation is performed. 

 

The SP algorithm computes a shortest path with the hop count metric. It is responsible for 

building up a shortest path tree such that the path to each destination has the minimum 

hop count among all feasible paths [11]. The SP algorithm supports equal-cost paths. If 

several feasible paths with the same hop count exist, one of them is randomly selected for 

use. The weight function is defined as 

                                   weight (vi,vj)= hop count 

and                        

                                    weight ( p(v1, v2,…vn)) = ∑ ==

n

ji
vjviweigth

2,1
),(  

 

The BSP algorithm is basically a shortest-path algorithm, the weight function of which is 

the sum of the inversed bandwidths. It belongs to the QoS routing algorithms. It can meet 

the QoS requirement on maximum throughput because the path with the maximum 

bandwidth is always selected. The weight function is defined as  

weight (vi, vj) = 
),(

1

vjvibandwith
 

and 

weight (P(v1,v2,…vn)) =∑ ==

n

ji
vjviweigth

2,1
),( . 

 

The path determined by the SP algorithm is really a shortest path, whereas the path 

selected by the BSP algorithm could not be a shortest path. From the view of the hop 

count, sometimes the BSP algorithm could select a longer path because the longer path 

has the widest bandwidth.      

 

The BSP algorithm can achieve better saturate bandwidth that is the maximum value of 

the bandwidth than the SP algorithm. However, as network topology changes, the 

performance of the BSP algorithm could be decreased sharply. For example, the path 



 

Background 

 16 

selected by the BSP algorithm becomes longer so that more network nodes and more 

traffic share the same path. In this situation, the saturate bandwidth is quickly dropped 

[12]. 

 

2.3.3 Other Hop-by-Hop Routing Algorithms 
 
WSP algorithm calculates a shortest path tree that the path to each destination is the 

minimum hop count among all feasible paths. If several such paths exist, the one with the 

maximum bandwidth is used for the destination. If several paths with the same bandwidth 

exist, one of them is randomly selected. To calculate the shortest tree, the WSP algorithm 

simultaneously needs both the hop count metric and the bandwidth. Two costs as a pair 

for each destination are obtained after performing the WSP algorithm [10].  

 

EBSP algorithm is the extension to the BSP algorithm. The EBSP algorithm introduces a 

“penalty” factor θ into the weight function of the BSP algorithm. The factor θ is likely to 

be exponential with regard to the hop count in order to avoid a path becoming too long.  

 

2.4 Summary 
 

Nowadays the OSPF protocol is an important routing protocol used in the Internet. It 

supports a multi-area topology for a large network. The OSPF convergence is a fast, loop-

less procedure. The OSPF protocol possesses the ability to extend to support new 

functions. The SP algorithm can be used in the intra-area routing calculation of the OSPF 

protocol as the SPF routing algorithm, whereas the BSP algorithm can be deployed as the 

QoS routing algorithm. They can meet the different QoS requirements in the routing 

calculation. The distance-vector approach is used for the inter-area routing calculation 

and the external routing calculation. The OSPF protocol can provide a single routing table 

for the route selection module in the DiffServ architecture. It determines which path the 

traffic should select before the traffic is handled by the queueing technology on the 

specific egress interface. Thus, the OSPF protocol can provide the routing table for both 

the Internet and the QoS DiffServ network.  

 

 

 

 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 17 

3. Multi-class Routing (MCR) Based on DiffServ Scheme 
 

In this chapter, we will discuss the multi-class routing (MCR) scheme for the DiffServ 

network. The multi-class routing (MCR) based on the DiffServ architecture is used to 

reasonably optimize the network traffic and sharply alleviate the inter-class effect to the 

BE class traffic. The principle of the MCR is described in detail. We define the 

architecture of the MCR DiffServ system.  

 

3.1 Related Work 
 

A lot of research work about QoS routing has been done. Some work focus on the QoS 

routing algorithms, which can satisfy a certain demand on the specific QoS requirements 

[12]. To improve the performance of QoS routing, the optimization of topology 

aggregation is discussed in Woogui’s work [13]. QoS routing extensions to OSPF have 

been defined in an RFC specification [10]. The study of the performance of the QoS 

routing extensions to OSPF is presented by G. Apostolopouls [14]. The fact that the 

above research work is always based on a single routing table can be obviously noted. All 

classes in the QoS network use the same routing table. As a result, the throughput of the 

BE class drops more than that of other QoS classes when network congestion occurs or 

the network link load is heavy. Any QoS routing algorithm and the network architecture 

based on one routing table cannot efficiently alleviate the inter-class effect. 

 

The class-based route selection is considered in some recent research work. Multiple 

routing tables are used for the class-based route selection [3] [15]. In the multi-class 

routing (MCR) scheme [3], multiple routing tables are respectively created by means of 

different routing algorithms, including the standard SPF algorithm and QoS routing 

algorithms. The diverse classes use the different routing tables to make the route selection.  

 

MCR can effectively alleviate the inter-class effect [3]. Four different routing algorithms, 

including SP, BSP, WSP and EBSP, are studied by means of simulation. Different routing 

algorithms are responsible for calculating a routing table for distinct classes. For example, 

the EF class traffic uses the SP routing table to make the route selection while the BE 

class traffic deploys the BSP routing table to make the route selection. There is an 

assumption that the BE class aims for maximum throughput, and the EF class aims for 

minimum delay. According to the results of the MCR simulation, MCR can largely 

improve the performance of the BE class traffic in comparison with the route selection 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 18 

using the same routing table. When the BSP algorithm and the SP algorithm are used for 

the BE class and the EF class respectively, two classes can be maximally optimized.  

 

On the other hand, the number of the routing tables can negatively influence on the 

performance of the routing protocols, for example, the convergence, and the software 

complexity. Thus, we focus on the MCR scheme with two routing tables in this thesis. To 

alleviate the inter-class effect, one routing table is used for the QoS traffic, whereas 

another is used for the BE traffic.  

 

3.2 Multi-class Routing scheme 
 

The multi-class routing (MCR) scheme simultaneously provides more than one routing 

table computed by the various routing algorithms on each network node. In the traditional 

routing scheme, there is only one routing table on each network node so that both the BE 

traffic and the QoS traffic must use the same routing table. On the contrary, the different 

classes are allowed to use the distinct routing tables to make the route decision in the 

MCR scheme. In short, the MCR scheme can implement the class-based route selection in 

the IP network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Functions of the MCR scheme 

    

To support the MCR scheme, each network node should possess two essential functions, 

known as multi-routing management and class-based route selection. Figure 3.1 illustrates 

the functions of the MCR scheme.  

Update routing tables 

Each packet 

with 

DS codepoint 

MCR functions 

 

multiple

Routing 

tables 

to the 

corresponding 

egress interface 

Class-based Route selection 
(forwarding mechanism) 

user 

interface 

Multi-routing 

management 

IP  

Forwarding 

module 
selector 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 19 

The multi-routing management is responsible for collecting the routing information, 

calculating the multiple routing tables, controlling the routing algorithms, optimizing the 

routing calculation and updating multiple routing tables. Work modes of the multi-routing 

management can be static or dynamic (see next section). An administrator can configure 

the multi-routing management by means of the user interface provided in the multi-

routing management. According to characteristics of the different classes, the 

administrator can choose the appropriate routing algorithms to create the routing tables. 

The multi-routing management automatically updates the routing tables in the class-based 

route selection after the routing tables are recalculated.  

 

The class-based route selection, which implements functions of the IP forwarding 

mechanism, is in charge of selecting one routing table in terms of the DS codepoint in 

each packet’s header, and then making the correct route selection for each packet. Packets 

belonging to the same class select the same routing table because each class is represented 

by its unique DS codepoint in one routing domain. In the class-based route selection, a 

selector that is used to correctly choose one routing table from multiple routing tables is 

needed. Moreover, the selector works based on the DS codepoints. The normal IP 

forwarding module sends the packet to the corresponding egress interface after looking up 

the next hop for the packet from the selected routing table. 

 

3.3 Different MCR Approaches  
 

The multi-routing management, which is an essential MCR function, can be implemented 

by means of the following MCR approaches. To make MCR more efficient, there is a 

need to simultaneously deploy more than one approach for the multi-routing management. 

 

3.3.1 Static MCR 
 

Static MCR is the simplest approach to implement the multi-routing management. In a 

router, link weights, such as hop count and bandwidth, are static. They are only assigned 

by the network administrator. The administrators can make choices on which links to 

carry the traffic of which class. The weights of each link cannot be frequently and 

automatically changed such that the limited routing traffic is added into the routing 

domain. This approach can produce a minimal impact on convergence.  

 

However, routes in each routing table, which is calculated by a certain QoS routing 

algorithm, cannot exactly reflect the network situation. When network congestion takes 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 20 

place on a link, the routes traversing through the link cannot be automatically adjusted by 

routers.  

 

3.3.2 Dynamic Distributed MCR with Time Based Triggering 
 

The second MCR approach is to trigger to update a router’s link state information once in 

time T by means of using a timer. When the timer expires, the router immediately takes 

the measurement of class weights on each link. Please note that the router measures the 

weights of any link only if the timer is expired. If the change of any weight has taken 

place, the router instantaneously creates its own link state information, and then floods it 

to the neighbors of the router. This approach is called dynamic distributed MCR with time 

based triggering. In a router, network administrators can configure a period T for a timer 

so that the router can periodically measure its links and update its link state information. 

Thus, the routes in each routing table can dynamically reflect the network situation since 

the router can automatically adjust them.  

 

However, this approach could result in a frequent convergence process and increase 

packet loss since it unavoidably introduces more additional routing information into the 

routing domain. Moreover, a router cannot respond to any sudden big change of link 

weights within a time T.  

 

This dynamic approach needs to take the time T of a timer into account. If the time of a 

router’s timer is too short, the router could frequently update its routing tables and more 

routing information could be introduced. On the contrary, if the period time T is too long, 

the routing information could be decreased. But, the router could miss some significant 

events.  

 

In addition, the time T of the timer in different routers should be used carefully since the 

approach could introduce the problem of timing of the LSAs from diverse routers. If the 

timer triggers approximately at the same timer in all routers, a peak of LSA traffic is 

introduced. This could result in increasing the packet loss for user traffic. On the other 

hand, if timer expirations in different routes are evenly spaced over time, they could make 

the network unstable because of the frequent routing table calculations.  

 

3.3.3  Dynamic Distributed MCR with Significant Event Triggering 
  

The third MCR approach is to trigger to update a router’s link state information based on 

either time Tmax or a significant event. This approach is called dynamic distributed MCR 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 21 

with significant event triggering. In the approach, timer Tmax, Tmin and Twait are used 

for a router. The router automatically detects significant events, for instance, a sharp 

increase in the bandwidth usage of a link. When a certain significant event happens in the 

router, the router does nothing if less than Tmin has passed after the previous link state 

information. Otherwise, the router creates its updated link state information, and then 

floods the link state information to its neighbors. Having sent at least one updated link 

state information, the router will wait for Twait for other link state information to arrive, 

and then calculate its routing tables. When the Tmax is expired and no significant events 

happen, the router measures weights of the router’s links. If the change of any weight 

takes place, the new link state information of the router is immediately created and 

flooded. 

 

This approach is similar to the dynamic distributed MCR with time based triggering. This 

approach could result in a frequent convergence process and increase packet loss since it 

unavoidably introduces more additional routing information into a routing domain. The 

values of the timers Tmax, Tmin and Twait need to be sincerely considered. However, 

compared to the dynamic distributed MCR with time based triggering, the approach can 

respond to sudden significant events.  

 

3.3.4 Centralized Dynamic MCR 
 

Centralized dynamic MCR is an approach that the whole multi-routing management is 

implemented in a centralized route server. The centralized route server can work based on 

time based triggering or significant event triggering. It has two different work modes: 

routing information listener and polling. 

 

In the routing information listener mode, the centralized route server works like a normal 

router except that it does not create any link state information and only receives other 

routers’ link state information. In the polling mode, the centralized route server obtains 

each router’s link state information by means of polling. Routers can also obtain other 

routes’ link state information. Having received all routing information, the centralized 

route server can separately calculate the MCR routing tables for each router. Then, it 

distributes the corresponding routing tables for each router. The routes, which are 

downloaded from the centralized route server, are stored into each router’s routing tables 

with high priority. The routers calculate the corresponding routes for themselves based on 

receiving the routing information. Those routes are still stored in the routing tables with 

low priority. A router always uses the routes with the high priority for making the route 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 22 

selection as long as the routes are not expired. When the routes with the high priority are 

expired or the centralized route server is broken down, the routes with the low priority 

will be used for making the route selection.  

 

The advantage of the centralized dynamic MCR approach is that the server works based 

on a network wide view. However, convergence could be still the main problem for the 

centralized dynamic MCR approach. The approach is a kind of dynamic MCR approach. 

It cannot avoid the increasing routing information. In addition, to normally communicate 

with routers, the centralized dynamic MCR needs to define new functions and 

mechanisms.  

 

3.4 MCR DiffServ  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2:  An example of the MCR DiffServ network 

MCR DiffServ is the new network architecture in which the MCR scheme is used in the 

DiffServ architecture. An MCR DiffServ network is shown in Figure 3.2. The MCR 

DiffServ network is still composed of two essential elements: MCR edge nodes and MCR 

core nodes.  

 

In the MCR DiffServ model, the MCR edge nodes and MCR core nodes implement all 

basic DiffServ functions described in section 2.1. Any interface connected to the 

customer networks on the MCR edge nodes is responsible for packet classification and 

traffic conditioning. Any interface used as the egress interface belonging to either the 

 

Class-based route selection 

Queueing management 
  DS Domain 

 

 Customer 

Network 

B 
 

Parket classification 

Traffic conditioning 

Class-based route selection 
Queueing management 

 

 Customer 

Network 

C 

 

 Customer 

Network 

A 

 

MCR Core node  

MCR edge node 

Class EF traffic 

Class BE traffic 

A 

B 

C 

D 

E 

F 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 23 

MCR edge nodes or the MCR core nodes provides the PHBs for the outgoing traffic. So, 

the queueing and scheduling technology is used in the MCR DiffServ model in the same 

way as in the traditional DiffServ model.  

 

Compared to the traditional DiffServ, a new routing scheme, the multi-class routing, is 

added into the MCR DiffServ. To implement the multi-class routing in the DiffServ, each 

MCR DiffServ node should support two new functions, which are the multi-routing 

management and the class-based route selection described in section 3.1.  

 

The procedure how to handle packets on the MCR DiffServ node is described as follow: 

Step 1: An MCR edge node can assign a DS codepoint to an incoming packet’s IP 

header after traffic conditioning is performed by the MCR edge node. MCR core 

nodes always ignore the first step. 

Step 2: One of several routing tables is selected based on the DS codepoint in the IP 

header.  

Step 3: According to the IP destination of the packet, the next hop is determined by 

means of looking up the selected routing table.  

Step 4:  The packet is sent to the corresponding egress interface.  

Step 5: The packet is sent out the egress interface after the specific PHB function is 

performed. 

 

Figure 3.2 shows an example of the MCR DiffServ network. Each MCR DiffServ node 

provides two routing tables computed by the distinct routing algorithms. For example, 

traffic is sent from customer network A to customer network C. The traffic can be 

classified into two different classes, which are the BE class and the EF class. The traffic 

of the BE class traverses through the path A->B->C->D->E, whereas the traffic of the EF 

class goes through the path A->B->D->E. So, when the load on the path A->B->D->E is 

heavy, the influence on the BE class is less because the class BE traffic goes through the 

path A->B->C->D->E.  

 

3.5 Communication between MCR DiffServ and DiffServ  
 
In a DS domain, MCR DiffServ nodes and DiffServ nodes can coexist in the following 

way. The DS domain consists of an MCR area and a non-MCR area. The MCR area is 

composed of MCR DiffServ nodes, whereas the non-MCR area comprises traditional 

DiffServ nodes. An MCR gateway node, which can correctly execute both the MCR 

functions and normal DiffServ functions, is located between the MCR area and the non-



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 24 

MCR area. In the MCR area, the MCR gateway is used as an MCR core node, whereas it 

is used as a core node in the non-MCR area. It can correctly make the route selection for 

the traffic that traverses through the different areas. In the DS domain, each DS codepoint 

only has a unique interpretation for both the MCR DiffServ nodes and the DiffServ nodes. 

In this thesis, we focus on the intra-DS domain rather than the inter-DS domain. Figure 

3.3 illustrates an example of the communication between MCR DiffServ nodes and 

DiffServ nodes within a DS domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  An example of communication between MCR DiffServ nodes and DiffServ nodes 
 

All nodes, including MCR DiffServ nodes, DiffServ nodes and the MCR gateway node, 

can correctly establish one or more routing tables. The DiffServ nodes only have one 

routing table, whereas MCR DiffServ nodes build up the multiple routing tables. The 

routing table, called default routing table, is used for both the MCR DiffServ nodes and 

the DiffServ nodes. In the MCR core node or the MCR edge node, a default route to the 

MCR gateway node must exist in non-default routing tables. It is always used for the 

traffic, the destination of which is outside the MCR area. The MCR gateway is 

Core node  

Edge node  

  MCR area 

 

A 

B 

C 

D 

E 

F 

  Non-MCR area 

 H 

G 

I 

J 

Parket classification 

Traffic conditioning 

Class-based route selection 

Queueing management 
 

 Customer 

Network 

A 

 

 Customer 

Network 

C 

 

MCR Core node  

Class EF traffic 

Class BE traffic 

Class-based route selection 

Queueing management 
Queueing 

management 

  DS Domain 
 

MCR edge node  

MCR Gateway node  

 Customer 

Network 

B 

 

MCR gateway route selection 

rule 

Queueing management  



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 25 

responsible for advertising the default route information throughout the MCR area. To 

guarantee the correct communication between MCR area and non-MCR area, an MCR 

gateway default route rule is defined. In the MCR gateway node, the default route only 

exists in the default routing table, whereas the default route does not exist in any non-

default routing tables. 

 

Each node in the DS domain correctly makes the route selection for every packet. Each 

MCR DiffServ node performs the class-based route selection function to any packet in the 

MCR area. That means the route selection is based on the DS codepoint in the IP header 

of each packet. Each DiffServ node makes the route decision by using the same routing 

table, which is the default routing table.  

 

To correctly make the route selection in an MCR gateway node, the MCR gateway node 

must obey the MCR gateway route selection rule that is described as follows. According 

to the DS codepoint of each IP packet, the MCR gateway node first looks up the next hop 

in the selected routing table. If the corresponding route in the selected routing table does 

not exist, the MCR gateway node will look up the next hop in the default routing table. If 

the corresponding route in the default routing table does not exist either, the MCR 

gateway node will drop the packet and then send the corresponding ICMP packet to the 

source of the packet. Based on the MCR gateway default route rule, a default route should 

exist in the default routing table. That means that if an exact route for a packet does not 

exist in any routing table, the MCR gateway node can still use the default route in the 

default routing table to deliver the packet. 

 

Based on our principle, the BE class traffic and the EF class traffic traverse through 

different paths in the MCR area. The path A->B->D->E is used for the EF class, whereas 

the path A->B->C->D->E is selected for the BE class. But, they go through the same path 

E->H->I->J in the non-MCR area.  

 

3.6 Design of the MCR DiffServ System  
 

The MCR DiffServ system design is provided in this section. The design can be used in 

several operating systems, such as Linux, Solaris and FreeBSD.  

 

An MCR DiffServ system consists of five main functional blocks: traffic conditioning 

block, QoS manager, class-based route selection block, MCR manager and output 

queueing block. The MCR DiffServ system design takes advantage of the characteristics 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 26 

of the operating systems, which are composed of the user space and the kernel space. The 

traffic conditioning block, the class-based route selection block and the output queueing 

block will be implemented within the kernel. The MCR manager, which forms, controls 

and manages the multiple routing tables for different classes, is implemented in the user 

space. The QoS manager in the user space implements a QoS management mechanism.  

Figure 3.3 shows the MCR DiffServ system model. 

 

 

 

 

 

 

 

 

Figure 3.4:  MCR DiffServ system model 

The traffic conditioning block implements the functions of the DiffServ traffic 

conditioning. A MF classifier is used to classify the traffic in terms of the users’ profile. 

A meter is used to meter the user’ traffic. A marker is used to set the DS codepoint into 

the IP header of each packet.  The traffic conditioning block uses a dropper to handle the 

out-of-profile traffic. 

 

The class-based route selection block adds a classifier to determine which routing table 

should be used for each packet in terms of the DS codepoint in the IP header. If an MCR 

DiffServ system is used as an MCR edge node or an MCR core node, the classifier in the 

class-based route selection block is a BA classifier. If an MCR DiffServ system is used as 

an MCR gateway node, the classifier in the class-based route selection block must work 

in terms of the MCR gateway route selection rule. Major operating systems do not 

support multiple routing tables in the kernel. The kernel should be modified to store and 

manage the multiple routing tables. The IP forwarding block will send the packet to the 

correct egress after making the route selection.   

 

Routing  

table 1 

Routing  

table 2 

classifier 

Class-based route selection block 

IP  

Forward 

-ing 

kernel 

Output 
driver 

Input 

driver 

Traffic 

condition 

-ing 

block 

MCR manager 
 

User space 

 QoS manager 
Routing  

table 1 

Output queueing 

block 

Routing 

Manage-

ment  

Module 

User 

interface 
Routing  

table 2 

classifier 

Packet 

scheduler 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 27 

The MCR manager implements the function of the multi-routing management described 

in section 3.2. To control the work of MCR, the MCR manager uses a user interface 

module to provide an interface for administrators. The routing management module is 

used to create the routing information, collect the information of the network topology 

and create multiple independent routing tables used for the class-based route selection 

block. If an MCR DiffServ system is used as an MCR gateway node, the routing 

management module can correctly create and flood the routing information about the 

default route. Moreover, it establishes the default route for the routing tables of the MCR 

gateway node based on the MCR gateway default route rule. The routing management 

module mainly implements the different routing protocols. It is the central module of the 

MCR manager, and it performs the vital MCR manager functions. The MCR manager 

implementation depends on the routing protocols. Now all routing protocols do not 

possess related mechanisms for supporting the multi-class routing. Thus, the related 

routing protocols, for instance OSPF, need to be extended to support the multi-class 

routing.  

 

The output queueing block implements the functions of PHBs that are forwarding 

treatments. In the output queueing block, a BA classifier is used for selecting the correct 

packet scheduler. A packet scheduler implements the function of the queueing technology. 

The packet scheduler can be responsible for measuring the accurate state information of a 

link, for example, available bandwidth. The output queueing block can provide the 

accurate link state information for the MCR manager.  

 

According to the users’ profile information, the QoS manager configures or modifies the 

parameters of the components in the traffic conditioning block and the output queueing 

block in order to correctly control users’ traffic at each interface.  

 

3.7 Summary 
 

MCR is introduced into the traditional DiffServ model. This is called MCR DiffServ. To 

support MCR, each node in a MCR DiffServ network must have two necessary functions: 

multi-routing management and class-based route selection. Different MCR approaches 

can be used for implementing the multi-routing management. 

 

The MCR approaches can be classified into two kinds: static approach and dynamic 

approach. The static MCR approach basically minimizes the impact on convergence since 

the link weights of a router cannot be changed automatically. But, it cannot promptly 



 

Multi-class Routing (MCR) Based on DiffServ Scheme 

 28 

reflect any change of a network. The dynamic MCR approaches could be distributed or 

centralized. In general, they can measure the link weights of a router controlled by 

periodical timers or triggered by a significant event so that the router can automatically 

update its routing information. The dynamic MCR approaches could contribute to 

accurate balancing of the network traffic. On the other hand, the approaches result in a 

frequent convergence process and increasing packet loss. The time of the timers could 

introduce the problem of timing of the LSAs from different routers. 

 

A MCR gateway node is added into a DiffServ network that consists of an MCR area and 

a non-MCR area. To correctly deliver traffic between the areas, except for the MCR 

gateway node, each node in the MCR area must have the default route to the MCR 

gateway node. Moreover, the MCR gateway node is responsible for creating and 

distributing the routing information about the default route. In addition, the MCR gateway 

default route rule and the MCR gateway route selection rule must be concurrently used in 

the MCR gateway node. 

 

The MCR DiffServ adds the class-based route selection mechanism and the multi-routing 

management in comparison with the traditional DiffServ. One important task is to 

successfully create more than one routing table for each MCR DiffServ node. To finish 

the task, the routing protocols should be reasonably extended. 

 



 

Design of OSPF with MCR Extensions 

 29 

4. Design of OSPF with MCR Extensions  
 

The MCR manager implementation is closely related to the specific routing protocol. To 

implement the MCR manager functions, we will focus on the design of the OSPF 

extensions in this chapter. As the result of the OSPF protocol extensions, the routing 

software will change correspondingly.  

 

The main goals of the design of the OSPF with MCR extensions are: 

• To provide two routing tables. 

• To support static MCR approach and dynamic MCR approaches. 

• To implement the basic MCR manager functions. 

• To limit the additions to the standard OSPF version 2 protocol. 

• To minimize the impact on the original OSPF, such as code and convergence, etc. 

 

The basic functions of the MCR manager are shown as follows: 

• Successfully collecting all routing information, including QoS routing 

information.  

• Providing more than one routing algorithms, such as the SPF algorithm and the 

QoS routing algorithm. 

• Automatically recalculating and updating routing tables if any change of the 

topology occurs. 

• Effectively controlling and managing the routing calculation and the routing 

information creation. The routing information includes different types of link 

state advertisements. 

• Offering a user interface to administrators. The administrator can check the 

configuration information, change the configuration information and view the 

OSPF information through the user interface. 

 

4.1 OSPF Protocol Extensions 
 

The OSPF protocol can be extended in order to support new mechanisms of the multi-

routing management described in section 3.2. The extensions to the OSPF protocol should 

bring up only limited additions to the protocol itself. On the other hand, all of the existing 

OSPF mechanisms, functions, link-state advertisements, data structures and data formats 

will remain proper.  

 



 

Design of OSPF with MCR Extensions 

 30 

In this thesis, our OSPF with MCR extensions is the first version. In this version, we 

assume that routers supporting the MCR capability do not work with routers that do not 

support the MCR capability. This is a limitation of the first version and could be removed 

in later versions. 

 

4.1.1 MCR Optional Capability 
 
In order to provide the QoS routing information in the LSAs, MCR capability is 

introduced into the OSPF protocol. One bit in the Options field represents the MCR 

capability. The MCR capability enables OSPF routers to support or not support the MCR 

optional capability and to communicate with other routers that support the same 

capability. The OSPF routers supporting the MCR capability can reject to communicate 

with the routers that do not support the MCR capability. 

 

 

 

                         Figure 4.1:  The modified Options format 

 

An ‘M’ bit can be used as an indicator of the MCR capability for the multi-class routing 

mechanism. It is located at the most significant bit of the Options field. Figure 4.1 shows 

the modified Options field. The ‘M’ bit possesses two functions. One function is to 

support the MCR capability. Another function is to indicate that the TOS metric field 

could be used in the LSAs.  

 

On the other hand, to avoid confusing the existing TOS based routing mechanism and the 

new multi-class routing mechanism, each TOS value encoded for the MCR capability is 

different from the TOS values used for the TOS capability. The TOS value encoding rules 

for the MCR capability will be discussed in the next section. 

 

4.1.2 Encoding Resources as Extended TOS 
 

To be compatible with the existing OSPF protocol, the new TOS values for the MCR 

capability are encoded in a way that either the existing OSPFv2 routers will ignore or 

misinterpret. So, the TOS values for the MCR capability are different from those for the 

TOS capability. 

 

In the OSPF protocol, the number of the TOS values for the TOS capability is 16 because 

the RFC 1349 specification only uses four bits to define the TOS values used for the TOS 

M         unused       DC     EA     N/P     MC      E    unused 



 

Design of OSPF with MCR Extensions 

 31 

based routing. We extend the sixth bit to encode the TOS values for the MCR capability. 

As a result, 16 TOS values for the MCR capability are created. Table 4.1 shows the TOS 

values for both the TOS capability and the MCR capability. Now we only define OSPF 

encoding 72 for the bandwidth. The TOS values for the MCR capability have enough 

capability for extensions.  

 

Table 4.1:  TOS values for TOS capability and MCR capability 

 

4.1.3 Encoding Bandwidth Resource 
 

The bandwidth needs to be encoded before it can be represented in the TOS metric field 

of each Router-LSA. The actual metric field and the TOS metric field of each Router-

LSA are only 16 bits long. The maximum encoding value of the metric or TOS metric is 

65535. But, the Gbits/s bandwidth of links has been used in the current Internet. The 

bandwidth must be converted to the available encoding value. Note that we assume that 

the maximum bandwidth in the networks is 10 Gbits/s.   

 

The following equation (4-1) defines how to convert the bandwidth into the 

corresponding encoding value for the TOS metric in each Router-LSA. 

                              TOS metric  = 
)/(59.152 skbits

bandwidth
                                          (4-1)    

The bandwidth that is more than 152.59kbits/s can use the equation (4-1) to calculate its 

encoding value, whereas the bandwidth, which is less than 159.59kbits/s, is directly equal 

to 1. For example, the bandwidth of 10Gbits/s is converted into 65535. 

OSPF 

encoding    

TOS for TOS capability OSPF 

encoding    

TOS for MCR capability 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

normal service 

minimize monetary cost 

maximize reliability 

 

maximize throughput 

 

 

 

minimize delay 

 

 

 

 

 

 

 

64 

66 

68 

70 

72 

74 

76 

78 

80 

82 

84 

86 

88 

90 

92 

94 

10 0000 

10 0001 

10 0010 

10 0011 

10 0100 

10 0101 

10 0110 

10 0111 

10 1000 

10 1001 

10 1010 

10 1011 

10 1100 

10 1101 

10 1110 

10 1111 

 

 

 

 

bandwidth 



 

Design of OSPF with MCR Extensions 

 32 

 

However, the bandwidth does not need to be converted before it is inserted into the TOS 

metric field in each AS-external-LSA. The actual TOS metric field in the AS-external-

LSA is 24 bits long so that it can accommodate the bandwidth of 10 Gbits/s.   

   

4.1.4 OSPF Packets and LSA Formats 
 

Even though the OSPF protocol is extended, none of the formats of OSPF packets needs 

to be changed at all. Only the ‘M’ bit is introduced into the Options fields in all Hello 

packets, Database Description packets and all LSAs.  

 

To support MCR capability, different types of the LSAs adopt the formats that can 

include the TOS information, and new types of the LSAs will be introduced. Except for 

the Options field, the format of Network-LSA supporting the MCR capability is in 

accordance with that of the Network-LSA used for the standard OSPF protocol. 

 

4.1.4.1 Router-LSA Format 
 

        0                   1                   2                   3 
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |            LS age             |     Options   |       1       |     
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     
       |                        Link State ID                          |    
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           
       |                     Advertising Router                        |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |                     LS sequence number                        |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |         LS checksum           |             length            |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        
       |    0    |V|E|B|        0      |            # links            |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+              
       |                          Link ID                              |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        
       |                         Link Data                             |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        
       |     Type      |     # TOS     |            metric             | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        

       |      TOS      |        0      |          TOS metric           |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

       |                          Link ID                              | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                         Link Data                             | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                                                               | 
 

Figure 4.2:  The MCR Router-LSA format 

 

To support multi-class routing, two metrics, known as hop count and the bandwidth, need 

to be present in all Router-LSAs. Figure 4.2 illustrates the Router-LSA with two metrics. 

The #TOS field is set to 1. The metric field, which is TOS 0, shows the hop count. The 

TOS field is set to 72. That means that the bandwidth will be placed in the TOS metric 

field. The information about the link includes two metrics. Other fields in the Router-LSA 

are consistent with the standard OSPFv2 protocol. 

 



 

Design of OSPF with MCR Extensions 

 33 

4.1.4.2 Summary-LSA Format 
 

Two metrics can be present in the Summary-LSAs. Figure 4.3 shows the format of the 

Summary-LSAs for multi-class routing. According to the routing table, all Summary-

LSAs are created by the ABRs. If the cost of each route is a single value, only the metric 

field is used in the Summary-LSAs. Otherwise, the TOS metric field is needed. For 

example, the BSP algorithm only creates one cost for each route. So, in the Summary-

LSA, only the metric field is present, and the TOS metric is not in use. The WSP 

algorithm produces two costs as a pair for each route so that the TOS metric in the 

Summary-LSAs is needed. 

 
 
        0                   1                   2                   3 
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |            LS age             |     Options   |  LS Type      |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |                        Link State ID                          |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |                     Advertising Router                        |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |                     LS sequence number                        |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |         LS checksum           |             length            |       
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                         Network Mask                          | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |      0        |                  metric                       | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |      0        |                 TOS metric                    | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
        

 

Figure 4.3:  The MCR Summary-LSA format 

 

To support more than one routing table, new types of Summary-LSAs need to be 

introduced because the type 3 Summary-LSA and type 4 Summary-LSA as a pair are 

used for a single routing table. Each new routing table needs a pair of the Summary-LSAs 

for itself. For example, for the second routing table, the type 12 Summary-LSA is used 

for the route, the destination of which is an IP network. The type 13 Summary-LSA is 

defined for the route, the destination of which is an AS boundary router.    

 

Based on different types of Summary-LSAs for different routing tables, the route 

summarization mechanism can be separately performed for the different routing tables. 

Thus, aggregating IP addresses for one routing table does not affect other routing tables.  

 

4.1.4.3 AS-external-LSA Format 
 

Two metrics of the hop count and the bandwidth should be present in each AS-external-

LSA in order to support the multi-class routing scheme. Figure 4.4 illustrates the AS-

external-LSA with two metrics. The metric field, which is for TOS 0, represents the hop 

count. The TOS field is set to 72, meaning that the bandwidth will be placed in the TOS 



 

Design of OSPF with MCR Extensions 

 34 

metric field. The external routing information includes two metrics. The TOS value 

cannot be more than 127 because the most significant bit is used to represent the type of 

the external metric. Other fields in the AS-external-LSA are consistent with the standard 

OSPFv2 protocol.  

       
 
 
        0                   1                   2                   3 
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       
       |            LS age             |     Options   |      5        |        
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+          
       |                        Link State ID                          |           
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+          
       |                     Advertising Router                        |           
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           
       |                     LS sequence number                        |            
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           
       |         LS checksum           |             length            |            
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+            
       |                         Network Mask                          |            
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+            
       |E|     0       |                  metric                       |            
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           
       |                      Forwarding address                       |             
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                      External Route Tag                       | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |E|    TOS      |                TOS metric                     | 
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                      Forwarding address                       | 

       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
       |                      External Route Tag                       | 

       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 4.4:  The MCR AS-external-LSA format 

 

4.1.5 Calculation of Routing Tables 
 

Compared to the standard OSPF protocol, each router supporting the MCR capability 

creates more than one routing table by means of using different routing algorithms. Based 

on the extensions to the OSPF protocol, all LSAs can provide one non-TOS metric and 

one TOS metric for different routing algorithms.  

 

The routing table calculation performed by any routing algorithm still includes three 

essential steps: the intra-area routing calculation, the inter-area routing calculation and the 

external routing calculation. The real routing algorithm is performed to compute the intra-

area routes, and the distance-vector approach is used for calculating the inter-area routes 

and the external routes. During the course of creating a routing table, the routing 

algorithm examines all types of the LSAs stored in the link state database.  

 

One routing algorithm is independent of other routing algorithms. One routing table 

calculation does not have any influence on other routing table calculations. As a 

consequence, the process of creating the Summary-LSAs related to the different routing 

tables can be separately performed.  

 

 



 

Design of OSPF with MCR Extensions 

 35 

4.2 Software Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5:  The software architecture of the OSPF with MCR extensions 

 

The software architecture is modular so that the MCR extensions to the OSPF protocol 

are localized to the specific modules. To produce minimal change, the software is 

 

MCR-LSA 

Installer 

Precomputation trigger  

Route Table computation 

using the routing algorithm 2 

Route Table computation using 

the routing algorithm 1 

Routing table 1 

Routing table 2 

MCR-LSA originator 

Local interface 

status manager 

ABR task 

manager 

Receive MCR-LSAs 

MCR-LSA Flooding 

manager 

 

Link-state 

Database 

Configuration 

Manager  

OSPF with MCR Extensions 

Partial 

Core OSPF Functions  

DD 

procedure 

handler 

Hello 

message 

handler 

Initialization 

management 

MCR-LSA 

management 



 

Design of OSPF with MCR Extensions 

 36 

designed to reuse the existing OSPF code. Figure 4.5 illustrates the software architecture 

of the OSPF with MCR extensions. Different colours, which are used for arrows in the 

Figure, only make the relationships among different modules in the software architecture 

visible. The software is divided into the following modules. 

 

Pre-computation trigger module determines which route table computation module should 

be performed and when it should be done. This module can trigger different route table 

computations.   

 

Route table computation module creates one independent routing table through 

performing a specific routing algorithm. This module implements both the whole routing 

table calculation and the incremental update calculation based on the specific routing 

algorithm, which is either the SPF algorithm or a QoS routing algorithm. To implement 

the MCR scheme, more than one route table computation module exists in the software. 

Only two route table computation modules are shown in Figure 4.5. The software 

architecture is allowed to add new route table computation modules. One route table 

computation module is independent of the other route table computation modules. If a 

router is an ABR, each route table computation module of the router will invoke the ABR 

task manager module after the corresponding routing table is completely calculated.  

 

ABR task manager module checks which route in the routing table is allowed to create a 

corresponding Summary-LSA and determines the areas into which the Summary-LSA 

should be advertised. During the process of checking one routing table, the route 

summarization is done before the ABR manager module requests the MCR-LSA 

originator module to originate the Summary-LSAs. Furthermore, this module is 

responsible for indicating the correct types of the Summary-LSAs for the diverse routing 

tables because each routing table must have its own types of the Summary-LSAs. For 

example, type 3 and type 4 Summary-LSAs are used for the first routing table, whereas 

the new type 12 and type 13 Summary-LSAs are used for the second routing table. In an 

OSPF router, the ABR task manager module is performed by some core OSPF functions 

when the router’s ABR configuration is changed.  

 

MCR-LSA originator module produces different types of MCR LSAs with the correct 

Option field. This module cannot completely reuse the existing OSPF code because the 

MCR LSA formats are different from the standard OSPFv2 LSA formats. On the other 

hand, it must create the new types of the Summary-LSAs. Based on the local interface 

status, this module produces the router’s Router-LSA and Network-LSA. Under the 



 

Design of OSPF with MCR Extensions 

 37 

condition of the configuration manager module and the core OSPF functions, it can create 

the AS-external-LSAs if a router is configured as an ASBR. Note that one of the core 

OSPF functions is the external routing information redistribution. The MCR-LSA 

originator module requests the MCR-LSA flooding manager module to flood an LSA 

after the LSA is successfully created. The MCR-LSA originator module replaces the 

normal LSA originator module in the core OSPF functions.  

 

MCR-LSA installer module installs different types of the MCR LSAs received from other 

routers or originated by the router itself into the link-state database. The data structure of 

the link-state database has to be changed because new types of Summary-LSAs are 

introduced for multi-class routing. If an LSA is a new one or different from the database 

copy, the module requests the pre-computation trigger module to trigger the 

corresponding route table computation. The MCR-LSA installer module substitutes the 

normal LSA installer module in the core OSPF functions. 

 

MCR-LSA flooding manager module floods different LSAs to the correct areas after a 

router receives LSAs from the other routers or the router itself. It requests the MCR-LSA 

installer module to update the router’s link-state database. The MCR-LSA flooding 

manager module replaces the normal LSA flooding manager module in the core OSPF 

functions since the new types of LSAs are introduced into the software.  

  

Configuration manager module provides all management functions for administrators. It 

can manage and control several modules in the OSPF with MCR extension. 

Administrators can adjust the frequency of performing a certain route table computation 

by means of setting different parameters to timers of the route table computation module. 

The route summarization needs to be configured manually in order to know the ranges of 

aggregated IP addresses. The configuration manager module extends some functions for 

the normal configuration module in the core OSPF functions.  

 

Hello message handler module reads the Hello packets received from the neighboring 

routers and writes the new Hello packets sending to the other routers. Except for the value 

of the Options field, the format of the OSPF Hello packets is not altered. The M-bit in the 

Options field must be set during the course of creating every new Hello packet. When a 

router receives any Hello packet, the router must check the Options field in order to 

guarantee that the communication is only established with the neighboring routers 

supporting the MCR capability. This module replaces the original one in the core OSPF 

functions.  



 

Design of OSPF with MCR Extensions 

 38 

 

DD message handler module reads the Database Description packets received from the 

neighboring routers and writes the new Database Description packets sending to the other 

routers. Except for the value of the Options field, the format of the OSPF Database 

Description packets is not changed. The M-bit in the Options field must be set during the 

course of creating every new Database Description packet. When a router receives any 

Database Description packet, the router must check the Options field in order to guarantee 

that the communication is only established with the neighboring routers supporting the 

MCR capability. This module substitutes the original one in the core OSPF functions.  

 

MCR-LSA management module controls and manages all LSAs stored in the link-state 

database. This module provides several functions, such as LSA refreshment management, 

self-originated LSA flush management, LSA MaxAge management, database summary 

function and LSA lookup function, etc. The LSA refreshment management periodically 

refreshes LSAs stored in the refresh queue of a router by means of requesting the MCR-

LSA originator module. Using the MCR-LSA flooding manager module, the self-

originated LSA flush management can flush all self-originated LSAs throughout a routing 

domain. The LSA MaxAge management periodically checks the LS age of every LSA in 

the link-state database. Any LSA with the MaxAge must be deleted from the link-state 

database. Database summary function creates a list of LSAs that make up the entire link-

state database. The list is sent to a neighbor in the Database Description packets when the 

neighbor enters Database Exchange state. The LSA lookup function is used to determine 

whether an LSA exists in the link-state database. Those functions should be involved with 

all types of the LSAs. Compared to the original LSA management module in the existing 

OSPF code, functions of the MCR-LSA management module handle new types of 

Summary-LSAs, such as the type 12 and type 13 Summary-LSAs.  

 

Local interface status manager module controls each local interface of a router and 

monitors the output cost and the output bandwidth of each interface. This module must 

simultaneously provide the output bandwidth of the interface used for TOS 72 metric and 

the output cost used for TOS 0 metric. Some new functions need to be introduced into the 

OSPF core functions. Different MCR approaches deploy diverse methods to implement 

the local interface status manager module.  

• Static MCR approach: When any weight of an interface is changed manually, the 

local interface manager module requests the MCR-LSA originator module to 

create a new Router-LSA.  



 

Design of OSPF with MCR Extensions 

 39 

• Dynamic distributed MCR with Time based triggering: The local interface 

manager module uses a timer with time T to measure weights of interfaces at T 

interval. If any weight changes, the local interface manager module will request 

the MCR-LSA originator module to create a new Router-LSA.  

• Dynamic distributed MCR with significant event triggering: The local interface 

manager module uses a threshold trigger for each significant event. It deploys two 

timers, which are Tmin timer and Tmax timer. When a significant event takes 

place and Tmin is expired, the local interface manager module will request the 

MCR-LSA originator module to create an updated Router-LSA. If no significant 

events happen before the Tmax timer times out, the measurement of weights is 

done by the local interface manager module. If any change of weights is found, 

the local interface manager module will request the MCR-LSA originator module 

to create a new Router-LSA. 

 

Initialization management module initializes different data structures for the OSPF 

software. Some original data structures should be changed because of the extensions to 

the OSPF protocol. Thus, the modified data structures must be correctly initialized before 

they are used by the different OSPF functions, including the OSPF core functions and 

new functions.       

 

The link-state database still includes two parts: area database and global database. The 

area database stores an area’s Router-LSAs, Network-LSAs and Summary-LSAs. The 

Summary-LSAs include original types and the new types of Summary-LSAs. All AS-

external-LSAs are stored in the global database. 

 

Major core OSPF functions still remain unchanged in the software architecture. However, 

in order to implement the MCR extensions to the OSPF protocol, some original modules 

are extended and some new modules are introduced into the software. Some modules, 

which are related to the new types of Summary-LSAs, can effectively use the existing 

OSPF functions as long as the code for handling the new types of the Summary-LSAs is 

added. Fortunately, the code for handling the new types of Summary-LSAs is similar to 

that for the type 3 and type 4 Summary-LSAs. 

 

 

 

 



 

Design of OSPF with MCR Extensions 

 40 

4.3 Discussion 
 

In the first version of OSPF with MCR extensions, we make an assumption for encoding 

method for the bandwidth information so that if the assumption is changed, the equation 

(4-1) must be modified too. It is not entirely satisfactory for different MCR approaches, 

especially dynamic MCR approaches. Thus, two possible encoding methods for the 

bandwidth information could be introduced in a later version of the OSPF with MCR 

extensions. 

 

The first encoding method is to use a non-linear code, which represents the bandwidth of 

a link. For example, the accuracy of one or two percent is used to represent the bandwidth 

information. In a Router-LSA, the TOS metric field that is only 16 bits long can carry the 

bandwidth information, the range of which is from 1 kbit/s to Terabits. However, the 

drawback of this encoding method is that the calculation of the weight function of some 

routing algorithms, for instance, BSP algorithm, could become heavy on hardware that 

does not support floating point arithmetic.   

 

The second encoding method is that the network administrator specifies the granularity of 

the bandwidth coding in the MCR DiffServ network. Different granularities may be used 

for diverse networks. For example, the granularity used in a 3G access network 

distinguishes from that in a data network. The following equation (4-2) can be used with a 

configuration parameter, which is reference_bandwidth. Using the corresponding 

commands, a network administrator can change the parameter reference_bandwidth 

within certain bounds. The limitation of the equation (4-1) can be removed due to the 

parameter reference_bandwidth. However, the parameter reference_bandwidth cannot be 

altered dynamically.  

 

                    TOS metric  = 
)/(_ skbitsbandwidthreference

bandwidth
                          (4-2)    

 

 

 
  

 



 

Static MCR Implementation Based on Zebra Software 

 41 

5. Static MCR Implementation Based on Zebra Software 
 

This chapter describes the implementation of the MCR extensions to the OSPF protocol 

based on the Zebra OSPF software. The goal of our implementation is: 

• To implement the basic MCR manager functions. 

• To implement the static MCR approach 

• To implement the SP algorithm and the BSP algorithm. 

• To show two routing tables and other OSPF information by means of the VTY 

commands. 

 

5.1 Zebra Software Overview 
 

 

 

 

 

 

 

Figure 5.1:  Zebra system architecture 

Zebra software is a multi-process architecture that has been designed for extensibility. 

Figure 5.2 shows the Zebra software architecture. Zebra adopts a collection of several 

separate daemons that work together to form the routing table for UNIX or Linux Kernel. 

Each specific routing protocol has the corresponding daemon. For example, ospfd is the 

daemon for OSPF version 2. The zebra daemon is the kernel routing table manager. It is 

used to change the entries of the kernel routing table. Generally speaking, we implement 

the MCR manager through modifying the OSPF code of the Zebra software.  For more 

detailed information about the OSPF code of the Zebra software, please see appendix A. 

 

5.2 Software Architecture Based on the Zebra OSPF  
 

Our OSPF code, which is modified to support the MCR capability, is consistent with the 

design of the OSPF with MCR extensions. Figure 5.2 shows the zebra OSPF with the 

MCR extensions. Different colours, which are used for arrows in the Figure, only make 

the relationships among different modules in the software architecture visible. All 

modules defined in the design are implemented by means of the corresponding functions 

in the OSPF code. The SP algorithm has been provided by the original OSPF code. Thus, 

the BSP algorithm and related functions need to be implemented. 

bgpd ripd ospfd zebra 

 UNIX Kernel                      routing table 



 

Static MCR Implementation Based on Zebra Software 

 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2:  The MCR software architecture of Zebra OSPF software 

 

LSA Installer 

ospf_lsa_install()  

ospf_lsa_different() 

Precomputation trigger  

ospf_precompute_trigger()   

BSP algorithm 

ospf_bsp_calculate_timer() 

ospf_bsp_calculate_schedule() 

 

SP algorithm: 

ospf_spf_calculate_timer() 

ospf_spf_calculate_schedule() 

Routing table 1 
ospf->old_table (NRT) 

ospf->old_rtrs (RRT) 

ospf->old_external_route 

(ERT) 

  

Routing table 2 
ospf->old_table_bsp (NRT) 

ospf->old_rtrs_bsp (RRT) 

ospf->old_external_route_bsp 

(ERT) 

LSA originator 
ospf_router_lsa_originate() 
ospf_router_lsa_refresh() 

and so on. 

Initialization management 

ospf_new() 

ospf_network_run() , etc 

Local interface status manager 

ospf_if_get_output_cost() 

ospf_if_get_output_bandwidth

() 

ABR task manager: 

ospf_abr_task()  

ospf_abr_second_task() 
ospf_schedule_abr_task() 

ospf_schedule_abr_second_task() 

Receive LSAs 

ospf_ls_upd() 

LSA flooding manager 
ospf_flood() 
ospf_flood_through()  

ospf_prcess_self_originated_ls
a() 

 
Link-state Database 
ospf->lsdb , area->lsdb 

Extended/modified

VTY commands  

Zebra OSPF with MCR Extensions 

Partial Zebra  Core OSPF 

Functions  

ospf_abr_task() 

ospf_abr_second_task() 

ospf_spf_calculate_schedule()  or 
ospf_ase_incremental_update() 

    ospf_bsp_calculate_schedule() or 
    ospf_ase_incremental_update_bsp() 

ospf_timers_bsp_set() 

ospf_timers_bsp_unset() 

ospf_summary_lsa_originate() 

ospf_summary_asbr_lsa_originate() 

ospf_summary_bsp_lsa_originate() 
ospf_summary_asbr_bsp_lsa_originat

e() 
ospf_summary_lsa_refresh() 

ospf_summary_asbr_lsa_refresh() 
ospf_summary_bsp_lsa_refresh() 

ospf_summary_asbr_bsp_lsa_refresh() 

ospf_timers_spf_set() 

ospf_timers_spf_unset() 

ospf_area_range_set()                   ospf_area_second_range_set() 

ospf_area_range_cost_set()          ospf_area_second_range_cost_set() 

ospf_area_range_unset()               ospf_area_second_range_unset() 

ospf_if_recalculate_output_cost() 

ospf_if_recalculate_output_bw() 

 

ospf_lsa_install() 

 

ospf_lsdb_add() 

int 

rt_recalce 

ospf_redistribute_set() 

ospf_route_map_set(),etc 

 

 

VTY 

command 

functions 

 

ospf_flood() 

Hello Message 

reader ospf_hello() 

ospf_make_hello() 

DD message reader 

ospf_db_desc() 

ospf_make_db_desc() 

LSA management 
ospf_lsa_maxage_walker() 

nsm_negotiation_done() 

ospf_lsa_refresh() 

ospf_flush_self_originate_lsas_n

ow()   ospf_lsa_lookup() 

 

    

    LSDB_LOOP() 

    lsa->data->type 

   Creation functions 

ospf_flood_through_area() 

ospf_flood_through_as() 

 

ospf_lsa_install() 

ospf_flood_through_area() 

ospf_flood_through_as() 

 



 

Static MCR Implementation Based on Zebra Software 

 43 

The function ospf_spf_calculate_timer() and ospf_spf_calculate_schedule() are used to 

implement the functions of the route table computation module. The function 

ospf_spf_calculate_timer() implements the whole routing table calculation based on the 

SP algorithm. Having received a new LSA or an LSA with a changed TOS 0 metric, an 

OSPF router performs the SP algorithm one time. This situation can result in a frequent 

calculation of the SP algorithm. To avoid the above problem, the function 

ospf_spf_calculate_schedule() is used to set a timer for the SP algorithm calculation. 

Administrators can change the values of the timer’s parameters through VTY commands. 

If a router is configured as an ABR, the function ospf_spf_calculate_timer() will invoke 

the function ospf_abr_task() to check the first routing table and create the Summary-

LSAs. Those functions belong to the original OSPF code.  

 

The new function ospf_bsp_calculate_timer() and ospf_bsp_calculate_schedule() are used 

to implement the functions of the route table computation module. They are responsible 

for creating the second routing table for the MCR. The function ospf_bsp_calculate_timer 

() completely implements the whole routing table calculation based on the BSP algorithm. 

To avoid frequent BSP algorithm calculation, the function ospf_bsp_calculate_schedule() 

is used to set a timer for the BSP algorithm calculation. Administrators can change the 

values of the timer’s parameters through VTY commands. If a router is configured as an 

ABR, the function ospf_bsp_calculate_timer() will invoke the function 

ospf_abr_second_task() to check the second routing table and create the Summary-LSAs. 

 

The ABR task manager module adopts independent functions to handle the different 

routing tables. The function ospf_abr_task(), which is the original OSPF code, handles the 

first routing table, whereas the new function ospf_abr_second_task() is used to implement 

the ABR functions for the second routing table. The route summarization mechanism is 

implemented in both functions.  Administrators can respectively configure the ranges of 

aggregated IP addresses for each routing table. The function ospf_abr_task() can invoke 

the functions that create the type 3 and type 4 Summary-LSAs when it determines that the 

Summary-LSAs should be created. The function ospf_abr_second_task() can invoke the 

functions that create the type 12 and type 13 Summary-LSAs when it determines that the 

Summary-LSAs should be created. When a router detects any change of the ABR status, 

the function ospf_schedule_abr_task() and the function ospf_schedule_abr_second_task() 

are invoked by certain core OSPF functions, for instance, the function 

ospf_network_free(). 

 



 

Static MCR Implementation Based on Zebra Software 

 44 

The new function ospf_precompute_trigger() is used as a pre-computation trigger. 

According to a parameter rt_recalc of this function, it can trigger an entire routing table 

calculation or an incremental update calculation. When the function 

ospf_precompute_trigger() invokes the function ospf_bsp_calculate_schedule() or the 

function ospf_spf_calculate_schedule(), the entire routing table calculation is performed. 

While the function ospf_ase_incremental_update() or the function 

ospf_ase_incremental_update_bsp() is invoked, the incremental update calculation is 

done. 

 

The modified function ospf_lsa_install() implements the functions of the MCR-LSA 

Installer module. It invokes the original function ospf_lsdb_add() to insert or update 

LSAs in the link-state database. The modified function ospf_lsa_different() is invoked by 

the function ospf_lsa_install() in order to determine whether the received LSA is different 

from the database copy. If the function ospf_lsa_install() finds the received LSA is a new 

one or different from the database copy, it invokes the function ospf_precompute_trigger() 

to trigger a certain routing table recalculation in terms of the value of the parameter 

rt_recalc. When a router receives an LSA from another router or originates an LSA by 

itself, the router performs the function ospf_lsa_install(). The original function 

ospf_lsa_install() can be basically used as long as the code for handling the type 12 and 

type 13 Summary-LSAs is added.  

 

Each type of the LSAs possesses a set of creation functions in the OSPF code. For 

example, the function ospf_router_lsa_originate() and ospf_router_lsa_refresh() are used 

for creating Router-LSAs. According to the formats of the MCR LSAs, some functions 

must be correspondingly modified. The new functions used for the type 12 and type 13 

Summary-LSAs must be introduced. More detailed information about the creation 

functions is in Appendix B. The modified function ospf_lsa_install() is an essential 

function used by those creation functions because each LSA successfully originated by 

the router itself must be installed into the router’s link-state database. Then, those LSAs 

will be flooded throughout areas or an entire routing domain by invoking the original 

function ospf_flood_through_area() or ospf_flood_throug_as(). 

 

The original function ospf_flood() can implement the actual flooding procedure for the 

MCR extensions. If a received LSA does not exist in the database or it is more recent than 

the database copy, a router performs the function ospf_flood(). Except for flooding the 

LSA out the correct interfaces of the router, the function ospf_flood() invokes the 

function ospf_lsa_install() to update the router’s link-state database. In the ospf_flood(), 



 

Static MCR Implementation Based on Zebra Software 

 45 

the modified function ospf_flood_through(), which is used to determine the flooding 

method in terms of the type of the LSAs, adds the code for handling the type 12 and type 

13 Summary_LSAs. The modified function ospf_process_self_orginated_lsa() is used to 

determine how to deal with a self-originated LSA received from the other routers. When 

receiving a self-originated type 12 or type 13 Summary-LSA from another router, the 

function ospf_process_self_originated_lsa() used by the function ospf_flood() needs to 

perform the function ospf_abr_second_task() to the second routing table. 

 

Compared to the original function ospf_make_hello(), the modified function 

ospf_make_hello() sets the M-bit in the Options field for every Hello packet. When a 

router receives Hello packets, it performs the modified function ospf_hello() to check the 

M-bit in the Options field. The router rejects to communicate with other routers that 

cannot support the MCR capability.  

 

The modified function ospf_make_db_desc() sets the M-bit in the Options field for every 

Database Description packet. When a router receives Database Description packets, it 

performs the modified function ospf_db_desc() to check the M-bit in the Options field. 

The router only communicates with other routers supporting the MCR capability.  

 

The MCR-LSA management module is implemented by several functions. The modified 

function ospf_lsa_maxage_walker() provides the MCR-LSA MaxAge management. The 

Database summary is implemented by the modified function nsm_negotiation_done(). 

The modified function ospf_lsa_refresh() refreshes LSAs based on their types.  The self-

originated LSA flush management is implemented by the modified function 

ospf_flush_self_originate_lsas_now(). The modified function ospf_lsa_lookup can 

determine whether an LSA exists in the database. Compared to the original functions, 

they add the code for handling the type 12 and type 13 Summary-LSAs. 

 

To implement the local interface status manager module, the original function 

ospf_if_get_output_cost() obtains the output cost of a link, whereas the new function 

ospf_if_get_output_bandwidth() acquires the bandwidth of the link. Administrators can 

configure the output cost and the bandwidth through simple VTY commands. The output 

cost and the bandwidth are used for the metric and TOS metric of a link. When either 

output cost or the bandwidth of any link of a router is changed, the original function 

ospf_if_recalculate_output_cost() or the new function ospf_if_recalculate_output_bw() 

triggers to create a new Router-LSA for the router.  

 



 

Static MCR Implementation Based on Zebra Software 

 46 

Some important data structures are modified to support the MCR capability. Functions, 

which initialize those data structures, should be adequately changed in parallel. For 

example, the structure ospf adds new pointers, which point to new route_table structures 

used for the second routing table. The function ospf_new() that initializes an OSPF 

instance use the function route_table_init() to initialize new route_table structures. All 

modified data structures and related functions are described in Appendix C. 

 

The Configuration manager module extends some new VTY commands in our OSPF 

software. Some original VTY commands are modified because certain OSPF functions 

need new input information. More detailed information about VTY commands is depicted 

in Appendix D.   

 

In the modified Zebra OSPF code, the new routing table is created for the BSP algorithm. 

The BSP routing table, which is the same as the SP routing table, consists of three 

elements: Network Routing Table (NRT), Router Routing Table (RRT) and External 

Routing Table (ERT). The NRT records the routes, the destination type of which is the 

“Network”. The RRT stores the routes, the destination type of which is the “ABR” or 

“ASBR”. All external routes created by using the external routing information are stored 

in the ERT. 

 

Major core Zebra OSPF functions remain unchanged in our implementation. To support 

the MCR capability, some new functions are created. A lot of modifications for the core 

OSPF functions result from the introduction of the new types of Summary-LSAs. 

Fortunately, the modifications are not complex because the code for handling the type 12 

and type 13 Summary-LSAs is similar to that for type 3 and type 4 Summary-LSAs.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Static MCR Implementation Based on Zebra Software 

 47 

5.3 BSP Algorithm Implementation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3:  Flow chart of the whole BSP routing table calculation 

Yes 

Initialize new routing tables 
route_table_init() 

 

Calculate BSP for each area 

and form intra-area route 

entries. ospf_spf_calculate() 
flag = 2 
 

Calculate inter-area routing 

tables  ospf_ia_routing_bsp() 

 

Prune all unreachable routes 
ospf_prune_unreachable_networks() 

ospf_prune_unreachable_routers() 

 

Calculating external routes 
ospf_bsp_ase_calculate_timer_add() 

Update routing tables to kernel 
ospf_route_install() 
 

         Is ABR ? 

 

Perform the ABR task 
ospf_abr_second_task() 

 

No 

End 

Start 



 

Static MCR Implementation Based on Zebra Software 

 48 

In our OSPF code, the function ospf_bsp_calculate_timer() implements the whole BSP 

routing table calculation (See Figure 5.3). First, a NRT and a RRT need to be initialised 

by performing the function route_table_init(). Then, the function ospf_spf_calculate() 

computes a SPF tree for each area and inserts the intra-area routes into the NRT and RRT. 

Next, inter-area routes are created into the NRT and RRT by the function 

ospf_ia_routing_bsp(). All unreachable routes in the NRT are deleted by the function 

ospf_prune_unreachable_networks(), whereas the unreachable routes in the RRT are 

removed by the function ospf_prune_unreachable_routers(). After that, 

ospf_bsp_ase_calculate_timer_add() calculates the external routes and inserts them into 

the ERT. According to the results of the BSP algorithm calculation, the routing table in 

the kernel is updated by the function ospf_route_install(). Finally, if a router is configured 

as an ABR, the function ospf_abr_second_task() is performed in order to handle the ABR 

tasks. 

 

The following subchapters describe how to implement the intra-area routing calculation, 

the inter-area routing calculation and the external routing calculation. 

 

5.3.1 BSP Intra-area Routing Calculation 
 

The function ospf_spf_calculate() is responsible for computing a SPF tree for each area. It 

creates route entries into the routing table in terms of the SPF tree. Note that the function 

ospf_spf_calculate() is used for both the SP algorithm and BSP algorithm. When a 

parameter “flag” of the function ospf_spf_calculate() is equal to 2, it is used for the BSP 

algorithm. Three types of the vertices, including router vertices, transit network vertices 

and stub network vertices, are used in the routing calculation. The BSP algorithm 

calculation includes two stages. The first stage only applies the BSP algorithm to the 

router vertices and the transit network vertices. The second stage handles all stub network 

vertices.  

 

Figure 5.4 shows the flow chart of the BSP algorithm calculation procedure for intra-area 

routes: 

Step 1 The function ospf_spf_calculate(), the parameter “flag” of which is 2, starts. 

Step 2: the function ospf_spf_calculate() initializes algorithm’s data structures, 

including two SPF trees and a candidate list. The two SPF trees, the data type of 

which is the structure route_table, are used to record router vertices and network 

vertices respectively. 

 



 

Static MCR Implementation Based on Zebra Software 

 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4:  Flow chart of BSP algorithm for calculating intra-area routes 

 

Yes 

2. Initialize algorithm’s data structure  

6. Calculate the next candidate vertices, 

and add them to candidate list in terms of 

their costs. ospf_spf_next() flag =2 

 

3. Determine the root vertex and registering 

it at the SPF tree ( ospf_spf_init() ) 

 

5. Infinite loop 

9. Deleting the vertex from candidate list  

list_node(candidate,v)  

 

8. Get a vertex with the smallest cost, 

and add this vertex to the child list of its 

parent vertex used by the second stage. 

  ospf_vertex_add_parent()  

 

       11. Is Router Vertex   

? 

12. Adding route entry about 

the vertex at the RRT 

( ospf_intra_add_router () ) 

 

No 

End 

1.Start 

7. Candidate list is empty? 

 

No 

Yes 

10. Registering the vertex to SPF tree 

( ospf_spf_register() ) 

 

12. Adding route entry about 

the vertex at the NRT 

( ospf_intra_add_transit () ) 

 

7. The second stage of 

the procedure (see figure 

5.5) 
ospf_spf_process_stubs() 

flag=2 

7. Free algorithm’s 

 data structures 

4. Set the false for TransitCapability 



 

Static MCR Implementation Based on Zebra Software 

 50 

Step 3: The root vertex is determined by performing the function ospf_spf_init() and 

registered into the SPF tree though the function ospf_spf_register(). 

Step 4: The function ospf_spf_calculate() sets the area’s TransitCapability to False. 

The area’s TransitCapbility could be modified during the execution of the function 

ospf_spf_next(). If the area’s Transit Capability is set to True during the first stage of 

the calculation procedure, it makes the function process_transit_summary_lsa() 

perform when inter-area routes are calculated by the function ospf_ia_routing_bsp(). 

Step 5: An infinite loop starts. 

Step 6: The function ospf_spf_next() chooses one next candidate vertex with the 

smallest inversed bandwidth from the candidate list. Then, it uses the selected vertex 

to determine new candidate vertices. Next, it calculates inversed bandwidth from the 

root vertex to those candidate vertices and places the candidate vertices into the 

candidate list based on the value of their inversed bandwidths. The BSP cost 

calculation is defined in equation (5-1). 

                    BSP cost = chosen vertex’s cost + 
metricsTOSlink 72'

65535
                 (5-1) 

Step 7: The candidate list is checked. If the candidate list is empty, the loop is 

terminated. Then, the second stage of the calculation procedure begins (see Figure 

5.5). After that, all data structures of the BSP algorithm will be free. Lastly, the 

function ospf_spf_calculate() is terminated. 

Step 8: The first vertex is chosen from the candidate list. The function 

ospf_vertex_add_parent() adds this vertex to a child list of its parent vertex. The child 

list will be used to calculate routes for the stub network vertices at the second stage. 

Step 9: The function listnode_delete() removes the chosen vertex from the candidate 

list.  

Step 10: The chosen vertex is registered into the SPF tree through performing the 

function ospf_spf_register(). 

Step 11:  the function ospf_spf_calculate() check the type of the chosen vertex. 

Step 12: If the vertex is a router vertex, the corresponding route is added or updated 

to the RRT by performing the function ospf_intra_add_router(). Otherwise, the 

function ospf_intra_add_transit() inserts the corresponding route into the NRT. The 

procedure goes back to the Step 5. 

 

 

 

 

 



 

Static MCR Implementation Based on Zebra Software 

 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5:  Flow chart of the second stage of the BSP calculation procedure 

 

The function ospf_spf_process_stubs() is used to implement the second stage of the 

calculation. Note that this function is used for both the SP algorithm and BSP algorithm. 

When the parameter “flag” of this function is equal to 2, it can be used for the BSP 

algorithm. Figure 5.5 shows the flow chart of the second stage of the calculation. The 

second stage only calculates routes for the stub network vertices. The function 

ospf_spf_process_stubs() checks each vertex listed in the child list of every vertex. If the 

chosen vertex is the router vertex, it checks the vertex’s Router-LSA. If the type of the 

link in the Router-LSA is type 3, the route related to this stub network vertex is created or 

updated in the NRT.  The function ospf_intra_add_stub() is responsible for calculating the 

cost from the root vertex to the stub network vertex and inserting the route into the NRT. 

The following equation (5-2) defines how to calculate the BSP cost for the stub network 

vertex. 

Cost of stub network vertex = parent vertex’s cost + 
metricsTOSLink 72'

65535
             (5-2) 

 

 

Yes 

Adding or updating the route for the stub 

in the NRT ospf_intra_add_stub() 

 

Checking each vertex in the child list of 

each vertex 

 

No 

 Start 

Vertex is Router Vertex ? 

 

No 

Yes 

Router-LSA link is type 3 ? 

 



 

Static MCR Implementation Based on Zebra Software 

 52 

5.3.2 BSP Inter-area Routing Calculation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6:  Flow chart of calculating BSP inter-area routes 

No 

4. Check all LSAs in the 

Summary_BSP_LSDB and 

ASBR_Summary_BSP_LSDB, and 

calculate routes for NRT and RRT 
ospf_examine_summaries() 

 process_summary_lsa() 

5. Fetch an area from the area list 

 

          7. area is transit? 

 

9. Getting next area from area 

Yes 

11. End 

1. Start 

6. Area is backbone area? 

 

Yes 

No 

8. Check all LSAs in the 

Summary_BSP_LSDB and 

ASBR_Summary_BSP_LSDB, and update 

backbone routes for NRT and RRT 
ospf_examine_transit_summaries() 

 process_transit_summary_lsa()  

    2. Is ABR? 

 

3. (area=backbone area) exists? 

 

Yes 

No 

No 

Yes 

             10. area exists ? 

 

No 

2. Checking all LSAs in 

the 

Summary_BSP_LSDB 

and 

ASBR_Summary_BSP_

LSDB, and calculating 

routes for NRT and RRT 
ospf_examine_summaries() 

 process_summary_lsa()  
 

   Yes 

3. Warning: backbone 

area is not found. 

 



 

Static MCR Implementation Based on Zebra Software 

 53 

The BSP inter-area routing calculation adopts the distance-vector approach to compute 

every inter-area route. The cost of each inter-area route is equal to the cost of an ABR 

route plus the metric of the Summary-LSA created by the ABR. Both the cost of the ABR 

route and the metric of the Summary-LSAs are directly associated with the inversed 

bandwidth. Metric of each Summary-LSA is set to the corresponding route’s cost stored 

in the advertising ABR’s routing table. The calculating router obtains the cost of a certain 

ABR router from its’ routing table.  

 

The new function ospf_ia_routing_bsp() implements the inter-area routing calculation for 

the BSP algorithm. Figure 5.6 shows the flow chart of our implementation for the inter-

area routing calculation. The following steps are used to explain how the inter-area 

calculation works. 

Step 1: The function ospf_ia_routing_bsp starts. 

Step 2:  The function ospf_ia_routing_bsp() determines whether a router is an ABR 

router. If the router is not an ABR router, the function ospf_examine_summaries() 

examines all type 12 and type 13 Summary-LSAs stored in each area’ database. The 

function process_summary_lsa() computes and inserts inter-area routes into the NRT 

or RRT. Last, the process terminates.  

Step 3: If the router is an ABR, the function ospf_ia_routing_bsp() checks whether 

the backbone area exists. If the backbone area does not exist, the function terminates 

with a warning message. 

Step 4: Otherwise, the function ospf_examine_summaries() examines all type 12 and 

type 13 Summary-LSAs related to the intra-area routes of the backbone area. The 

function process_summary_lsa() computes the inter-area routes for the NRT and RRT. 

Step 5:  An area is obtained from the area list of the OSPF instance. 

Step 6:  The function ospf_ia_routing_bsp() needs to determine whether the chosen 

area is the backbone area. If the area is the backbone area, the process goes to Step 9. 

Step 7:  the function ospf_ia_routing_bsp() needs to determine whether the chosen 

area is a transit area. If the area is not a transit area, the process goes to Step 9. 

Step 8: Otherwise, the function ospf_examine_transit_summaries() examines all type 

12 and type 13 Summary-LSAs. The function process_transit_summary_lsa() updates 

certain backbone routes in the NRT and RRT. The goal of this step is to eliminate the 

shortest route problems caused by a virtual link. 

Step 9: The next area is fetched from the area list. 

Step 10: If the area exists, the process goes to Step 6. 

Step 11: Otherwise, the process terminates. 



 

Static MCR Implementation Based on Zebra Software 

 54 

5.3.3 BSP External Routing Calculation 
 

Each AS-external-LSA contains one forwarding address, which is specified by an ASBR. 

If the forwarding address is 0.0.0.0, packets delivered to another AS will be directly sent 

to the ASBR.  Otherwise, the packets will be sent to the router, the IP address of which is 

the specific forwarding address in the AS-external-LSA. Thus, every external route is 

involved with the corresponding ASBR route or the route to specific forwarding address. 

We assume that X is a cost, which is the shortest cost from the router itself to the ASBR 

or the forwarding address router. And X is gained from the routing table. Y is a type 1 or 

2 metric specified in the AS-external-LSA. 

 

In the AS-external-LSA, bit E defines the type of an external metric. If bit E is zero, the 

TOS 72 metric field is used as Type 1 external metric. The route’s path type is 

OSPF_PATH_TYPE1_EXTERNAL. The cost of the corresponding external route, which 

is related to destination N, is defined in the equation (5-3).  

                          external route’s cost 
Y

X
16777215

+=                                             (5-3) 

On the other hand, if bit E is set to one, the TOS 72 metric field is used as Type 2 external 

metric. The cost of the external route is divided into two parts. The link state component 

of the external route’s cost is X, and the type 2 cost of the external route is (16777215/Y). 

The path type of the route is OSPF_PATH_TYPE2_EXTERNAL. The cost of an external 

route to destination N is calculated by the function ospf_ase_calculate_new_route(). 

 

When an AS-external-LSA is received, it is not necessary to recalculate the entire routing 

table, meaning that the inter-area route calculation and intra-area route calculation do not 

need to be performed. Thus, there are two different processes of the external route 

calculation.  

• Entire external routing table calculation: The entire process of calculating all 

external routes is executed. (See Figure 5.7). This calculation is always used by the 

whole BSP routing table calculation.  

• Incremental update calculation: Only a route related to the AS-external-LSA is 

recalculated. (See Figure 5.8) 

 

 



 

Static MCR Implementation Based on Zebra Software 

 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7:  Flow chart of the function ospf_bsp_ase_calculate_timer() 
 

The entire external routing table calculation is implemented by the new function 

ospf_bsp_ase_calculate_timer(). Figure 5.7 shows the flow chart of the function 

ospf_bsp_ase_calculate_timer(). This function is invoked during the course of performing 

the function ospf_bsp_ase_calculate_timer_add() (see Figure 5.3). The function 

ospf_ase_calculate_route_bsp() checks all AS-external-LSAs stored in the global link-

state database, calculates the cost of the corresponding external routes and installs them 

into the ERT of the BSP algorithm. Then, according to each entry of the external routing 

table, the function ospf_ase_compare_tables() can install or update the related route 

entries into the kernel. At last, the old ERT is freed by the function 

ospf_route_table_free(), whereas the new ERT is initialized by the function 

route_table_init().  

End 

Start 

     ospf->bsp_ase_calc exist? 

 

Yes 

Check each AS_external_LSA in the 

LSDB in turn, caluculate the 

corresponding routes 

ospf_ase_calculate_rouet_bsp() 

Delete old external routing table and initial new 

external routing table. 

ospf_route_table_free(ospf->old_external_route_bsp) 

 route_table_init()  

No 

Compare old and new external routing 

table and install the difference into the 

kernel (ospf_ase_compare_tables()) 

 



 

Static MCR Implementation Based on Zebra Software 

 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8:  Flow chart of the function ospf_ase_incremental_update_bsp() 

 

The incremental update calculation is triggered during the course of installing an AS-

external-LSA. The function ospf_external_lsa_install() is responsible for installing AS-

external-LSAs into the global link-state database.  The incremental update calculation 

only checks and calculates one AS-external-LSA instead of all AS-external-LSAs stored 

in the database.  

The incremental update calculation is implemented by the new function 

ospf_ase_incremental_update_bsp() (see figure 5.8). Firstly, the function finds a route to 

the same destination N in the network routing table. If the route to N exists, the process 

ends up because an inter-area or intra-area route has priority over an external route. 

Secondly, based on the received AS-external-LSA, a new external route is created by the 

End 

Start 

     The route to N exists? 

 

Yes 

Check this AS_external_LSA, caluculate 

the cost of the corresponding route 

ospf_ase_calculate_route_bsp()  

 

Update old external routing table  

ospf->old_external_route_bsp 

(ospf_route_free()) 

No 

Compare the old and the new external 

route and install the difference into the 

kernel (ospf_ase_compare_tables()) 

 

Find a route to the destination N in the 

NRT 

 



 

Static MCR Implementation Based on Zebra Software 

 57 

function ospf_ase_calculate_route_bsp(). Thirdly, the new external route is compared 

with the old one stored in the old external routing table (ospf->old_external_route_bsp). 

The corresponding route entry in the kernel is updated by the function 

ospf_ase_compare_tables(). Finally, the old external routing table is updated if the change 

has happened.  

 

5.4 ABR Task Manager Implementation 
 

Tasks of the ABR consist of performing the route summarization, creating Summary-

LSAs and flooding those Summary-LSAs to the correct areas. The new function 

ospf_abr_second_task() implements the ABR tasks for the second routing table.  

 

Figure 5.9 shows the flow chart of the function ospf_abr_second_task(). The following 

steps describe how to create Summary-LSAs in terms of the route entries in the routing 

table NRT and RRT. 

Step 1:  The function ospf_abr_second_task starts. 

Step 2: The function ospf_abr_second_task checks whether both the NRT and the 

RRT of the BSP algorithm exist. If one of them does not exist, the process terminates. 

Step 3: The function ospf_abr_unapproved_summaries_second() sets all self-

originated type 12 and type 13 Summary-LSAs to the unapproved state. The goal of 

this function is to determine whether a Summary-LSA should be operated. If a 

Summary-LSA is handled during the course of from Step 6 to Step 8, the Summary-

LSA will be set to the approved state. 

Step 4: The function ospf_abr_prepare_aggregate_second() prepares aggregation for 

the second area ranges if the second area ranges are configured by the function 

ospf_area_second_range_set(). The goal of this step is to make preparation for 

applying the route summarization to the second routing table. 

Step 5:  The function confirms whether this is an ABR router. If the router is not an 

ABR router, the process goes to Step 9. 

 

 

 

 

 



 

Static MCR Implementation Based on Zebra Software 

 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9:  Flow chart of the function ospf_abr_second_task() 

Yes 

No 

4. Prepare aggregate for area ranges 

configured 

ospf_abr_prepare_aggregate_second()  

 

3. Unapprove all LSAs originated by itself 

at the SUMMARY_LSDB and 

ASBR_SUMMARY_LSDB  

ospf_abr_unapprove_summaries_second() 

6. Process NRT in order to create Summary-

LSAs ospf_abr_process_network_rt_second()  

 

11. End 

1.Start 

           5. Is ABR router ? 

 

Yes 

8. Announce aggregated route 

ospf_abr_announce_aggregates_second() 

 

9. Remove unapproved Summary-LSAs 

ospf_abr_remove_unapproved_summaries_second()  

2. BSP Routing table NRT 

and RRT exist? 

 

7. Process RRT in order to create 

Summary_ASBR_LSAs  

ospf_abr_process_router_rt_second() 

 

No 

10. Handle the DISCARD routes 

ospf_abr_manage_discard_routes_second() 

 



 

Static MCR Implementation Based on Zebra Software 

 59 

Step 6:  According to each entry in the NRT, the corresponding type 12 Summary-

LSAs are correctly created and flooded through areas by the function 

ospf_abr_process_network_rt_second(). If the destination in the NRT belongs to one 

of the second area ranges, the route summarization is performed instead of the 

Summary-LSA creation. The function ospf_abr_update_aggregate_second() 

implements the route summarization in our OSPF code. 

Step 7: According to each entry in the RRT, the corresponding type 13 Summary-

LSAs are correctly created and flooded through areas by the function 

ospf_abr_process_router_rt_second(). 

Step 8:  If the aggregated routes related to the second area ranges exist, the related 

type 12 Summary-LSAs are created and flooded through the area by the new function 

ospf_abr_announce_aggregates_second(). 

Step 9: The function ospf_abr_remove_unapproved_summaries() checks the state of 

the self-originated type 12 and type 13 Summary_LSAs. If any Summary-LSA stored 

in the database is in the unapproved state, the Summary-LSA is removed from the 

database and flushed throughout the areas. 

Step 10: The function ospf_abr_manage_discard_routes_second() handles all routes, 

the type of which is the DISCARD. In the routing table, the DISCARD type routes 

are used for the aggregate routes. If the route summarization is performed by the 

router, the corresponding DISCARD routes should be installed into the second 

routing table. 

Step 11: the process ends up. 

 

5.5 MCR-LSA Originator Implementation 
 

The main method to implement the MCR-LSA originator is to modify the original OSPF 

functions that are used to create different types of the LSAs. The new functions about 

creating LSAs of type 12 and type 13 can reuse the functions for type 3 and type 4 

Summary-LSA as long as the LS type field is set to 12 or 13. Those original functions 

only provide one TOS 0 metric. The TOS 72 metric needs to be added into the modified 

functions. Some new members are added into the data structures, which are involved with 

creating LSAs. For example, Figure 5.10 shows the original structure router_lsa and the 

modified structure used for the Router-LSAs. To create any Router-LSA, the function 

link_info_set() must be necessarily used. Figure 5.11 shows the original function 

link_info_set() and the modified function, which is responsible for setting the link 

information into the Router-LSA. The modified function link_info_set() can 

simultaneously set the output cost and bandwidth into the Router-LSA.  



 

Static MCR Implementation Based on Zebra Software 

 60 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10:  The original and the modified structure about Router-LSA 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11:  The original and the modified function link_info_set() 

 

5.6 MCR-LSA Installer Implementation 
 

The modified function ospf_lsa_install() implements the MCR-LSA installer. Compared 

to the original function, this modified function only adds some code used for handling 

type 12 and type 13 Summary-LSAs. The new function ospf_summary_bsp_lsa_install() 

handles the type 12 Summary-LSA installation, whereas the new function 

ospf_summary_asbr_bsp_lsa_install() handles the type 13 Summary-LSA installation. 

Figure 5.12 shows the original function and the modified function ospf_lsa_install().   

 

/* Original structure */ 

/* OSPF Router-LSAs structure. */ 

struct router_lsa 
{ 

  struct lsa_header header; 

  u_char flags; 
  u_char zero; 

  u_int16_t links; 

  struct 

  { 

    struct in_addr link_id; 

    struct in_addr link_data; 

    u_char type; 

    u_char tos;             /* set to 1 */ 

    u_int16_t metric; 
  } link[1]; 

}; 

 

 

/* Modified Structure */ 

/* OSPF Router-LSAs structure. */ 

struct router_lsa 
{ 

  struct lsa_header header; 

  u_char flags; 
  u_char zero; 

  u_int16_t links; 

  struct 

  { 

    struct in_addr link_id; 

    struct in_addr link_data; 

    u_char type; 

    u_char tos;             /* set to 1 */ 

    u_int16_t metric; 
    /* modified by wy -- add the second metric */ 

    u_char tos1;           /* set to 72 */ 
    u_char zero1;          /* set to zero */ 
    u_int16_t tos_metric;  /* the TOS 72 metric */ 
  } link[1]; 

}; 
 

/* Original Function*/ 

/* OSPF Router-LSAs structure. */ 

/* Set a link information. */ 
void 

link_info_set (struct stream *s, struct in_addr id, 

               struct in_addr data, u_char type, u_char tos, 
               u_int16_t cost, u_int16_t cost_tos) 

{ 

/* not support TOS */ 

  stream_put_ipv4 (s, id.s_addr);        /* Link ID. */ 

  stream_put_ipv4 (s, data.s_addr);    /* Link Data. */ 

  stream_putc (s, type);                        /* Link Type. */ 

  stream_putc (s, (u_char) 1);              /* TOS = 0. */ 

  stream_putw (s, cost);                        /* Link Cost. */ 

} 

 

/* Modified Function */ 

/* Set a link information. */ 

void 
link_info_set (struct stream *s, struct in_addr id, 

               struct in_addr data, u_char type, u_char tos, 

               u_int16_t cost, u_int16_t cost_tos) 
{ 

 

  stream_put_ipv4 (s, id.s_addr);         /* Link ID. */ 

  stream_put_ipv4 (s, data.s_addr);     /* Link Data. */ 

  stream_putc (s, type);                        /* Link Type. */ 

  stream_putc (s, (u_char) 1);                /* TOS = 1. */ 

  stream_putw (s, cost);                        /* Link Cost. */ 

  stream_putc (s, (u_char) 72);     /* value of TOS 72 
is bandwidth */ 
  stream_putc (s, (u_char) 0);                 /* zero field */ 
  stream_putw (s, cost_tos);    /* Link TOS  72Cost. */ 
} 

 



 

Static MCR Implementation Based on Zebra Software 

 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 5.12:  The original and the modified function ospf_lsa_install() 

 
In addition, all specific installation functions, such as ospf_router_lsa_insall() and 

ospf_network_lsa_install(), add the new function ospf_precompute_trigger that trigger a 

certain route table calculation based on the value of the parameter rt_recalc. If the 

function ospf_lsa_install() determines that a received LSA is a new one, the rt_recalc is 

directly equal to 1, meaning that the entire routing table calculations need to be performed. 

Otherwise, the rt_recalc is equal to the return value of the function ospf_lsa_different(), 

which is used to determine whether the LSA is different from the database copy.  

 
 
 
 

/* Original Function*/ 

struct ospf_lsa * 

ospf_lsa_install (struct ospf *ospf, struct ospf_interface 

*oi, struct ospf_lsa *lsa) 

{…. 

/* Do comparision and record if recalc needed. */ 

  rt_recalc = 0; 

  if (  old == NULL || ospf_lsa_different(old, lsa)) 

    rt_recalc = 1; 
… 

/* Do LSA specific installation process. */ 

  switch (lsa->data->type) 
    { 

    case OSPF_ROUTER_LSA: 

      new = ospf_router_lsa_install (ospf, lsa, rt_recalc); 
      break; 

    case OSPF_NETWORK_LSA: 

      assert (oi); 

      new = ospf_network_lsa_install (ospf, oi, lsa, 

rt_recalc); 

      break; 

    case OSPF_SUMMARY_LSA: 

      new = ospf_summary_lsa_install (ospf, lsa, 

rt_recalc); 
      break; 

    case OSPF_ASBR_SUMMARY_LSA: 

      new = ospf_summary_asbr_lsa_install (ospf, lsa, 

rt_recalc); 

      break; 
    case OSPF_AS_EXTERNAL_LSA: 

      new = ospf_external_lsa_install (ospf, lsa, rt_recalc); 

      break; 
    default: /* NSSA, or type-6,8,9....nothing special */ 

      break; 

    } 
 

…. 

 

} 

/* Modified Function */ 

struct ospf_lsa * 

ospf_lsa_install (struct ospf *ospf, struct ospf_interface 

*oi, struct ospf_lsa *lsa) 

{…. 

/* Do comparision and record if recalc needed. */ 

  rt_recalc = 0; 

  if (  old == NULL) 
rt_recalc = 1; 

  else 
    rt_recalc = ospf_lsa_different(old, lsa); 
… 
/* Do LSA specific installation process. */ 

  switch (lsa->data->type) 

    { 
    case OSPF_ROUTER_LSA: 

      new = ospf_router_lsa_install (ospf, lsa, rt_recalc); 

      break; 

    case OSPF_NETWORK_LSA: 

      assert (oi); 

      new = ospf_network_lsa_install (ospf, oi, lsa, 

rt_recalc); 

      break; 

    case OSPF_SUMMARY_LSA: 
      new = ospf_summary_lsa_install (ospf, lsa, 

rt_recalc); 

      break; 

    case OSPF_ASBR_SUMMARY_LSA: 

      new = ospf_summary_asbr_lsa_install (ospf, lsa, 
rt_recalc); 

      break; 

    case OSPF_SUMMARY_BSP_LSA: 
      new = ospf_summary_bsp_lsa_install (ospf, lsa, 
rt_recalc); 
      break; 
      /* modified by wy */ 
    case OSPF_ASBR_SUMMARY_BSP_LSA: 
      new = ospf_summary_asbr_bsp_lsa_install (ospf, 
lsa, rt_recalc); 
      break; 
    case OSPF_AS_EXTERNAL_LSA: 

      new = ospf_external_lsa_install (ospf, lsa, rt_recalc); 

      break; 

    default: /* NSSA, or type-6,8,9....nothing special */ 
      break; 

    } 

…. 
} 

 



 

Static MCR Implementation Based on Zebra Software 

 62 

5.7 Pre-computation Trigger Implementation 
 

The new function ospf_precompute_trigger() is used to implement the pre-computation 

trigger module. The function ospf_precompute_trigger() is shown in Figure 5.13. If the 

parameter rt_recalc is equal to 0, any algorithm calculation does not happen. The function 

ospf_bsp_calculate_schedule() is invoked if the parameter rt_recalc is 1 or 3. The 

function ospf_spf_calculate_schedule() is performed if the parameter rt_recalc is 1 or 2., 

The function ospf_ase_incremental_update() is invoked if the parameter rt_recalc is 4 or 

5. If the parameter rt_recalc is 4 or 6, the function ospf_ase_incremetal_update_bsp is 

performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure 5.13:  The new function ospf_precompute_trigger() 

 

/* New Function*/ 

/* Precompute_trigger. */ 

void 

ospf_precompute_trigger (struct ospf *ospf,  

 struct ospf_lsa *new, int rt_recalc) 

{ 

  switch(rt_recalc) 

    { 
    case 0: 

      break; 

    case 1: 
      ospf_spf_calculate_schedule (ospf); 

  ospf_bsp_calculate_schedule (ospf); 
      break; 
    case 2: 

  ospf_spf_calculate_schedule (ospf); 
      break; 

    case 3: 

  ospf_bsp_calculate_schedule (ospf);  
      break; 

    case 4: 

      ospf_ase_incremental_update (ospf, new); 

      ospf_ase_incremental_update_bsp (ospf, new); 
      break; 

    case 5: 

      ospf_ase_incremental_update (ospf,new); 
      break; 

    case 6: 

      ospf_ase_incremental_update_bsp (ospf,new); 
      break; 

    default: 

      break; 

    } 

} 



 

Testing  

 63 

6. Testing  
 

Results of four tests, which are shown through VTY commands, are described in this 

chapter. Based on the results, we discuss the feasibility and issues of our OSPF with MCR 

extensions. 

 

6.1 Basic Function Test 
 

Goals of the basic function test are  

• To succeed in creating two independent routing tables.  

• To correctly produce all types of MCR-LSAs 

• To demonstrate the correctness of the BSP algorithm calculation. 

 

Configuration 

Our test network topology is shown in Figure 6.1. The information about configuration, 

such as output cost and bandwidth, etc, is indicated in the network topology. The 

operating system of each computer is Linux. Computer Debian, which is configured as an 

ASBR, redistributes its default route to the test environment. Computer PC59 is 

configured as a standard ABR. Computer Debian1 is a normal OSPF router.  

 

 

 

 

 

 

 

 

 

 

 

          Figure 6.1:  A basic function testing environment 

 

Results 

1) Routing tables  

• PC59’ routing table: 

PC59_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
N    130.233.154.0/24      [5000] area: 0.0.0.0 

Debian1 

Internet 

    Debian 
  ASBR 
(Redistribute default route) 

 

Area 0 

Area 1 

eth0: 130.233.154.59/24 

[cost] 5000 

[bandwidth] 1000kbps (7) 
eth1: 192.168.0.1/24 

[cost] 2000 

[bandwidth] 800kbps (5)  

eth0: 192.168.0.2/24 

[cost] 400 

[bandwidth] 5000kbps (33) 

eth1: 192.168.20.1/24 

[cost] 800 

[bandwidth] 3000kbps (20)  

eth0: 130.233.154.36/24 

[cost] 300 

[bandwidth] 2000kbps (13) 

eth1: 192.168.1.1/24 

[cost] 600 

[bandwidth] 5000kbps (33)  

PC59 
ABR 

 

Default gateway 
130.233.154.254 

 

SP routing 

table 



 

Testing  

 64 

                           directly attached to eth0 
N    192.168.0.0/24        [2000] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [5600] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
N    192.168.20.0/24       [2800] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF router routing table ============= 
R    192.168.1.1           [5000] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF external routing table =========== 
N E2 0.0.0.0/0             [5000/300] tag: 0 
                           via 130.233.154.254, eth0 
  
============ OSPF BSP network routing table ============ 
N    130.233.154.0/24      [9362] area: 0.0.0.0 
                           directly attached to eth0 
N    192.168.0.0/24        [13107] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [11348] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
N    192.168.20.0/24       [16384] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF BSP router routing table ============= 
R    192.168.1.1           [9362] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF BSP external routing table =========== 
N E2 0.0.0.0/0             [9362/168] tag: 0 
                           via 130.233.154.254, eth0 

 

Inter-area routes do not exist in the PC59’s SP routing table and BSP routing table 

because the PC59 is a unique ABR in the test environment. 

 

• Debian’s routing table 
debian_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
N    130.233.154.0/24      [300] area: 0.0.0.0 
                           directly attached to eth0 
N IA 192.168.0.0/24        [2300] area: 0.0.0.0 
                           via 130.233.154.59, eth0 
N    192.168.1.0/24        [600] area: 0.0.0.0 
                           directly attached to eth1 
N IA 192.168.20.0/24       [3100] area: 0.0.0.0 
                           via 130.233.154.59, eth0 
  
============ OSPF router routing table ============= 
R    192.168.0.1           [300] area: 0.0.0.0, ABR 
                           via 130.233.154.59, eth0 
  
============ OSPF external routing table =========== 
  
============ OSPF BSP network routing table ============ 
N    130.233.154.0/24      [5041] area: 0.0.0.0 
                           directly attached to eth0 
N IA 192.168.0.0/24        [18148] area: 0.0.0.0 
                           via 130.233.154.59, eth0 
N    192.168.1.0/24        [1986] area: 0.0.0.0 
                           directly attached to eth1 
N IA 192.168.20.0/24       [21425] area: 0.0.0.0 
                           via 130.233.154.59, eth0 
  
============ OSPF BSP router routing table ============= 
R    192.168.0.1           [5041] area: 0.0.0.0, ABR 
                           via 130.233.154.59, eth0 
  
============ OSPF BSP external routing table ===========  
debian_ospfd# 

SP routing 

table 

BSP routing 

table 

BSP routing 

table 



 

Testing  

 65 

In the Debian’s BSP routing table and SP routing table, there are no external routes 

because the external routing information is redistributed by the Debian itself. 

• Debian1’s routing table 
debian1_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
N IA 130.233.154.0/24      [5400] area: 0.0.0.1 
                           via 192.168.0.1, eth0 
N    192.168.0.0/24        [400] area: 0.0.0.1 
                           directly attached to eth0 
N IA 192.168.1.0/24        [6000] area: 0.0.0.1 
                           via 192.168.0.1, eth0 
N    192.168.20.0/24       [800] area: 0.0.0.1 
                           directly attached to eth1 
  
============ OSPF router routing table ============= 
R    192.168.0.1           [400] area: 0.0.0.1, ABR 
                           via 192.168.0.1, eth0 
R    192.168.1.1        IA [5400] area: 0.0.0.1, ASBR 
                           via 192.168.0.1, eth0 
  
============ OSPF external routing table =========== 
N E2 0.0.0.0/0             [5400/300] tag: 0 
                           via 192.168.0.1, eth0 
  
============ OSPF BSP network routing table ============ 
N IA 130.233.154.0/24      [11348] area: 0.0.0.1 
                           via 192.168.0.1, eth0 
N    192.168.0.0/24        [1986] area: 0.0.0.1 
                           directly attached to eth0 
N IA 192.168.1.0/24        [13334] area: 0.0.0.1 
                           via 192.168.0.1, eth0 
N    192.168.20.0/24       [3277] area: 0.0.0.1 
                           directly attached to eth1 
  
============ OSPF BSP router routing table ============= 
R    192.168.0.1           [1986] area: 0.0.0.1, ABR 
                           via 192.168.0.1, eth0 
R    192.168.1.1        IA [11348] area: 0.0.0.1, ASBR 
                           via 192.168.0.1, eth0 
  
============ OSPF BSP external routing table =========== 
N E2 0.0.0.0/0             [11348/168] tag: 0 
                           via 192.168.0.1, eth0 

 

2) PC59’s general OSPF information  

PC59_ospfd# show ip ospf 
 OSPF Routing Process, Router ID: 192.168.0.1 
 Supports only TOS 0 and TOS 72 routes 
 This implementation conforms to RFC2328 
 RFC1583Compatibility flag is disabled 
 SPF schedule delay 5 secs, Hold time between two SPFs 10 secs 
 BSP schedule delay 5 secs, Hold time between two BSPs 10 secs 

 Refresh timer 10 secs 
 This router is an ABR, ABR type is: Standard (RFC2328) 
 Number of external LSA 1 
 Number of areas attached to this router: 2 
  
 Area ID: 0.0.0.0 (Backbone) 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 
   SPF algorithm executed 7 times 
   BSP algorithm executed 7 times 
   Number of LSA 7 
  
 Area ID: 0.0.0.1 
   Shortcutting mode: Default, S-bit consensus: no 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 
   Number of full virtual adjacencies going through this area: 0 
   SPF algorithm executed 7 times 

BSP routing 

table 

SP routing 

table 



 

Testing  

 66 

   BSP algorithm executed 7 times 
   Number of LSA 9 

The PC59 whose router ID is 192.168.0.1 is configured as the standard ABR. It 

attaches the area 0 and area 1. The area 0, which is the backbone area, has 7 LSAs, 

whereas the area 1 has 9 LSAs. The PC59 stores one AS-external-LSA. The SP 

algorithm and the BSP algorithm have independent parameters of their calculation 

timers. In this test, both the SP algorithm and BSP algorithm are executed 7 times. 

 

3) PC59’s Link-state database  

PC59_ospfd# show ip ospf database 
  
       OSPF Router with ID (192.168.0.1) 
  
                Router Link States (Area 0.0.0.0) 
  
Link ID         ADV Router      Age  Seq#       CkSum  Link count 
192.168.0.1     192.168.0.1     1109 0x80000003 0x9de9 1 
192.168.1.1     192.168.1.1      997 0x80000004 0xc4fa 2 
  
                Net Link States (Area 0.0.0.0) 
  
Link ID         ADV Router      Age  Seq#       CkSum 
130.233.154.59  192.168.0.1     1109 0x80000001 0x3720 
  
                Summary Link States (TYPE 3) (Area 0.0.0.0) 
  
Link ID         ADV Router      Age  Seq#       CkSum  Route 
192.168.0.0     192.168.0.1      980 0x80000002 0x85aa 192.168.0.0/24 
192.168.20.0    192.168.0.1     1451 0x80000002 0x05f3 192.168.20.0/24 
  
                Second Summary Link States (TYPE 12) (Area 0.0.0.0) 
  
Link ID         ADV Router      Age  Seq#       CkSum  Route 
192.168.0.0     192.168.0.1      780 0x80000002 0x6c2c 192.168.0.0/24 
192.168.20.0    192.168.0.1     1551 0x80000002 0x05a5 192.168.20.0/24 
  
                Router Link States (Area 0.0.0.1) 
  
Link ID         ADV Router      Age  Seq#       CkSum  Link count 
192.168.0.1     192.168.0.1      784 0x80000007 0x3abe 1 
192.168.20.1    192.168.20.1     751 0x80000006 0x9c4d 2 
  
                Net Link States (Area 0.0.0.1) 
  
Link ID         ADV Router      Age  Seq#       CkSum 
192.168.0.1     192.168.0.1      788 0x80000002 0x0219 
  
                Summary Link States (TYPE 3) (Area 0.0.0.1) 
  
Link ID         ADV Router      Age  Seq#       CkSum  Route 
130.233.154.0   192.168.0.1     1160 0x80000002 0x943a 130.233.154.0/24 
192.168.1.0     192.168.0.1     1031 0x80000001 0x9b76 192.168.1.0/24 
  
                ASBR-Summary Link States (TYPE 4) (Area 0.0.0.1) 
  
Link ID         ADV Router      Age  Seq#       CkSum 
192.168.1.1     192.168.0.1     1104 0x80000001 0xfd6c 
  
                Second Summary Link States (TYPE 12) (Area 0.0.0.1) 
  
Link ID         ADV Router      Age  Seq#       CkSum  Route 
130.233.154.0   192.168.0.1      790 0x80000002 0x1496 130.233.154.0/24 
192.168.1.0     192.168.0.1     1031 0x80000001 0x6f0f 192.168.1.0/24 
  
                Second ASBR-Summary Link States (TYPE 13) (Area 0.0.0.1) 
  
Link ID         ADV Router      Age  Seq#       CkSum 
192.168.1.1     192.168.0.1     1104 0x80000001 0x7dc8 



 

Testing  

 67 

  
                AS External Link States (Global database) 

  
Link ID         ADV Router      Age  Seq#       CkSum  Route 
0.0.0.0         192.168.1.1     1111 0x80000001 0xf3bc E2 0.0.0.0/0 [0x0] 
  

  

In the PC59, the link-state database can be divided into 3 parts: area 0 database, 

area 1 database and global database. The area 0 database stores 7 LSAs, and the 

area 1 database stores 9 LSAs. Only one AS-external-LSA is inserted into the 

global database. Based on its SP routing table and BSP routing table, we can 

obviously note that the PC59 correctly creates different types of Summary-LSAs.  

 

4) Detailed link state advertisements 

• Router LSA 

  LS age: 1016 
  Options: 130 
  Flags: 0x2 : ASBR 
  LS Type: router-LSA 
  Link State ID: 192.168.1.1 
  Advertising Router: 192.168.1.1 
  LS Seq Number: 80000004 
  Checksum: 0xc4fa 
  Length: 56 
   Number of Links: 2 
  
    Link connected to: a Transit Network 
     (Link ID) Designated Router address: 130.233.154.59 

     (Link Data) Router Interface address: 130.233.154.36 
      Number of TOS metrics: 1 
       TOS 0 Metric: 300 
       TOS [72] Metric: 13 

  
    Link connected to: Stub Network 

     (Link ID) Net: 192.168.1.0 
     (Link Data) Network Mask: 255.255.255.0 
      Number of TOS metrics: 1 
       TOS 0 Metric: 600 
       TOS [72] Metric: 33 

This Router-LSA is originated by the Debian, which is the ASBR. The Debian 

possesses two links in the area 0. One link is connected to a transit network 

130.233.154.0/24 whose DR IP address is 130.233.154.59. Another is directly 

attached to the stub network 192.168.1.0/24. Each link carries one TOS 0 metric 

and one TOS 72 metric. 

 

• Type 12 Summary-LSA 

 LS age: 888 
  Options: 130 
  LS Type: summary-BSP-LSA 
  Link State ID: 192.168.0.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000002 
  Checksum: 0x6c2c 
  Length: 28 
  Network Mask: /24 
        TOS: 0  Metric: 13107 



 

Testing  

 68 

The above type 12 Summary-LSA originated by the PC59 only carries one metric 

because the BSP algorithm computes one cost for each route. 

 

• Type 13 Summary-LSA 

  LS age: 670 
  Options: 130 
  LS Type: summary-ASBR-BSP-LSA 
  Link State ID: 192.168.1.1 (AS Boundary Router address) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000002 
  Checksum: 0x7bc9 
  Length: 28 
  Network Mask: /32 
        TOS: 0  Metric: 9362 
 

The above type 13 Summary-LSA originated by the PC59 only carries one metric 

for the ASBR. The ASBR’s IP address is 192.168.1.1 that is the router ID of the 

Debian. 

 

• AS-external-LSA 

   LS age: 1299 
  Options: 130 
  LS Type: AS-external-LSA 
  Link State ID: 0.0.0.0 (External Network Number) 
  Advertising Router: 192.168.1.1 
  LS Seq Number: 80000001 
  Checksum: 0xf3bc 
  Length: 48 
  Network Mask: /0 
        Metric Type: 2 (Larger than any link state path) 
        TOS: 1 
        Metric 0 : 300 
        Metric [72] : 100000 
        Forward Address: 130.233.154.254 
        External Route Tag: 0 

The AS-external-LSA originated by the Debian describes the information about a 

default route 0.0.0.0/0. This LSA provides the PC59 and the Debian1 with a default 

gateway, the IP address of which is 130.233.154.254. Both the metric and the TOS 

72 metric are present in this AS-external-LSA.   

 

5) Information of the PC59’s neighboring routers   

 PC59_ospfd# show ip ospf neighbor detail 
 Neighbor 192.168.1.1, interface address 130.233.154.36 
    In the area 0.0.0.0 via interface eth0 
    Neighbor priority is 1, State is Full, 5 state changes 
    DR is 130.233.154.59, BDR is 130.233.154.36 
    Options 130 |M|-|-|-|-|-|E|*| 
    Dead timer due in 00:00:38 
    Database Summary List 0 
    Link State Request List 0 
    Link State Retransmission List 0 
    Thread Inactivity Timer on 
    Thread Database Description Retransmision off 
    Thread Link State Request Retransmission on 
    Thread Link State Update Retransmission on 
  
 Neighbor 192.168.20.1, interface address 192.168.0.2 
    In the area 0.0.0.1 via interface eth1 
    Neighbor priority is 1, State is Full, 10 state changes 
    DR is 192.168.0.1, BDR is 192.168.0.2 



 

Testing  

 69 

    Options 130 |M|-|-|-|-|-|E|*| 
    Dead timer due in 00:00:30 
    Database Summary List 0 
    Link State Request List 0 
    Link State Retransmission List 0 
    Thread Inactivity Timer on 
    Thread Database Description Retransmision off 
    Thread Link State Request Retransmission off 
    Thread Link State Update Retransmission on 
  
PC59_ospfd# 

From the above information, the PC59 establishes two adjacencies with two 

neighboring routers. The neighboring routers are the same as the PC59 that supports 

the MCR capability because their Options field is 130.  

 

Conclusions 

Our ospfd daemon, which supports the MCR capability, can work normally. It can use the 

BSP algorithm to successfully create the second routing table. All types of LSAs, 

including Summary-LSAs and AS-external-LSAs, can be correctly created by the ospfd 

daemon. The BSP algorithm can rightly compute routes on the basis of LSAs stored in the 

link-state database. All information can be checked by means of the corresponding VTY 

commands. 

 

6.2 Pre-computation Trigger Test 
 

Our aims of the pre-computation trigger test are: 

• To demonstrate that each routing algorithm can be independently executed. 

• To correctly trigger either the entire routing table calculation or the incremental 

update calculation. 

 

Configuration 

The pre-computation trigger test still adopts the above network topology, which is shown 

in Figure 6.1.  Configuration files are not changed at all. 

 

Test Steps 

1) Each router starts to run the ospfd daemon. Routing tables are completely created on 

each router. 

2) The PC59’s general OSPF information and routing tables are recorded into a log file. 

3) The Debian changes the value of its eth1’ output cost though the following VTY 

commands.  

debian_ospfd(config)# interface eth1 
debian_ospfd(config-if)# ospf cost 100 
debian_ospfd(config-if)# exit 
debian_ospfd(config)# exit 



 

Testing  

 70 

4) On the PC59, the general OSPF information and routing table are checked again and 

recorded into the log file. 

5) The Debian sets a changed value of the metric-bandwidth. VTY commands are 

shown as follows: 

debian_ospfd(config)# router ospf 
debian_ospfd(config-router)# default-information originate metric 300 metric-
bandwidth 10000 metric-type 2 
debian_ospfd(config-router)# exit 
debian_ospfd(config)# exit 

6) On the PC59, the related information is recorded into the log file.  

 

Results 

1) Step 2’s OSPF Information  

PC59_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
N    130.233.154.0/24      [5000] area: 0.0.0.0 
                           directly attached to eth0 
N    192.168.0.0/24        [2000] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [5600] area: 0.0.0.0 
                           via 130.233.154.36, eth0 

N    192.168.20.0/24       [2800] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF router routing table ============= 
R    192.168.1.1           [5000] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF external routing table =========== 
N E2 0.0.0.0/0             [5000/300] tag: 0 
                           via 130.233.154.254, eth0 
  
============ OSPF BSP network routing table ============ 
N    130.233.154.0/24      [9362] area: 0.0.0.0 
                           directly attached to eth0 
N    192.168.0.0/24        [13107] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [11348] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
N    192.168.20.0/24       [16384] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF BSP router routing table ============= 
R    192.168.1.1           [9362] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF BSP external routing table =========== 
N E2 0.0.0.0/0             [9362/168] tag: 0 
                           via 130.233.154.254, eth0 

 
  
PC59_ospfd# 
PC59_ospfd# show ip ospf 
 …… 
  Area ID: 0.0.0.0 (Backbone) 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 
   SPF algorithm executed 4 times 
   BSP algorithm executed 4 times 

   Number of LSA 7 
  
 Area ID: 0.0.0.1 
   Shortcutting mode: Default, S-bit consensus: no 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 



 

Testing  

 71 

   Number of full virtual adjacencies going through this area: 0 
   SPF algorithm executed 4 times 
   BSP algorithm executed 4 times 

   Number of LSA 9 

 

2) Step 4’s OSPF Information 

PC59_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
N    130.233.154.0/24      [5000] area: 0.0.0.0 
                           directly attached to eth0 
N    192.168.0.0/24        [2000] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [5100] area: 0.0.0.0 
                           via 130.233.154.36, eth0 

N    192.168.20.0/24       [2800] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF router routing table ============= 
R    192.168.1.1           [5000] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF external routing table =========== 
N E2 0.0.0.0/0             [5000/300] tag: 0 
                           via 130.233.154.254, eth0 
  
============ OSPF BSP network routing table ============ 
N    130.233.154.0/24      [9362] area: 0.0.0.0 
                           directly attached to eth0 
N    192.168.0.0/24        [13107] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [11348] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
N    192.168.20.0/24       [16384] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF BSP router routing table ============= 
R    192.168.1.1           [9362] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF BSP external routing table =========== 
N E2 0.0.0.0/0             [9362/168] tag: 0 
                           via 130.233.154.254, eth0 
  
PC59_ospfd# show ip ospf 
 …… 
 Area ID: 0.0.0.0 (Backbone) 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 
   SPF algorithm executed 5 times 
   BSP algorithm executed 4 times 

   Number of LSA 7 
  
 Area ID: 0.0.0.1 
   Shortcutting mode: Default, S-bit consensus: no 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 
   Number of full virtual adjacencies going through this area: 0 
   SPF algorithm executed 5 times 
   BSP algorithm executed 4 times 

   Number of LSA 9 
 

Compared to the Step 2’s general OSPF information, only the SP algorithm is executed 

one time after the PC59 receives the Debian’s Router-LSA with the changed TOS 0 

metric. In the SP routing table, the cost of the route to the destination 192.168.1.0/24 is 

altered after the PC59’s ospfd daemon recalculates the SP algorithm.  

 

This is the number of 
executing the whole 
routing table calculation 
based on a certain 
routing algorithm  

The SP algorithm 

is executed one 
time, but the BSP 

is not performed.  



 

Testing  

 72 

3) Step 6’s OSPF Information 

PC59_ospfd# show ip ospf 
 ……  
 Area ID: 0.0.0.0 (Backbone) 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 
   SPF algorithm executed 5 times 
   BSP algorithm executed 4 times 

   Number of LSA 7 
  
 Area ID: 0.0.0.1 
   Shortcutting mode: Default, S-bit consensus: no 
   Number of interfaces in this area: Total: 1, Active: 2 
   Number of fully adjacent neighbors in this area: 1 
   Area has no authentication 
   Number of full virtual adjacencies going through this area: 0 
   SPF algorithm executed 5 times 
   BSP algorithm executed 4 times 

   Number of LSA 9 
 
PC59_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
N    130.233.154.0/24      [5000] area: 0.0.0.0 
                           directly attached to eth0 
N    192.168.0.0/24        [2000] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [5100] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
N    192.168.20.0/24       [2800] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF router routing table ============= 
R    192.168.1.1           [5000] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF external routing table =========== 
N E2 0.0.0.0/0             [5000/300] tag: 0 
                           via 130.233.154.254, eth0 
  
============ OSPF BSP network routing table ============ 
N    130.233.154.0/24      [9362] area: 0.0.0.0 
                           directly attached to eth0 
N    192.168.0.0/24        [13107] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.1.0/24        [11348] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
N    192.168.20.0/24       [16384] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF BSP router routing table ============= 
R    192.168.1.1           [9362] area: 0.0.0.0, ASBR 
                           via 130.233.154.36, eth0 
  
============ OSPF BSP external routing table =========== 
N E2 0.0.0.0/0             [9362/1678] tag: 0 
                           via 130.233.154.254, eth0 

  

No entire routing table calculation takes place in terms of the general OSPF information. 

Only incremental update calculation for the BSP routing table is executed. The cost of the 

default route is correspondingly changed in the BSP routing table. 

 

Conclusions 

In our ospfd daemon, the SP algorithm calculation is independent of the BSP algorithm 

calculation. The pre-computation trigger module can correctly work. It effectively avoids 

any unnecessary routing calculation. It facilitates to speed up the convergence of OSPF. 

Both the SP 

algorithm and the 

BSP algorithm 

are not executed. 



 

Testing  

 73 

6.3 Route Summarization Test 
 

The Goal of the route summarization test is to demonstrate the correctness of creating the 

Summary-LSAs related to the aggregated IP addresses. 

 

Configuration 

The route summarization test is shown in Figure 6.2. The configuration information is 

indicated in the Figure. On PC59, 130.233.0.0/16 used as a range of aggregated IP 

addresses is configured for area 0, and it is used for the SP routing table. The range 

192.168.0.0/16 is set for area 1, and it is used for the BSP routing table. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2:  A route summarization test environment 

 

Results 

1) The PC59’s routing tables 

PC59_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
D IA 130.233.0.0/16        Discard entry 

N    130.233.154.0/24      [5000] area: 0.0.0.0 
                           directly attached to eth0 
N    172.16.0.0/16         [5600] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
N    192.168.0.0/24        [2000] area: 0.0.0.1 
                           directly attached to eth1 
N    192.168.20.0/24       [2800] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF router routing table ============= 
  
============ OSPF external routing table =========== 
  
============ OSPF BSP network routing table ============ 
N    130.233.154.0/24      [9362] area: 0.0.0.0 
                           directly attached to eth0 
N    172.16.0.0/16         [11348] area: 0.0.0.0 
                           via 130.233.154.36, eth0 
D IA 192.168.0.0/16        Discard entry 

N    192.168.0.0/24        [13107] area: 0.0.0.1 

   Debian 
 

 

Area 0 Area 1 

eth0: 130.233.154.59/24 
[cost] 5000 

[bandwidth] 1000kbps (7) 

Debian1 

eth1: 192.168.0.1/24 
[cost] 2000 

[bandwidth] 800kbps (5)  

eth0: 192.168.0.224 
[cost] 400 

[bandwidth] 5000kbps (33) 

eth1: 192.168.20.1/24 
[cost] 800 

[bandwidth] 3000kbps (20)  

eth0: 130.233.154.36/24 
[cost] 300 

[bandwidth] 2000kbps (13) 

eth1: 172.16.1.1/16 
[cost] 600 

[bandwidth] 5000kbps (33)  

PC59 
ABR 

 

Configuration file:  

area 0 range 130.233.0.0/16 cost 150 
area 1 second-arange 192.168.0.0/16 cost 1234 



 

Testing  

 74 

                           directly attached to eth1 
N    192.168.20.0/24       [16384] area: 0.0.0.1 
                           via 192.168.0.2, eth1 
  
============ OSPF BSP router routing table ============= 
  
============ OSPF BSP external routing table =========== 
  
PC59_ospfd# 

A label ‘D IA’ represents a route related to a range of aggregated IP addresses. Any route 

with the label ‘D IA’ is not used for the route selection. 

 

2) Type 3 Summary-LSAs originated by the PC59 

PC59_ospfd# show ip ospf database summary 
  
       OSPF Router with ID (192.168.0.1) 
  
  
                Summary Link States (TYPE 3) (Area 0.0.0.0) 
  
  LS age: 620 
  Options: 130 
  LS Type: summary-LSA 
  Link State ID: 192.168.0.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000001 
  Checksum: 0x87a9 
  Length: 28 
  Network Mask: /24 
        TOS: 0  Metric: 2000 
  LS age: 620 
  Options: 130 
  LS Type: summary-LSA 
  Link State ID: 192.168.20.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000001 
  Checksum: 0x07f2 
  Length: 28 
  Network Mask: /24 
        TOS: 0  Metric: 2800 
  
                Summary Link States (TYPE 3) (Area 0.0.0.1) 
  
  LS age: 1056 
  Options: 130 
  LS Type: summary-LSA 
  Link State ID: 130.233.0.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000001 

  Checksum: 0x1c53 
  Length: 28 

  Network Mask: /16 
        TOS: 0  Metric: 150 

  LS age: 565 
  Options: 130 
  LS Type: summary-LSA 
  Link State ID: 172.16.0.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000001 
  Checksum: 0xd2ec 
  Length: 28 
  Network Mask: /16 
        TOS: 0  Metric: 5600 
PC59_ospfd# 
 

The PC59 creates a type 3 Summary-LSA containing the range 130.233.0.0/16 instead of 

the normal one with 130.233.154.0/24. It advertises this Summary-LSA into the area 1.  

 



 

Testing  

 75 

3) Type 12 Summary-LSAs originated by the PC59 

PC59_ospfd# show ip ospf database bsummary 
  
       OSPF Router with ID (192.168.0.1) 
  
  
                Second Summary Link States (TYPE 12) (Area 0.0.0.0) 
  
  LS age: 635 
  Options: 130 

  LS Type: summary-BSP-LSA 
  Link State ID: 192.168.0.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000001 
  Checksum: 0x0227 
  Length: 28 
  Network Mask: /16 
        TOS: 0  Metric: 1234 

  
                Second Summary Link States (TYPE 12) (Area 0.0.0.1) 
  
  LS age: 1070 
  Options: 130 
  LS Type: summary-BSP-LSA 
  Link State ID: 130.233.154.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000001 
  Checksum: 0x1695 
  Length: 28 
  Network Mask: /24 
        TOS: 0  Metric: 9362 
  LS age: 580 
  Options: 130 
  LS Type: summary-BSP-LSA 
  Link State ID: 172.16.0.0 (summary Network Number) 
  Advertising Router: 192.168.0.1 
  LS Seq Number: 80000001 
  Checksum: 0xa685 
  Length: 28 
  Network Mask: /16 
        TOS: 0  Metric: 11348 
PC59_ospfd# 
 

The PC59 aggregates two intra-area routes, which belong to area 1, into a single type 12 

Summary-LSA, and it advertises this Summary-LSA into the area 0. 

  

Conclusions 

Our ospfd daemon can successfully create type 3 and type 12 Summary-LSAs about 

aggregated IP addresses. The route summarization for different routing tables is 

separately executed. Based on the correct configuration about the route summarization, 

the ospfd daemon can decrease the number of the Summary-LSAs.  

 

6.4 Multi-path Test 
 

The Goal of the multi-path test is to demonstrate that the ospfd daemon supporting the 

MCR capability can provide multiple paths to the same destination.   

 

 

 



 

Testing  

 76 

Configuration 

The multi-path test is shown in Figure 6.3.  The configuration information is indicated in 

the Figure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3:  A multi-path test environment 

 

Results 

debian1_ospfd# show ip ospf route 
============ OSPF network routing table ============ 
N    130.233.154.0/24      [1100] area: 0.0.0.0 
                           via 192.168.1.1, eth1 
N    192.168.0.0/24        [400] area: 0.0.0.0 

                           directly attached to eth0 

N    192.168.1.0/24        [800] area: 0.0.0.0 
                           directly attached to eth1 
  
============ OSPF router routing table ============= 
  
============ OSPF external routing table =========== 
  
============ OSPF BSP network routing table ============ 
N    130.233.154.0/24      [8318] area: 0.0.0.0 
                           via 192.168.1.1, eth1 
N    192.168.0.0/24        [9578] area: 0.0.0.0 
                           via 192.168.1.1, eth1 

N    192.168.1.0/24        [3277] area: 0.0.0.0 
                           directly attached to eth1 
  
============ OSPF BSP router routing table ============= 
  
============ OSPF BSP external routing table =========== 
  

The above routing tables belong to the Debian1. In the SP routing table, the egress of the 

route to 192.168.0.0/24 is eth0. The egress of the route to 192.168.0.0/24 is eth1 in the 

BSP routing table. Thus, the traffic to the same destination 192.168.0.0./24 traverses 

through different paths in the two routing tables. 

 

Conclusions 

On some network topologies, different routing algorithms can create diverse routes to the 

same destination. 

   
Debian1 

 

Area 0 

eth0: 192.168.1.1/24 
[cost] 600 

[bandwidth] 5000kbps (33) 

PC59 

eth1: 130.233.154.36/24 
[cost]300 

[bandwidth] 2000kbps (13)  
eth0: 130.233.154.59/24 
[cost] 5000 

[bandwidth] 1000kbps (7) 

eth1: 192.168.0.1/24 
[cost] 2000 
[bandwidth] 8000kbps (52)  

eth0: 192.168.1.2/24 
[cost] 800 
[bandwidth] 3000kbps (20) 

eth1: 192.168.0.2/16 
[cost] 400 

[bandwidth] 800kbps (5)  

Debian 
 

Debian1’s 

SP routing 

table 

Debian1’s 

BSP routing 

table 



 

Testing  

 77 

6.5 Discussion 
 

Our OSPF with MCR extensions is localized to some new modules and some modified 

modules, which reuse the existing OSPF modules with only necessary changes. It 

influences on the OSPF convergence because of the introduction of new elements, such as 

the second routing table, a new routing algorithm and new LSAs, etc.  

 

The time of computing the routing tables definitely increases in the OSPF with MCR 

extensions because two routing tables need to be considered. An OSPF router, which is 

running our ospfd daemon, simultaneously creates two routing tables. The computing 

time becomes approximately double if the ospfd daemon always recalculates two routing 

tables after receiving a changed LSA. Fortunately, our OSPF code uses the pre-

computation trigger to avoid any unnecessary routing calculation, and it adopts the 

incremental update calculations to prevent any unnecessary whole routing table 

calculation.  

 

The number of Summary-LSAs could double. Some new types of Summary-LSAs are 

introduced into the OSPF protocol because more than one routing table exists. However, 

the route summarization mechanism can efficiently aggregate several Summary-LSAs 

into a single Summary-LSA. Our ospfd daemon separately executes the route 

summarization for each routing table. Thus, the route summarization mechanism can 

decrease the number of Summary-LSAs.  

 

In our OSPF code, the output cost and bandwidth of each interface of a router are 

configured by VTY commands. The costs that are inserted into the router’ Router-LSA 

can not be changed automatically. Similarly, the external routing information, which is 

related to AS-external-LSAs, is configured manually. This does not frequently produce 

the procedure of the OSPF convergence.  

 

In brief, our OSPF with MCR extensions is basically feasible because several methods are 

used to minimize the impact on the OSPF convergence. However, as a matter of fact, the 

bandwidth of a router’s interface dynamically changes with the usage of the interface. 

When the BSP algorithm uses the available bandwidth of each link to compute the second 

routing table, the second routing table can offer more up-to-date routes for the traffic. But, 

using the available bandwidth could result in frequently updating the Router-LSAs. That 

means that frequent OSPF convergence would occur.  

 



 

Conclusions and Future work  

 78 

7. Conclusions and Future work 
 

7.1 Conclusions 
 

In this thesis, we introduced the MCR scheme into the DiffServ architecture. In our work, 

the MCR DiffServ architecture focused on the intra-DS domain. We discussed different 

MCR approaches that include a static MCR approach and dynamic MCR approaches. We 

discussed how to communicate between an MCR area and a non-MCR area. The design 

of the MCR DiffServ system was provided in the thesis. The MCR approaches can be 

used for the MCR DiffServ system. We designed the OSPF with MCR extensions, and 

implemented the static MCR based on the Zebra OSPF software.  

 

Our OSPF with MCR extensions can achieve the functions of the MCR manager for the 

MCR DiffServ system. It can provide more than one routing table. Those routing tables 

are independent. Distinct routing algorithms can be used to compute the different routing 

tables. The routes to the same destination could be different in the diverse routing tables.  

 

The static MCR approach was implemented for the MCR DiffServ system. When a 

router’s link weights, for instance, bandwidth, are changed by the administrator, the 

router will create its updated LSAs and flood them throughout an area or a whole routing 

domain. 

 

The second routing table was added into our OSPF with MCR extensions. The 

corresponding new types of Summary-LSAs for the new routing table must be introduced. 

Several modules, which are related to different types of LSAs, must be modified on the 

basis of the legacy OSPF code.  

 

Some useful mechanisms were adopted in our OSPF with MCR extensions in order to 

minimize the impact on the OSPF convergence. To decrease the number of Summary-

LSAs, the route summarization mechanism should be implemented for each routing table. 

To prevent any unnecessary whole routing table calculation, the incremental update 

calculation is needed for each routing algorithm. To avoid any unnecessary routing 

calculation, the pre-computation trigger should correctly determine which routing 

algorithm is executed. 

 

7.2 Future work 
 

For the MCR DiffServ system, the class-based route selection block should be reasonably 

designed and implemented in the computer operating systems, for example, FreeBSD. 



 

Conclusions and Future work  

 79 

Furthermore, the zebra daemon of the Zebra software should provide the management 

functions for multiple routing tables in the kernel. 

 

For our OSPF with MCR extensions, different dynamic MCR approaches need to be 

further discussed and designed. New methods to encode bandwidth are needed because 

our encoding method is not suitable for the dynamic MCR approaches. In the software 

architecture of the OSPF with MCR extensions, the local interface status manager module 

needs to be implemented for the dynamic MCR approaches, for example, dynamic 

distributed MCR with significant event triggering. The measurement of link weights is 

absolutely important for any dynamic MCR approach since the measurement of link 

weights could have an impact on convergence. For this reason, methods to measure link 

weights, such as delay and residual bandwidth, need to be determined reasonably.  

 

The performance and scalability of the different MCR approaches, especially dynamic 

approaches, need to be tested in different network environments. The impact of MCR on 

convergence and packet loss is one of the most important criteria in establishing whether 

the idea of MCR is beneficial to the users and network operators.  

 

Based on our static MCR implementation, new QoS routing algorithms, for example, 

WSP algorithm, can be implemented in our OSPF code. New routing tables can be 

introduced into the software architecture of the OSPF with MCR extensions. Each routing 

table in the software architecture deploys different routing algorithms to compute route 

entries. 

 

We need to carry out some further research work for the MCR DiffServ architecture. The 

research work should include the inter-DS domain since this thesis only discusses the 

intra-DS domain.  

 

Within a DS domain, the communication between MCR areas and non-MCR areas needs 

to be further discussed in detail. Our OSPF with MCR extensions needs to be further 

extended to support new functions and mechanisms of the MCR gateway. 

 



 

Reference 

 80 

Reference 

[1] S. Blake, et al. An Architecture for Differentiated Services. RFC2475. December 1998. 

[2] J. Wang, Y. Wang and K. Nahrstedt. Quantitative Study of Differentiated Service 

Model Using UltraSAN. Tech. Report UIUCDCS-R-2001-2237, Department of Computer 

Science, University of Illinois at Urbana-Champaign, July 2001. 

[3] P. Zhang, Xiaole Bai and Raimo Kantola. A Routing Scheme for Optimizing Multiple 

Classes in a DiffServ Network. IEEE, 2004. 

[4] Zheng. Wang. Internet QoS : Architectures and Mechanisms for Quality of Service. 

[5] J. Moy. OSPF Version 2. RFC2328. April 1998.  

[6] J. Moy. OSPF Version 2 . RFC1583. March 1994. 

[7] A. Zinin, A. Lindem and D. Yueng. Alternative Implementations of OSPF Area 

Border Routers. RFC3509. April 2003. 

[8] Christian Huitema. Routing in the Internet. Second edition. Prentice-hall, Inc. 2000. 

[9] R. Coltun. The OSPF Opaque LSA Option.RFC2370 . July 1998. 

[10] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda and T. Przyqienda. 

QoS Routing Mechanisms and OSPF Extensions. RFC2676. August 1999. 

[11] Qingming Ma and Peter Steenkiste. On Path Selection for Traffic with Bandwidth 

Guarantees. IEEE. 1997. 

[12] J. Wang, and K. Nahrstedt. Hop-by-Hop Routing Algorithms for Premium-class 

Traffic in DiffServ Networks. ACM SIGCOMM Computer Communications Review. 

November 2002. 

[13] Wooguil Pak and Saewoong Bahk. Partial Optimization Method of Topology 

Aggregation for Hierarchical QoS. IEEE. 2002. 

[14] G. Apostolopoulos, R. Guerin and S. Kamat. Implementation and Performance 

Measurements of QoS Routing Extensions to OSPF. IEEE. 1999 

[15] Hedia Kochkar, Takeshi Ikenaga, Yoshiaki Hori and Yuji Oie. Multi-Class QoS 

Routing with Multiple Routing Tables.  IEEE. 2003. 

[16] Kenjiro Cho. The Design and Implementation of the ALTQ Traffic Management 

System. PH.D thesis. Keio University. January 2001. 

[17] Marcin Matuszewski, Raimo Kantola, Risto Sarala, OSPF Convergence and 

Its Impact on VoIP, accepted at ATNAC 2004. 

 [18] Cisco Company, CISCO Nonstop Forwarding and Timer Manipulation for 

Fast Convergence. 

http://www.cisco.com/en/US/tech/tk869/tk769/technologies_white_paper09186a0

0801dce40.shtml 

 



 

Appendix A   Files of Zebra Software 

 81 

Appendix A. Files of Zebra OSPF Software  

Source codes of Zebra OSPF software consist of several source files. The simple 

summary of each file displays as follows. Those files are located at the directory zebra-

0.94/ospfd. 

• File ospf_main.c is used to initialise OSPF module, go into a loop and process 

threads. 

• File ospfd.h defines important data structures, such as structure ospf_master, ospf 

and ospf_area. 

• File ospfd.c provides some functions and fundamental feature of OSPF 

• File ospf_packet.c is responsible for sending and receiving all kinds of OSPF 

packets, such as Hello packets, Database Description packet and Link State Update 

packet. Structure ospf_packet, ospf_header, ospf_hello, ospf_db_desc and ospf_fifo 

are defined in the file ospf_packet.h. 

• File ospf_zebra.c is used to provide application interface between ZebOS module 

and OSPF module. It is involved with redistributing the external routing information. 

• File ospf_interface.c contains functions about interfaces and virtual link. 

Structure ospf_interface is defined in the file ospf_interface.h.  

• File ospf_ism.c is for OSPF version 2 interface state machine that is consistent 

with RFC2319. 

• File ospf_neighbor.c is used to define neighbors and adjacencies. Structure 

ospf_neighbor is defined in the file ospf_neighbor.h. 

• File ospf_nsm.c is for OSPF version 2 neighbor state machine.  

• File ospf_network.c is concerned about network related functions. For example, 

joining or leaving ALLDRouter multicast group. 

• File ospf_flood.c provides functions about flooding procedure. 

• File ospf_lsdb.c provides functions about managing link state database. Structure 

ospf_lsdb is defined in the file ospf_lsdb.h.  

• File ospf_route.c provides functions about OSPF routing table. Structure 

ospf_route and ospf_path are defined in the file ospf_route.h. 

• File ospf_lsa.c handles each type of LSAs and installs LSAs to LSDB. Each kind 

of LSAs’ data structure is defined in the file ospf_lsa.h, such as structure lsa_header, 

ospf_lsa and router_lsa. 

• File ospf_abr.c specifies how to create Summary-LSAs for ABR. The LSA about 

aggregation and default route are handled here. Structure ospf_area_range is defined 

in the file ospf_abr.h. 



 

Appendix A   Files of Zebra Software 

 82 

• File ospf_asbr.c provides ASBR functions. Structure external_info is defined in 

the file ospf_asbr.h. 

• File ospf_spf.c calculates a SPF for an area. If router has more than one area, the 

calculation must be performed for each area. Structure vertex and vertex_nexthop are 

defined in the file ospf_spf.h. 

• File ospf_ia.c calculates inter-area routes.  

• File ospf_ase.c calculates As External routes. 

 

The below files support various data structures, which are used by above files. Those files 

are located at the directory zebra-0.94/lib. 

• File table.c describes a binary tree structure used for storing different data that is 

identified by IP data structure, for instance, routing table and link state database 

(LSDB). An efficient binary tree structure is easy to be added, modified and deleted.  

Structure route_table and route_node are defined in the file table.h. 

• File prefix.c describes IP Data structure. Using data type union, it can use one 

structure describe three or four different types of IP addresses, such as IPv4 address 

and IPv6 address. Structure prefix and prefix_ipv4 are defined in the file prefix.h. 

• File linklist.c describes a set of list functions and macros. It can be used for LSAs. 

Structure list and list_node are defined in the file linklist.h. 

• File stream.c describes useful functions and macros for handling OSPF packet 

streams. Structure stream is defined in the file stream.h. 

• File thread.c provides macros and functions about thread management. Structure 

thread, thread_master and thread_list are defined in the file thread.h.  

 

 

 

 

 

 

 



 

Appendix B   Creation Functions for MCR-LSA Originator 

 83 

Appendix B. Creation Functions for MCR-LSA Originator 
 

Each type of LSAs has its own creation functions, which are listed in Table B.1. The 

creation functions for the type 12 and type 13 Summary-LSAs are new functions in our 

implementation. The creation functions for the Network-LSAs and type 3 and type 4 

Summary-LSAs are original OSPF functions. The creation functions for Router-LSAs and 

AS-external-LSAs are modified in terms of the formats of the MCR LSAs. All following 

creation functions belong to the file ospf_lsa.c.  

  

Type Creation Functions state 

Router-LSA  ospf_router_lsa_originate() 

 ospf_router_lsa_refresh() 

modified 

 

Network-LSA 

 

 ospf_network_lsa_originate() 

 ospf_network_lsa_refresh() 

original 

 

Type 3 Summary-LSA 

 

 ospf_summary_lsa_originate() 

 ospf_summary_lsa_refresh() 

original 

 

Type 4 Summary-LSA 

 

 ospf_summary_asbr_lsa_originate() 

 ospf_summary_asbr_lsa_refresh() 

original 

 

Type 12 Summary-LSA 

 

 ospf_summary_bsp_lsa_originate() 

 ospf_summary_bsp_lsa_refresh() 

new 
 

Type 13 Summary-LSA 

 

 ospf_summary_asbr_bsp_lsa_originate() 

 ospf_summary_asbr_bsp_lsa_refresh() 

new 

 

AS-external-LSA 

 

 ospf_external_lsa_originate() 

 ospf_external_lsa_refresh() 

modified 

 

 

Table B.1:  Creation functions for MCR-LSA originator module 

 

 

 

 

 

 

 

 

 

 



 

Appendix C   All Modified Data Structures and Related Functions 

 84 

Appendix C. All Modified Data Structures and Related Functions 
 

Table C.1 shows all modified data structures and related functions, which are used for our 

OSPF code.  

 

Modified Data 

Structures 

Location Modified Functions 

ospf  ospfd.c 

 

 ospf_new() 

 ospf_finish() 

 ospf_network_run() 

 ospf_timer_bsp_set() 

 ospf_timer_bsp_unset() 

ospf_area 

 

 ospfd.c  ospf_area_new() 

 ospf_area_free() 

 ospf_are 

ospf_interface 

 

ospf_interface.c  ospf_if_new() 

 ospf_if_cleanup() 

 ospf_if_get_output_bandwidth() 

ospf_vl_data 

 

ospf_interface.c  ospf_vl_set_params() 

 ospf_vl_up_check() 

ospf_asbr.c  ospf_reset_route_map_set_value() 

 ospf_route_map_set_compare() 

route_map_set_values 

 

ospf_zebra.c  ospf_redistribute_set() 

 ospf_redistribute_unset() 

 ospf_redistribute_default_set() 

 ospf_redistribute_default_unset() 

 

Table C.1:  All modified data structures and related functions 

 

 

 

 

 

 

 



 

Appendix C   All Modified Data Structures and Related Functions 

 85 

 



 

Appendix D   VTY Commands    

 86 

Appendix D. VTY Commands  
 

New VTY commands are shown in Table D.1. All modified VTY commands are shown 

in Table D.2. Table D.3 shows all original VTY commands, displays of which are 

changed.   

 

VTY commands Description Related Functions Function 

state 

ospf_timer_bsp_set() 

ospf_timer_bsp_unset() 

DEFUN(ospf_timers_bsp_cmd) 

DEFUN(no_ospf_timers_bsp_cm

d) 

new 

 

1) timer bsp <x> <y> 

2) no timer bsp  

Set parameters 

to the timer of 

the BSP 

algorithm 

 

ospf_vty_init() modified 

route_set_metric_bandwidth() 

route_set_metric_bandwidth_com

pile() 

route_set_metric_bandwidth_free

() 

struct route_map_rule_cmd 

route_set_metric_bandwidth_cmd  

DEFUN(set_metric_bandwidth_c

md) 

DEFUN(no_set_metric_bandwidt

h_cmd) 

new 

 

1) route-map x (permit| deny) x 

       set metric_bandwidth x 

2) route-map x (permit| deny) x 

      no set metric_bandwidth x 

 

Set a bandwidth 

for a route map 

profile 

 

ospf_route_map_init() modified 

ospf_area_range_second_set()   

ospf_area_range_second_cost_set

() 

DEFUN(ospf_area_second_range

_cmd) 

ALIAS(ospf_area_second_range_

cost_cmd) 

ALIAS(ospf_area_second_range_

advertise_cmd) 

ALIAS(ospf_area_second_range_

advertise_cost_cmd)  

new 

 

1) area x.x.x.x second-range x.x.x.x/y 

2) area x.x.x.x second-range x.x.x.x/y 

advertise  

3) area x.x.x.x second-range x.x.x.x/y 

cost <x> 

4) area x.x.x.x second-range x.x.x.x/y 

advertise  cost <x> 

Set an area 

range for the 

second routing 

table. 

The range are 

used for the 

route 

summarization  

ospf_vty_init() modified 



 

Appendix D   VTY Commands    

 87 

ospf_area_range_second_unset() 

DEFUN(no_ospf_area_second_ra

nge_cmd) 

ALIAS(no_ospf_area_second_ra

nge_cost_cmd) 

ALIAS(no_ospf_area_second_ra

nge_advertise_cmd) 

ALIAS(no_ospf_area_second_ra

nge_advertise_cost_cmd)  

new 

 

1) no area x.x.x.x second-range x.x.x.x/y 

2) no area x.x.x.x second-range x.x.x.x/y 

advertise  cost <x> 

3) no area x.x.x.x second-range x.x.x.x/y 

cost <x> 

Unset an area 

range for the 

second routing 

table 

ospf_vty_init() modified 

ospf_area_range_second_substitu

e_set() 

DEFUN(ospf_area_second_range

_substitute_cmd) 

new 1) area x.x.x.x second-range x.x.x.x/y 

substitute x.x.x.x/z 

 

 

Set a 

substituted area 

range for the 

second routing 

table ospf_vty_init() modified 

ospf_area_range_second_substitu

e_unset() 

DEFUN(no_ospf_area_second_ra

nge_substitute_cmd) 

new 1) no area x.x.x.x second-range x.x.x.x/y 

substitute x.x.x.x/z 

 

 

Unset a 

substituted area 

range for the 

second routing 

table ospf_vty_init() modified 

ospf_if_recalculate_output_bw() 

DEFUN(ip_ospf_bandwidth_cmd

) 

DEFUN(no_ip_ospf_bandwidth_

cmd) 

new 1) ip ospf bandwidth <x>  

2) no ip ospf bandwidth 

Set output 

bandwidth for 

an interface 

ospf_vty_init() modified 

 

Table D.1:  New VTY commands 

 

VTY commands Description Related Functions Function 

state 

1) redistribute x metric <x> metric-

bandwidth <x> metric-type (1|2) route-

map WORD 

2) redistribute x metric <x> metric-

bandwidth <x> metric-type (1|2) 

3) redistribute x metric <x> metric-

bandwidth  <x> 

4)  redistribute x metric-type 

(1|2)metric <x> metric-bandwidth <x> 

Redistribute 

external routing 

information 

into OSPF.  

Those 

(commands 

should be 

ospf_redistribute_set() 

DEFUN(ospf_redistribute_source

_metric_type_routemap_cmd) 

ALIAS(ospf_redistribute_source_

metric_type_cmd) 

ALIAS(ospf_redistribute_source_

metric_cmd) 

modified 

 



 

Appendix D   VTY Commands    

 88 

route-map WORD 

5)  redistribute x metric-type 

(1|2)metric <x> metric-bandwidth <x> 

6)  redistribute x metric-type (1|2) 

7) redistribute x metric-type (1|2) route-

map WORD 

8)  redistribute x 

9)  redistribute x route-map WORD 

10)  redistribute x metric <x> metric-

bandwidth <x> route-map WORD 

included metric 

and bandwidth.) 

DEFUN(ospf_redistribute_source

_type_metric_routemap_cmd) 

ALIAS(ospf_redistribute_source_

type_metric_cmd) 

ALIAS(ospf_redistribute_source_

type_cmd) 

ALIAS(ospf_redistribute_source 

_cmd) 

DEFUN(ospf_redistribute_source

_metric_routemap_cmd) 

DEFUN(ospf_redistribute_source

_routemap_cmd) 

DEFUN(ospf_redistribute_source

_type_routemap_cmd) 

1) default-information originate metric 

<x> metric-bandwidth <x> metric-type 

(1|2) route-map WORD 

2) default-information originate metric 

<x> metric-bandwidth <x> metric-type 

(1|2) 

3) default-information originate metric 

<x> metric-bandwidth <x> 

4) default-information originate 

5) default-information originate metric 

<x> metric-bandwidth <x> route-map 

WORD 

6) default-information originate metric-

type (1|2) metric <x> metric-bandwidth 

<x> route-map WORD 

7)  default-information originate 

metric-type (1|2) metric <x> metric-

bandwidth <x> 

8)  default-information originate 

metric-type (1|2) 

9)  default-information originate 

metric-type (1|2) route-map WORD 

10)  default-information originate 

route-map WORD 

11) default-information originate 

always metric <x> metric-bandwidth 

<x> metric-type (1|2) route-map WORD 

12) default-information originate 

always metric <x> metric-bandwidth 

<x> metric-type (1|2)  

13) default-information originate 

always metric <x> metric-bandwidth 

Redistribute 

default external 

routing 

information 

into OSPF 

 ospf_redistribute_default_set() 

DEFUN(ospf_default_informatio

n_originate_metric_type_routema

p_cmd) 

ALIAS(ospf_default_information

_originate _metric_type_cmd) 

ALIAS(ospf_default_information

_originate_metric_cmd) 

ALIAS(ospf_default_information

_originate_cmd) 

DEFUN(ospf_default_informatio

n_originate_metric_routemap_cm

d) 

DEFUN(ospf_default_informatio

n_originate_type_metric_routema

p_cmd) 

ALIAS(ospf_default_information

_originate_type_metric_cmd) 

ALIAS(ospf_default_information

_originate_type_cmd) 

DEFUN(ospf_default_informatio

n_originate_type_routemap_cmd) 

DEFUN(ospf_default_informatio

n_originate_routemap_cmd) 

DEFUN(ospf_default_informatio

n_originate_always_metric_type_

modified 

 



 

Appendix D   VTY Commands    

 89 

<x>  

14) default-information originate 

always 

15) default-information originate 

always metric <x> metric-bandwidth 

<x> route-map WORD 

16) default-information originate 

always route-map WORD 

17) default-information originate 

always metric-type (1|2) metric <x> 

metric-bandwidth <x> route-map 

WORD  

18) default-information originate 

always metric-type (1|2) metric <x> 

metric-bandwidth <x> 

19) default-information originate 

always metric-type (1|2)  

20) default-information originate 

always metric-type (1|2) route-map 

WORD 

routemap_cmd) 

ALIAS(ospf_default_information

_originate_always_metric_type_c

md) 

ALIAS(ospf_default_information

_originate_always_metric_cmd) 

ALIAS(ospf_default_information

_originate_always_cmd) 

DEFUN(ospf_default_informatio

n_originate_always_metric_route

map_cmd) 

DEFUN(ospf_default_informatio

n_originate_always_routemap_c

md) 

DEFUN(ospf_default_informatio

n_originate_always_type_metric_

routemap_cmd) 

ALIAS(ospf_default_information

_originate_always_type_metric_c

md) 

ALIAS(ospf_default_information

_originate_always_type_cmd) 

DEFUN(ospf_default_informatio

n_originate_always_type_routem

ap_cmd) 

DEFUN(ospf_default_metric_cm

d) 

DEFUN(no_ospf_default_metric

_cmd)  

modified 

 

1) default-metric <x> default-

bandwidth-metric <x>  

2)  no default-metric  

Set a default 

metric and 

bandwidth for 

external 

information 

ospf->default_metric_bw  new 

 

Table D.2:  Modified VTY commands 

 

Original VTY 

Command 

Description Modified Functions/Definitions 

show ip ospf route Show the SP 

routing table and 

the BSP routing 

DEFUN(show_ip_ospf_route_cmd) 



 

Appendix D   VTY Commands    

 90 

table 

show ip ospf database 

 

Show all link-state 

database (LSDB) 

DEFUN(show_ip_ospf_database_cmd) 

 

show ip ospf database x 

 

Show a certain 

LSDB based on 

the type of LSAs 

show_lsa_summary() 

show_ip_ospf_database_router_links() 

show_summary_bsp_lsa_detail() 

show_summary_asbr_bsp_lsa_detail() 

show_as_external_lsa_detail() 

int (*show_function[]) () 

char *show_deatabase_desc[] 

char *show_database_header[] 

ALIAS(show_ip_ospf_database_type_cmd) 

#define OSPF_LSA_TYPES_CMD_STR 

show ip ospf 

 

Show the 

information about 

OSPF 

DEFUN(show_ip_ospf_cmd) 

show ip ospf neighbor detail 

 

Show the detailed 

information about 

all neighbors  

ospf_options_dump() 

show ip ospf interface Show the detailed 

information about 

all interfaces 

ospf_if_get_input_bandwidth() 

show_ip_ospf_interface_sub() 

DEFUN(show_ip_ospf_interface_cmd) 

 

Table D.3:  VTY commands with changed displays 

 


