
DESIGN AND IMPLEMENTATION OF A NEW ROUTING SIMULATOR

Peng Zhang, Raimo Kantola, Zhansong Ma
Laboratory of Telecommunication Technology,

Helsinki University of Technology
Otakaari 5A, Espoo, Finland

Tel: +358 9 4515454
email: {pgzhang@tct.hut.fi, raimo.kantola@tct.hut.fi, zhangsong@tct.hut.fi }

Discrete-event simulation, quality of service (QoS), QoS
routing (QoSR), constraint based routing, performance analysis

ABSTRACT

In this paper, we present the design and implementation of a
new QoS Routing Simulator (QRS) *. Based on the core of a public
routing simulator – MaRS ** , we have developed QRS by designing
and implementing new QoS-related components, i. e., resource
reservation (RSVP), resource management (RM), QoS routing
algorithms, traffic scheduling and real-time traffic workload. QRS
allows users to configure the parameters of a QoS guaranteed
network, where the dynamics of QoS routing algorithms as well as
traffic management algorithms can be investigated. We also present
some simulation results obtained by using QRS.

1 INTRODUCTION

Routing protocols play an important role in the wide-area
networks. They are responsible for maintaining the network
topology image, choosing routes for data packets and yielding good
performance in terms of delay and throughput. Routing protocols in
the current Internet (e.g., OSPF), usually characterize the network
with a single metric such as hop-count or delay and use shortest-
path algorithms for path computation. These protocols do not use
alternate paths with acceptable but non-optimal cost to route traffic.

QoS routing selects routes with requirements for additional
routing metrics, e.g., delay, and available bandwidth. An objective
of QoS routing scheme is to aid in the efficient utilization of
network resources by improving the total network throughput.
Moreover, QoS routing provides flexibility in support for various
service requirements by customers [Chen and Nahrstedt 1998].
QoS routing also provides support for alternate routing. If the best
existing path cannot admit a new flow, the associated traffic can be
forwarded in an adequate alternate path. QoS routing algorithms
can prevent traffic shifting from one path to another "better" path
only if the current path meets the service requirements of the
existing traffic.

However, many issues related to QoS routing still remain
open. The dynamics of QoS routing in the networks, that is, how
QoS routing algorithms impact traffic behavior and network

* This work is supported by IPANA project carried out in Laboratory of
Telecommunication Technology, Helsinki University of Technology. An
extended version of this paper can be found at
http://www.tct.hut.fi/~pgzhang.
** MaRS is reserved for University of Maryland.

performance is unclear yet. Moreover, we need to study the strategy
of implementing QoS routing and the potential algorithms [Zhang
1999]. In this paper, we introduce a new QoS routing simulator -
QRS. QRS allows users to arbitrarily configure the network
topologies and network parameters, log and save the selected
parameters. QoS routing components calculate the routes demanded
by the resource reservation component. In QRS, we implement
such QoS-related components as resource reservation, resource
management and traffic scheduling.

The rest of the paper is organized as follows. In section 2, we
present the structure of QRS. We describe the design and
implementation of new components in section 3. In section 4, we
use QRS to examine the network performance and present some
results. Some conclusions are given in the final section.

2 STRUCTURE OF QRS

QoS routing in the Internet is regarded as a missing part in the
evolution of Internet. Also, both public and commercial simulators
all lack the function of QoS routing. In order to reduce the
programming work, we examined the existing three simulators
which were available to us: BONES[Cadence 1998], NS2 [Fall and
Varadhan 2000] and MaRS[Alaettinoglu et al. 1994]. BONES is a
commercial package simulator suitable for universal traffic
engineering and network evaluation; NS2 is a public software
designed for simulating a network with traffic policy components;
MaRS is specially designed for simulating routing in a best-effort
network.

We found MaRS most suitable for our purposes for several
reasons. First, the source code was readily available, and its style of
coding and documentation is good. Thus, modifications and
expansions seem easy to do. Second, since we focus on routing
study, we play high value on the strong routing capability of MaRS.
Third, we aim to construct the prototype of QoS routing in a
QoS_based network. MaRS provides the basic event engine and the
framework which seem to be suitable for us to achieve the goal.

QRS has the same structure as MaRS: a simulation engine; a
user interface; and a set of components which accommodate a
variety of target systems and performance measures [Alaettinoglu
et al. 1994]. The simulation engine manages the event list and the
user interface. When QRS is started, the simulation engine
initializes variables of the user interface, processes command line
options (including reading any files), and then goes into the basic
simulator loop. (It should be noted that only command line
interface is provided at present.)

Applications
Resource

Reservation
QoS

Routing
Resource

Management
Forwarding, Traffic Engineering

 Figure 1 QoS Architecture in QRS

The components are for modeling the target systems and
certain simulation functions. Figure 1 shows the QoS architecture
in QRS and its components. We should note that as the first step,
we mainly follow the IntServ [Wroclawski 1997] model in QRS
because till now only IntServ model provides an integral solution
from resource reservation to flow management in a large wide-area
computer network. Moreover, these functions in IntServ are also
needed in DiffServ [Blake et al. 1998] network. For example,
RSVP [Braden et al. 1997] is probably used as the signaling
protocol between Bandwidth Brokers in DiffServ networks
[Mamais et al. 1999].

Thus, to develop QRS, we added several new components and
modified some components of MaRS. For modeling QoS routing
protocols, we add a QoS routing component, i.e., QOSPF
component. For modeling resource reservation protocol, we add a
resource reservation component, i.e., RSVP component. For
modeling resource management, we add RM component. For
modeling a QoS oriented application, we add Realtime Traffic
Source/Sink component. We have modified Node component to
identify real time traffic packets and to look up a QoS_based route.
We have also modified Link component to accommodate traffic
scheduling, i.e., Class Based Queuing (CBQ). QRS abandons
routing components of MaRS, i.e., SPF, ExBF, and SEGAL, thus
adopts QOSPF as the sole routing component. QRS preserves all
other components of MaRS, including Link Cost Function
component, Performance Monitor component and workload
components. Figure 2 shows a target system of instances of five
node components and six link components.

Figure 2 An example target system

Each link component is connected to exactly two node
components. A node component models the physical aspects of a
store-and-forward entity such as a host or a switch. Each node is
connected to a QOSPF routing component, a RM component, a
RSVP component and zero or more workload components. Each
workload component is either a source or a sink of some types (i.e.,
FTP, Telnet, Simple Traffic, or Realtime Traffic). For each source
component instance, there is a corresponding “peer” sink
component instance. There is a single instance of a link-cost
component, which is not connected to any component.

As in MaRS, components can interact with each other by
calling events, by scheduling events, or in some special cases by
sharing variables. Component instances interact with the simulation
engine as follows. A component instance can make access

component data structures to determine the displays to be updated.
The simulation engine can call events of a component in respect to
user interface commands (from input file in QRS).

3 DESIGN AND IMPLEMENTATION

We have several objectives in designing QRS: First of all, we
aim to investigate dynamics of QoS routing in the networks;
Second, we intend to develop new QoS routing algorithms and to
look for the feasible ways to build up the quality guaranteed
network; Third, we intend to achieve substantial knowledge in
developing such a routing simulator. Especially, we want to avoid
complicated policies and traffic management in QRS. Thus, we
make out the general design on the basis of the above objectives
and rules.

3.1 General design

As described in section 2, a QoS_based network should
consist of such components as resource reservation, resource
management, traffic scheduling, QoS routing, and policy control.
Under IntServ model, we design and implement these components.
We present the general design and interactions between
components of QRS as shown in Figure 3.

Figure 3 General design and interactions between components
in QRS

Before we begin our design, we have made some pre-
decisions on QRS:

First, we design and implement QoS Routing component on
the basis of OSPF. So far, OSPF is the most popular routing
protocol in the intra-domain environment and is supported in most
routers. Therefore, it is reasonable to integrate OSPF into new QoS
routing protocol [Apostolopoulos, Guerin and Kamat 1999].
Particularly, we implement QoS routing on-demand instead of pre-
computation because of the considerable complexity. On the other
hand, the cost of QoS routing on demand is unclear yet and needs
further study. We prefer to employ QoS routing computation on the
basis of request from network operator or each application with
policy control, where the frequencies of request are constrained.

Second, we select QoS metrics: bandwidth and optional delay,
which are possibly sufficient for most studies. RSVP broadcasts
and updates these two flow metrics in the flow state table.

Third, we design and implement one specific traffic
scheduling: a simplified CBQ. On one hand, we select CBQ
because it is one of the most promising traffic scheduling
algorithms used in future networks [Floyd and Jacobson 1995]. On
the other hand, we do not implement a full set of CBQ because the

full implementation would increase considerably our programming
work and would decrease the simulation efficiency.

Moreover, in QRS, we specify four kinds of flows and assign
them to different workload types. They are Class A, Class B, Class
C and Class D. The priority decreases from Class A to Class D.
Class A is the highest priority for control and singling traffic, i.e.,
RSVP traffic and route traffic. Class B and C are for Realtime
Traffic workload, which can be assigned to an instance of Realtime
Traffic workload in an input file configured by the user. Class D is
the lowest priority for best effort services, i.e., FTP, Telnet and
Simple Traffic workload. Traffic with higher priority will be served
before traffic with a lower priority in accordance with the CBQ
scheduling algorithm. There are three class levels, as shown in
Figure 4.

Figure 4 Class levels in QRS

Notably, there are two tables for route selection: one is the
flow table for specified flows, e.g., Class B and Class C; the other
is the normal routing table for best-effort services, e.g., Class D.
RSVP is responsible for the operations and management of the flow
table, while the route for a specified flow is obtained from querying
QOSPF. QOSPF is in charge of the operation and management of
the normal routing table and it broadcasts link state changes and
calculates routes. However, if the connection for a specified flow is
not set up, the traffic from this flow will be regarded as best effort
traffic, i.e., its data packets will be forwarded to the route selected
from the routing table instead of the flow table and served as the
lowest priority traffic in CBQ.

3.2 Realtime Traffic Source/Sink

As discussed in the previous subsection, we assign Classes B
and C to Realtime Traffic. Realtime Traffic has a QoS request for
bandwidth, delay or both. It will request RSVP to set up a flow
connection between source and sink. In detail, Realtime Traffic
Source requests RSVP to setup a flow connection downstream, and
Realtime Traffic Sink replies to reserve resource through RSVP
upstream. If the flow connection is set up, the source sends data
packets to the destination along the flow connection. The major
functions of Realtime Traffic Source/Sink are: sending/receiving
control messages through RSVP; producing data packets at Source
and consuming data packets at Sink.

We prefer to use Realtime Traffic as aggregated traffic from
multiple hosts/applications instead of a single host/application.
Realtime Traffic produces traffic in a way similar to Simple
Traffic, but without a window_based mechanism.

3.3 RSVP

We have designed and implemented a simplified RSVP
version. The major function of RSVP is to setup the flow
connection and update flow state periodically. To carry out the

function, RSVP needs to interact with Realtime Traffic workload,
QOSPF, Resource Management and Node.

We should note that we do not implement the function of
local repair [Apostolopoulos, Guerin and Kamat. 1999] because it
seems an additional function of RSVP and increases the processing
complexity of RSVP.

3.4 QOSPF

We have developed a QoS routing component called QOSPF
on the basis of SPF component of MaRS. We have designed and
implemented QoS routing algorithms in QOSPF and preserved the
best-effort routing of SPF.

Figure 5 shows the design of QOSPF in QRS. QOSPF
consists of three core functional components, namely, (1)
distribution of resource availability information; (2) topology
database with resource information; (3) QoS route computation
[Zhang 1999].

Figure 5 Design of QOSPF in QRS

In (1), we provide two simple update algorithms. One
algorithm performs update periodically. The value of the period is
configured by the user. The other algorithm performs update when
the variation of bandwidth exceeds a configured threshold. In the
second algorithm, we also preserve the periodical update in SPF in
case of deadlock. Also, link state message carries the available
resource information;

In (2), we enhance local topology database by including
available resource information, i.e., available bandwidth of each
link.

In (3), we implement two QoS routing algorithms: the lowest
cost algorithm and the widest bandwidth algorithm. Both
algorithms first eliminate the link whose available bandwidth is
below the required bandwidth. Then, the former calculates the
lowest cost with Dijkstra’s algorithm while the latter calculates the
widest bandwidth with a variation of Dijkstra’s algorithm. The first
algorithm makes full use of the link cost function in SPF so that it
has various derivations, e.g., least hop, lowest delay, maximum
utilization, etc [Alaettinoglu et al. 1994].

3.5 Resource Management

We have designed and implemented a very simple Resource
Management. At the moment, we only consider bandwidth request
in RM. Its functions can be described as follows.

When a reserve request from RSVP is received, RM checks if
enough bandwidth in the link is available, replies the result and
informs QOSPF that available resource has changed if resource is
reserved;

When a tear down message from RSVP is received, RM
updates the available bandwidth and informs QOSPF that available
resource has changed.

3.6 Node and Link

Since traffic loads are specified into different classes, the
corresponding traffic scheduling should be supported too. In the
real world, traffic scheduling should be performed at nodes.
However, we implement it in the Link component instead of the
Node component because of less modifications. We have also
modified the event processing of Link, so that the function of traffic
scheduling seems as a part of Node.

As shown in Figure 6, when a data packet arrives at the node,
it gets into the Packet Classifier. If it belongs to a specified flow
and its flow connection exists, Node indexes the flow table for next
hop; otherwise it indexes the routing table for the next hop. Then
the packet queues in the buffer to the corresponding link.
According to the class the packet belongs to, the packet queues in
the corresponding buffer in CBQ. And the packet is served by the
CBQ mechanism and transmitted to the next hop.

Figure 6 Traffic processing and scheduling in QRS

User can configure the parameters of CBQ, e. g., allocated
bandwidth, buffer size, etc.

4 SOME RESULTS

In this subsection, we present some simulation results by
using QRS to examine network performance in various network
configurations. The purpose is to verify the accuracy and efficiency
of QRS.

Simulation 1: Tree Topology

As shown in Figure 7, we configure the network as a tree
topology with four nodes and three links. There are three pairs of
workload: one pair of Realtime Traffic with Class B, called RTH;
one pair of Realtime Traffic with Class C, called RTL and one pair
of Simple Traffic, called BE. Traffic enters into the network
through node 1 and node 4 and escapes the network from node 3.
All links have the same bandwidth of 6Mbit/s. The average rates of
RTH and RTL are 2Mbit/s and 3Mbit/s, respectively. The average
rate of BE is 6Mbit/s. Thus, the total average rate of all workloads
is larger than the link bandwidth.

Figure 7 Tree Topology

We run simulations for a period, i.e., 10sec and log
throughput of each pair of workload and total throughput.
Particularly, Link 1-2 fails at a mean time 4sec and repairs at a
mean time 3sec. As shown in Figure 8, the total throughput is
nearly equal to the link bandwidth, that is, the link efficiency is
very high. Meanwhile, RTH and RTL can obtain the bandwidth
required, while BE utilizes the rest bandwidth of the link.

0

1

2

3

4

5

6

0 2 4 6 8 10
Time (s)

T
hr

ou
gh

pu
t(

M
bi

ts
/s

) RTH
RTL
BE
TOTAL

Figure 8 Throughput vs. time in Simulation 1

Simulation 2: Matrix topology

Figure 9 Matrix Topology

We use the matrix topology in Simulation 2. In this
simulation, we have investigated the efficiency of QRS. As shown
in Figure 9, we illustrate the two matrixes, i. e, 2*2 and 3*3. There
are five pairs of workload between Node A and Node A’: two pairs
of RTH, two pairs of RTL and one pair of BE. The average rate of
each kind of pair is same as Simulation 1. We varies the size of the
matrix from 2*2 to 5*5. Then, we run the simulation for 1000msec
on a Sun Ultra1, then we record the CPU running time. We also
change the link state updating period in QOSPF from 10 ms to 500
ms. The results are shown in Table 1. Column 1 is the link state
updating period. Row 1 is the size of the topology.

As shown in Table 1, we get the results that the running time
increases with the increment of matrix size and decreases with the
increment of the link state updating period. Moreover, we notice
that the maximum running time is less than 4 seconds, therefore,
we believe that QRS is capable of simulating a relatively large
network.

Table 1 Running Time in Simulation 2

2*2 3*3 4*4 5*5
10ms 0.53s 2.38s 2.27s 3.82s
50ms 0.42s 2.04s 1.89s 3.37s
100ms 0.38s 1.33s 1.59s 3.12s
500ms 0.31s 0.68s 0.96s 1.65s

Simulation 3: NSFNET Backbone

Figure 10 NSFNET Backbone

The topology used in simulation 3 is NSFNET Backbone. As
shown in Figure 10, there are 14 nodes and 21 links. We configure
three source nodes (A, B, C) and three sink nodes (A’, B’, C’).
There is one Realtime Traffic workload between each source node
and each sink node. There are other three Simple Traffic workload
between A and A’, B and B’, C and C’. The average rate of each
workload is set to 2Mbit/s and the link bandwidth is 6Mbit/s. The
dark line shown in this figure represents the failed link in the
simulation. In our configuration, each Realtime Traffic source will
start up randomly. Once the previous path connection fails, each
Realtime Traffic source requests for setting up a new path after a
mean value of 100ms. Thus, the route for each workload might
change each time. We run the simulation for 10sec and set the link
failure at second 4 and link repair at second 7. Furthermore, we
define the recovery time for a Realtime Traffic workload as the
time between the link fails and the workload finds a new route and
establishes a connection again. We have traced the route for each
Realtime Traffic workload and have recorded the recovery time for
the workload whose route contains the failed link.

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10

Time (s)

T
hr

ou
gh

pu
t (

M
its

/s
)

C-A'

C-C'

Figure 11 Link Failure in Simulation 3

As illustrated in Figure 11, two pairs of workloads (C-A’ and
C-C’) has to change the route due to link failure. They establish the
path and send packets again around second 6. We run the
simulations for several times and get the mean value of the
recovery time, which is nearly 2 seconds.

5 CONCLUSIONS

There are a great number of open research questions
concerning routing in the next generation networks. One such open
question concerns possible scenarios for the development of routing
algorithms for new services into the Internet. QRS provides a
simulation platform on which these questions can be examined. By
using QRS, we have investigated the performance in our network
configurations. The results prove the feasibility and efficiency of
QRS. More simulations are needed to verify QRS in our future
works. It is possible to extend QRS to accommodate many new
capabilities.

References

Alaettinoglu, C., et al. 1994. “Design and Implementation of MaRS: A
Routing Testbed.” Journal of Interworking Research and Experience, 5, no.
1, (March): 17-41.

Apostolopoulos, G.; Guerin, R.; Kamat, S. 1999. “Implementation and
Performance Measurements of QoS Routing Extensions to OSPF.”
Proceedings of Eighth Annual Joint Conference of IEEE Computer and
Communication Societies, INFOCOM'99, (NY, March 21-25). IEEE, NY,
USA, 680-688.

Blake, S., et al. 1998. “An Architecture for Differentiated Services.” RFC-
2475, Network Working Group, IETF. (Dec.).

Braden, R., et al. 1997. “Resource Reservation Protocol – RSVP: Version 1
Functional Specification.” RFC2205, Network Working Group, IETF.
(Sept.).

Cadence. 1998. “BONeS/Designer 4.0 Release Document”. Internal
Documents. Cadence Company. http://sourcelink.cadence.com/SL31/.

Chen, S. and Nahrstedt, K.. 1998. “An overview of Quality of Service
Routing for Next-Generation High-Speed Networks: Problems and
Solutions.” IEEE Network, 12, no.6, (Novermber/December): 64-79.

Fall, K. and Varadhan., K. 2000 “ns—Notes and Documents.”
http://www.isi.edu/~salehi/ns_doc/

Floyd, S.; Jacobson, V. 1995. “Link-Sharing and Resource Management
Models for Packet Networks.” IEEE/ACM Transactions on Networking, 3,
no. 4, (August): 365-386.

Mamais, G., et al. 1999. “Efficient Buffer Management and Scheduling in a
Combined IntServ and DiffServ Architecture: A Performance Study.” In
Proceedings of 2nd International Conference on ATM, ICATM'99, (June
21-23). 236-242.

Wroclawski, J. 1997. “The Use of RSVP with Integrated Services.”
RFC2210, Network Working Group, IETF. (Sept.).

Zhang, P. 1999. “Perspectives of QoS Routing in the Internet: Preliminary
Study.” Technical Report. Lab. of Telecom. Tech., HUT, Espoo, Finland.
(Sept.).

