Please note: operating system requirement: Linux 2.4.20-30.9 (at least)

1. Configure the Software

Zebra has an excellent configure script which automatically detects most host configurations. There are several additional configure options you can use to turn off IPv6 support, to disable the compilation of specific daemons, and to enable SNMP support.

--enable-guile
 Turn on compilation of the zebra-guile interpreter. You will need the guile library to make this. zebra-guile implementation is not yet finished. So this option is only useful for zebra-guile developers.

--disable-ipv6
 Turn off IPv6 related features and daemons. Zebra configure script automatically detects IPv6 stack. But sometimes you might want to disable IPv6 support of Zebra.

--disable-zebra
 Do not build zebra daemon.

--disable-ripd
 Do not build ripd.

--disable-ripngd
 Do not build ripngd.

--disable-ospfd
 Do not build ospfd.

--disable-ospf6d
 Do not build ospf6d.

--disable-bgp
 Do not build bgpd.

--disable-bgp-announce
 Make bgpd which does not make bgp announcements at all. This feature is good for using bgpd as a BGP announcement listener.

--enable-netlink
 Force to enable GNU/Linux netlink interface. Zebra configure script detects netlink interface by checking a header file. When the header file does not match to the current running kernel, configure script will not turn on netlink support.

--enable-snmp
 Enable SNMP support. By default, SNMP support is disabled.

You may specify any combination of the above options to the configure script. By default, the executables are placed in /usr/local/sbin and the configuration files in /usr/local/etc. The /usr/local/ installation prefix and other directories may be changed
using the following options to the configuration script.

--prefix=prefix
 Install architecture-independent files in prefix [/usr/local].
--sysconfdir=dir
 Read-only sample configuration file in dir [prefix/etc].

% ./configure --disable-ipv6

This command will configure zebra and the routing daemons.

[Reference]:
http://www.zebra.org/zebra/Configure-the-Software.html#Configure%20the%20Software

2. Build the Software

After configuring the software, you will need to compile it for your system. Simply issue
the command make in the root of the source directory and the software will be compiled. If you have *any* problems at this stage, be certain to send a bug report See Bug Reports.

% ./configure
 .
 .
 ./configure output
 .
 .
 .
 % make

[Reference]
http://www.zebra.org/zebra/Build-the-Software.html#Build%20the%20Software

3. Install the Software

Installing the software to your system consists of copying the compiled programs and
supporting files to a standard location. After the installation process has completed, these
files have been copied from your work directory to /usr/local/bin, and /usr/local/etc.

To install the Zebra suite, issue the following command at your shell prompt: make install.

% % make install

Page 2 of 14
Zebra daemons have their own terminal interface or VTY. After installation, you have to setup each beast's port number to connect to them. Please add the following entries to /etc/services.

- `zebrasrv 2600/tcp` # zebra service
- `zebra 2601/tcp` # zebra vty
- `ripd 2602/tcp` # RIPd vty
- `ripngd 2603/tcp` # RIPngd vty
- `ospfd 2604/tcp` # OSPFd vty
- `bgpd 2605/tcp` # BGPd vty
- `ospf6d 2606/tcp` # OSPF6d vty

If you use a FreeBSD newer than 2.2.8, the above entries are already added to /etc/services so there is no need to add it. If you specify a port number when starting the daemon, these entries may not be needed.

You may need to make changes to the config files in /usr/local/etc/*.conf. See Config Commands.

[Reference]

http://www.zebra.org/zebra/Install-the-Software.html#Install%20the%20Software

4. Installation Example:

```
# ./configure --disable-ipv6 --disable-ripd --disable-ripngd --disable-bgpd --disable-ospf6d --disable-bgp-announce --enable-netlink --disable-snmp --disable-nssa
# make
# make install
```

5. Configuration files

The following configuration files must be configured before running the programs.

```
#vi /usr/local/etc/zebra.conf

#vi /usr/local/etc/ospfd.conf
```
6. Running Programs

/usr/local/sbin/zebra &
/usr/local/sbin/ospfd &

7. VTY commands

For zebra router:

telnet localhost 2601

For ospfd:

telnet localhost 2604

The detailed commands are described as follow part.

MCR OSPF Commands

OSPF router

To start OSPF process you have to specify OSPF router. As of this writing ospfd does not support multiple OSPF process.

Command: router ospf

Command: no router ospf

Enable or disable the OSPF process. Ospfd does not yet support multiple OSPF processes. So you can not specify an OSPF process number.

OSPF command: ospf router-id x.x.x.x
OSPF command: no ospf router-id

OSPF Command: ospf abr-type 1
OSPF Command: no ospf abr-type 1

For MCR ospfd, only standard ABR type is supported.

OSPF Command: opassive interface INTERFACE
OSPF Command: no passive interface INTERFACE

OSPF Command: timers spf <0-4294967275> < 0- 4294967295 >
OSPF Command: no timers spf

OSPF Command: timers bsp <0-4294967275> < 0-4294967275 >
OSPF Command: no timers bsp
Set the parameters of the second routing table calculation timers.

OSPF Command: refresh group-limit <0-10000>
OSPF Command: refresh per-slice <0-10000>
OSPF Command: refresh age-diff <0-10000>

OSPF Command: auto-cost reference-bandwidth <1-4292967>
OSPF Command: no auto-cost reference-bandwidth

OSPF Command: network x.x.x.x/M area x.x.x.x
OSPF Command: network x.x.x.x/M area <0-4294967275>
OSPF Command: no network x.x.x.x/M area x.x.x.x
OSPF Command: no network x.x.x.x/M area <0-4294967275>

This command specifies the OSPF enabled interfac. If the interface has an address of 10.0.0.1/8, then the command below provides network information to the ospf beasites.

router ospf
 network 10.0.0.0/8 area 0

The network command's mask length should be the same as the interface address's mask.

OSPF area

OSPF Command: area x.x.x.x range x.x.x.x/M
OSPF Command: area < 0-4294967275 > range x.x.x.x/M
OSPF Command: no area x.x.x.x range x.x.x.x/M
OSPF Command: no area < 0-4294967275 > range x.x.x.x/M

OSPF Command: area x.x.x.x second-range x.x.x.x/M
OSPF Command: area < 0-4294967275 > second-range x.x.x.x/M
OSPF Command: no area x.x.x.x second-range x.x.x.x/M
OSPF Command: no area < 0-4294967275 > second-range x.x.x.x/M

OSPF Command: area x.x.x.x second-range x.x.x.x/M advertise
OSPF Command: area < 0-4294967275 > second-range x.x.x.x/M advertise
OSPF Command: area x.x.x.x second-range x.x.x.x/M cost <x>
OSPF Command: area < 0-4294967275 > second-range x.x.x.x/M cost <x>
OSPF Command: area x.x.x.x second-range x.x.x.x/M substitute y.y.y.y/N
OSPF Command: area < 0-4294967275 > second-range x.x.x.x/M substitute y.y.y.y/N
OSPF Command: no area x.x.x.x second-range x.x.x.x/M
OSPF Command: no area < 0-4294967275 > second-range x.x.x.x/M

OSPF Command: no area x.x.x.x second-range x.x.x.x/M advertise
OSPF Command: no area < 0-4294967275 > second-range x.x.x.x/M advertise
OSPF Command: no area x.x.x.x second-range x.x.x.x/M substitute y.y.y.y/N
OSPF Command: no area < 0-4294967275 > second-range x.x.x.x/M substitute y.y.y.y/N
y.y.y.y/N
Set the aggregated range of IP addresses. The range is used for the route summarization of the second routing table

OSPF Command: area x.x.x.x virtual-link x.x.x.x
OSPF Command: area <0-4294967275> virtual x.x.x.x
OSPF Command: no area x.x.x.x virtual-link x.x.x.x
OSPF Command: no area <0-4294967275> virtual x.x.x.x

OSPF interface

Interface Command: ip ospf cost <0-65535>
Interface Command: no ip ospf cost

Interface Command: ip ospf bandwidth <1-10000000 kbps>
Interface Command: no ip ospf bandwidth
Set the output bandwidth of an interface. The input value will be calculated by the following equation.

\[
72 \text{TOS metric in Router-LSA} = \frac{\text{INPUT VALUE}}{152.59 \text{ kbps}}
\]

Interface Command: ip ospf dead-interval <1-65535>
Interface Command: no ip ospf dead-interval
Set number of seconds for RouterDeadInterval timer value used for Wait Timer and Inactivity Timer. This value must be the same for all routers attached to a common network. The default value is 40 seconds.

Interface Command: ip ospf hello-interval <1-65535>
Interface Command: no ip ospf hello-interval
Set number of seconds for HelloInterval timer value. Setting this value, Hello packet will be sent every timer value seconds on specified interface. This value must be the same for all routers attached to a common network. The default value is 10 seconds.

Interface Command: ip ospf network (broadcast | non-broadcast | point-to-multipoint | point-to-point)
Interface Command: no ip ospf network
Set explicitly network type for specified interface.
Interface Command: ip ospf priority <0-255>
Interface Command: no ip ospf priority
Set RouterPriority integer value. Setting higher value, router will be more eligible to become Designated Router. Setting the value to 0, router is no longer eligible to Designated Router. The default value is 1.

Interface Command: ip ospf retransmit-interval <1-65535>
Interface Command: no ip ospf retransmit-interval
Set number of seconds for RxmtInterval timer value. This value is used when retransmitting Database Description and Link State Request packets. The default value is 5 seconds.

Interface Command: ip ospf transmit-delay
Interface Command: no ip ospf transmit-delay

Set number of seconds for InfTransDelay value. LSAs' age should be incremented by this value when transmitting. The default value is 1 seconds.

Redistribute routes to OSPF

The following commands are modified in order to support MCR capability.

OSPF Command: redistribute (kernel | connected | static | rip | bgp) metric <0-16777214> metric-bandwidth <1-10000000 kbps>
OSPF Command: redistribute (kernel | connected | static | rip | bgp) metric <0-16777214> metric-bandwidth <1-10000000 kbps> metric-type (1 | 2) route-map WORD
OSPF Command: redistribute (kernel | connected | static | rip | bgp) metric <0-16777214> metric-bandwidth <1-10000000 kbps> metric-type (1 | 2) route-map WORD
OSPF Command: redistribute (kernel | connected | static | rip | bgp) metric-type (1 | 2) metric <0-16777214> metric-bandwidth <1-10000000 kbps> route-map WORD
OSPF Command: redistribute (kernel | connected | static | rip | bgp) metric <0-16777214> metric-bandwidth <1-10000000 kbps> route-map WORD
OSPF Command: redistribute (kernel | connected | static | rip | bgp) route-map WORD
OSPF Command: redistribute (kernel | connected | static | rip | bgp) metric <0-16777214> metric-bandwidth <1-10000000 kbps> route-map WORD
OSPF Command: no redistribute (kernel | connected | static | rip | bgp)

OSPF Command: default-information originate metric <0-16777214> metric-bandwidth <1-10000000 kbps> metric-type (1 | 2) route-map WORD
OSPF Command: default-information originate metric <0-16777214> metric-bandwidth <1-10000000 kbps>
OSPF Command: default-information originate metric <0-16777214> metric-bandwidth <1-10000000 kbps>
OSPF Command: default-information originate
OSPF Command: default-information originate metric <0-16777214> metric-bandwidth <1-10000000 kbps> route-map WORD
OSPF Command: default-information originate metric-type (1 | 2) metric <0-16777214> metric-bandwidth <1-10000000 kbps> route-map WORD
OSPF Command: default-information originate metric-type (1 | 2) metric <0-16777214> metric-bandwidth <1-10000000 kbps>
OSPF Command: default-information originate metric-type (1 | 2)
OSPF Command: default-information originate route-map WORD

OSPF Command: default-information originate always metric <0-16777214> metric-bandwidth <1-10000000 kbps> metric-type (1 | 2) route-map WORD
OSPF Command: default-information originate always metric <0-16777214> metric-bandwidth <1-10000000 kbps> metric-type (1 | 2)
OSPF Command: default-information originate always metric <0-16777214> metric-bandwidth <1-10000000 kbps>
OSPF Command: default-information originate always

OSPF Command: no default-information originate

OSPF Command: default-metric <1-16777214> default-bandwidth-metric <1-10000000 kbps>
OSPF Command: no default-metric

Showing OSPF information

The display of the following commands is changed in the terms of the characteristics of the OSPF with MCR extensions.

Command: show ip ospf
Command: show ip ospf interface [INTERFACE]
Command: show ip ospf neighbor
Command: show ip ospf neighbor detail
Command: show ip ospf database
Command: show ip ospf database (asbr-summary | external | network | router | summary | bsummary | basbr)

“bsummary” is used for Type 12 Summary-LSA (the second routing table)
“basbr” is used for Type 13 Summary-LSA (the second routing table)
8. Example

```
hostname debian1_Router
password zebra
! enable password zebra
! interface eth0
    multicast
    description debian1eth0-to-PC59eth1
! interface eth1
    multicast
    description debian1eth1
!
!log file zebra.log
~
```

Router Debian1 configuration files

1) /usr/local/etc/zebra.conf
 !-*- debian1 zebra -*-
 !
 ! zebra sample configuration file
 !
 ! $Id: zebra.conf.sample,v 1.14 1999/02/19 17:26:38 developer Exp $
 !
 hostname debian1_Router
 password zebra
 ! enable password zebra
 interface eth0
 multicast
 description debian1eth0-to-PC59eth1
 interface eth1
 multicast
 description debian1eth1
 !
 !log file zebra.log
 ~

2) /usr/local/etc/ospfd.conf
 !-*- debian1 ospf -*-
 !
! OSPFd sample configuration file
!
hostname debian1_ospfd
password zebra
!enabl password please-set-at-here
!
interface eth0
 ip ospf cost 400
 ip ospf bandwidth 5000
interface eth1
 ip ospf cost 800
 ip ospf bandwidth 3000
router ospf
 router-id 192.168.20.1
 network 192.168.0.0/24 area 1
 network 192.168.20.0/24 area 1
!
log stdout

PC59 Configuration files
1) /usr/local/etc/zebra.conf
 ! -*- zebra -*-
 !
 ! zebra sample configuration file
 !
 ! $Id: zebra.conf.sample,v 1.14 1999/02/19 17:26:38 developer Exp $
 !
 hostname PC59_Router
 password zebra
 !enable password zebra
 interface eth0
 multicast
description My interface
 interface eth1
 multicast
description My interface 2
 !log file zebra.log

2) /usr/local/etc/ospfd.conf
 ! -*- ospf -*-
 !
 ! OSPFd sample configuration file
 !
 hostname PC59_ospfd
password zebra
!enable password please-set-at这里
!
interface eth0
 ip ospf cost 5000
 ip ospf bandwidth 1000
interface eth1
 ip ospf cost 2000
 ip ospf bandwidth 800
router ospf
 ospf router-id 192.168.0.1
 ospf abr-type standard
 network 130.233.154.0/24 area 0
 network 192.168.0.0/24 area 1
 ! area 0 range 130.233.0.0/16 cost 150
 ! area 1 second-range 192.168.0.0/16 cost 1234
 !
log stdout

Debian Configuration files
1) /usr/local/etc/zebra.conf
 ! -*- debian zebra -*-
 !
 ! zebra sample configuration file
 !
 ! $Id: zebra.conf.sample,v 1.14 1999/02/19 17:26:38 developer Exp $
 !
 hostname debian_Router
 password zebra
 ! enable password zebra
 interface eth0
 multicast
 description debian_eth0-to-pc59_eth0
 interface eth1
 multicast
 description debian_eth1
 !
 !log file zebra.log
~

2) /usr/local/etc/ospfd.conf
 ! -*- debian ospf -*-
 !
 ! OSPFd sample configuration file
 !
 hostname debian_ospfd
password zebra
!enable password please-set-at-here
!
interface eth0
 ip ospf cost 300
 ip ospf bandwidth 2000
interface eth1
 ip ospf cost 600
 ip ospf bandwidth 5000
router ospf
 ospf router-id 172.16.1.1
 network 130.233.154.0/24 area 0
 network 172.16.1.0/16 area 0
 redistribute static
 default-information originate metric 300 metric-bandwidth 100000 metric-type 2
!log stdout

Routing tables

- **PC59’ routing table:**

```plaintext
PC59_ospfd# show ip ospf route
------------- OSPF network routing table -------------
N 130.233.154.0/24  [5000] area: 0.0.0.0
directly attached to eth0
N 192.168.0.0/24  [2000] area: 0.0.0.1
directly attached to eth1
N 192.168.1.0/24  [5600] area: 0.0.0.0
  via 130.233.154.36, eth0
N 192.168.20.0/24  [2800] area: 0.0.0.1
  via 192.168.0.2, eth1
------------- OSPF router routing table -------------
R 192.168.1.1  [5000] area: 0.0.0.0, ASBR
  via 130.233.154.36, eth0
------------- OSPF external routing table -------------
N E2 0.0.0.0/0  [5000/300] tag: 0
  via 130.233.154.254, eth0
------------- OSPF BSP network routing table -------------
N 130.233.154.0/24  [9362] area: 0.0.0.0
directly attached to eth0
N 192.168.0.0/24  [13107] area: 0.0.0.1
directly attached to eth1
N 192.168.1.0/24  [11348] area: 0.0.0.0
  via 130.233.154.36, eth0
N 192.168.20.0/24  [16384] area: 0.0.0.1
  via 192.168.0.2, eth1
------------- OSPF BSP router routing table -------------
R 192.168.1.1  [9362] area: 0.0.0.0, ASBR
  via 130.233.154.36, eth0
------------- OSPF BSP external routing table -------------
N E2 0.0.0.0/0  [9362/168] tag: 0
  via 130.233.154.254, eth0
```

- **BSP routing table**

```plaintext

```
Inter-area routes do not exist in the PC59’s SP routing table and BSP routing table because the PC59 is a unique ABR in the test environment.

- **Debian’s routing table**
  ```
debian_ospfd# show ip ospf route

---------- OSPF network routing table ----------
N  130.233.154.0/24  [300] area: 0.0.0.0
directly attached to eth0
N IA 192.168.0.0/24  [2300] area: 0.0.0.0
via 130.233.154.59, eth0
N  192.168.1.0/24  [600] area: 0.0.0.0
directly attached to eth1
N IA 192.168.20.0/24 [3100] area: 0.0.0.0
via 130.233.154.59, eth0

---------- OSPF router routing table ----------
R  192.168.0.1  [300] area: 0.0.0.0, ABR
via 130.233.154.59, eth0

---------- OSPF external routing table ----------
N E2 0.0.0.0/0  [5400/300] tag: 0
via 192.168.0.1, eth0

---------- OSPF BSP network routing table ----------
N IA 130.233.154.0/24 [11348] area: 0.0.0.1
via 192.168.0.1, eth0

---------- OSPF BSP router routing table ----------
R  192.168.0.1  [5041] area: 0.0.0.1, ABR
via 130.233.154.59, eth0

---------- OSPF BSP external routing table ----------
N E2 0.0.0.0/0  [5400/300] tag: 0
via 192.168.0.1, eth0
```

- **Debian1’s routing table**
  ```
debian1_ospfd# show ip ospf route

---------- OSPF network routing table ----------
N IA 130.233.154.0/24  [5400] area: 0.0.0.1
via 192.168.0.1, eth0
N  192.168.0.0/24  [400] area: 0.0.0.1
directly attached to eth0
N IA 192.168.1.0/24 [6000] area: 0.0.0.1
via 192.168.0.1, eth0
N  192.168.20.0/24 [800] area: 0.0.0.1
directly attached to eth1

---------- OSPF router routing table ----------
R  192.168.0.1  [400] area: 0.0.0.1, ABR
via 192.168.0.1, eth0
R  192.168.1.1  IA [5400] area: 0.0.0.1, ASBR
via 192.168.0.1, eth0

---------- OSPF external routing table ----------
N E2 0.0.0.0/0  [5400/300] tag: 0
via 192.168.0.1, eth0

---------- OSPF BSP network routing table ----------
N IA 130.233.154.0/24 [11348] area: 0.0.0.1
via 192.168.0.1, eth0
```

In the Debian’s BSP routing table and SP routing table, there are no external routes because the external routing information is redistributed by the Debian itself.
<table>
<thead>
<tr>
<th>Type</th>
<th>Address</th>
<th>Metric</th>
<th>Area</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>192.168.0.0/24</td>
<td>1986</td>
<td>0.0.0.1</td>
<td>directly attached to eth0</td>
</tr>
<tr>
<td>N IA</td>
<td>192.168.1.0/24</td>
<td>13334</td>
<td>0.0.0.1</td>
<td>via 192.168.0.1, eth0</td>
</tr>
<tr>
<td>N</td>
<td>192.168.20.0/24</td>
<td>3277</td>
<td>0.0.0.1</td>
<td>directly attached to eth1</td>
</tr>
</tbody>
</table>

--- OSPF BSP router routing table ---

<table>
<thead>
<tr>
<th>Type</th>
<th>Address</th>
<th>Metric</th>
<th>Area</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>192.168.0.1</td>
<td>1986</td>
<td>0.0.0.1, ABR</td>
<td>via 192.168.0.1, eth0</td>
</tr>
<tr>
<td>R</td>
<td>192.168.1.1</td>
<td>11348</td>
<td>0.0.0.1, ASBR</td>
<td>via 192.168.0.1, eth0</td>
</tr>
</tbody>
</table>

--- OSPF BSP external routing table ---

<table>
<thead>
<tr>
<th>Type</th>
<th>Address</th>
<th>Metric</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>N E2</td>
<td>0.0.0.0/0</td>
<td>11348/168</td>
<td>0</td>
</tr>
</tbody>
</table>

via 192.168.0.1, eth0