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guarantees in order to function properly. These kinds of applications include for instance IP telephony,
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of Service routing is a routing scheme that considers the quality of service requirements of a flow when

making routing decisions. As opposed to traditional shortest path routing, which only considers the hop

count, QoS routing is designed to find feasible paths that satisfy multiple constraints.

This thesis is a survey on QoS routing. It presents the most important problems in QoS routing concerning

path selection algorithms, cost of QoS routing, and different approaches. Routing problems for cases with

one or two metric are formalized as optimization problems, and solutions algorithms are presented. For the

most complex problems heuristic approximation algorithms and their evaluations found in literature are
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consists of a simple Markov-model to study the effects of a bandwidth reservation scheme that sets aside

some portion of a link’s bandwidth for low priority traffic only, in order to prevent the starvation.
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Tähän asti Internet on tarjonnut vain best effort -palvelua. Kaikki liikenne käsitellään niin nopeasti kuin

mahdollista, eikä minkään tyyppiselle liikeneteelle anneta etusijaa muihin nähden. Nykyisin yhä useampi

sovellus, kuten IP puhelin tai videoneuvottelu, tarvitsee kuitenkin takuita palvelutasosta toimiakseen kun-

nolla.

Sellaisten polkujen löytäminen, jotka pystyvät täyttämään vaaditut palvelunlaatu-ehdot liikennevoille, on

tärkeä osa palvenlaatua. Nykyisessä Internetissä reititysprotokollat reitittävät liikenteen aina lyhimmälle

polulle. Tämä saattaa aiheuttaa ongelmia voille, joilla on palvelunlaatuvaatimuksia, joita lyhin polku ei

pysty tukemaan. Palvelunlaatureititys sen sijaan ottaa huomioon palvelunlaatuvaatimukset reitityspäätök-

sissään. Se pystyy myös löytämään useamman ehdon täyttäviä polkuja, toisin kuin perinteinen lyhimmän

polun reititys.

Tämä dimplomityö on kirjallisuuskatsaus palvelunlaatureityksestä. Se esittelee alueen tärkeimmät ongel-

mat polun valintaan, kustannuksiin ja eri lähestymistapoihin liittyen. Yhden ja kahden metriikan rei-

titysongelmat ja niiden ratkaisualgoritmit esitellään. Kompleksisimmille ongelmille käydään läpi kir-

jallisuudessa esitettyjä heuristisia algoritmeja sekä niiden arviointeja. Tarkemmin keskitytään tärkeään

erikoistapaukseen, jossa metriikkana käytetään polun pituutta ja vapaata kaistanleveyttä. Palvelunlaaturei-

tityksen kustannuksia, ja niihin vaikuttavia tekijöitä, arvioivia simulointi- ja implementaatiotutkimuksia

tarkastellaan, kuten myös eri algortimiluokkia, linkkitila informaatiota ja polun laskennan ajoitusta.

Palvelunlaatuvaatimukset täyttävän polkujen valitseminen saattaa aiheuttaa liikenneluokkien välisiä

vaikutuksia. Tällaiset inter-class effect -nimellä kutsutut vaikutukset saattavat johtaa alemman priori-

teetin liikenteen ruuhkautumiseen tai täydelliseen estymiseen. Tekijän oma osuus käsittelee yksinkertaista

Markov-mallia, jolla tutkitaan sellaisen kaistanvarausmallin vaikutusta, joka varaa tietyn osan kaistan-

leveydestä yksinomaan alemman luokan liikenteen käyttöön.
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Chapter 1

Introduction

1.1 Background

So far the Internet has offered only best effort service. All traffic is processed as

quickly as possible and no preferences are given to any type of traffic. Today there

are more and more applications that need service guarantees in order to function

properly. These kinds of applications include for instance IP telephony, video-

conference applications or video on-demand services. Even though there has been

some debate whether bandwidth will come so cheap in the future that there would

be no need to these kinds of guarantees, it is reasonable to assume that no mat-

ter how abundant bandwidth will come, new applications are going to emerge that

will consume it [50]. So some kind of system is needed to provide these kinds of

guarantees.

1.2 Quality of Service

Quality of Service, or QoS, covers several mechanisms that were designed to sup-

port flows that require some performance guarantees.

Integrated Services,or IntServ, was the first effort to provide QoS in the Internet.

According to [22], the steps to end-to-end QoS support over the Internet are

1



Chapter 1. Introduction

as follows

1. Define the service class a packet should receive at each switch.

2. Allocate to each class a certain amount of resources.

3. Sort the incoming packets to their respective classes.

4. Control the amount of traffic admitted for each class.

5. Apply the four steps above to each and every switch, or at least all bot-

tleneck routers.

This was the definition for the IntServ, which proposed two other service

classes in addition to best effort service: Guaranteed Service and Controlled

Load Service. A signalling protocol RSVP [11] is used for reserving re-

sources. However, there were concerns about IntServ’s complexity and scal-

ability. Also for IntServ to work all the routers in a path must support it.

Otherwise end-to-end guarantees cannot be provided. This meant that no

transition period was possible but all the routers should have been switched

to supporting IntServ at the same time. All these reasons made adopting

IntServ difficult and it was never really adopted.

Differentiated Services, or DiffServ, dropped the last two items of the IntServ re-

quirements, and concentrated on the first three. It separates the two sides of

IntServ, providing forwarding on per-hop behavior (PHB) basis with queue

management and queue service disciplines, but leaves the admission control

and end-to-end concerns outside its scope. Other mechanisms working to-

gether with DiffServ can be used to provide them. DiffServ is actually more a

building block than a complete solution for providing Quality of Service [22].

But it does solve the scalability concerns of IntServ.

MPLS or multiprotocol label switching [41] is a forwarding scheme where packets

are routed based on a short label which makes forwarding faster than when

dealing with IP addresses, and allows policy routing within a MPLS-capable

domain. MPLS can be used together with differentiated services to provide

QoS.

QoS routing is a routing scheme that takes into consideration the available band-

width and other relevant information about each link, and based on that infor-

2



Chapter 1. Introduction

mation selects paths that satisfy the quality of service requirements of a traffic

flow.

An overview of mechanisms used to provide Quality of Service in the Internet can

be found in [50].

1.3 Purpose and scope of the thesis

This thesis is a survey on QoS routing. It presents the most important problems in

QoS routing concerning both path selection algorithms and cost of a QoS routing

protocol. The problems and different strategies and approaches are presented in a

systematic way to give an overview of the issues involved. The thesis discusses so-

lutions and tools for solving the problems, reviews simulation and implementation

study results, and draws conclusions from those results.

1.4 Structure of the thesis

The structure of the rest of the thesis is as follows: Chapter 2 introduces QoS rout-

ing, its objectives and the position of QoS routing compared to other quality of

service concepts.

Chapter 3 discusses the QoS algorithms that select the paths for traffic requests

based on their requirements, or constraints. First the metrics used are introduced.

The chapter then presents the different routing problems with one or several met-

rics. For the most complex problems, heuristic algorithms are discussed. The most

common situation, where available bandwidth and hop count are used as metrics, is

considered in detail, and an important special case of end-to-end delay constraints

is also discussed.

Chapter 4 concentrates on the different approaches, other than just the path selection

algorithms, used in QoS routing. Routing algorithms are divided into classes, based

on whether the entire path is explicitly computed in the source node or the compu-

tation is distributed so that each node computes the next hop. Also the computation

3



Chapter 1. Introduction

can be handled either by periodically pre-computing all paths, so that when a request

arrives, the path is already computed, or the path can be computed on-demand for

each request as they arrive. Finally the chapter introduces the extended role of link

state information and its distribution in QoS routing.

Chapter 5 introduces the QoS routing protocol Quality of service extensions for

OSPF protocol, or QOSPF. This protocol is being standardized by IETF, and is a

likely candidate for first implementation of a QoS routing scheme.

While using QoS routing improves the quality of service in the network, it also

introduces problems that are different from those in best effort routing. Chapter

6 discusses these problems. In best effort routing the link state information about

the topology does not change rapidly, while in QoS routing quantities like available

bandwidth can change dramatically between link state updates. This leads to a

situation where routing choices are made under inaccurate information. The impact

that using QoS routing to give guaranteed service to portion of traffic has on lower

priority traffic is also studied.

Chapter 7 surveys various simulation results. The cost of QoS routing, and the

factors contributing to the cost, are discussed. Also the performance of routing

algorithms and heuristic algorithms presented in chapter 3 is evaluated.

Chapter 8 includes the own contributions. First, the impact of QoS guaranteed

traffic on lower priority traffic is studied. One technique to prevent the starvation of

lower priority traffic is resource reservation. Chapter 8 formulates a Markov-model

to study the effects that a resource reservation scheme would have on blocking

probability of guaranteed traffic and available bandwidth for lower priority traffic.

Second, theebsprouting algorithm performs well in simulation studies, but has

some irregular properties. This is shown by an example.

Finally, chapter 9 summarizes the thesis and discusses possible directions of further

work.

4



Chapter 2

QoS routing

2.1 Introduction

OSPF and other dynamic routing protocols always forward packets to the shortest

path. This can cause problems for flows with a need for QoS guarantees if the

shortest path does not have enough resources to meet the requirements. IntServ is

supposed to reserve resources for the flow, but cannot make the reservation if there

are not sufficient resources along the path to begin with. DiffServ is also better

utilized if the path with the best chance to provide the required service is somehow

found. The missing piece in the framework therefore seems to be a mechanism that

can find a path, if one exists, which has the requested resources available. Only then

it is possible to utilize DiffServ or IntServ techniques efficiently.

QoS routing is a routing scheme that considers the quality of service requirements

of a flow when making routing decisions. As opposed to traditional shortest path

routing, which only considers the hop count, QoS routing is designed to find feasible

paths that satisfy multiple constraints. QoS routing is a routing scheme, under which

”paths for flows would be determined based on some knowledge of

resource availability in the network as well as the QoS requirements of

the flow.” Crawley et al.[17]

This chapter first introduces the concepts of traffic engineering and constraint-based

5



Chapter 2. QoS routing

routing. Then the objectives of QoS routing are presented. The rest of the chapter

discusses QoS routing’s position in the QoS framework relative to other QoS related

mechanisms.

2.2 Traffic engineering and constraint-based routing

Shortest path routing leads to uneven traffic distribution. This can cause congestion

in some parts of the network even if traffic load is not particularly heavy. While QoS

schemes try to provide better service under congestion for flows with QoS require-

ments, it would be even more desirable to avoid these situations altogether. Traffic

engineering is the process of arranging how traffic flows through the network, so

that congestion caused by uneven network utilization can be avoided [50].

Constraint-based routing evolves from QoS routing. Although the terms are some-

times used almost interchangeably, constraint-based routing is actually a more gen-

eral term, which combines QoS routing and policy routing. It extends the QoS

routing scheme by considering, in addition to QoS requirements, other constraints

such as network policies and also utilization of the network to prevent situations of

uneven load.

2.3 QoS routing objectives

QoS routing uses information about network state and resource availability as well

as the QoS requirements of the flow to make routing decisions. The objectives are

threefold [17]:

Dynamic determination of feasible paths.That is, to find a feasible path for the

flow in question that can accommodate or at least has a good chance of ac-

commodating the QoS requirements of the flow.

Optimization of resource usage.QoS-based routing can be used to help balancing

the load of the network by efficient utilization of resources, and thus improv-

ing the total throughput of the network

6
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Graceful performance degradation. In overload situations QoS routing should

be able to provide better throughput in the network than best effort routing or

any state-insensitive routing scheme, and more graceful performance degra-

dation.

2.4 QoS routing’s position in the QoS framework

This section discusses the relationships between the QoS routing and other QoS

related mechanisms. The discussion follows similar sections in [50] and [43]. The

relative position of the different components in QoS framework is shown in table

2.1.

Application Layer

Transport Layer

Link Layer

Network Layer

IntServ/RSVP , DiffServ

Constraint Based Routing

MPLS

Table 2.1: The relative position of the components in the QoS framework [50].

2.4.1 DiffServ and QoS routing

Originally, the DiffServ scheme is intentionally decoupled from IP routing, so all

traffic between a source-destination pair may follow the same path no matter which

service class it belongs to, and DiffServ itself has no effect on routing decisions

[47]. This means the DiffServ domain is vulnerable to congestion.

For instance, aggregation of premium traffic in the core of the network could cause

congestion. This is not a problem when traffic from boundary routers aggregate to

7



Chapter 2. QoS routing

a core router, since the link from the core router to the next core router is faster than

the links from the boundary routers. If, however, among the core routers traffic is

routed so that it aggregates into one router, the link to which that router forwards

the traffic may not be fast enough. This problem cannot be solved by DiffServ. QoS

routing could be used to avoid this kind of a situation. Within a DiffServ domain

QoS routing is used for finding paths that are able to accommodate the flows and

prevent congestion.

Another possible problem situation happens if premium traffic is not routed opti-

mally considering lower priority traffic. Due to high priority of premium traffic,

this could lead to some problems for the low-priority traffic when the volume of

premium class traffic is high [47]. QoS routing schemes could be used for balanc-

ing the load in the DiffServ domain, so that not just premium traffic but also lower

class traffic gets better service. Specific routing algorithms have been proposed

to route high priority traffic in a way that also considers the performance of other

traffic classes.

2.4.2 MPLS and QoS routing

Since MPLS is a forwarding scheme and QoS routing is a routing scheme, they can

be used together for traffic engineering purposes. In fact, MPLS can provide more

accurate information about traffic loads in the domain than traditional IP routing,

thus enabling QoS routing to compute better routes for setting up the label switched

paths. Furthermore it is relatively easy to integrate a QoS routing framework with

MPLS [10]. Constraint-based routing is among the three most significant problem

areas in MPLS resource optimization, along with traffic partitioning and restoration

[9].

An MPLS traffic trunk is an aggregate of flows that belong to the same class, for

example all the traffic between specific ingress and egress routers. Traffic trunks

are routable objects [10]. The aim of QoS routing in the MPLS network is to route

the traffic trunks along the network in a way that satisfies the given constraints,

and establish a more balanced traffic load distribution. It is also possible to reroute

existing label switched paths to prevent congestion [9].

8



Chapter 2. QoS routing

Based on information about the traffic trunks, network topology and resources, QoS

routing computes explicit routes for each traffic trunk. The explicit route in this case

is a specification of a label switched path, LSP, satisfying the requirements of the

traffic trunk [10]. Given the routes, MPLS sets up the LSP’s using its label distri-

bution protocol. It makes no difference to MPLS whether the routes are computed

by QoS routing or traditional dynamic routing, where paths are selected based on

some dynamic criteria, available bandwidth perhaps, but QoS requirements of the

flows are not considered.

The problem of routing the traffic trunks is generally NP-complete [9], so heuristic

path selection algorithms have been proposed, such as the Minimum Interference

Routing Algorithm (MIRA) by Kar et al. [26].

2.4.3 QoS routing with resource reservation

Resource reservation and QoS routing are independent mechanisms but comple-

ment each other well. QoS routing can find feasible paths for flows that need QoS

guarantees but cannot ensure that the path will remain feasible for the duration of the

flow. Resource reservation protocols can be used to allocate the required resources

along the selected path.

RSVP

The protocol most often suggested in papers concerning QoS routing and resource

reservation is RSVP. It is receiver oriented, which means that the receiver of the

data flow is responsible for initiation of resource reservation. When the source node

initiates a flow, it sends a PATH message to the destination node identifying the

characteristics of the flow for which resources are requested. Intermediate nodes

forward the PATH message according to routing protocol in question. After receiv-

ing the PATH message, the destination node sends back a RESV message to do the

actual reservation. Intermediate nodes decide separately whether they can accom-

modate the request. If any of them rejects the reservation, an error message is sent

to the receiver.

9
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If the reservation is successful, necessary bandwidth and buffer space is allocated.

After the connection and reservation is established the source periodically sends

PATH messages to establish or update the path state, and the receiver periodically

sends RESV message to establish or update the reservation state. Without update

messages the reservation times out. This is calledSoft-State.

When RSVP is used together with QoS routing, the PATH messages are routed

using QoS routing. The RESV messages and the actual reservation on resources is

not affected by the routing protocol. Due to the more dynamic nature of QoS path

selection criteria, better routes can emerge more easily than in shortest path routing.

That is, available bandwidth or other metrics can change rapidly, so that the current

selected path is no longer the one with the best capabilities to accommodate the

flow. Such sudden changes rarely happen in shortest path routing, since network

topology usually stays more or less the same.

If QoS routing queries new routes, it may lead to a situation where the path is

constantly changing and the reservation has to be made again and again for the new

path. To avoid these kinds of oscillations between paths, it can be specified that the

current path is not changed for a better one as long as it remains feasible. The path

is calledpinnedif it is specified in the RSVP protocol that QoS routing need not to

be queried anew, otherwise the path is calledunpinned. In the latter case the path is

to be abandoned in favor of a better path, should one emerge [19].

The path pinning uses the RSVP Soft-State mechanism, so a pinned path has to be

established periodically. When a path is pinned the periodical PATH messages are

routed along the pinned path. The pinning ensures that whenever RSVP queries

QoS routing for the same flow, it returns the pinned path instead of QoS routing

computing the current best path [21].

Paths get pinned during processing of PATH messages. They get unpinned when

• A time-out occurs or a PATHTEAR message is sent.

• The parameters of the PATH message change.

• A failure is detected or an error message is received.

Some modifications have to be made to the existing RSVP processing rules. These

10
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are discussed in [19].

2.4.4 QoS routing with admission control

One of the goals for QoS routing is better network utilization. This is somewhat

contradicted by the primary goal of finding alternate paths that can accommodate

the QoS requirements of a flow. Under heavy traffic load the only paths able to

provide the requested QoS guarantees may be so much longer than the shortest

path, that when traffic is routed along the alternate path, a flow’s contribution to the

congestion of the network leads to more flows to be blocked in future. This calls for

the use ofhigher level admission control[4] to ensure that the path selected does

not use so much of the network’s resources that the total throughput declines.

For each link the following fraction is calculated, when there is an attempt for reser-

vation:
bavailable
i − brequested

bcapacity
i

.

Herebavailable
i is the available bandwidth on the linki where the resources are at-

tempted to be reserved,brequested is the bandwidth requirement of the flow and

bcapacity
i is the total capacity of linki. The reservation is allowed only if this frac-

tion, representing the available bandwidth on the link if the reservation is accepted,

is larger than a predetermined trunk reservation, or bandwidth reservation, level [4].

The longer the path used, the higher the bandwidth reservation level. For example

the authors in [4] use a value of 5% for paths one hop longer than the shortest path,

10% for paths two hops longer, and 20% for paths more than two hops longer.
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Routing algorithms

3.1 Introduction

This chapter discusses the QoS routing problem and algorithms used to solve them.

Routing problems using one or two metrics are presented, and their complexity is

discussed. The chapter presents solutions for simple problems and heuristic ap-

proaches for the more complex ones. The solutions are based on the shortest path

algorithms, namely Dijkstra’s algorithms and the Bellman-Ford algorithm, which

are presented in appendix A. Section 3.6 discusses the most common situation,

where bandwidth and hop count are the metrics. Finally, section 3.7 presents a

special case of end-to-end delay constraint. It has a single metric, which is a com-

plicated function of several elements.

3.2 Notation

The network can be modelled as a graphG(N,A) whereN(G) is the set of nodes

in the graph, andA(G) is the set of arcs that represent the links of the network. Let

n andm denote the number of nodes and links in the network respectively.

Link a ∈ A from nodeu to nodev is noted by(u, v). Each linka ∈ A has a weight

wi(a) for all the metricsi. Let w(u, v) be a weight corresponding to link(u, v) on
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pathP = (u1, u2, u3, . . . , ul), and letw(P ) be the weight for the whole path.

3.3 Metrics

In order to find a feasible path that satisfies the quality of service requirements

of a flow, there has to be some suitable metrics for measuring the requirements.

The metrics have to be selected so that the requirements can be presented by one

metric or a reasonable combination of them. As the metrics define the types of

QoS guarantees the network is able to support, no requirement can be supported if

it cannot be mapped onto a combination of the selected metrics [17]. The metrics

commonly used on QoS routing and constraint-based routing are divided into three

categories, also called the composition rules of the metrics [46].

The metric is

Additive if w(P ) = w(u1, u2) + w(u2, u3) + . . . + w(ul−1, ul)

Multiplicative if w(P ) = w(u1, u2) · w(u2, u3) · . . . · w(ul−1, ul)

Concave if w(P ) = min(w(u1, u2), w(u2, u3), . . . , w(ul−1, ul)).

Additive metrics include delay, delay jitter, cost and hop count. Reliability, defined

as(1−loss rate), is multiplicative while bandwidth, by far the most used metric, is

concave. Multiplicative metrics can be handled as additive metrics by substituting

the link weightswi and constraintC by their logarithmslog wi andlog C.

3.4 Routing problems

3.4.1 Single metric routing problems

In the simplest case the QoS requirements of a flow are well presented by one of the

metrics presented in section 3.3. The problem is either an optimization problem,

or a constraint problem. The metrics are divided into path-constrained and link-

constrained metrics. Concave metrics are link-constrained, because the metric for a
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path depends on the bottleneck link’s value. Additive and multiplicative metrics are

path-constrained, because the metric for a path depends on all the values along the

path. The four single metric problems are as follows:

Problem 1 (link-optimization routing) Given a networkG(N,A) and a single

concave metricw(a) for each linka ∈ A, find the pathP from source nodes to

destination nodet that maximizesw(P ).

The link-optimization routing problem can be solved by a modified Dijkstra’s algo-

rithm or Bellman-Ford algorithm [16]. Dijkstra’s algorithmth (see Appendix A) is

modified by just changing the criteria which selects the next node added to setM ,

so that the next node to be added is the node that is connected to setM with largest

bandwidth, as in standard Dijkstra’s algorithm the next node was selected based on

the cumulative cost function.

For instance finding the path with most available bandwidth is a link-optimization

problem. Bandwidth’s concave nature as a metric makes it a bottleneck optimiza-

tion, and thus link-optimization problem.

Problem 2 (link-constrained routing) Given a networkG(N, A), a single con-

cave metricw(a) for each linka ∈ A and a requested constraintC, find a pathP

from source nodes to destination nodet such thatw(P ) ≥ C.

The link-constrained routing problem can be reduced to the link-optimization rout-

ing problem by finding the optimal path and checking whether the constraint is met.

Another approach is to prune the topology by deleting links with bandwidth less

thanC, and then find the shortest path in the pruned topology. So, link-constrained

routing finds a path that satisfies, but does not necessarily optimize, the required

quality of service for a link constrained metric. An example is finding a path with

required bandwidth.

Problem 3 (path-optimization routing) Given a networkG(N, A) and a single

additive metricw(a) for each linka ∈ A, find the pathP from source nodes to

destination nodet that minimizesw(P ).
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The path-optimization routing problem can be directly solved by Dijkstra’s algo-

rithm or Bellman-Ford algorithm [16]. Path-optimization routing finds the optimal

path for a path-constrained metric. A typical problem could be finding the path with

the least number of hops, the least total cost or the smallest delay, all of which are

path-constrained metrics because they are additive.

Problem 4 (path-constrained routing) Given a networkG(N,A), a single addi-

tive metricw(a) for each linka ∈ A and a requested constraintC, find a pathP

from source nodes to destination nodet such thatw(P ) ≤ C.

The path-constraint routing problem can be directly solved by Dijkstra’s algorithm

or the Bellman-Ford algorithm [16]. Path-constrained routing finds a path with, for

example, the delay or cost below a requested level.

All four of the above problems are of polynomial complexity. See Appendix B.

3.4.2 Routing problems with several metrics

Often some combination of metrics is needed to describe the required service. How-

ever, several of the combinations are computationally so complex that they are im-

practical to use. Any combination of two or more metrics that are either additive or

multiplicative is NP-complete [18]. The only combinations that allow path compu-

tation with polynomial complexity are those that have a concave metric like band-

width together with one other metric, most often the delay or hop count.

Some efforts have been made to simplify the situation. In [46], Wang and Crowcroft

propose a single mixed metric that would combine all the desirable metrics to an

expression used as the single metric. They conclude that it can be used only as an

indicator, since it does not contain all the information needed to decide whether a

path can meet the QoS requirements. However, bandwidth could be used as a single

metric on some occasions. While a connection may have several QoS requirements,

it turns out that these translate mainly into bandwidth requirements [40]. Guerin et

al. propose an equation for mapping delay constraints onto bandwidth constraints

[21].
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Table 3.1 shows the composite problems with two metrics derived from the four

single metric problems described. Double optimization problems are omitted as

not reasonable. Of course, double optimizations could be done sequentially, but

that would correspond to reducing the composite problems into two single metric

problems, where the second optimization would be used only if there are more than

one optimal path with regard to the first optimization. This approach is used in

algorithms likewsp andswp, which are presented in section 3.6.

Link-constraint

Path-optimization

Path-constraint

Link-optimization Link-constraint Path-optimization Path-constraint

polynomial polynomial

polynomial polynomial polynomial

NP-complete

NP-complete

-

-

Link-optimization -

Table 3.1: Computational complexity of metric combinations

Pruning

An important technique in solving the composite problems is pruning the network.

In the case of link constraints, the value of the metric on the path is always the same

as on the link having the worst value. Hence, a link that does not have the requested

resources, available bandwidth for example, is not feasible. These links are deleted

from the topology. This will guarantee that any path found on the pruned topology

satisfies the link constraint in question.

Composite routing problems

Composite Problem 5 (link-constrained link-optimization routing) Given a

networkG(N, A), concave metricswi(a), i = 1, 2, for each linka ∈ A and a

requested constraintC1, find the pathP from source nodes to destination nodet

that maximizesw2(P ), whilew1(P ) ≥ C1.
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The link-constrained link-optimization routing problem can be reduced to problem

1, the link-optimization routing problem, by first pruning the network, deleting all

the links for which the constraintw1(P ) ≥ C1 does not hold. The pruning opera-

tion’s complexity is proportional tom, the amount of links in the network, so the

link-constrained link-optimization problem is of polynomial complexity.

Composite Problem 6 (multi-link-constrained routing) Given a network

G(N,A), concave metricswi(a), i = 1, 2, for each linka ∈ A and requested

constraintsCi, i = 1, 2, find a pathP from source nodes to destination nodet

such thatwi(P ) ≥ Ci for all i.

As problem 5 was reduced to problem 1 by pruning the network, similarly the multi-

link-constrained problem can be reduced to problem 2, the link-constrained routing

problem.

Composite Problem 7 (link-constrained path-optimization routing) Given a

networkG(N, A), metricswi(a), i = 1, 2, of whichw1 is concave, for each link

a ∈ A and a requested constraintC1, find the pathP from source nodes to

destination nodet that minimizesw2(P ), whilew1(P ) ≥ C1.

The link-constrained path optimization routing problem can be reduced by pruning

to problem 3, the path-optimization routing problem.

Composite Problem 8 (link-constrained path-constrained routing)Given a

networkG(N, A), metricswi(a), i = 1, 2, of whichw1 is concave, for each link

a ∈ A and requested constraintsCi, i = 1, 2, find a pathP from source nodes to

destination nodet, such thatw1(P ) ≥ C1 andw2(P ) ≤ C2.

The link-constrained path constrained routing problem can be reduced by pruning

to problem 4, the path-constrained routing problem.

The four composite problems above are easily solved because one of the metrics is

link-constrained. Pruning the network by disregarding all the links with insufficient

values takes care of the constraint, and reduces the composite problem to a single
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metric problem on a subset graph. As shown in table 3.1, besides the four link-

constraint based composite problems there is one additional composite problem

solvable in polynomial time.

Composite Problem 9 (link-optimization path-constrained routing) Given a

networkG(N, A), metricswi(a), i = 1, 2, of whichw1 is concave, for each link

a ∈ A, and a requested constraintC2, find the pathP from source nodes to

destination nodet that maximizesw1(P ), whilew2(P ) ≤ C2.

This problem is solvable in polynomial time by a modified shortest path algorithm

[16]. In the network, there arem links, which all have some value for the link-

optimization metric. LetK denote the number of different values for the metric.

ClearlyK ≤ m, because some links may have identical values. These values can

be used as artificial lower limitsC1
1 , C

2
1 , . . . , C

K
1 for the link constrained metric to

be optimized. This reduces the problem to several link-constrained path-constrained

routing problems, problem 8 above. Starting from the largest valueCK
1 and pruning

the network by deleting all linksa for which w1(a) < CK
1 , the optimal pathP is

the first feasible path found such thatw2(P ) ≤ C2.

If the link constrained metricw1 is bandwidth, this means that first all links but

those with the highest available bandwidthCK
1 are deleted. If a path satisfying the

path constraint can be found in this pruned topology, it is the one with maximal

bandwidth. If such path is not found, the links with bandwidthCK−1
1 are added to

the topology, and the search is repeated. If no feasible path is found, the links with

bandwidthCK−2
1 are added to the topology. This is continued until a feasible path

is found, or all the links are added to the topology and still there is no feasible path,

in which case one does not exist.

This problem is more complex than composition problems 5 through 8, but still

solvable in polynomial time.

The remaining two composite problems are multi-path-constrained routing prob-

lem (MCP), and path-constrained path-optimization routing problem or multi-

constrained optimization problem (MCOP). The metrics in these problems are not

concave, so the problems are NP-complete. They cannot be solved in polynomial

time, and thus heuristic approaches are needed if these metric combinations are to
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be used.

Composite Problem 10 (multi-path-constrained routing) Given a network

G(N,A), additive metricswi(a), i = 1, 2, for each linka ∈ A, and requested

constraintsCi, i = 1, 2, find a pathP from source nodes to destination nodet

such thatwi(P ) ≤ Ci for all i.

The multi-path-constrained routing problem (MCP) is NP-complete. See [46] for

proof.

The proof given in [46] starts from the fact thatPartition is a well known NP-

complete problem, and shows that Partition∝ Additive Metrics Problem, to prove

the NP-completeness of the latter. More intuitively, it can be seen that all the poly-

nomial problems above were, one way or another, reduced to single metric prob-

lems in order to solve them by shortest path algorithms. This was achieved by,

for example, pruning the network of links with insufficient capacity, to account for

a link-constraint. Here both metrics are path constrained, so that kind of simple

pruning is not possible. Thus the problem is not solvable in polynomial time.

Composite Problem 11 (path-constrained path-optimization routing)Given a

networkG(N,A), additive metricswi(a), i = 1, 2, for each linka ∈ A and a

requested constraintC1 for the metricw1, find the pathP from source nodes to

destination nodet, that minimizesw2(P ) whilew1(P ) ≤ C1.

The path-constrained path-optimization problem is NP-complete [46]. The Multi-

constrained optimization problem, MCOP, is sometimes used as a synonym for the

path-constrained path-optimization routing, but could also be understood as a multi-

constrained problem with a cost function, that may, or may not be one of the path-

constrained metrics.

The above reasoning is based on the assumption that the metrics are independent of

each other. This is not, however, necessarily true. In certain networks using rate-

proportional scheduling algorithms, specifically WFQ-scheduling, the delay/delay-

jitter problem can be solved in polynomial time by the Bellman-Ford algorithm

[34]. This is based on the fact that in such an environment hop count is the only
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parameter that determines if the delay-jitter constraint can be met. So the problem

can be solved by solving for the delay constraint and restricting the hop count so

that the jitter requirement is also met. Also, if all the metrics except one are allowed

to take only bounded integer values, then the problem is solvable in polynomial

time [16]. For instance hop count by nature is a metric that is integer-valued and

bounded by the diameter of the graph.

3.5 Heuristic approaches for the NP-complete com-

posite problems

As said in section 3.4.2, the computational complexity for composite problems

MCP and MCOP, problems 10 and 11, is NP-complete. To get solutions for these

problems, polynomial time heuristic approximations are needed. The problem is

simplified to a problem that is solvable by a shortest path algorithm.

w (P)1

w (P)2

C 1

C 2

Figure 3.1: Multi-path-constrained routing problem. The feasible area,wi(P ) ≤ Ci

for eachi, is represented by the rectangle in the bottom left corner. The black dots

represent the paths.

To illustrate the situation, consider figure 3.1. Each pathP has some values for

every metricwi(P ). The figure shows the situation with two constraints. The paths

are plotted on the graph according to the values of metrics.
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The following sections review some of the proposed polynomial time heuristic ap-

proximations, following similar presentation in [29]. A simulations study of these

algorithms is reviewed in chapter 7. The algorithms that are for the optimization

problem MCOP can easily solve also the MCP problem by just checking if the op-

timal path is feasible with regard to the given constraints.

Chen and Nahrstedt’s algorithm

In [15] Chen and Nahrstedt propose the following technique for the MCP problem,

where the values of the second metric are limited to bounded integer values, and the

problem is thus solvable in polynomial time. Replace the link weightw2 with a new

weight function

w′
2(u, v) =

⌈
w2(u, v) · x

C2

⌉
(3.1)

and reduce the original problemMCP (G, s, t, w1, w2, C1, C2) to a simpler problem

MCP (G, s, t, w1, w
′
2, C1, x), wherex is some predetermined integer. Problem 10

is then

Heuristic approach 1 (Chen and Nahrstedt approximation) Given a network

G(N,A), metricsw1(a) and w′
2(a) for each link a ∈ A, and requested con-

straintsC1 andx, find a pathP from source nodes to destination nodet, so that

w1(P ) ≤ C1 andw′
2(P ) ≤ x.

Chen and Nahrstedt propose extensions to Dijkstra’s algorithm and the Bellman-

Ford algorithm to solve the problem.

Proposition 1 A solution for the heuristic approximation problem is also a solution

for the original problem.

Proof: From equation 3.1 it follows that

w′
2(u, v) ≥ w2(u, v) · x

C2

.
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Thus,

w2(u, v) ≤ w′
2(u, v) · C2

x
.

Using that and the fact that since pathP is a solution for the simplified problem, the

equation

w′
2(P ) ≤ x (3.2)

must hold, it is easy to show thatP is also a solution for the original problem.

w2(P ) =
∑

(u,v)∈P

w2(u, v) ≤ ∑

(u,v)∈P

w′
2(u, v) · C2

x

=
C2

x
· ∑

(u,v)∈P

w′
2(u, v) =

C2

x
· w′

2(P ) ≤ =
C2

x
· x = C2

Sow2(P ) ≤ C2. 2

A solution for the original problem is not necessary a solution for the simplified

problem. The rounding in (3.1) makes (3.2) stricter than the original condition. For

example, if a pathP with three hops includes links with weights4, 5 and6, it is

a solution for the original problem whenC2 = 15. Selectingx = 5, (3.1) yields

the new weights2, 2 and2. Summing these we get the path weightw′(P ) = 6 and

w′(P ) ≤ x does not hold. If pathP , with lengthl(P ) is a solution for the original

problem, a sufficient condition for it to also be a solution for the simplified problem

is

wi(P ) ≤ (1− l(P )− 1

x
) · Ci. (3.3)

This means that the path needs to be overqualified by a coefficient depending on its

lengthl(P ) and the value ofx. Condition 3.3 is sufficient but not necessary. Had the

weights in the example above been6, 6 and3, the new weights would be2, 2 and1

respectively, and the conditionw′(P ) ≤ x holds, although (3.3) does not hold.

The heuristic approach can be applied for either metric, so if there is no solu-

tion for the simplified problemMCP (G, s, t, w1, w
′
2, C1, x), the other problem

MCP (G, s, t, w′
1, w2, x, C2) should be tried next. So if an solution for the origi-

nal problem exists and (3.3) holds for one of the metrics, the solution is found by

the heuristic approach.
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Jaffe’s algorithm

Jaffe [25] proposes a non-linear path length function

f(P ) = max {w1(P ), C1}+ max {w2(P ), C2}, (3.4)

whose minimization guarantees to solve the MCP problem by finding a feasible

path, if one exists. This is not, however, solvable by a shortest path algorithm, since

the length function is non-linear [29]. So he presents an approximation algorithm,

that uses a linear combination of the weights:

w(u, v) = d1 · w1(u, v) + d2 · w2(u, v). (3.5)

The problem with the combined weight as a metric is solvable by a shortest path

algorithm. Then the solution is checked for the constraints.

Heuristic approach 2 (Jaffe’s approximation) Given a networkG(N,A), met-

rics wi(a), i = 1, 2, for each linka ∈ A, and requested constraintsCi and positive

integersdi, i = 1, 2, calculate a new weight functionw(u, v) = d1 · w1(u, v) + d2 ·
w2(u, v) and find the pathP from source nodes to destination nodet that minimizes

w(P ). Check if the solution pathP satisfies the constraintswi ≤ Ci for eachi.

w (P)1

w (P)2

C 1

C 2

w (P)1

w (P)2

C 1

C 2

Figure 3.2: Jaffe’s algorithms’s equivalence lines. The feasible solution could be

found with only specific values ofdi.

Figure 3.2 shows the equivalence curves of the combined weight function. Even

if a feasible solution exists, the algorithm might not found it, as is the case in the
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right. If the solution that the algorithm finds is not feasible, it may be possible, by

changing the values ofdi, to find the feasible solution. But because of the linear

equivalence curves, a situation where a feasible solution exists, but is not found

with any values ofdi, can occur.

Tunable Accuracy Multiple Constraints Routing Algorithm

The TAMCRA algorithm [38], for the MCP problem, uses, instead of the linear

combination weight, a non-linear function that leads to curved equivalence lines.

The combined path weight is

w(P ) =

([
w1(P )

C1

]q

+
[
w2(P )

C2

]q
) 1

q

. (3.6)

Whenq →∞, equation 3.6 becomes

w(P ) = max
i

(
wi(P )

Ci

)
, (3.7)

which guarantees that all the constraints are met ifw(P ) ≤ 1. Even finite size

w (P)1

w (P)2

C 1

C 2

Figure 3.3: Non-linear equivalence curves are more effective.

q values improve the performance of the algorithm. Figure 3.3 shows the same

situation as figure 3.2. The non-linear combined metric correctly finds the feasible

path.
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The problem of the metric in (3.6) is that the metric is not additive, that is, when

link weights are calculated, the sum of the link weights is not the weight of the path.

Consequently, the TAMCRA uses thek-shortest path algorithm. It is essentially a

version of Dijkstra’s algorithm that does not stop after finding a feasible path to the

destination, but goes on to findk different paths [29]. Then for each of these paths,

the path weight of equation (3.6) is calculated.

In TAMCRA, k is pre-selected, while another version of the algorithm, Self-

adaptive multiple constraints routing algorithm, SAMCRA [45], controls the value

of k self-adaptively. This means that TAMCRA is of polynomial complexity, while

SAMCRA is an exact algorithm and its complexity is exponential. The selection of

k in TAMCRA is a trade-off between performance and complexity. SAMCRA, on

the other hand, guarantees to find a feasible path, if one exists.

To reduce the complexity of the algorithm, it considers only non-dominated paths.

A pathQ is dominated by a pathP if wi(Q) ≤ wi(P ), for all i, with an inequality

for at least onei [29]. This limits the search-space.

Heuristic approach 3 (TAMCRA) Given a networkG(N,A), metricswi(a), i =

1, 2, for each linka ∈ A, requested constraintsCi and positive integersdi, i = 1, 2,

andk, calculate a new weight function defined in equation 3.6, and findk shortest

paths from source nodes to destination nodet. For those paths calculate the path

weight, and select the pathP with minimumw(P ). Check if the solution pathP

satisfies the constraintswi ≤ Ci for eachi.

Iwata’s algorithm

Iwata et al. [24] propose a straightforward approach for the MCP problem, where

the algorithm finds a shortest path, or paths, based on one metric and then checks

if all the constraints are met. If not, it finds a shortest path for another metric and

again checks if the other constraints are met. The problem is that the feasible paths

are not necessarily shortest for any metric. In figure 3.4, the feasible path is the

second shortest regarding weight1, and third the third shortest regarfing weight2.

Heuristic approach 4 (Iwata’s algorithm) Given a networkG(N,A), metrics
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Figure 3.4: Iwata’s algorithm’s search process

wi(a), i = 1, 2, for each linka ∈ A, and requested constraintsCi, i = 1, 2, find a

pathP that minimizeswi(P ) for a specifici, or several lightest paths forwi(OP ).

Check if the solution pathP satisfies the constraintswi ≤ Ci for eachi. If not,

select the nexti and start over.

Randomized algorithm

The randomized algorithm, proposed by Korkmaz and Krunz [28], is a heuristic

algorithm for the MCP problem. It consists of two phases: initialization and ran-

domized search. In the initialization phase, the algorithm computes optimal paths

from every nodeu to destination nodet with regard to each metricwi, and with

regard to a linear combination metric (3.5).

The information from the initialization is used to determine, whether a feasible path

can be found.

In the second phase the algorithm uses a randomized breadth-first search. While the

conventional breadth-first search algorithm (BFS) systematically discovers all the

nodes, the randomized algorithm selects randomly nodes to be discovered, until the

destination is reached. The randomized algorithm also uses the look-ahead prop-

erty, which means that before discovering a node, it uses the initialization phase
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information to see if there is a chance of reaching the destination nodet through

that node. If the optimal paths from that node to the destination node, with regard

to the different metrics, are not within the required constraints separately, of course

there is not a path that satisfies them simultaneously. If there is not a good chance

of reachingt, such node is not included. This method reduces the search-space.

Heuristic approach 5 (Randomized algorithm) Given a networkG(N,A), met-

rics wi(a), i = 1, 2, for each linka ∈ A, requested constraintsCi and weightsdi,

i = 1, 2, first initialize by computing the shortest path from each nodeu to des-

tination nodet, with regard to each metricwi and the linear combination metric

(3.5). Using the randomized breadth-first search find a pathP , from source nodes

to destination nodet, such thatwi(P ) ≤ Ci for all i. To reduce the search space,

at each node to be discovered, use the initialization information to see if there is a

chance of finding a feasible path through that node. If not, exclude the node.

H_MCOP

The H_MCOP heuristic algorithm [27] is another approach by Korkmaz and Krunz

for the MCOP problem. It returns a feasible path that also minimizes a selected cost

function, based on a link costc(u, v) assigned to each link, which could be one of

the QoS constraintswi(u, v) or some other appropriate cost function. In the first

phase the algorithm computes the optimal path from every nodeu to the destination

nodet with regard to the linear combination metric of (3.5), settingdi = 1
Ci

. This

first execution returns the optimal path for the linear combination metric.

Then the algorithm uses the non-linear path length function of equation (3.6) to

compute paths starting from source nodes. It discovers each candidate nodeu

based on the minimization of the non-linear length function. For each nodeu, the

algorithm selects the shortest path froms to t via u, by concatenating the non-linear

path length froms to u and the linear path length formu to t to approximate the

length of the path froms to t. If the paths passing through the candidate nodesu,

are feasible, the algorithm selects the node that has the path which minimizes the

primary cost function. If none of them seem feasible, the algorithm selects the node

that has the path which minimizes the non-linear metric, since this path has the best

chance of being feasible. Then the algorithm continues from the selected nodeu,
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considering the next nodev to be discovered in the same way. Eventually it returns

the optimal path.

Heuristic approach 6 (H_MCOP) Given a networkG(N,A), metricswi(a), i =

1, 2, andc(a) for each linka ∈ A, and requested constraintsCi, i = 1, 2, for the

metricswi, first initialize by finding the shortest path from each nodeu to destina-

tion nodet with regard to the linear combination metric

w(u, v) =
w1(u, v)

C1

+
w2(u, v)

C2

.

Then starting from nodes, discover each node based on the weight of the path

P from s to t via u. This weight is approximated by concatenating non-linear

weightw(s, u) and linear weightw(u, t). If some of the foreseen paths are feasible,

select the one minimizing the linear combination weight, otherwise select the one

minimizing the non-linear weight. Continue until destination nodet is reached,

finding the pathP that minimizesc(P ), whilewi(P ) ≤ Ci for all i.

A*Prune

Liu and Ramakrishnan propose the A*Prune algorithm [31] for the MCOP prob-

lem, which can find multiple shortest paths. This is an exact algorithm, but uses

techniques similar to heuristic algorithms.

It uses a similar initialization phase as the randomized algorithm. The algorithm

computes shortest paths for each metric, from every nodeu to destination nodet,

as well as from source nodes to all nodesu. After this it proceeds like Dijkstra’s

algorithm, except the nodes are selected by the predicted end-to-end length of the

path, with regard to linear combination metric. All neighbor nodes are considered,

and those that cause a loop, or would not meet the constraint, are pruned. The

algorithm continues until a pre-determined number of shortest paths (K) are found,

or there are no more nodes to be extracted from the heap. The algorithm always

founds theK shortest paths, or all the feasible paths if there are less thanK. This

suggests that it can not run in polynomial time, and indeed this is the case. A

bounded version of the algorithm would run in polynomial time, but would not

necessarily find a feasible solution.

28



Chapter 3. Routing algorithms

Heuristic approach 7 (A*Prune) Given a networkG(N,A), metricswi(a), i =

1, 2, for each linka ∈ A, and requested constraintsCi, i = 1, 2, first initialize by

finding the shortest path from each nodeu to destination nodet and form source

nodes to each nodeu, with regard to each metric and the linear combination metric

(3.5). Then starting from nodes, discover each node based on the weight of the path

P from s to t via u based on the linear weight function. At each step prune all the

nodes through which a feasible path can not be found based on the initialization

information. Continue untilK shortest paths are found, or the heap is empty.

3.6 Bandwidth constraint

In many cases bandwidth is the most important metric, perhaps the only metric used.

Even if there are QoS requirements concerning other metrics, they can usually be

mapped to bandwidth requirements. Subsequently, many QoS routing schemes con-

sider only bandwidth and hop count. Hop count is additive, but bandwidth is con-

cave, so these routing problems fall into the category of polynomial time composite

problems.

The choice of an algorithm is made based on the selection between resource con-

servation and load balancing in the network. The optimal path with regard to bottle-

neck bandwidth may not be the best choice, if another path satisfies the requirements

and consumes less network resources. Using alternate routes around congested links

balances the network utilization, but consumes more resources because longer paths

use more links. And the other way round, using the shortest path conserves network

resources but may lead to congestion.

3.6.1 Basic path selection algorithms

wsp

Widest-shortest path [7] selects the minimum hop count path among those that sat-

isfy the bandwidth requirements. If there are several paths with the same hop count,

the widest, that is the one with most available bandwidth is selected. Basically it
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finds the shortest feasible path, so it is a link constrained path-optimization routing

problem (problem 7) and is solvable in polynomial time. The widest path criteria

is used only to choose between several paths with the same length as the shortest

paths.

Bandwidth guaranteed algorithm 1 (widest-shortest path)Given a network

G(N,A), metricswi(a), i = 1, 2, for each linka ∈ A, wherew1 is bandwidth

andw2 is hop count, and requested minimum bandwidthC1, prune the network by

deleting all the links for whichw1 < C1, find the pathP from source nodes to

destination nodet that minimizes hop countw2(P ). If there is multiple paths with

the same hop count, select the one that maximizes bandwidthw1(P ).

After the pruning the first path selection is similar to problem 3 in section 3.4.1. The

second phase is used only as a tie-breaker if there are several paths with minimal

hop count.

This approach preserves network resources.

swp

Shortest-widest path [46] selects the path with the largest available bandwidth. If

several paths exist with as large bandwidth, the one with the smallest hop count

is selected. This approach emphasizes balancing the load in the network. The

shortest-widest path algorithm applies Dijkstra’s algorithm twice. First for finding

the widest path (problem 1). Let us denote the bandwidth of the widest path withB.

Then after pruning all the links with less bandwidth thanB, it runs the algorithm

for the second time for finding the shortest path among the widest paths (problem

3).

Bandwidth guaranteed algorithm 2 (shortest-widest path)Given a network

G(N,A), metricswi(a), i = 1, 2, for each linka ∈ A, wherew1 is bandwidth

andw2 is hop count, and requested minimum bandwidthC1, find the pathQ from

source nodes to destination nodet that maximizesw1. LetB = w1(Q) and prune

the network by deleting all the links for whichw1(a) < B. Then find the pathP

from source nodes to destination nodet that minimizes hop countw2(P ).
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sdp

Shortest-distance path [33], sometimes called the bandwidth-inversion shortest path

algorithmbsp, selects the path with the shortest distance. The distance of a link is

defined as the inverse of the available bandwidth on the link, and the distance of a

path is the sum of distances over all the links along the path,

dist(P ) =
∑

a∈P

1

w1(a)
.

This is a compromise between the two approaches above. The distance is defined

so that it favors shortest paths when load in the network is heavy, and widest paths

when load is medium [50]. The shortest-distance path can be found by shortest path

algorithms, using the distance as a cost function.

In [36] thesdpis extended to the form

dist(P, n) =
∑

a∈P

1

(w1(a))n
.

Bandwidth guaranteed algorithm 3 (shortest-distance path)Given a network

G(N,A), metricswi(a), i = 1, 2, for each linka ∈ A, wherew1 is bandwidth

andw2 is hop count, and requested minimum bandwidthC1, let

dist(a) =
1

w1(a)
,

and find the pathP from source nodes to destination nodet that minimizes

dist(P ) =
∑

a∈P

dist(a).

ebsp

Enhanced bandwidth-inversion shortest path algorithm is an enhancement proposed

to thesdpalgorithms by Wang and Nahrstedt [47]. It adds a penalty term to the

weight function of thesdpthat prevents the paths from becoming excessively long

by penalizing for large hop counts,

dist(P ) =
k∑

j=1

2j−1

w1(aj)
.
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Bandwidth guaranteed algorithm 4 (ebsp) Given a networkG(N, A), metrics

wi(a), i = 1, 2, for each linka ∈ A, wherew1 is bandwidth andw2 is hop count,

and requested minimum bandwidthC1, find the pathP from source nodes to desti-

nation nodet that minimizes

dist(P ) =
k∑

j=1

2j−1

w1(aj)
,

where the linksa1, a2, . . . , ak are the links along the pathP from the source nodes

to the destination nodet, such thata1 is the first link, andak is the last link.

dap

Dynamic-alternative path uses the widest-shortest path algorithm but limits the hop

count ton + 1, wheren is the minimum hop count in an unpruned network [34].

If no feasible minimal hop path is found, it selects the widest path that is no more

than one hop longer. If no such feasible path exists, the flow’s request for a path

with QoS guarantees is rejected.

Bandwidth guaranteed algorithm 5 (dynamic-alternative path) Given a net-

work G(N, A), metricswi(a), i = 1, 2, for each linka ∈ A, wherew1 is band-

width andw2 is hop count, and requested minimum bandwidthC1, find the path

Q from source nodes to destination nodet that minimizes hop countw2 and let

n = w2(Q). Prune the network by deleting all the links for whichw1 < C1, find the

pathP from source nodes to destination nodet that minimizes hop countw2(P )

while w2(P ) ≤ n + 1. If there are multiple paths with the same hop count, select

the one that maximizes bandwidthw1(P ).

3.6.2 Summary of algorithms with bandwidth constraint

Figure 3.5 shows the relations of the algorithms. The termshortest path algorithm

here means an algorithm that uses only hop count as a metric. This corresponds to

problem 3, path-optimization, although that allows any additive metric, not just ones

where all link weights are one. Changing the weights to available bandwidth and

solving for the widest path corresponds to problem 1, link optimization problem.
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Figure 3.5: Bandwidth constraint algorithms

Combining these two sequentially lead to shortest-widest path and widest-shortest

path algorithms. The primary metric is optimized first, and if several paths have

the optimal value, then the secondary metric is used. Thedap algorithm adds an

admission control element to thewspalgorithm. It rejects the flow if the selected

path is more than one hop longer than shortest path.

Shortest-distance path algorithm uses a shortest path algorithm with link weights

that are inverse of available bandwidth. Enhanced bandwidth-inversion shortest

path algorithm adds a penalty term that grows larger as a function of hop count thus

preventing excessively long paths. The higher the algorithm is in the diagram, the

more it emphasizes limiting hop count.

3.7 End-to-end delay constraint

Although bandwidth guaranteed QoS routing has got most interest in research, pro-

viding end-to-end delay guarantees is another important area. The problem is to
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compute a path for a request with an end-to-end delay constraintD.

The total end-to-end delay consists of the propagation delay on each link along

the path, and the delay on the routers. The former one is a typical additive cost

function. The latter one depends on the rate reserved for the connection. This is

essentially the same as bandwidth, so it is a link constraint. The routing problem

is not, however, any of the presented composite problems, because the object of

minimization is (3.8), which depends on two additive constraints, propagation delay

d(a) and hop countn, and one path constraint, the reserved rater. So this is not

a multi-constrained routing problem, but rather we have only one object function.

Hop count can take only integer values and can be limited to be under some specific

limit, if nothing else, at least the total number of links in the network. Also the

values forr can be limited as in routing problem 9. This enables the solution in

polynomial time.

End-to-end delay as the metric

In [39] an approach for rate-based schedulers is presented. The upper bound for the

end-to-end delay is

D(P, r) =
σ + n(P )c

r
+

∑

a∈P

d(a), (3.8)

whereP is the path,r is the reserved rate,n(P ) is hop count of pathP , c is the

maximal packet size,d(a) is the propagation delay of linka, andσ is a bias value

related to the connection’s maximal burst. LetD(P, r(P )) = D(P ) denote the

minimal possible value ofD(P, r), wherer(P ) is the maximal available rate on the

path. So

r(P ) = min
a∈P

r(a),

wherer(a) refers to the available rate of linka.

The exact algorithm

There arem links in the topology, but some links may have the same available rates,

so the number of different available rate values in the network isK ≤ m. The rates

are denoted byrk. There are nowK different available rate values:r1 < r2 <
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. . . < rK . This is similar to the situation of problem 9 in section 3.4.2. A feasible

path is found as follows.

• For eachk, 1 ≤ k ≤ K

– delete all linksa whose available rater(a) is less thanrk

– execute the Bellman-Ford shortest path algorithmH times, using the

propagation delaysd(a) as the cost function, and solving problem 3, the

path-optimization problem, to identify the paths with smallest delay for

all hop counts n,1 ≤ n ≤ H.

• Compute the delays of theK ·H identified paths to find

a) the path with the smallest guaranteed delay, or

b) the feasible path with the smallest reservable rate.

The complexity of the algorithm isO(MHK) and sinceK is likely to be close to

M it is almostO(HM2), which could be too high. So quantization schemes are

needed to lower the complexity.

The quantized algorithm

The quantization can be done for rate or hop count. In the case of quantizing the

rate values, the link rates are grouped into classes such that rate-classj contains

the rates betweenr1 · (1 + ε)j . . . r1 · (1 + ε)j+1. Then the pruning is done for each

class, rather than each possible rate as in the above algorithm. The guaranteed delay

of the algorithm is at most1 + ε times larger than the minimal value. Choosing the

value ofε is a trade-off between complexity and accuracy.

The Minimum Cost algorithm

Define the cost functionwcost to minimize. The cost function is defined in equation

(3.9). It may depend on rater, the number of hopsn(P ) on the selected pathP and

the delay boundD.

wcost(r, P ) = C(r, n(P ), D(P, r)) (3.9)
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Now it can be selected which criteria is wished to minimize. For example cost

functionwcost = r minimizes the consumed rate, whilewcost = n(p) · r minimizes

the overall rate. Another possible approach is the load-balancing criterion. The pa-

per [39] describes Minimal Relative Rate algorithm which minimizes the maximal

percentage that any link consumes the available rate.
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Routing strategies and approaches

4.1 Introduction

The previous chapter discussed the various path selection algorithms. There is, how-

ever, more to QoS routing than just the path selection process. Different strategic

approaches, like the choices between source routing and distributed routing, or be-

tween pre-computation of paths and on-demand computation, need to be addressed.

The routers need to get information about the current link states in the network in

order to compute the paths.

In this chapter, the first section presents the three algorithm classes: source routing,

distributed routing and hierarchical routing. The following section introduce pre-

computation and on-demand computation, and finally the distribution of link state

information is discussed.

4.2 Routing algorithm classes

The main tasks of QoS routing are collecting state information, keeping the state

information up-to-date, and searching the routing tables for the information to find

feasible paths for flows. Various QoS routing algorithms are divided into three

broad classes based on the way they carry out these tasks [16].
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• Source routing

• Distributed routing

• Hierarchical routing

4.2.1 Source routing

In source routing, feasible paths are computed by the source node. Then a control

message is sent to inform intermediate nodes along the selected path of their prece-

dent and successive nodes, or the path is included in the header of each packet.

Source routing’s local path computation strategy means that nodes need to know

the global state of the network. So the global state information has to be updated

frequently at every node, which makes the communication overhead very large.

Also, since the source node computes the whole path on its own, the computational

overhead in the source node could be very high if the network is large. All in all,

source routing does not scale very well. On the other hand, it is very simple and

flexible. As the routing is done in the source node, any algorithm can be used, or

even different algorithms for different purposes. The centralized nature of source

routing algorithms makes them easy to implement and upgrade.

Source routing has not been widely adopted in the Internet. It is seen impractical as

the explicit path would have to be included in the IP header. Source routing is used

in today’s Internet for special cases only, such as mapping the network with tracer-

oute, troubleshooting, or forcing an alternate link to some traffic flow for example

to avoid congestion.

Many QoS routing algorithms, however, are source routing algorithms [46, 34, 20,

15], see [16] for an overview. The nature of QoS routing is more suitable for source

routing than traditional shortest path routing is. For best effort shortest path dis-

tributed routing, where a node just forwards the traffic to the next node, is more

practical. For QoS routing there are issues like admission control and resource

reservation. So the source node has to take the whole path into consideration any-

way, implying that the advantages of distributed routing are not so clear. In a MPLS

framework, however, source routing could be practical, as the labels would repre-

sent the explicit paths.
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4.2.2 Distributed routing

In distributed routing, also called hop-by-hop routing, the paths are computed by

distributed computation. Most distributed routing algorithms require each node to

maintain a global network state, based on which the decisions of the next hop are

made. There are, however, some flooding-based algorithms that do not require any

global state information at all [13], but they tend to have larger overhead from send-

ing update messages. Most often though, link state protocol is used to maintain a

complete global state at every node.

Another approach is to extend a distance vector protocol to include information

about available bandwidth and other metrics used, as well as the information about

the next hop. Based on the distance vectors, the routing is done hop-by-hop. The

computational burden in a single node is much smaller than in source routing, since

it only needs to find the next hop. That is, it can use fully distributed computation

algorithms.

Distributed routing is more scalable than source routing. Problems arise if informa-

tion in the nodes along the path is not consistent. This can cause routing loops and

the path computation to fail. Distributed routing is the common strategy for routing

in the Internet today.

4.2.3 Hierarchical routing

In hierarchical routing, a hierarchical topology is created by clustering the nodes

into groups that form a logical node. These logical nodes are clustered to new

groups to form a higher level logical node and so on. Figure 4.1 shows the ac-

tual physical network. The nodes, represented by the black dots, are clustered into

groups of three or four as indicated by the red circles. Figure 4.2 shows the result-

ing aggregated topology, along with the second aggregation, in which the groups

are clustered into new groups, in this case consisting of three first level groups,

indicated by the blue boxes.

Hierarchical routing proposed for QoS routing [16, 23] is somewhat similar to

source routing, but each node has detailed state information only about the nodes in
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Figure 4.1: Clustering in hierarchical topology
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Figure 4.2: The first and second level aggregation of the topology

the same group, and aggregated information about nodes in the other groups. Figure

4.3 shows the topology as seen by the nodeA2.1. Source node computes a path us-

ing the aggregated topology. When a node starts to transmit, first a control message

is sent. When it reaches a border node which is a part of a group presented as a log-

ical node in the path, it uses source routing to expand the path through the group. In
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the proposed hierarchical QoS routing schemes, source routing algorithms are used

at each hierarchical level.

A2.1 A2.2

A2.3 A2.4
A1

A3

B

C

Figure 4.3: The topology as seen by the nodeA2.1

The size of the aggregated state information is logarithmic in the size of complete

global information. Hierarchical routing solves the scalability issues of source rout-

ing and is regarded as the most promising scalable QoS routing approach [23]. Neg-

ative effects of the aggregation include additional imprecision. For instance, there

might be multiple paths through a logical node, one of which has lots of available

bandwidth but larger hop count or longer delay, while another may have shorter

delay, but does not have similar bandwidth. Requests with either requirements for

a small delay or large bandwidth can be routed through the logical node, but both

requirements cannot be satisfied at the same time.

Figure 4.4 shows an example of this kind of a situation. What should node A use

as the values of delay and bandwidth on link BC? The information in the figure

includes maximum bandwidth and minimum delay, but as mentioned they cannot

be attained at the same time. The maximum bandwidth available from B to C is3

and the minimum delay is1+1+1 = 3. But these are through different paths inside

logical node B. Along the path through B2 the values of bandwidth and delay are

(3, 7) and through B3 they are(1, 3). Which one should be used? If a connection

from node A to node C has both bandwidth and delay constraints, the aggregated

values in the figure are misleading. Aggregation of this kind of information remains

a problem [16].
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Figure 4.4: Difficulties in aggregating link information. The link state information

in the figure is in the form (bandwidth, delay)

A typical example of hierarchical routing protocol is Private Network-Network In-

terface, PNNI [8], that has been used for ATM networks.

4.3 Pre-computation versus on-demand computation

QoS routing can compute paths either on-demand when a flow with QoS require-

ments arrives, or periodically pre-compute paths for all destinations. The on-demand

computation has the benefit of always being able to use the most recent informa-

tion about the network and it is simpler than pre-computation. If requests arrive too

frequently, it is not efficient to use on-demand computation. Path-caching [5, 30] is

proposed as a way to lower the computational cost by using previously computed

paths, and is shown to effectively reduce the processing cost of on-demand path

computation [6].

The pre-computation scheme periodically computes paths for every destination. In

section 5 the pre-computation scheme described in [2] is presented. In [1] the au-

thors show by a real implementation of the QOSPF that the path pre-computation

does not consume time excessively, so it should not be considered a major cost is-

sue. Simulations in [3] got similar results. The choice between pre-computation
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and on-demand computation is a cost-performance trade-off. See section 7.2.

4.4 Link state information

In addition to topology information about the network, a router needs information

about the availability of resources in the network in order to compute routes sup-

porting the QoS requirements of a flow. This calls for extensions on the link state

advertisements of current Internet routing protocols such as OSPF, to include infor-

mation about the metrics. Section 5 discusses the Quality of Service extensions for

OSPF protocol, or QOSPF.

Since the resources such as available bandwidth changes considerably more often

than the topology information, more link state advertisement messages are needed.

To prevent them from becoming too frequent, various techniques have been pro-

posed. Reducing the frequency of the link state advertisements means that routers

do not have the most recent accurate information about the situation. This can lead

to performance degradation. A trade-off has to be made between the accuracy and

the frequency of flooding of link state advertisements. This problem has got a lot of

attention in recent research, and is discussed more in sections 7.2.1 and 7.2.3.
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QOSPF

5.1 Introduction

The QoS routing scheme receiving most attention currently is the QoS extended

OSPF protocol, QOSPF, which is being standardized by the IETF [23]. This sec-

tion summarizes the QOSPF described in RFC2676 "QoS routing mechanisms and

OSPF extensions" [7].

5.2 Link state information

The QOSPF protocol uses three metrics:

Available bandwidth. Bandwidth is probably the most important metric in QoS

requirements, and as mentioned in section 3.4 some other requirements can

be mapped to bandwidth requirements. So it is not surprising that one of the

metrics used by the QOSPF protocol is the available bandwidth on a link.

The maximum value of the available bandwidth can be the link’s physical

bandwidth itself, or a fraction of that bandwidth dedicated for QoS flows.

Propagation delay is also used, but only to avoid the use of high latency links,

like satellite links, unsuitable for certain flows, such as interactive real-time
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applications. Links with unsuitably high propagation delay can be pruned

from the network before running routing algorithms.

Hop count. This is not a QoS requirement metric. It is used as a measure of the

path’s cost to the network. The more links a path uses, the more it consumes

resources in the network.

Hop count is calculated while running the path selection algorithm, but the other two

metrics have to be advertised to nodes in the network. Each router has to maintain a

database of the network topology and the current state of each link. This is achieved

by extending the OSPF’s link state advertisements to include information about the

current values of metrics in the links.

Available bandwidth can change very rapidly with traffic fluctuations, so the link

state advertisements have to be sent much more frequently than in the original OSPF

protocol. A trade-off has to be made between the accuracy of information and the

protocol overhead, when considering how frequently the link state updates should

be flooded to the network. See section 4.4 andTriggers for network state updates

in section 7.2.1 for a discussion of this issue. In RFC2676 [7] no trigger policy is

specified, but a lot of latitude is given for experimenting with different approaches.

5.3 Path selection

The path selection algorithms of QOSPF use hop count and bandwidth as metrics,

as mentioned earlier. They use thewspalgorithm described in section 3.6.

The reference implementation focuses on a pre-computed hop-by-hop routing scheme

using the Bellman-Ford algorithm. However, two Dijkstra-based algorithms are also

presented, with the other one using on-demand path-computation. Pseudo codes for

the algorithms are given in [7].
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5.3.1 Bellman-Ford pre-computation

The Bellman-Ford shortest path algorithm is adapted to compute the maximum

bandwidth paths for all hop counts. Routers record the results into a QoS routing

table. The table is aK ∗H matrix, whereK is the number of destination nodes and

H is the largest allowed hop count. The entries in the table, indexed by(n, h), con-

sists of two fields, namelybw, the maximal bandwidth available on a path from the

source node to noden with at mosth hops, and the information about the next-hop

node on the path.

When computing the table, the algorithm starts by modifying the first column so that

for nodes reachable by one hop the bandwidth is set to the available bandwidth on

that link, and the neighbor field is set to the destination node itself. Then in iteration

h, columnh− 1 is copied to columnh. Since the destination was reachable with at

mosth− 1 hops with certain bandwidth, it obviously is reachable through the same

path with at mosth hops. Then it is checked whether a wider path can be found with

hop counth. So the comparison is made between the bandwidth available when

using the previous column’s path to reach nodem, and the bandwidth available

using the path through a noden that can be reached withh − 1 hops and is a

neighbor to nodem. Let bw(n, h) denote the widest bandwidth available on a path

from source node to noden by at mosth hops, andb(n,m) denote the bandwidth

available on the link(n,m) from noden to nodem. Then, if

min (bw(n, h− 1), b(n,m)) > bw(m,h)

then the entry for(m,h) is modified so that the path through noden is used. This

check is done for all possiblen.

5.3.2 Dijkstra on-demand computation

The benefit of on-demand computation is that both the bandwidth requirement and

the destination is known, so only one path has to be computed instead of a whole

table. This makes the computation straightforward. The links with less than the

required bandwidth are pruned from the network, either while running the algo-

rithm or beforehand. Then a standard Dijkstra minimum hop path computation is

performed on the pruned network.
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5.3.3 Dijkstra pre-computation

As opposed to the Bellman-Ford, the Dijkstra algorithm uses quantized bandwidth

values. The bandwidth capacity is divided into quantized classes:(0, B), (B, 2B),

. . ., ((Q − 1)B,QB) such thatQB = C, whereC is the maximum capacity of

the link, and the class sizeB depends on the number of classesQ. The difference

is that now the routing table is aK ∗ Q matrix, whereQ is the number of the

quantized bandwidth values, and the hop count is a field in the table entry instead

of bandwidth. So instead of finding maximal bandwidth for a given hop count as in

the Bellman-Ford algorithm, it finds the minimal hop count for a given bandwidth.

The algorithm starts from the highest quantized bandwidth value. It prunes the orig-

inal network topology by deleting all the links with insufficient bandwidth. Then it

runs Dijkstra’s minimum hop algorithm between the source node and all the possi-

ble destination nodes. This updates theQth column of the QoS routing table. The

quantized bandwidth values are gone through in the decreasing order until the table

is finished.

5.4 Forwarding

5.4.1 Hop-by-hop routing

In the pre-computation schemes the routing information is stored in separate QoS

routing tables and has to be extracted from the table when a new request arrives.

An entry in the QoS routing table consists of two fields. The first is either bandwidth

(in case of the BF algorithm) or hop count (in case of Dijkstra’s algorithm) of the

path, and the second is the neighbor node. The neighbor field has the information

about the next router in the path to the destination node.

In the case of the Bellman-Ford algorithm, the route for a request to destinationd

with a bandwidth requirementB is extracted from the table as follows. The desti-

nation noded identifies the row of the QoS routing table. That row is then searched

starting from one hop path until an entry with sufficient bandwidth is found. With
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Dijkstra’s algorithm the destination node similarly identifies the row on the table,

and the column is the first column whose bandwidth value is sufficiently large.

5.4.2 Explicit routing

While the reference implementation in RFC2676 [7] uses hop-by-hop routing, it is

possible to modify the algorithms to use explicit routing, that is the route compu-

tation in the source node would return the entire path, not just the next hop. The

routing algorithm is changed so that it uses the neighbor field to identify the previ-

ous router on the path instead of the adjacent router. This being done, the explicit

routes can be extracted recursively. The first entry is identified as in the hop-by-hop

case, and the recursive algorithm starts from there.

Bellman-Ford: Starting from the table entry(n, h), wheren is the destination node

andh is the hop count associated with the path with sufficient bandwidth, the neigh-

bor field of that entry identifies the previous node, saym, on the path. Consequently,

the next table entry is(m,h − 1). The path is extracted by recursively proceeding

through the columns fromh to 1, each time using the neighbor field information to

identify the next node.

Dijkstra: Starting from the table entry(n, q), wheren again is the destination node

andq is the quantized bandwidth value that can satisfy the QoS requirements, the

process similarly uses the neighbor field information about the previous node to

identify the row for the next entry. However, since columns now correspond to

bandwidth instead of hop count, the process does not proceed from column to col-

umn, but stays in columnq, recursively moving from row to row, and ends when the

neighbor field points to the source node.
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Problems arising from QoS routing

6.1 Introduction

This chapter concentrates on some of the problems arising from using QoS routing

and possible solutions to those situations. The following section looks into routing

under insufficient or inaccurate link state information. Then the instability caused

by routing is discussed. The last section of the chapter studies interaction between

the traffic class routed with QoS routing algorithms and lower class traffic.

6.2 Routing with inaccurate information

”Most existing routing algorithms assume the availability of precise

state information. However, the state information is inherently impre-

cise in a distributed network environment. The imprecision directly

affects the routing performance. Therefore, the design of routing algo-

rithms for large networks should take the information imprecision into

consideration.”Chen, Nahrstedt[16]
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6.2.1 Origins of inaccuracy

The origins for inaccuracy of routing information are listed in [32] as follows:

Network dynamics Parameters advertised by a link can be based on an average

behavior or out-dated information, as the information may change rapidly.

But as discussed in section 4.3, it is not possible, or at least not practical

concerning cost, to constantly advertise the latest information.

Aggregation As mentioned in section 4.2.3, in hierarchical routing schemes the in-

formation is aggregated and a node has precise information only about nodes

in the same group. This causes imprecision about routing information in re-

mote parts of the network.

Hidden information This can be caused by private networks hiding their informa-

tion. Another reason could be subnetworks hiding information to maintain

some degree of freedom in internal routing.

Approximate calculation Even if we have information about the current parame-

ters, it is not exact, but only an approximation of the real parameters.

6.2.2 Proposed solutions

Paper [20] investigates both bandwidth requirements and end-to-end delay guaran-

tees for inaccurate routing information expressed in a probabilistic manner. The

goal is to find the path most likely to satisfy the QoS requirements. It is concluded

that for bandwidth guarantees the impact of inaccuracies is not severe and good

paths can be found using shortest path algorithms. For the delay guarantees, how-

ever, the problem is NP-hard.

The paper also investigates the delay problem and shows that a rate-based model,

although NP-complete, can be used to identify several practical cases of interest for

which tractable solutions exist. Also by quantization of metrics near-optimal solu-

tions can be constructed. In [32] Lorenz and Orda study the end-to-end delay case

further, and present optimal andε-optimal approximation solutions for the general

case.
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Chen and Nahrstedt note in [14] that the imprecision model of [20, 32] is based on

probability distributions, but how to maintain these distributions was not considered

in the work. If the distributions are collected over time they neglect the short term

traffic context, which might be very helpful in finding the best paths. Instead, they

propose a simpler imprecision model in which every node maintains two values for

every destination: an estimation of the metric in question and an estimation of the

maximum change during the update period.

The model in [20, 32] tries to maximize the probability of finding a feasible path,

but the optimality of the path is not considered. The model in [14] tries to find a low-

cost feasible path. Third, the Chen-Nahrstedt approach is a distributed algorithm as

opposed to source routing used in the approach above. Paper [14] proposes a ticket

based probing scheme, where probes are sent toward the destination to find a path

that satisfies the QoS requirements. Simulation results show that high success ratio

is achieved and low-cost feasible paths are found. The probing scheme can tolerate

a high degree of imprecision.

6.3 Stability of QoS routing

One problem of dynamic routing is oscillation of traffic between paths. If path

selection relies on link state information about available bandwidth it can easily lead

to a situation where all the traffic is routed to path with a lot of available bandwidth.

This path will then get congested and the traffic is routed to another path. Compared

to traditional dynamic routing, QoS routing has some advantages in handling this

problem.

As discussed in section 2.4.3, a reservation protocol is usually used along with QoS

routing and it is possible to pin the paths [19, 51]. By this way, even if some other

path becomes a better choice, the connections already routed to some path will not

switch to the better path. Still all the new request will be routed to the path with

more available bandwidth. But because of the probabilistic nature of inter-arrival

times and holding times, the fluctuation is not as rapid as it would be if all the

existing connections would be re-routed.

If accurate link state information is not available, oscillation can still be a problem.
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If one path is marginally better than the other, all the new requests are routed onto

that path, until the router receives new link state information. If that takes too long,

the path could get congested [42]. This depends on the sensitivity of the update

triggers, see section 7.2.3. If accurate information is not available, one solution is

to use quantized bandwidth values, as section 5.3.3 describes. By this way there is

likely to be a few equally good paths and the traffic would be divided between them.

The random routing technique to be described in section 7.2.3, has similar effects.

It considers other than just the best path and uses weighted randomization to select

between the paths. So not all the arriving requests are routed to the same path.

6.4 Inter-class effects in QoS routing

6.4.1 Impact of QoS guaranteed traffic on best-effort traffic

It is not reasonable to assume that in a network utilizing Quality of Service routing

there would be only QoS guaranteed traffic. Most likely some, if not the majority

of traffic flows would still be routed on the best effort basis. When a network has

multiple classes of traffic, the paths used for routing high priority traffic, like QoS

guaranteed flows, have a significant effect on the performance of lower priority

traffic [33].

In an environment with both QoS guaranteed traffic and best-effort traffic, the task

of routing is to maximize the resource efficiency. This can be described by two

objectives:

1. Minimizing the call-blocking ratio of QoS flows

2. Optimizing the throughput and fairness for best-effort flows

Since the first objective considers only QoS traffic and the second only best-effort

traffic, this could lead to a contradiction. Chen [12] proposes a two-level hierarchi-

cal scheduling that provides QoS flows with required guarantees and uses maxmin

fair allocation for best-effort flows.
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In [33] the effect on best effort flows is simulated with different path selection algo-

rithms used for the QoS flows. It is concluded that for a light traffic load the impact

is small no matter what algorithm is used, since resources are available. For higher

traffic loads the shortest-distance path algorithm is found to perform best.

In [36] Ma and Steenkiste point out that even though poor path selection for QoS

flows could lead to congestion and even starvation of best-effort flows, little atten-

tion has been given to the problem of inter-class resource sharing. They propose a

multi-class QoS routing algorithm that discourages high priority traffic from using

links loaded with low priority traffic. Simulations show that the algorithm can im-

prove performance for best-effort traffic without affecting the performance of QoS

guaranteed traffic.

6.4.2 Inter-class effects in DiffServ

In [47] a DiffServ network with three traffic classes is considered. If all traffic

of different classes between specific source-destination pairs follow the same path,

the Premium traffic class imposes negative effect on the other traffic classes when

traffic load is heavy. These are called inter-class effects. To optimize premium

traffic routing and minimize negative inter-class effect, the Optimal Premium-class

Routing (OPR) Problem is defined. It attempts to find the optimal routing scheme

among all the possible loop-free hop-by-hop routing schemes.

The required bandwidth is attempted to be reserved for every Premium-class traffic

flow. Let us assume for simplicity that every node tries to reserve the same amount

of bandwidth, sayB, to every destination node in the network. The maximal value

of B is called the saturate bandwidth (Bs) and, given a topology, it is fixed for each

routing scheme, and depends on the capacities of the links.

In some cases shortest path algorithms produce significantly lower saturate band-

width than more complex routing schemes. For instance, if one link in the network

between nodesA andB has much lower capacity than others, this link would be the

bottleneck. NodeA would route traffic toB through this link, since it is the shortest

path toB. A QoS routing algorithm could find a longer path around the link, thus

enabling higherBs values.
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A routing scheme with a larger saturate bandwidth is able to accommodate more

premium traffic, and if the premium traffic does not use all of the available band-

width it will yield higher residual bandwidth, thus lowering inter-class effects on

lower priority traffic classes and helping to balance the load in the network.

The optimal routing scheme is the one that finds the maximal saturated bandwidth

Bmax. If we call the different routing schemes byR1, R2, . . . , Rn and the saturate

bandwidth achieved by a particular routing schemeR by BR
s , then the maximal

saturate bandwidth is

Bmax = max (BR1
s , BR2

s , . . . , BRn
s ) (6.1)

This defines the OPR problem. A simple example is shown in figure 6.1. In this

example the network consists of three nodes. The link capacities are similar in both

directions and are marked in the figure. In the situation on the left, the shortest path

routing achieves the saturate bandwidthBsp
s = 10, with link AC as the bottleneck

link. In the example presented on the right side of the figure, Optimal Premium

Routing achieves a higher saturate bandwidth by routing the traffic from nodeA to

nodeC (and vice versa) through nodeB. Now AB is the bottleneck link, and its

capacity is divided between traffic flowsAB andAC. The saturate bandwidth is

nowBOPR
s = 50. So in this example equation 6.1 becomes

Bmax = max(Bsp
s , BOPR

s ) = max(10, 50) = 50 (6.2)

and the maximal saturate bandwidth is achieved as described on the right side of

figure 6.1.

The OPR problem is NP-complete [47]. Subsequently, the authors study the perfor-

mance of three heuristic approximation algorithms.

Widest-shortest path performs slightly better than the traditional shortest path al-

gorithm, because in tie situations it selects the widest of the paths.

Bandwidth-inversion shortest path algorithmbsp, or shortest-distance path as it

was called in section 3.6, achieves generally a better saturate bandwidth than

the shortest path or widest-shortest path algorithms but it is unstable and can

also get values even lower than the shortest path algorithm. This is caused by

the fact that it prefers wider paths too much without sufficient concern for the
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Figure 6.1: An example of Optimal Premium Routing. The arrows represent routing

decisions. On the left shortest path, on the right OPR.

length of the path. Obviously, the longer the paths become, the more flows

share the bandwidth of the links, and the saturate bandwidth is lower.

Enhanced bandwidth-inversion shortest pathalgorithmebspwas proposed specif-

ically for the problem mentioned above. The penalty term prevents the paths

from becoming excessively long. It is found through simulations that for a

simple homogeneous network the widest-shortest path algorithm is preferable

because of its stability, but for a more complex heterogeneous network, like

DiffServ networks tend to be, theebspis better since it yields much higher

values of the saturate bandwidth.

But as will be seen in the example in section 8.3 theebspis just a heuristic

algorithm and is by no means perfect.

6.4.3 Bandwidth reservation

One way to prevent the starvation of lower priority traffic even under heavy con-

gestion is to limit the amount of bandwidth that high-priority traffic can reserve on

a link. In [33] different routing algorithms were compared and the throughput of

the best effort traffic was one of the considered aspects. In that case the maximum

reservable bandwidth was limited to90% of the links capacity. The best effort traf-

fic thus gets at least10% of the bandwidth, but is free to use all the unreserved

bandwidth.
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In section 8.2 a simplified example case is formed and solved to study the effects

that this kind of bandwidth reservation has, and particularly to see how different

values of the reservation level affect the performance.
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Review of evaluations of QoS routing

7.1 Introduction

This chapter discusses simulation results and measurements from a test implemen-

tation found in recent studies. Section 7.2 studies the costs involved in QoS routing

and section 7.3 concentrates on simulation results evaluating the different routing

algorithms presented in chapter 3.

The topologies that this chapter refers to, are presented in appendix C.

7.2 Cost of QoS routing

When evaluating the usefulness of Quality of Service routing or constraint-based

routing, it is practical to separate between cases where resource reservation is used,

and those where it is not used.

The former implies an IntServ-type environment, where we can be sure of one thing:

the traffic that is routed by QoS routing scheme gets the resources necessary to re-

ceive the specified quality of service. What remains to be decided are the following

issues.

1. Does QoS routing for high priority traffic cause too much difficulties for lower
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priority traffic? This was studied in section 6.4.1.

2. What are the costs involved in enabling QoS routing? For instance, how large

are the computational cost and protocol overhead. To put it simply: is it worth

it? Section 7.2.1 concentrates on this.

The latter case, with no resource reservations, is more oriented to load balancing and

congestion prevention, which improves the performance of the network in general,

but does not guarantee quality of service to any particular traffic flow. For instance

DiffServ architecture does not include resource reservation possibilities, but QoS

routing can be used to balance the load within the DiffServ domain to make sure

that congestion does not occur. Unfortunately, it seems that there are not yet imple-

mentations of this kind of a framework, and simulations are more concentrated on

performance than costs. Thus, there are no results on the costs involved.

7.2.1 Factors contributing to cost and overhead

The cost of QoS routing comes mainly from two sources. First, it includescomputa-

tional cost. The computations needed in QoS routing are much more complex than

those used in regular shortest path routing. Using more sophisticated path selec-

tion algorithms and pre-computing the paths more frequently leads to even higher

costs. Second, the link state updates contribute toprotocol overhead. More frequent

updates lead to larger overhead.

1. Computational cost [4]

• Choosing the path selection algorithm. Sophisticated algorithms are

able to find better paths but are, of course, more costly.

• Choosing when the paths are computed, on-demand or beforehand by

pre-computation, and what is the pre-computation period. Routing is

more effective if the computation uses the most recent information but

the cost per request gets higher.

• Flexibility in routing, supporting alternate path selection, accounting for

inaccuracy etc.
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2. Protocol overhead [4]

• Triggers for network state updates. How does a node decide when to

inform about changes in link states. State information, and thus also

routing, is more accurate if every change is informed, but it is not prac-

tical to flood the network constantly with link state updates, since this

leads to a larger protocol overhead. The triggers include:

Threshold based triggers,which trigger an update when the relative

change between the advertised and the current link state exceeds

some predetermined value.

Class based triggers,which divide the link state values to classes. An

update is triggered when the current value crosses a class boundary.

Timer based triggers, which can be used to periodically trigger an up-

date. Another kind of timer based trigger is theclamp-down timer,

which is used with threshold based triggers to prevent too frequent

updates by enforcing a minimum hold-down time between updates.

• Scope of a link state update message. When a trigger activates a node

to send a link state update message about changed values in one of its

links, should the message include information about other links? On

one hand, adding this information increases unnecessary traffic, on the

other hand it could eliminate the need for some future updates.

Of course, using better computation schemes and more frequent link state updates

obviously improves the performance of the network. So all the items listed above

are basically tradeoffs between performance and cost. The better the performance,

the higher the cost, and vice versa. A lot of work has been done on studying the

effects of these trade-offs, and to find optimal strategies and values.

7.2.2 Evaluation of the significance of the different factors

Apostolopoulos et al. [1] study an implementation of the QOSPF protocol for cost

and overhead. Their router uses pre-computation of paths and hop-by-hop routing.

The implementation is made with a public domain program called Gate Daemon,

which provides a platform for implementing routing protocols on UNIX hosts. The
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stand-alone test router is then combined with simulation of a network in order to

capture the effects of a large network. They divide the costs into three categories:

1. processing costs, consisting of path pre-computation and path selection costs,

2. message generation and reception cost,

3. memory requirements.

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400

T
im

e 
(m

ic
ro

se
co

nd
s)

Network Size

SPF
QoS Table Best Case

QoS Table Average Case

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 50 100 150 200 250 300 350 400

S
iz

e 
(b

yt
es

)

Network Size

SPF
QoS Table Best Case

QoS Table Average Case

Figure 7.1: Processing time of path computation and comparison of memory re-

quirements [1]
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Figure 7.2: Time consumption of path selection and link state database [1]

Figure 7.1 shows the results for the processing time of the path pre-computation.

The pre-computation algorithm is executed for different link states. The best case

and the average case results in different network sizes are compared against the

processing time of the shortest-path computation. The time consumed by the QoS

routing pre-computation is larger, but not excessively large compared to the shortest
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path computation. This does not take into consideration the fact that QoS paths have

to be computed much more frequently than paths for best effort traffic, since the

values of the metrics such as available bandwidth, change very rapidly compared to

topology changes that trigger a new computation in the traditional routing.

Figure 7.1 shows also the memory requirements of maintaining the QoS routing

table in the study. The difference is again clear but not dramatic, as the required

memory space is about two or three times larger than in a standard routing table.

Figure 7.2 shows the cost of the path selection and accessing link state database. The

results are for the best case, where there is only one entry per path structure, and the

average case. Figure 7.2 shows that the time spent on path selection is negligible

compared to the time used on accessing the link state database for receiving and

generating link state advertisement messages.

As in the case of the path computation, it is also important to consider how often

the LSA messages have to be generated. To take this into considerations Apos-

tolopoulos et al. study the utilization of the router with different update triggers

and pre-computation periods. Results in table 7.1 display the average and maximal

router utilization for the most heavily utilized router in the network, for both the isp

topology and the mesh topology. The table shows results for all combinations of

three different pre-computation periods and two trigger thresholds. Although mo-

mentary maximum values of load were over30% in the case of the more realistic

isp topology, and over80% for the mesh topology, the average values are low. The

results indicate that changes in computation period are much less significant than

changes in trigger thresholds. See [1] for more extensive results on router utiliza-

tion.

Based on the evaluation, the cost increases caused by implementing QoS routing

extensions for the OSPF protocol are not excessive for today’s processors. Already

in 1999 the authors concluded that the cost "remains well within the capabilities

of medium-range processors." The single most significant cost source is the time

consumed on LSA generation and reception. Table 7.1 shows that the average router

load is much more sensitive to changes in the update trigger threshold than changes

in the pre-computation period. So the sensitivity of link state update triggers is the

most important of the tradeoffs situations considered.
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Table 7.1: Maximal and average router loads for different topologies, LSA update

trigger thresholds and pre-computation periods

The next section discusses various simulation results concerning these triggers.

Since the cost issues could prevent the network from always using the latest link

state information, it is an important area of research to see how the routing is af-

fected by the lack of accurate information. Section 6.2 took a brief look on routing

with inaccurate information.

7.2.3 Evaluation of trigger policies

In [4] Apostolopoulos et al. evaluate trigger policies and study routing performance

and cost under different policies through simulation. The results suggest that the

volume of the link state update traffic does not depend on the type of value adver-

tised; quantized classes or non-quantized values updated based on relative change.

The sensitivity of the trigger obviously affects the update traffic volumes. With

very large clamp-down timer values the traffic volume is independent of triggering

policies altogether, since the timer prevents the generation of LSA messages for

so long that no matter what the type of system and values of thresholds, a new

message is likely to be sent every time the timer allows it. The situation is thus

almost equivalent to that with only periodic updates. This can be seen in figures

7.3 and 7.4, which show results for the number of update messages per second for

different settings of thresholds and trigger types.

On thex-axis there is the value of the clamp-down timer. The different curves are

for different trigger policies and sensitivity levels. The letter T stands for threshold
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Figure 7.4: Update traffic volume comparison for non-uniform traffic,1Mb/s re-

quests [4].

based updates and the percentage value is the relative difference between advertised

value and current value that is needed to trigger an update. The letter E stands

for equal class based updates, a class based trigger where the operating region of

available bandwidth is divided into equal size classes. The percentage value here is

the size of a class compared to the maximum request size.

Apostopoulos et al. go on to evaluate routing performance under large clamp-down
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Figure 7.5: Blocking probability vs. update period [42]

values. It is seen that non-pruning routing policies actually outperform the ones

that prune the network of links with insufficient available bandwidth. Usingwsp,

the non-pruning policies always select paths among the shortest paths. The pruning

policies can select alternative paths when the shortest paths do not have the required

resources. But because of the inaccuracy introduced by the low frequency of link

state updates, it may select longer alternative paths that consume network resources

but do not have the required available bandwidth any longer.

Under substantial inaccuracy the routing performance can be improved by con-

sidering several possible paths and using a weighted random selection to choose

paths. Choosing sometimes longer paths, even if there appeared to be shorter fea-

sible paths, prevents systematically using a path that is incorrectly assumed to be

feasible because of inaccurate link state information. The randomized routing is

shown to be particularly effective under a non-uniform traffic distribution.

Shaikh et al. [42] investigate update policies by simulation, as part of evaluation of

stale link state impacts on routing. They distinct betweenrouting failures, which

occur if no feasible path is found, andset-up failures, which occur when the selected

path cannot support the connection. In an ideal situation where the latest link state

information is available, there should be no set-up failures, since the path is selected

64



Chapter 7. Review of evaluations of QoS routing

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
Link−state update trigger

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
on

ne
ct

io
n 

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

b ~ (0, 4%]
b ~ (0, 6%]
b ~ (0, 8%]
b ~ (0, 10%]

no pruning

Figure 7.6: Blocking probability vs. trigger sensitivity [42].

based on accurate information. If the path cannot support the connection, this can

be seen from the link state information, and either a different path is selected or a

routing failure occurs. Also, when using accurate information, the routing failures

that do occur are all legitimate in the sense that the requested resources are really

not available.

Routing with inaccurate information will increase the amount of set-up failures.

Also the cases of false routing failures increase. If the information used for com-

puting the path indicates that some link is infeasible for the connection, it cannot be

used for the path, while it may, in reality, be feasible. This can potentially lead to

the rejection of the connection, although a path could have been found if the latest

information were available.

As the update period increases, more and more of blocking is caused by set-up

failures, as can be seen in figure 7.5.1 In fact it is shown that when update periods

are a couple of times larger than the inter arrival time of the connections, the set-up

failures dominate the blocking probability. So either more frequent periodic updates

1In figures 7.5, 7.6 and 7.7 the legends in the formb ∼ (0, 4%] mean that bandwidth requests

used for the simulation are uniformly distributed between zero and four percent of link bandwidth.
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Figure 7.7: Update rate vs. trigger sensitivity [42].

or triggered updates are needed to assure sufficiently accurate information.

Blocking probabilities for using triggered updates are shown in figure 7.6. The

sensitivity of the trigger does not seem to make a decisive difference in performance.

This result is also seen in [3]. The figures show that the blocking probabilities for

theb ∼ (0, 8%] case become larger for periodic updates when the update period is

five unit times or larger.

The question is which is the better alternative for minimizing cost: frequent periodic

updates, or triggered updates? In the case of theb ∼ (0, 8%], the blocking proba-

bility in figure 7.6 is approximately0.05 for the trigger case. Comparing to figure

7.5, it is seen that to achieve similar blocking probability the required update period

is 4 unit times, or0.25 updates per unit time. For triggered updates, the update per

unit time graph for the same topology and traffic load in 7.7 shows that using trigger

values of0.40 or larger lead to substantially lower amount of updates. So the cost

efficient solution is to use triggered updates, but not too sensitive triggers.
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7.3 Evaluation of routing schemes

7.3.1 Bandwidth guaranteed algorithms

Ma et al. [34] use simulation to compare four different algorithms for routing band-

width guaranteed traffic: widest-shortest path, shortest-widest path, shortest dis-

tance path and dynamic alternative path, all of which were described in section 3.6.

The results indicate that theswpalgorithm is not competitive with the others. No

matter what topology or traffic load was used the shortest-widest path always leads

to the highest call blocking rate among the four. See figures 7.8 and 7.9.
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Figure 7.8: Blocking comparison with different topologies, uniform traffic distribu-

tion [34].
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The problem with emphasizing the widest path is that the algorithm always routes

along the widest path, however long it might be. Certainly this balances the load in

the network by avoiding congested links, but it may use much more resources than

a shortest path, which leads to higher blocking for other requests, especially if the

traffic load is heavy. The three other algorithms have almost similar performance.

Thedap algorithm has slightly lower blocking probability in some cases. See the

graph on the right in figure 7.8, which shows blocking of video sessions in the

clustered topology. Compared to the MCI topology, in the clustered topology there

are always alternate paths available. So it is even more important to limit the hop

count.

When the traffic load is light, limiting hop count increases blocking probability,

because resource reservation is of no importance and the hop count limit can cause

some requests to be rejected. However, the blocking probability in light traffic is

only a fraction of the blocking probability under heavy traffic no matter what the

routing algorithm is. In the situation shown in the left side of figure 7.8, if the traffic

load would be only114MB/s, the blocking probability of thedapalgorithm would

be0, 68% while with wspit would be0, 23% and forsdpandswpeven lower [33].

So it seems that, in general, limiting hop count lowers the blocking probability. It

is important to notice that the shortest paths used here are in fact shortest-feasible

paths. So unlike best effort traffic, the feasibility condition already forces to route

around heavily congested links, and thus algorithms emphasizing available band-

width are not as effective. Indeed in [35] thesdpalgorithm was found the most

effective for best-effort routing, because of the ability to route around congestion.

But that ability does not hold such importance in QoS routing for the above reason.

In [33] Ma et al. add also best effort traffic to their simulation model. The situation

of figure 7.8(a) is studied separately for audio and video traffic for which bandwidth

requests are from16kb/s to 64kb/s and from1Mb/s to 5Mb/s, respectively. The

call blocking rate of video sessions is over hundred times larger than the rate of

the audio sessions. It is shown that the call blocking rate is linearly dependent

on the requested bandwidth, such that the algorithms favor connections with lower

bandwidth requirements.
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7.3.2 Evaluation of heuristic approaches

Kuipers et al. [29] present a performance evaluation of the heuristic approaches

presented in section 3.5. The evaluation is done using the Waxman graph topology.

The simulations are done for different size topologies and each simulation consists

of 10000 different topologies of the same size.

Each link is randomly assigned values between zero and one, for all the metrics.

The constraints are chosen in two different ways. In the first case, the constraints

are selected so that there is exactly one feasible path. The set of constraints obtained

in this way are referred to as constraints L1. In the second case the constraints

are selected as follows: First the shortest paths with regard to each metrici are

computed. This yields as many different paths as there are constraints used. Let

P i denote the shortest path with regard to metrici. The constraintCi selected for

metrici is the maximal valuewi found among those paths.

Ci = max
j

wi(P
j).

These are called constraints L2.

The simulation results include the success rate and execution time. The success rate

is the number of times a feasible path is found divided by the number of graphs ex-

amined. Since the constraints are selected such that a feasible path always exists in

the graph, the best possible success rate is1.00. The execution time shown in figure

7.10 is a normalized execution time referring to the algorithm’s execution time over

all graphs examined divided by the execution time that Dijkstra’a algorithm would

take computing shortest paths for the same graphs. The authors find that Bellman-

Ford based algorithms perform significantly worse regarding execution time than

Dijkstra-like algorithms. Therefore the Bellman-Ford based algorithms are omitted

from their results. Of the heuristic algorithms presented in section 3.5, only Chen

and Nahrstedt’s algorithm is such an algorithm.

Figure 7.10 shows the results for the case with two metrics for different topology

sizes.N on the x-axis denotes the amount of node in the topology. The results for

the stricter set of constraints L1 are on the left side of the figure, and results for

constraints L2 on the right side. SAMCRA and A*Prune always give the highest

possible success rate, since they are exact algorithms. For the constraint set L2,
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Constraints L1 Constraints L2

Figure 7.10: Performance of heuristic algorithms with two metrics [29]

Iwata’s algorithm also always gives perfect success rate. This is, however, due to

the process of selecting the constraints, which is very convenient for Iwata’s algo-

rithm. The selection process is in essence the reverse of the search process in Iwata’s

algorithm. For the stricter constraint set L1, Iwata performs much worse than the

other algorithms. Jaffe’s algorithm achieves also significantly lower success rate

than the others for constraints L1. For the looser set of constraints, the differences

in performance are much smaller. Again, Jaffe’s algorithm is the worst performing

algorithm. The difference in success rates decreases as a function of the topology

size.

Figure 7.10 shows that execution times are longer for the looser constraints L2.

One reason for this is that, since more paths are feasible, it is harder for MCOP

algorithms to find the optimal among those.
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Even though the exact algorithms, SAMCRA and A*Prune, have exponential com-

plexity, their execution times are not overwhelmingly larger than the other algo-

rithms. Only in the case of the looser constraints, for very large topologies they

experience significantly larger execution times, but the growth still seems linear.

TAMCRA, along with the low success rate Iwata’s algorithm and Jaffe’s algorithm,

performs best in the execution times comparison.
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Remarks on QoS routing techniques

8.1 Introduction

This chapter includes the parts of the thesis that are new contributions by the author.

They are referred to in the other chapters considering these subjects. But as this

thesis is mostly a literature review, the own contributions are separated as their own

chapter.

8.2 Use of bandwidth reservation to prevent starva-

tion of low priority traffic

In section 6.4 the impact of QoS guaranteed traffic on lower priority traffic was dis-

cussed. One way to prevent the starvation of low priority traffic is to use a bandwidth

reservation scheme. Some percentage of the bandwidth is reserved exclusively for

low priority traffic. In this section the effect of using this kind of reservation tech-

nique is studied by formulating a Markov-model approximation of the situation.

To simplify matters it is assumed that the guaranteed traffic consists of video con-

nection requests of the same size. Poisson arrivals and exponential holding times

with parametersλ andµ, respectively, are assumed. The bandwidth requirement

of a video stream is hered = 5Mb/s and the capacity of the link is chosen as
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C = 100Mb/s. So if all of the link capacity were available to guaranteed traffic, a

total of twenty connections could be accepted at the same time.

λ λ λ λ λ λ

µ 17µ2µ 18µ 19µ 20µ

200 1 2 19181716

80% 85% 90%

Figure 8.1: The bandwidth reservation Markov-model

If we limit the percentage of link capacity allowed to be reserved by this bandwidth

guaranteed priority class, every five percent change is equal to a drop of one con-

nection. The situation is illustrated in figure 8.1 where the dashed lines show where

the capacity limit of the priority class is positioned with different values of maximal

reservation.

The state probabilities can be easily solved from the balance equations. From the

state probabilities we can calculate the average bandwidth available for low priority

traffic:

bavailable =
20∑

i=0

πi(C − i · d), (8.1)

from which the link capacityC and request sized can be taken out from the sum,

bavailable = C − d ·
20∑

i=0

πi · i. (8.2)

Now the sum-term is the average number of connections on the link. Using Little’s

formula

N = λcT , (8.3)

which says that the average number of connection is the same as carried arrival in-

tensityλc times the average holding time, which isT = 1
µ
. Carried arrival intensity

is the arrival intensity of traffic that is not blocked, that isλc = (1−B)λ. So

20∑

i=0

πi · i = λc · T = (1−B)λ · 1

µ
= (1−B) · ρ. (8.4)
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Figure 8.2: Available lower priority bandwidth vs blocking in the bandwidth reser-

vation Markov-model

And substituting that to (8.2), the average available bandwidth for lower priority

traffic is then

bavailable = C − d · (1−B) · ρ, (8.5)

which is on the x-axis of figures 8.2 and 8.3.

The blocking probability of guaranteed traffic can be calculated with the Erlang-

formula:

B = E(n, ρ) =
ρn

n!

1 + ρ + ρ2

2!
+ . . . + ρn

n!

, (8.6)

wheren depends on the bandwidth reservation level andρ is the offered traffic in-

tensity on the link for the guaranteed class. Blocking-bandwidth pairs are calculated

for traffic intensities from0 to 1.5 C and bandwidth reservation levels from0% to

20%, where in the first case there is no reservation at all. The equivalent maximal

reservable bandwidths are thus from80% to 100% of the capacity. The results can

be seen in figures 8.2 and 8.3.

Both figures have exactly the same data points, but the connecting graphs are drawn

differently to clarify the situation. On thex-axis there is the average available band-
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width for lower priority traffic, on they-axis the blocking probability of the guaran-

teed traffic requests.

In figure 8.2 the curves indicate the bandwidth reservation level used. The traffic

intensity in the left-most points is1.5 times the link capacityC, and on the right

end of the curves it is0.25 C. This is displayed in figure 8.3 where the curves

now represent the trade-off situation between bandwidth reservation levels. Given

a traffic load, a change in bandwidth reservation corresponds to moving along the

curves in figure 8.3.

The curves are linear and the slopeα depends inversely on traffic intensity. In fact

it is exactly a function of1
ρ

whereρ is the traffic intensity.

This can be seen by solving (8.5) for blocking probability:

B = 1− C − bavailable

dρ
=

1

dρ
· bavailable +

(
1− C

dρ

)
, (8.7)

in which the latter term is a constant, and the dependence betweenB andbavailable

is linear and inversely proportional toρ. 2

Figure 8.3: Trade-offs between available lower priority bandwidth and blocking in

the bandwidth reservation Markov-model

75



Chapter 8. Remarks on QoS routing techniques

Figure 8.4: State probabilities for values of available bandwidth to low priority

traffic for ρ = 1.00C

So the curves in figure 8.3 become increasingly flat as traffic load increases, so that

increasing the reservation value leads to larger improvement while distributing less

to blocking. So with heavier traffic load the trade-off is more favorable. However,

for reasonable traffic load, like0.50C the effect remains rather small. Figures 8.2

and 8.3 show the average available bandwidth. The minimum available bandwidth

is, of course, always the same as the bandwidth reservation level. Figures 8.4 and

8.5 plot the amount of available bandwidth against the probabilities of that much

bandwidth being available for traffic load1.00 C and0.50 C respectively. The effect

of the reservation in the case of traffic load0.50 C is again smaller. The curves seem

almost identical, but there is approximately2.5% probability for0% reservation that

the available bandwidth is lower than the minimum bandwidth for the20% case.

There is no clear cut choice for the value of the reservation level, since it depends

on the emphasis put on guaranteed class blocking compared to lower priority class

throughput.
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Figure 8.5: State probabilities for values of available bandwidth to low priority

traffic for ρ = 0.5 C

8.3 Critique on path selection algorithms

Thedapalgorithm, which is just thewspalgorithm with a hop count limit, in general

performs best out of the four algorithms considered in section 7.3.1, mostly because

by limiting excessively long paths, it saves resources for future requests.

In section 6.4.2 DiffServ’s inter-class effects were studied. The best performing

path selection algorithm for premium class traffic in Wang and Nahrstedt’s simula-

tion study [47] is the Enhanced bandwidth-inversion shortest path algorithm,ebsp,

which also makes modifications to limit hop count. However, the limit of one hop

over the shortest path, while leading to a better performance under heavy traffic,

decreases performance by not allowing longer paths even if the network is not con-

gested. Theebspalso has some unwanted qualities. Consider the example shown

in figure 8.6. A connection with bandwidth requirement1 is to be routed from node

A to destination nodeD. Theebsppath weight is calculated as follows

w(P ) =
k∑

i=1

2i−1

ri

.
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Figure 8.6: Example of Enhanced Bandwidth conversion Shortest Path algorithm.

Now there are two paths from nodeA to nodeD: throughB andC or ThroughF

andE. The available bandwidthsri are shown in the figure. In the first case the

path weight is

w(PABCD) =
1

1
+

2

2
+

4

4
= 3,

and in the second case

w(PAFED) =
1

4
+

2

2
+

4

2
= 3.25.

So the shorter of the paths according to the algorithm is the upper path, because the

order of the weights affects the outcome. Of course this does not make much sense.

Although theebspalgorithm, modified from thedspalgorithm, does perform well

in more realistic topologies, this example shows that the enhancement is somewhat

arbitrary in some situations. The other successful algorithm,dap, is also a modifi-

cation of another algorithm, thewsp.

In both of these algorithms the modification works as a sort of admission control,

which prevents selecting paths that increase the blocking probability of future re-

quests so much that it is more costly to accept the request than to reject it. If a

higher level admission control scheme could somehow be included to the path selec-

tion and resource reservation process, perhaps using different bandwidth reservation

levels for different paths based on the hop count of the path (see section 2.4.4), these

kinds of attempts to achieve admission control through routing algorithm might not

be needed. It is difficult to say whether that would be a better solution.
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Conclusion

9.1 Summary

Quality of Service routing is needed in the quality of service framework to find

paths with sufficient resources available to guarantee the quality that connections

request, and to help balance the load in the network thus preventing congestion.

The path selection problems are divided into several classes, based on the nature

of the metrics they use, whether there is one or several constraints, and whether

optimization is required or any solution satisfying the constraints is feasible.

The routing problems for one and two constraint combinations were formulated in

chapter 3. For the problems whose computational complexity is polynomial, the

exact solution algorithms were presented. Routing problems with several path con-

straints are computationally very complex. For those problems heuristic algorithms

need to be developed. Several heuristic algorithms were presented in the chapter.

The most important, and most used, metrics are bandwidth along with hop count.

Several different algorithms for bandwidth guaranteed traffic were presented in

chapter 3. The goal of the algorithms is to find paths that while providing the re-

quested bandwidth, use network resources as little as possible, so that the blocking

probability would be low and congestion avoided. The performance of the algo-

rithms was studied in chapter 7. It was found that algorithms that emphasize limit-

79



Chapter 9. Conclusion

ing hop count perform the best.

In chapter 4 various strategies and approaches to QoS routing were introduced. The

routing algorithms are divided into three classes:

Source routing, where the whole path is computed in the source node, and inter-

mediate nodes just forward the flow,

distributed routing, where each node computes just the next hop, and

hierarchical routing, where information is aggregated hierarchically to solve the

scalability issues in source routing, though aggregating information about

several metrics is problematic.

The chapter also discussed the choice between pre-computation, where paths are pe-

riodically pre-computed, and on-demand computation, where the path is computed

when a request arrives.

Chapter 5 introduced the Quality of Service extensions to OSPF-protocol. It is the

QoS routing protocol that has received the most attention in research in recent years.

Test implementations have been made, and it is the most likely candidate for a first

QoS routing scheme.

Chapter 6 took a look into some problems arising from the use of QoS routing:

routing with inaccurate information, instability in path selection and impact on low

priority routing.

It was concluded in chapter 7 that inaccuracy in link state information is an im-

portant area of research, because the most significant cost issue in QoS routing is

the time consumed on link state advertisements, and thus they need to be held to a

moderate frequency. Thus, accurate information cannot always be at the disposal of

the path selection algorithms. It was learned that for traffic with bandwidth require-

ments only, the impact of inaccuracy is not significant. For more complicated QoS

requirements, however, the inaccuracies have a bigger impact, and the problem is in

general intractable. Fortunately, solutions for some important special cases can be

found.

Instability is a problem in the best effort routing as well as in traditional dynamic
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routing. In QoS routing this can be avoided by using path pinning, a technique that

prevents connections to be re-routed when better paths appear, as long as the current

path is feasible. Random routing and quantized metric values are also proposed to

prevent instability and congestion caused by routing all the arriving requests to the

path that is best according to the latest link state information, but may not be for

long if all traffic is routed there.

To prevent congestion and even starvation of low priority traffic, several approaches

have been proposed. Out of the basic path selection algorithms the shortest-distance

path algorithm was found to be the most efficient. For DiffServ inter-class ef-

fects the Optimal Premium-class routing problem was defined. The problem is

NP-complete. So heuristic approaches were needed. One way to guarantee that the

lower priority traffic will not get congested is to reserve some percentage of band-

width for it. In chapter 8 a model was formulated and solved to study the affect of

this approach. No clear-cut choice for the reservation level was found, but it de-

pends on the emphasis put on the blocking probability of QoS traffic compared to

the available bandwidth of low priority traffic.

Chapter 7 concluded that pre-computation does not consume resources excessively,

and is not a major cost contributor. On-demand computation on the other hand has

the benefit of always using the most recent information. It is not, however, efficient

to use, if requests arrive very frequently. Also, if the link state updates are less fre-

quent than the pre-computations, the bottleneck on accuracy is not the computation,

but the link state advertisements, so on-demand computation is probably not very

useful.

Chapter 7 also discussed the cost of QoS routing. Several aspects contribute to the

cost and overhead involved in QoS routing, but it has been shown that the most

significant source of cost is the time consumed on the link state advertisement gen-

eration and reception. The time consumption of the LSA’s depends on the the types

of update triggers used. The most efficient way seems to be using triggered updates,

but not very sensitive triggers. Based on the results, QoS routing is not too costly

or time consuming to use.
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9.2 Further work

The path selection algorithms that perform best are the ones that emphasize limiting

hop count. So far there have been simulation studies showing that some particular

algorithm performs slightly better than, for instance, the widest-shortest path algo-

rithm, which is often used as a benchmark in comparison. For instance thedap

algorithm performs very well, but how would an algorithm do that allows longer

paths, for examplen + 2 hops as opposed ton + 1 hops allowed by thedap. Also,

there is little motivation for the penalty terms ofebsp, or the optimal value ofn

in sdpalgorithm extensiondist(P, n). Perhaps some other kind of weights would

perform just as well, or better, and solve the irregularity issues ofebsp. As these are

the most efficient algorithms, a comprehensive study of similar type of algorithms

with different parameters could be beneficial.

Co-existence of QoS guaranteed traffic and low priority traffic has gotten surpris-

ingly little attention so far, even though it is recognized as an important problem.

This problem is not different from the path selection problem, where resource reser-

vation is important to accommodate future request, even if lower priority traffic is

not considered. So it would be reasonable to combine the two and consider routing

schemes with regard to both aspects.

For algorithms with additional weights to penalize for longer hop counts, the behav-

ior of the path weights that the algorithms yield for typical paths could be studied.

The performance of this kind of algorithm would, however, need to be evaluated by

extensive simulations.

The bandwidth reservation approach could be extended to multidimensional Markov

process for cases with several routing classes. Throughput of classes could be

roughly approximated by simulating only the class of interest, and letting the avail-

able bandwidth change based on the state probabilities in the Markov process.

The bandwidth reservation can be used as an admission control, such that it allows

longer paths, but sets higher reservation levels. For instance if the bandwidth reser-

vation for the purpose of low priority traffic is10%, an additionalx1% would be

added for paths one hop longer than the shortest path, an addition ofx2% for paths

two hops longer, and so on. The optimal values ofxi could be evaluated with traf-
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fic theoretic methods, such as dynamic state dependent routing. The performance

study would be done by simulation.

The majority of the studies on QoS routing so far have concentrated on the situation

where QoS traffic reserves resources along the path it uses with RSVP. This guaran-

tees that if the request is accepted and the reservation is successful, the requirements

will be satisfied. However, this kind of system seems to indicate an IntServ-like

framework. In a DiffServ network the end-to-end reservations are harder to achieve.

Reservation of resources has to be done through bandwidth brokers, and scalability

is an issue. How would QoS routing work in a DiffServ network without resource

reservation? The path selection would have to count on link state information to pre-

vent congestion on paths. Inaccurate information would lead to a situation where,

from time to time, QoS guarantees would not hold. The question of the trade-off

between cost of accurate link state information and probability of failing to give

the requested guarantees, needs further attention if QoS routing without resource

reservation is to be considered.
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Appendix A

Shortest path algorithms

This chapter introduces the standard shortest path algorithms: Dijkstra’s algorithm

and the Bellman-Ford algorithm. The algorithms compute shortest paths from a

given source nodes to all other nodes in the network.

Dijkstra’s algorithm

LetN(G), denoted byN for simplicity, be the set of nodes in the network, byM the

set of nodes incorporated by the algorithm, and by A the set of links in the network.

Let T denoteN −M , the set of nodes yet to be incorporated.

When the algorithm starts setM contains only the source nodes. The cost function

C(n) is the weight of the path from nodes to noden. For each noden in setT let

the costC(n) be the weight of link(s, n) and the predecessorpred(n) be nodes. If

there is no link(s, n), thenC(n) = ∞ andpred(n) = 0.

The cost function values of nodes in setT are calledtemporary labels, and cost

functions of nodes in setM are calledpermanent labelssince they do not change

any more during the execution of the algorithm.

Then, while the set of incorporated nodesM is different from the set of all nodes

N :

Choose the nodeu with the smallest cost function of the nodes inT . Include node
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u to setM and remove it from setT . Then update the temporary labels for all the

nodes remaining in setT by calculating the new cost functions. The label changes

if a noden ∈ T is reached through nodeu, which was just added to setM , with

smaller cost than the current label onn. That is, if the cost of the path froms to u

plus the link weight on link(u, n) is smaller than the current cost on the path from

s to n, the label is changed. The predecessor of noden is then also changed tou.

The nodes are added one by one to setM until all nodes have permanent labels and

the setT is empty. The algorithms then stops, having calculated the shortest path

from nodes to every other node in the network.

• M = {s}

• C(s) = 0, pred(s) = 0

• for each noden ∈ (T )

– C(n) = w(s, n), pred(n) = s if (s, n) ∈ A,

– C(n) = ∞ otherwise

• While N 6= M

– Chooseu ∈ T so thatC(u) = min {C(v) : v ∈ T}
– M = M ∪ {u}, T = T − {u}
– For each noden ∈ T that is a neighbor ofu

∗ if C(n) > C(u) + w(u, n) then

• C(n) = C(u) + w(u, n), pred(n) = u

Bellman-Ford algorithm

Let N be the set of nodes in the network, andA the set of links.C(n) is the weight

of the path from source nodes to noden, andpred(n) is the predecessor of noden

on that path.

First initialize by setting the path weight froms to itself as 0, and the path weight

to every other node to infinity.
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Then update the path weights. Check for each link(u, v) in the network if nodev is

reached with smaller weight through a path to nodeu and link(u, v). If so update

the path weightC(v) and set nodeu as the predecessor of nodev. When all links

are checked, if at least one of theC(v) values changed repeat the update process.

The algorithm finds the shortest path from nodes to every noden with mostN

iterations.

• C(s) = 0, pred(s) = 0

• C(n) = ∞, pred(n) = −1 for everyn ∈ N ,n 6= s

• Loop:

– For each link(u, v) ∈ A

∗ if C(u) + w(u, v) < C(v)

• C(v) = C(u) + w(u, v), pred(v) = u

• if at least oneC(v) changed repeat loop
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Short introduction to

NP-completeness

First, the following definitions are needed:

Turing machine is used for mathematical modelling of a stored-instructions com-

putational device. It is an abstract model of computer execution and storage

introduced in 1936 by Alan Turing to give a mathematically precise definition

of algorithm or ’mechanical procedure’ [49].

Non-deterministic Turing machine is a Turing machine capable of simultaneously

pursuing an infinite number of computational paths. This is of course impos-

sible, but it is an useful model for problem classification.

A computational problem is inclass P(Polynomial) if it can be solved in poly-

nomial time by a deterministic Turing machine [18]. This means that the time of

execution is a polynomial function of the problem size. In the case of graphs repre-

senting networks, it would be a polynomial of the number of nodes and links in the

network.

A computational problem is inclass NP(Non-deterministic Polynomial) if it can be

solved in polynomial time by a non-deterministic Turing machine [18]. Problems

in NP can be solved in exponential time by real machines. Given an answer, the

correctness of the answer can be checked in polynomial time. It has not been math-
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ematically proven that problems inNP are not solvable in polynomial time, but no

algorithm exists. If such an algorithm were found, it would mean thatP=NP. But

from the practical point of view it can be assumed thatP is different fromNP, and

problems inNPcan not be solved by computers in polynomial time.

A problem isNP-complete, if the following statement is true: If the problem can be

solved in polynomial time, then the algorithm could be used to solve all problems

in NP, that is every problem inNP can be reduced to aNP-completeproblem. Out

of all the problems in classNP, NP-completeproblems are the ones most likely not

to be inP.
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Topologies used in the simulations

discussed in the thesis

The isp-topology

Transit Network Router

Source
Node

Figure C.1: The isp-topology [1]

The isp-topology, shown in figure C.1 has been used in various simulation studies.

The acronym isp stands for Internet service provider, and the topology is a repre-

sentative of a typical service provider’s network in the United States. In paper [1]

discussed in section 7.2.1 the link capacities were between20Mbit/s and70Mbit/s.
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The mesh-topology

Routers

Transit Networks

Building Block

Source 
Router

Figure C.2: The2× 2 mesh-topolgy [1]

The second topology used in [1] is the mesh-topology. The network topology con-

sists of several basic building blocks. One such block has four routers and five

transit networks. An example of a two by two blocks topology is shown in figure

C.2. The results discussed in section 7.2.1 are for link capacity of45Mbits/s.

The MCI-topology

The MCI-topology used in papers [34], and shown in figure C.3, is a realistic rep-

resentation of the MCI internet topology in the United States.
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T3
OC3

Figure C.3: The MCI-topology [34]

The clustered-topology

The clustered-topology, figure C.4, used in paper [34] is deliberately constructed so

that it has a few clusters of nodes that have many links between them. This allows

for alternate routes to be available more often, which is helpful when evaluating the

performance of various routing schemes in different situations.

45 Mbs

100 Mbs

155 Mbs

Figure C.4: The clustered topology [34]

96



Appendix C. Topologies used in the simulations discussed in the thesis

The Waxman graph

The Waxman graph [48, 44] is a random graph withN nodes, which is generated

so that for each pair of nodesi, j, there is a probabilitypi,j for a link to connect

them. These probabilities are inversely proportional to the distance between the

nodes. This leads to a more realistic representative of a network than a random

graph without the proportional quality of the probabilities. In a real network, two

nodes close to each other are, of course, more likely to be connected by a link.

Figure C.5 shows an example of a Waxman graph with100 nodes.

Figure C.5: A typical Waxman graph forN = 100 [44]
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