
1

A Flexible and Adaptive Admission Control
Framework for DiffServ Access Networks

jani.lakkakorpi@iki.fi

Nokia Research Center / Communication Systems

8 January, 2004

IRoNet Results Seminar

2

Disclaimer

“I do not know (yet) how the scheme I am going to present
relates to IRoNet activities. This is just something I have
been doing for the past two years – mostly for my Licentiate
thesis.”

3

Agenda

• Motivation for flexible connection admission control

• Bandwidth Broker framework

• Introducing measurements to Bandwidth Broker framework

• Flexible and adaptive connection admission control
• Flexible bandwidth sharing between admission-controlled traffic

classes
• Pricing can be taken into account in admission decisions
• Adaptive AF weight tuning
• Adaptive reservation limit tuning

• Performance evaluation (simulation results)

• Conclusions & future work

4

Why Flexible Admission Control?

• Why admission control in IP networks at all?
• There are applications (e.g., VoIP) that don’t adapt to network

congestion.
• Overprovisioning? OK, but how much is really enough?
• DiffServ reduces the need of new capacity but it does not create

bandwidth out of thin air.

• Why different kind of admission control rules for different type of
connections? Isn’t one threshold for all connections under admission
control enough?

• Thanks to DiffServ, the requested bandwidth does not have to be
equally guaranteed for all connections (e.g., VoIP vs. streaming).

• Hard vs. soft guarantees can be realized with the help of differentiated
edge policing and packet forwarding in the core.

• Why not to use the application requirements as a basis for admission
control decisions?

• This would lead into favoring real time applications, which may not be
always beneficial.

5

Bandwidth Broker Concept

• RFC 2638 (A Two-bit Differentiated Services Architecture for the Internet)
introduced a Bandwidth Broker (BB) agent that has the information of all
resources in a specific domain.

• O. Schelén has presented an admission control scheme, where clients can make
bandwidth reservations through BB agents:

• For each routing domain, there is a BB agent responsible for admission
control.

• BB agent maintains information about reserved resources on each link in its
routing domain.

• BB learns the domain topology by listening to OSPF messages and link
bandwidths through Simple Network Management Protocol (SNMP).

• BBs are responsible for setting up policers at the network edges.

BB1

BB3

BB2

6

Suggested Additions

• The use of static reservations only (parameter-based admission control,
PBAC) can leave the network underutilized. This is due to the fact that
average bit rates can be substantially lower than the corresponding
(requested) peak rates. Link load measurements are needed for more
efficient network utilization.

• CAC agents monitor and update their “local link loads” by using
exponential averaging on their local router statistics. CAC agents also send
periodical load updates to BB agent of the routing domain.

BB1

BB3

BB2

CAC12

CAC13

CAC14

CAC24

CAC11

CAC21

CAC22
CAC23

CAC32

CAC33

CAC31

7

Distributing the Information

CAC agents send exponentially averaged link load information to BB every p seconds:

s is the sampling period, p is the measurement period and w is the averaging weight.

• The information that a
bandwidth broker needs for
making admission control
decisions is retrieved through:
• measurement reports
• capacity allocation requests

BB1

CAC12

CAC13

CAC14

CAC11

Routing domain

Measurement
reports

Host

Capacity
allocation request

& response

� � classclassclass dcurrentLoawloadwload **1: ���

)
*

)/(,...,
*

)1(max(:
bws

sptsdequeuedBi
bws

tsdequeuedBidcurrentLoa classclass
class �

8

Load & Reservation Limit Hierarchy:
Available Path Bandwidth Calculation

Limittotal

LimitRT LimitNRT

... ...
LimitRT1

(e.g., LimitEF)

LimitRTn
(e.g.,

LimitAF1)

LimitNRT1
(e.g.,

LimitAF2)

LimitNRTn
(e.g.,

LimitAF4)

)(* classclassclass loadloadLimitbwBwunoccupied ��)(* classclassclass reservednLimitreservatiobwBwunreserved ��

)|,min(,,, pathlinkBwunreservedBwunoccupiedwavailableB linkclasslinkclasspathclass ���

))1(),min((*
AFi

AFi
EFAFiAFiAFi weight

loadloadloadloadLimitbwBwunoccupied ����

)),min((_ MAXRTNRTtotalRT loadLimitloadloadLimitloadLimit ��

)),min((_ MAXNRTRTtotalNRT loadLimitloadloadLimitloadLimit ��

)),min((_ MAXRTNRTtotalRT nLimitreservatioreservednLimitreservationLimitreservatio ��

)),min((_ MAXNRTRTtotalNRT nLimitreservatioreservednLimitreservationLimitreservatio ��

Measurement report arrives at BB

Capacity allocation request arrives at BB

9

A Flexible CAC Instance with Three Classes:
Admission Decisions for EF, AF1 (RT) and AF2 (NRT) Connections

Bandwidth Broker:
for each admission request:
classify connection (class = EF/AF1/AF2)
admit = true
if (class != AF2)
calculate availableBwclass, path and availableBwRT, path
if ((availableBwclass, path < f(price)*requestedRate) OR (availableBwRT, path < f(price)*requestedRate))

admit = false
else
calculate availableBwNRT, path
if (availableBwNRT, path < f(price)*requestedRate)

admit = false
if (admit == true)
for all links on the path:

reservedclass =+ requestedRate
re-calculate unreservedBwclass, unreservedBwRT, unreservedBwNRT

for each connection tear-down:
classify connection (class = EF/AF1/AF2)
for all links on the path:

reservedclass =- requestedRate
re-calculate unreservedBwclass, unreservedBwRT, unreservedBwNRT

for each load update arrival:
update link database: re-calculate unoccupiedBw:s

All CAC agents (including Bandwidth Broker):
timer expires:
update link loads
send update to Bandwidth Broker
set timer to expire after p seconds

The effect of
pricing: a

function of the
price the user is
paying for the
connection.

10

Adaptive AF Weight Tuning (1/2)
• Motivation for AF weight tuning: If we give our “Best Effort” class a fair share of

forwarding resources, say 10%, it is impossible to have strict priority like weights
(e.g., 90:9:1) for the AF classes. Moreover, static “normal” AF weights could result
into low bottleneck link utilization.

• Implementation:
• Bandwidth Broker stores the minUnoccupiedBwAFi values for each link and

performs periodical checks (every TW seconds).
• If certain thresholds are reached, new AF weights are applied for the involved

links – and for the admission control algorithm.
• If minUnoccupiedBwAFi/bw < lowThreshold or minUnoccupiedBwAFi/bw >

highThreshold, update weightAFi.

• weightAFi is pre-calculated after each load update arrival – but only if
unoccupiedBwAFi < minUnoccupiedBwAFi. Here unoccupied denotes the amount
of link capacity that we would like to be always available. A negative
value of unoccupiedBwAFi will immediately trigger AF weight tuning.

• The final AF weights depend on the number of AF classes (N), excluding
the “Best Effort” class.

)1/(unoccupiedloadloadweight EFAFiAFi ���

)1(*)/(:
1

BE

N

j
AFjAFiAFi weightweightweightweight �� �

�

11

Adaptive AF Weight Tuning (2/2)

Bandwidth Broker:
for each load update arrival:

for each link mentioned in the message:
update = false
for each AF class under CAC:

if (unoccupiedBwAFi < minUnoccupiedBwAFi)
minUnoccupiedBwAFi = unoccupiedBwAFi
weightAFi := loadAFi/(1 - loadEF - unoccupied)

if (unoccupiedBwAFi < 0)
update = true

if update
for each AF class under CAC:

weightAFi := weightAFi/sum(weightAFj j = 1:N)*(1 - weightBE)
minUnoccupiedBwAFi = bw
enforce the minimum and maximum AF weights

timer expires:
for each link:

update = false
for each AF class under CAC:

if ((minUnoccupiedBwAFi/bw < lowThreshold)||
(minUnoccupiedBwAFi/bw > highThreshold))

update = true
minUnoccupiedBwAFi = bw

if update
for each AF class under CAC:

weightAFi := weightAFi/sum(weightAFj j = 1:N)*(1 - weightBE)
enforce the minimum and maximum AF weights

set timer to expire after TW seconds

12

Adaptive Reservation Limit Tuning
• Motivation for reservation limit tuning: Protection against a sudden burst of

connection arrivals. Could be solved with strict PBAC but that would lead to low
utilization.

• With adaptive reservation limit tuning, we effectively turn off the “real” PBAC. The
MBAC part, however, does not change – connections can still be blocked because
of exceeded link load thresholds.

• Reservation limit tuning for EF and RT classes:
• Bandwidth Broker checks periodically (every TR, e.g., 10 seconds) the loadEF

and loadRT values of each link.
• If the EF/RT reservation limit is too small compared to the actual link usage,

we will increase the limit. Similarly, if the reservation limit is too big compared
to the actual link usage, we will decrease the limit.

• increment denotes the amount of capacity that we can increment to or
decrement from the reservation limit.

Bandwidth Broker:
timer expires:
for each link:

if (loadEF < (loadLimitEF - increment))
reservationLimitEF = reservedEF + increment

if (loadEF > (loadLimitEF + increment))
reservationLimitEF = reservedEF - increment

if (loadRT < (loadLimitRT - increment))
reservationLimitRT = reservedRT + increment

if (loadRT > (loadLimitRT + increment))
reservationLimitRT = reservedRT - increment

set timer to expire after TR seconds

13

Adaptive AF Weights and Reservation Limits

• Only the first of six simulation runs is graphed. Legend, however, provides
the average values of all runs.

• AF3 class is given a static 10% weight.

14

Simulation Topology
+Our EF/AF DiffServ Queueing Model + Traffic Mix + Service Mapping

18 Mbps

110 Mbps

6 Mbps

Edge router

Core router

”Access network gateway”

AF1, DP=1...3

Scheduler:
Single Priority

Queue
&

Deficit Round
Robin to

implement
weights
(a, b, c)

w = a

AF2, DP=1...3

AF3, DP=1...3

w = b

w = c

PQEF
Rate

limiter

WRED

WRED

WRED

Service Service level PHB Share of offered
connections

Requested
bandwidth

(� peak rate)
VoIP calls N/A EF 20.0% 36 kbps

Videotelephony N/A EF 20.0% 84 kbps
Gold AF11 4.0%
Silver AF12 4.0%

Video streaming

Bronze AF13 4.0%

250 kbps

Gold AF21 8.0%
Silver AF22 8.0%

Guaranteed web
browsing

Bronze AF23 8.0%

250 kbps

Gold AF31 8.0%
Silver AF32 8.0%

Normal web
browsing and e-

mail
downloading

Bronze AF33 8.0%

N/A

15

CAC Parameters
 No reservation limit tuning EF and RT reservation limit tuning

Parameters SP like AF
weights

Normal
AF

weights

Adaptive
AF

weights

SP like AF
weights

Normal
AF

weights

Adaptive
AF

weights
weightAF1 0.9 0.45 adaptive 0.9 0.45 adaptive
weightAF2 0.09 0.45 adaptive 0.09 0.45 adaptive

weightAF3/BE 0.01 0.1 0.1 0.01 0.1 0.1
TW N/A 10.0 s N/A 10.0 s

lowThreshold N/A 0.05 N/A 0.05
highThreshold N/A 0.15 N/A 0.15

unoccupied N/A 0.1 N/A 0.1
TR N/A 10.0 s

increment N/A 0.05
reservationLimitEF 10.0 adaptive

reservationLimitRT_MAX 10.0 adaptive
reservationLimitAF1 10.0
reservationLimitAF2 10.0

reservationLimitNRT_MAX 10.0
reservationLimittotal 10.0

loadLimitEF 0.5
loadLimitAF1 0.5
loadLimitAF2 0.9

loadLimitRT_MAX 0.9
loadLimitNRT_MAX 0.9

loadLimittotal 0.9
f(price)all 1.0

s 500 ms
p 1.0 s
w 0.5

16

Simulation Results
Method EF+AF1+AF2

admission ratio
[%]

Average
EF+AF1+AF2

bottleneck load [%]

Maximum
AF1 and AF2
delays [ms]

Maximum
AF1 packet

loss [%]
SP like AF weights
(90:9:1), no tuning

37.6 � 1.7 88.2 � 0.1 4.9 � 0.4
28.1 � 14.8

1.4 � 1.2

Normal AF weights
(45:45:10), no tuning

45.2 � 2.1 85.5 � 0.5 9.4 � 1.4
7.5 � 0.7

7.8 � 4.1

AF weight tuning 37.0 � 2.2 88.1 � 0.3 7.5 � 0.6
28.4 � 4.5

6.3 � 2.0

SP like AF weights, EF &
RT reservation limit tuning

41.4 � 1.9 86.8 � 0.2 4.0 � 0.1
10.4 � 0.7

0.1 � 0.1

Normal AF weights, EF &
RT reservation limit tuning

47.4 � 1.7 84.7 � 0.4 6.9 � 0.7
7.2 � 0.8

1.4 � 0.4

AF weight and EF & RT
reservation limit tuning

41.9 � 1.8 86.7 � 0.2 5.9 � 0.2
12.6 � 1.0

1.0 � 0.4

• These results were obtained under bursty connection arrivals; created using a

two-state Markov model. Arrival intensity: 5.83 1/s in the “normal state” and back-
to-back arrivals in the “burst state”.

• Observations:
• Adaptive AF weights result in good link utilization (better than with normal,

non-SP, weights).
• Reservation limit tuning results in significantly smaller packet loss ratio. Of

course, this comes with a price of slightly lower link utilization.
• AF weight and reservation limit tuning do not disturb each other.

17

Conclusions & Future Work

• In Flexible and Adaptive CAC, the demands of real time traffic do not
override all other traffic but link resources are shared in a more flexible
manner.

• Price-based coefficients can be used in the admission decisions in
order to maximize the total operator revenue.

• AF scheduling weights can be tuned based on requested capacity and
link load information.

• Reservation limits can be tuned based on link load information.
• Simulations show that:

• Measurement-based admission control is required also for EF traffic if
high link utilization is desired.

• Adaptive AF scheduling weights – in the CAC algorithm and in the
routers – allow efficient use of available resources taking into account
the QoS requirements of different class applications.

• Adaptive reservation limits give good protection against bursty
connection arrivals.

• Future/on-going work:
• Make admission control aware of possible load balancing i.e. multiple

paths need to be taken into account in admission decisions.

18

Thank You!

