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In the today’s new communications society, different fields of technology experience a

strong boost in their development. The use of the IP network plays the main role in this

framework.

The growth of voice and data services over IP produces significant scalability

problems. Replication and caching technologies provide solutions to these problems.

The Server Cache Synchronization Protocol (SCSP) uses a weak-consistency approach

to provide a flexible replication methodology. The protocol works on limited scopes by

creating replication groups composed of several servers. The use of smaller replication

groups increases the consistency of the replicas within the servers involved.

Continuing from a former implementation of the SCSP, we study the functioning of the

protocol and develop a scalable version. The new program relies on the use of threading

techniques to generate different processing flows. Adjoined to this, the program

commits with requirements as portability within several platforms and transparency of

use.

In the last phase, the final product is put to the test. The program is augmented to self-

generate performance reports and statistics. An interfacing prototype is developed to

replicate via this implementation of SCSP. The tests evaluate the scalability and

performance of the protocol in different stages of replication and different

configurations of server groups. The data collected during the tests is analyzed and

commented upon. The aim is to give a feasibility report of the current implementation

and look for further improvements.

Keywords: Replication, cache, scalability, threading



II

PPrr eeffaaccee
This master’s thesis has been written at the Networking Laboratory of the Helsinki University of

Technology.

I am very grateful to my supervisor Raimo Kantola for the opportunity of working in this

laboratory. I also thank Kimmo Pitkäniemi, Nicklas Beijar, Sampo Kaikkonen and Ignacio

González for their help and company during my time here. I want to give special mentioning to

my instructor Jose Costa Requena for his friendship, work, and support.

I would like to thank all my friends in Helsinki, specially the “winter people”, for their constant

support, they know I will never be grateful enough. I must say that I could not have done this

thesis without their friendship. I also would like to thank my parents and brothers for their love

and hours of phone calls, and my girlfriend Ana, for loving and bearing with me so long. To all

of them for every second they gave me.

April 1, 2001

Helsinki, Finland

Julio Ramírez Yébenes



III

II nnddeexx ooff ccoonntteennttss

ABSTRACT ________________________________________________________________ I

PREFACE _________________________________________________________________ II

INDEX OF CONTENTS ____________________________________________________ III

LIST OF ABBREVIATIONS AND ACRONYMS ________________________________ V

LIST OF FIGURES _________________________________________________________VI

LIST OF TABLES ________________________________________________________ VIII

1. INTRODUCTION________________________________________________________1

1.1. WHAT IS CACHING ? _____________________________________________________1
1.2. REPLICATION AND SYNCHRONIZATION ______________________________________1
1.3. RESEARCH PROBLEM ____________________________________________________2
1.4. TASKS AND STEPS _______________________________________________________2
1.5. STRUCTURE OF THE THESIS _______________________________________________3

2. THEORETICAL ANALYSIS ______________________________________________4

2.1. DIFFERENT MODELS OF WEB CACHING ______________________________________4
2.1.1. CACHING ARCHITECTURES_______________________________________________5
2.1.2. CACHE DESIGN ________________________________________________________6
2.2. CACHE REPLICATION AND SCALABILITY ____________________________________7
2.2.1. STRONG CONSISTENCY APPROACH_________________________________________7
2.2.2. WEAK CONSISTENCY APPROACH___________________________________________8
2.2.3. STRONG VS. WEAK CONSISTENCY__________________________________________8
2.2.4. REPLICATION MODELS___________________________________________________8

3. DEVELOPMENT _______________________________________________________11

3.1. SCSPDESCRIPTION ____________________________________________________11
3.1.1. ELEMENTS___________________________________________________________11
3.1.2. TOPOLOGY OF REPLICATION_____________________________________________12



IV

3.1.3. FUNCTIONING ________________________________________________________13
3.2. SCSPENVIRONMENT ___________________________________________________17
3.2.1. INTERFACE___________________________________________________________20
3.2.2. DATABASE___________________________________________________________21
3.3. IMPLEMENTATION OF THE SCSP__________________________________________22
3.3.1. INTRODUCTION _______________________________________________________22
3.3.2. DATA FLOWS_________________________________________________________23
3.3.3. THREADING __________________________________________________________28
3.3.4. THE MESSAGE QUEUES SYSTEM___________________________________________36
3.3.5. TIMESTAMPING _______________________________________________________37
3.3.6. CONCLUSIONS________________________________________________________38

4. SCALABILITY TESTS AND ANALYSIS. __________________________________40

4.1. TEST GOALS___________________________________________________________40
4.1.1. SERVER GROUP LOAD__________________________________________________40
4.1.2. SERVER GROUP TOPOLOGY______________________________________________41
4.2. TEST ELEMENTS _______________________________________________________42
4.3. TEST ENVIRONMENT ____________________________________________________45
4.3.1. THE NETWORK________________________________________________________45
4.3.2. THE TOOLS___________________________________________________________46
4.4. TEST AND ANALYSIS ____________________________________________________52
4.4.1. SCALABILITY TESTS FOR DIFFERENT LOADS_________________________________53
4.4.2. SCALABILITY TESTS FOR DIFFERENTSGCONFIGURATIONS_____________________65

5. CONCLUSIONS AND FUTURE WORK ___________________________________71

6. REFERENCES _________________________________________________________73



V

LL iisstt ooff aabbbbrreevviiaatt iioonnss aanndd aaccrr oonnyymmss
CA Cache Alignment
CAFSM Cache Alignment Finite State Machine
CGMP Cache Group Management Protocol
CK Cache Key
CR Critical Region
CRL Cache State Alignment Request List
CRP Content Routing Protocol
CSA Cache State Alignment
CSAS Cache State Alignment Summary
CSASL Cache State Alignment Summary List
CSU Cache State Update
CSU Cache State Update
CSUS Cache State Update Solicit
DB Database
DBMS Database Management System
DCS Direct Connected Servers
DD Data Dictionary
DFD Data Flow Diagram
FSM Finite State Machine
HFSM Hello Finite State Machine
I/O Input and Output
ICP Internet Cache Protocol
IOD Origin Identifier
IS Information System
LDAP Lightweight Directory Access Protocol
LDUP Lightweight Directory Update Protocol
LS Local Server
MQ Message queue
MUT Mean Update Time
NTP Network Time Protocol
OM Objects Model
PID Protocol Identifier
SCSP Server Cache Synchronization Protocol
SG Sever Group
SGID Server Group Identifier
TSAE Timestamped Anti-Entropy
UTP Update Transfer Protocol



VI

LL iisstt ooff ff iigguurreess
FIGURE 1. GROWTH OF HOSTS IN THE INTERNET _____________________________10
FIGURE 2. GROWTH OF GSM SUBSCRIBERS UP TO DEC 2000 __________________ 10
FIGURE 3. EXAMPLE OF A HIERARCHICAL CACHE ARRANGEMENT____________ 12
FIGURE 4. CSA AND CSAS __________________________________________________12
FIGURE 5. TRACE EVENTS DIAGRAM OF THE HELLO PROTOCOL IN SCSP_______14
FIGURE 6. TRACE EVENTS DIAGRAM FOR CACHE ALIGNMENT PROTOCOL IN

SCSP _________________________________________________________________15
FIGURE 7. SCSP ENVIRONMENT _____________________________________________17
FIGURE 8. FLOW OF A LOCAL UPDATE IN THE SCSP ENVIRONMENT ___________18
FIGURE 9. FLOW OF A REMOTE UPDATE IN THE SCSP ENVIRONMENT__________18
FIGURE 10. FLOWS IN THE SCSP EVIRONMENT FOR A DCS REINITIALIZATION __18
FIGURE 11. THE DATABASE SYSTEM IN THE REPLICATION ENVIRONMENT_____19
FIGURE 13. LEVEL ZERO DFD FOR SCSP______________________________________24
FIGURE 15. LEVEL ONE DFD FOR SCSP: INPUT FLOW__________________________26
FIGURE 16. LEVEL ONE DFD FOR SCSP: OUTPUT FLOW________________________28
FIGURE 17. SKETCH OF BATCH PROCESSING IN SCSP _________________________29
FIGURE 18. MONITOR OF ACCESS TO SHARED BUFFERS ______________________31
FIGURE 19. SDL FOR INPUT THREAD ________________________________________32
FIGURE 20. SDL FOR THE UPDATE AND ERASE STREAMS _____________________33
FIGURE 21. INTER-THREAD SIGNALS AND MESSAGES ________________________34
FIGURE 22. OBJECTS MODEL (OM) FOR ELEMENTS IN THE SCSP SYSTEM ______36
FIGURE 23. PROGRESSIVE SCALING FOR TOPOLOGICAL ANALYSIS ____________41
FIGURE 24. PROGRESSIVE SCALING OF INLINE TOPOLOGIES __________________42
FIGURE 25. SCHEMA OF THE CONNECTIONS BETWEEN SERVERS ______________46
FIGURE 26. STANDARD UPDATE MODELS____________________________________50
FIGURE 27. ALIGNMENT AND CACHE SUMMARIZE UPGROWTH TIMES _________55
FIGURE 28. SCALABILITY ANALYSIS OF THE NUMBER OF MESSAGES CONSUMED

IN CA_________________________________________________________________56
FIGURE 29. TIMES REQUIRED FOR CACHE ALIGNMENT _______________________57
FIGURE 30.. ANALYSIS OF INPUT DURING CA ________________________________58
FIGURE 31. COMPARATIVE ANALYSIS OF INPUT IN DIFFERENT MACHINES_____58
FIGURE 32. INPUT IN A MULTIPROCESSOR MACHINE _________________________59
FIGURE 33. PERCENTAGE OF CPU USED BY SCSP DURING CA__________________59
FIGURE 34. GROWTH OF THE AVERAGE CSAS PER MESSAGE FOR DIFFERENT

SIZES OF CSA RECORD_________________________________________________60
FIGURE 35. GROWTH OF CSU REQUEST MESSAGES FOR DIFFERENT SIZES OF

RECORDS_____________________________________________________________61
FIGURE 36. INFLUENCE OF THE SIZE OF THE CSA RECORD IN THE REPLICATION

TIME _________________________________________________________________62
FIGURE 37. ALIGNMENT TIME AGAINST NUMBER OF CSU REQUEST MESSAGES

PROCESSED___________________________________________________________62
FIGURE 38. RESPONSE TO THE GROWTH OF EXTERNAL INPUT ________________64
FIGURE 39. INFLUENCE OF THE INPUT RATE IN THE CONSISTENCY STATE _____64
FIGURE 40. TIMES FOR THE INTERMEDIATE NODE IN THE INLINE TOPOLOGY (SEE

FIGURE 24)____________________________________________________________66
FIGURE 41. TIMES FOR ENDPOINT NODES IN THE INLINE TOPOLOGY __________67
FIGURE 42. TIMES FOR INTERMEDIATE NODES IN THE STAR TOPOLOGY _______68
FIGURE 43. TIMES FOR ENDPOINT NODES IN THE STAR TOPOLOGY____________69
FIGURE 44. COMPARATIVE AVERAGE REPLICATION TIME FOR INTERMEDIATE

NODES (STAR VS. INLINE TOPOLOGY) __________________________________69



VII

FIGURE 45. COMPARATIVE AVERAGE REPLICATION TIME FOR ENDPOINT NODES
(STAR VS. INLINE TOPOLOGY)__________________________________________70



VIII

LL iisstt ooff ttaabblleess
TABLE 1. DATA DICTIONARY (DD) FOR FIGURE 16____________________________36
TABLE 2. DD FOR THE OM IN FIGURE 17 _____________________________________37
TABLE 3. DATA COLLECTED ON EACH PHASE OF THE SCSP ___________________43
TABLE 4. INFORMATION OF CONSISTENCY __________________________________44
TABLE 5. INFORMATION OF COMMUNICATIONS (INPUT AND OUTPUT)_________44
TABLE 6. INFORMATION OF REMOTE UPDATES ARRIVED _____________________45
TABLE 7. INFORMATION OF LOCAL UPDATES ARRIVED ______________________45
TABLE 8. DESCRIPTION OF THE SERVERS ___________________________________46
TABLE 9. INFORMATION OF UPDATES SENT FROM THE TEST TOOL ____________50
TABLE 10. BASE CONFIGURATION __________________________________________52
TABLE 11. SCSP CONFIGURATION FILE (“HOSTS”) ____________________________53
TABLE 12. TESTS FOR DB SIZES _____________________________________________54
TABLE 13. TEST FOR INPUTS IN MULTIPROCESSOR MACHINES.________________55
TABLE 14. TESTS FOR DIFFERENT SIZES OF DATA ____________________________60
TABLE 15. TESTS FOR DIFFERENT UPDATE RATE MODELS ____________________63
TABLE 16. TEST FOR DIFFERENT SIZES OF SGS IN INLINE TOPOLOGY __________65





Helsinki University of Technology - Networking Laboratory
Julio Ramírez Yébenes 

1

11..II nntt rr oodduucctt iioonn

1.1. What is caching?

Traditionally, a cache is a computer memory with very short access time used for storage of

frequently used instructions or data [1]. With the introduction of caching techniques in

networking the definition is extended to: “A small fast memory holding recently accessed data,

designed to speed up subsequent access to the same data. Most often applied to processor-

memory access but also used for a local copy of data accessible over a network” [2].

Caches alleviate the origin data source from the most frequent requests (relieving bandwidth

consumption) and reduce the access time needed to obtain them. Adjoined to this, caches can be

located close to clients in order to minimize the costs of transporting the information.

A software cache consists of a local store of data and a subsystem which manages the contents.

There are multiple policies to administer the collected information. The most important issue for

caching performance is the “hit rate”. Hit rate is defined as the fraction of all memory accesses

that are satisfied from the cache [2]. The caching policy used in a cache must keep this rate as

high as possible.

1.2. Replication and synchronization

To replicate is to create and maintain a duplicate copy of a database or file system on a different

computer, typically a server [2]. Replication is a broadly used method for distributing the load

of a server, e.g. NNTP [4] or FTP [5] mirroring. The aim of mirroring the cache contents is to

place them in a closer or more accessible point for the clients. By replicating caches, the

information is quickly accessible from different locations and the load of the cached server is

reduced.

The drawback of replication is the need of synchronization of copies. A copy synchronizes with

the original when their contents coincide [1]. Whenever an entry is changed, it must also be

updated at the mirror cache. The concept of consistency [10] is bound to synchronization. The

degree of consistency in a group represents the similarity of the replicas, i.e. afull consistency

state means that all elements in the group are synchronized.
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1.3. Research problem

The challenge now, in replication, is to develop scalable replication schemes that use efficiently

the network topology and are able to keep replicas consistent. This master thesis undertakes the

task of the scalability evaluation of one of those schemes, i.e. theServer Cache

Synchronization Protocol (SCSP). It was originally suggested by J. Luciani [20] and

implemented at the Networking Laboratory at the Helsinki University of Technology, Finland

[23].

1.4. Tasks and steps

The goals of this master thesis are divided into two related topics. The first topic consists of

providing the protocol with scalability and performance, i.e. eliminating bottlenecks and

upgrading the code with parallel execution facilities. Adjoined to this, it is important to obtain a

machine independent code, so the protocol can be portable to several platforms and tests can be

extended to disparate environments

The second topic is the study of the protocol in terms of scalability*. The scalability analysis

shows how the protocol functions when it works with an increasing number of inputs. The

approach is to execute comparative analysis of the replication protocol to yield a feasibility

report. A database environment is installed and used to recreate data sets for the trials. The

interfacing module is developed to be the testing tool. Thus, a testing environment is built up,

which can be further used later as application interface and monitoring tool.

In the first step, we analyzed the former implementation. The aim was to obtain a solution

capable of executing the protocol steps for a high load context. This is required to begin with the

second step. Therefore, we upgraded and debugged the program. We implemented also other

improvements to enhance portability, transparency and performance of the protocol.

The second step is a set of scalability tests and analyses. The tests consist of different cases of

server loads and group configurations. The aim is to obtain measurements for the resources

consumption and the synchronization delay between replicas. There are two main parameters

for the results. First, the tests and analysis is undertaken in terms of the replication load, i.e.

* Ability to easily change in size or configuration to suit changing conditions. For example, a company
that plans to set up a client/server network may want to have a system that not only works with the
number of people who will immediately use the system, but the number who may be using it in one year,
five years, or ten years[17].
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different database sizes and update rates. Second, the behavior under different group topologies

is studied.

1.5. Structure of the thesis

The second chapter,Theoretical analysis, defines the scalability problem in the Internet. Two

cooperative solutions emerge to solve it. They are caching and replication. The former section

analyses several schemes of caching. It depicts the most used models and the state of the art of

collaborative caching systems. The latter section shows how the replication of caches enhances

the availability of resources in the net. The most common replication systems are also

introduced.

The third chapter,Development, focuses on SCSP. It is subdivided into three sections. The first

section describes the SCSP specification and analyses its replication process. The second

section breaks down the protocol and describes the implementation of the different pieces.

Adjoined to this, some improvements and changes in the implementation are explained. The

third section explains the use of the program and its interaction with the interface module.

The fourth chapter,Scalability test and analysis, defines the test elements, the test plan and its

results. The trials are undertaken for different server group configurations and update rates. The

data obtained represent the resources consumption in terms of packet exchange, memory use,

and CPU time.

The fifth chapter, Conclusions and future work, suggests different applications and

improvements for this software.

Caching the web is not always a straightforward task. Different architectures fit the

requirements better for different services. Added to it, cache replication is a technique used to

spread caching services at a low cost. The following chapter depicts the state of the art of both

practices in the Internet.
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This chapter relates the state of the art of the caching and replication techniques. Adjoined to

this, it defines the position of the SCSP with this framework. The chapter is divided into two

sections. First, we describe different caching methodologies. Second, we analyze two

replication approaches and we depict the most interesting methods applied nowadays.

2.1. Different models of web caching

As the network grows, the most accessed services experience a degradation of the response

times. This problem is typical in the Internet where individual servers receive huge service

demands. One solution is to add more network capacity and use better performing servers.

However, this idea tends to be insufficient in the long term. An exponential growth without due

attention to scalability will eventually result in high network load and unacceptable response

times. The most effective solution to create a scalable system rests on different caching and

replication schemes [2]. Two interesting fields of application are the mobile networks and the

Internet services. Figure 1 and Figure 2 depict the growth of these fields during the last years.

Figure 1. Growth of Hosts in the Internet [7]

Figure 2. Growth of cellular subscribers
up to Dec 2000 [8]
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2.1.1. Caching architectures

Caching can improve the perception of network performance in two ways [9]. First, when

serving clients locally, caches hide wide area network latencies. On local cache miss, the

original content provider will serve client requests. Second, if the network is temporarily down,

the cache can provide, meanwhile, the most solicited information.

Different topological and functional situations use different caching strategies. Hereafter, as an

overview, the main approaches are depicted.

❐❐❐❐ Client Caching is a local method. This cache is stored on the client’s disk. It provides

individualization of the cache service. The major drawback is that it cannot guarantee up to date

entries as long as it does not send any query to the origin server.

❐ Local Network Caching has been shown to be more effective than client caching [13]. This

approach is implemented mainly in web proxy servers. Proxy servers work as firewall access

machines for subnets. Therefore, the traffic is managed through this service point. It makes the

proxy the best candidate to undertake caching tasks. Nowadays, the terms proxy and web cache

are used indistinctly.

❐ Push Caching[15] tries to keep data close to those clients requesting information. Thus, data

is dynamically mirrored to caches that are more convenient. The major point here is to find a

methodology that allows maintenance of the consistency of replicas.

❐ Adaptive Web Caching [14] is trying to optimize the global data dissemination. The

approach consists of multiple, distributed caches. The caches join and leave cache groups

dynamically according to policies based on demand, i.e. self-organization of caches is a

response to scenarios where the access to elements evolves in time. Cache meshes are organized

into overlapping multicast groups. Two protocols are used to implement the cache group

management and communication. The Cache Group Management Protocol (CGMP) controls

the formation of groups. All caches and web servers automatically organize themselves into

groups according to the CGMP. The Content Routing Protocol (CRP) is in charge of the

administration of the cache contents for the mesh.

It is important to note here that SCSP can be studied as a useful tool to fulfill the requirements

of intra/intergroups replication for the Adaptive Network Caching model.
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2.1.2. Cache design

Caching systems are designed to obtain high performance, scalability and reliability [9].

Different techniques enhance these features. Two topics regard networking at this point. They

are hierarchical caching and intercache communication.

❐❐❐❐Hierarchical Caching is a topological enhancement to the caching methods. It is based in the

concept of “hierarchicalrouting” [2]. Hierarchical routing simplifies the network by breaking it

into a hierarchy of smaller subnetworks. Each level in the hierarchy is responsible for its own

routing. In caching, each level holds an independent cache. The Internet has three basic levels:

the backbones, the regional networks, and the stub networks. The backbones know how to route

between the regional networks. The regional networks know how to route between the sites (or

stub networks). Each site (being an autonomous system) knows how to route internally.

The idea here is to distribute the load of requests and minimize the access latency. The “Harvest

Cache” is the main example [12]. Caches are accessed hierarchically in a net to subnet sort.

Each cache in the hierarchy decides independently whether to fetch an entry from its parent or

from its sibling caches according to a resolution protocol [12].

❐ Intercache Communication policies are a set of protocols for maintaining contents among

cooperative caches [9]. Caching systems are composed of numerous distributed caches (to

improve scalability and availability of the contents). The most used communication protocols

are the Internet Cache Protocol (ICP), Cache Digest, CRP, CARP (Cisco) and WCCP

Stub Network Stub Network

Regional Netwok

Backbone Network

Regional Netwok Regional Netwok

Stub NetworkStub Network

Stub Network

Stub Network Stub Network

Stub Network

Object Cache

Figure 3. Example of a HierarchicalCache Arrangement
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(Microsoft). The study of their features is out of the scope of this thesis. However, it is

important to notice some important similarities in the communication process used in SCSP and

these protocols. Thus, it can be put forward that SCSP uses a request-reply paradigm over UDP.

The group-based replication and the creation of overlapping caching meshes to forward objects

among groups is similar to the one used in CRP. Another important technique adopted for

cache-to-cache communication is the notion of “cache digest” (as in SQUID and Summary

Cache). Digests are used to reduce intercommunication load by exchanging summarized

information instead of the whole object.

2.2. Cache replication and scalability

Replicated systems are used to improve the availability of contents. As sources are closer to

clients two benefits raise: communication locality and load sharing. These increase scalability,

alleviate bottlenecks and reduce net traffic and communication latency [16].

Replication protocols consists of two procedures working in parallel: a group membership

scheme and a group multicast protocol. The first one is in charge of the management of

elements and connections of the group. The second floods the required entries between replicas.

The main differences between replication protocols come from the message delivery policies.

Implementations are classified into two replication trends. They areStrong Consistency

ProtocolsandWeak Consistency Protocols.

2.2.1. Strong consistency approach

In the strong consistency approach, the system provides a multicast service which ensures that

every message is received in a controlled order. Two elements can never differ at any time by

more than a limited number of messages (e.g.Lazy Replicationor Psync).

A relevant approach is called “two-phase-commit” [22]. Each time a transaction occurs in one

server, all copies are updated at the same time. The update is not considered stable until every

entity involved has committed with the change (or rejected it). Mainly, real-time applications

make use of these techniques. Despite the good results it can provide, this solution does not

scale well and, in terms of network performance, produce costly waste of resources. Delays in

transactions produce high communication costs and overhead.
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2.2.2. Weak consistency approach

In this approach, each member of the group keeps a copy of the state of the other elements. A

group communication policy is used to coordinate changes within the elements. The degree of

consistency of replicas depends on the speed and reliability of the multicast protocol to

exchange messages.

Weak consistency implementations allow any two members of the group to have different

copies at any instant. The idea is that all elements in the group will receive the same set of

update messages. The group eventually converges to a synchronous state. Timestamped Anti-

Entropy (TSAE) protocols are main examples of the weak consistency approach [16].

2.2.3. Strong vs. weak consistency

Compared to strong consistency, weak consistency can have important benefits. The main

advantages appear in wide-area networks and mobile systems*. In these scopes, strong

consistency has two major drawbacks. First, it requires expensive protocols and does not

perform properly when communication is unreliable (i.e. problems to deliver messages orderly).

Second, if the network is partitioned by a group element (i.e. mobile systems), the efficiency of

the system is degraded.

Moreover, weak consistency protocols use fewer network packets. This reduces consumption of

communication resources. Adjoined to this, weak replication allows caching and delayed

operations. These features provide “fault tolerance”. Fault tolerance is the ability of a system to

stand ruptures of some connections without affecting the overall functioning. For mobile

systems, it means the ability to reconnect and synchronize after long periods off-line.

2.2.4. Replication models

❐ Timestamped Anti-Entropy (TSAE) protocol is a weak consistency method [16]. It

performs delayed communication establishing “anti-entropy sessions”. Instead of sending

updates as they are received, TSAE places them in a queue. Pairs of elements periodically

contact each other to exchange these queues. That is defined as an “anti-entropy session”.

* Mobile system is a dynamic group of cooperating elements. Any of them can disconnect or reconneced
to the group at any moment.
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The session begins allocating a timestamp on the queue. The timestamp identifies the newness

of the updates. Next, the pairs exchange summaries of their update queues. Summaries consist

of the minimal information needed to uniquely identify an update in the pool of messages. The

timestamps together with the summaries are used to evaluate which updates must be sent to the

pair element of this anti-entropy session. In the last step, updates which are not in both servers

are exchanged and acknowledged using a reliable protocol. If at any moment the procedure

fails, the anti-entropy session is aborted and changes are discarded.

❐ Flood-d [10] is the replication method used in the Harvest System [12]. It was proposed as an

extension to TSAE with added features. Flood-d is designed to scale for thousands of weak

consistent replicas, i.e. replication systems which might not achieve full consistency.

The replication elements are organized into groups. There are two main enhancements proposed

in this system. The first is the use of a hierarchical inter-group topology. It improves system

scalability by limiting the amount of consistency information that each replica needs to keep [6].

The second regards the internal topology of the group. Elements of the group change

dynamically. A group management algorithm is executed to obtain a resilient topology and

optimize bandwidth use.

As in TSAE, Flood-d also uses timestamps to identify new messages and determine duplicates.

The timestamp is a sequence number. New updates are flooded into the group following the

established logical topology. New topologies generate different timestamp sequences. Thus,

changes in the topology are communicated without any need for new procedures.

❐ Lightweight Directory Update Protocol (LDUP) [18] is the replication approach

implemented in theLightweight Directory Access Protocol(LDAP) [19]. It is a widely

developed weak-consistency replication protocol.

In this protocol, replicas are grouped hierarchically. As with TSAE, it uses timestamps for the

messages. However, there are three big differences with the above protocols. First, replication

occurs in a supplier to consumer base. Second, no multicasting protocols are used. Third,

concurrent replications are not allowed in a consumer server. These two last points are a

comparative drawback to the previous protocols in terms of performance, but provide

consistency to replicated data. Adjoined to this, this protocol supports several replication

procedures instead of a fixed one.
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The replication procedure is previously negotiated between pairs of connected servers. Two

processes rule the replication session,a “Replication Schedule” and an “Update Transfer

Protocol” (UTP).

❐ The Replication Schedulemanages the times of the replication sessions. Two mechanisms

can be selected. They are “Schedule Driven” and “Change Event Driven”. The former defines

fixed periods to initiate the replication sessions. In the latter, sessions are initiated by the

supplier of changes as soon as new updates are received.

❐ TheUTP selects among two protocols: “Full Update” and “Incremental Update”. These are

the basic protocols although others can be implemented. The former transfers the whole

contents from one replica to another. The latter sends only those updates required to achieve

synchronization.

The replication session can be managed by any combination of these two processes (E.g.

Schedule Driven with Full Update, Schedule Driven with Incremental Update, etc…). Also both

replication schedules can be used in a configuration, e.g. the server can use Change Event by

default and execute Schedule Driven if no changes appear within thirty minutes.

The changes that were received by the server are acknowledged to the origin and forwarded to

other replicas. Acknowledgements are used to track the exchange process.

❐ Server Cache Synchronization Protocol(SCSP) [20] is another weak-consistency protocol

for cache replication. It inherits its replication scheme from OSPF [21].

SCSP focuses on replication of cache information. Caches are bound to one or more groups.

Replication is done on a group basis. Changes of entries in a cache are replicated to other caches

in the group. SCSP has two basic features. First, it allows concurrent replications in a server.

Second, it optionally supports multicast services.

In terms of the replication procedures described for LDUP, SCSP is categorized as a Change

Event Driven protocol. However, SCSP shares with LDUP the same UTPs, i.e. Full and

Incremental Update. The former is executed during the synchronization of caches (i.e. the Cache

Alignment phase). The latter is used to keep copies synchronized (i.e. the Cache State Update

phase). SCSP is the protocol we are concerned with in this thesis and it is further described in

the next chapter.
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33..DDeevveellooppmmeenntt

This chapter relates the development of a new version of the SCSP implementation. In the first

part, we describe the protocol and its environment. At this point, we study the protocol to find

out its possible weaknesses. We identify the different parts as different elements ofexecution. In

the second part, we describe the implementation of the elements of the protocol.

3.1. SCSP description

SCSP is intended to perform synchronization and replication tasks among distributed caches.

The replication model is analogous to the one used in OSPF. OSPF usesHello, Database

Synchronizationand Flooding. Likewise, SCSP names for its phases areHello, Cache

Alignment and Cache State Update Protocol. The main difference of SCSP against other

protocols is that no algorithm for routing or group administration is implemented, i.e. SCSP is a

pure replication protocol with no added load.

3.1.1. Elements

SCSP uses two basic communication items:

❐ A “ Cache State Alignment” (CSA) record stores an update of a cache entry. The CSA is

composed of a CSAS and a field containing the update information.

❐ A “ CSA Summary” (CSAS) record identifies CSAs. Each CSA has one CSAS containing

three major fields. First, a unique identifier for the CSA record or “Cache Key”(CK). Second, a

sequence timestamp. Third, an “Origin Identifier” (OID) pointing the server that generated the

CSA.



Helsinki University of Technology - Networking Laboratory
Julio Ramírez Yébenes 

12

Figure 4. CSA and CSAS

3.1.2.Topology of replication

The replicas are statically organized into Server Groups (SG). Each instance of SCSP mirrors its

information only with other replicas in the same SG. An SCSP instance running in a server

defines two concepts, a “Local Server” (LS) and a group of “Direct Connected Servers” (DCS).

LS refers to the server executing this SCSP instance. DCS refers to every server connected to

the LS in a SG.

A running SCSP instance has two identifiers: a “Protocol Identifier” (PID) and a “Server Group

Identifier” (SGID). PID refers to the application protocol that uses SCSP for replication.

Examples of such application protocol are NHRP [30] and TRIP [43]. The SGID defines the

replication scope in terms of servers involved. Thus, each running SCSP instance is identified

with a pair of identifiers PID/SGID. This feature allows concurrent replications in an LS.

For a single PID/SGID, any server can be connected to more than one DCS, and can

synchronize simultaneously with all of them. The SG works as a distributed cache. Thus, every

new CSA received in an LS is flooded to other DCSs. Control of duplicated messages is done

by tracking the CSAS of the CSAs received. Timestamps are needed in the case of collision of

versions for a CK. The protocol identifies the replica with higher timestamp as newer.

SCSP allows communication between SGs. Any LS can be configured to replicate within

several SGs. These servers work as connection nodes. Although replication is done inside each
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group, when one update is received in a node, it loops sending the CSA to every DCS in any of

its SGs.

Several instances of SCSP can provide replication services to different applications on an SG. It

is achieved by using different PIDs, e.g., several instances can execute synchronization

procedures at the same time on a single server for a MIB [31] and NHRP [30] without

interfering with each other.

3.1.3. Functioning

Three steps are the basis for the SCSP working model. The “Hello Protocol” manages and

tracks the communication of the LS with its DCSs. The “Cache Alignment Protocol” is in

charge of the initial synchronization of replicas. The “Cache State Update Protocol” keeps

flooding the changes between synchronized servers to maintain the group consistency. For a

detailed description of the FSMs refer to [23]. The protocol works as follows [20]:

At the beginning, theHello Algorithm is executed. One independent state machine runs for

each DCS. It is called the “Hello Finite State Machine” (HFSM) [23]. The state machine tracks

the state of the DCS connection. It can be bidirectional, unidirectional or nonfunctional. The LS

tries to contact the DCSs and determines the state of the communication. This is done by

sending “hello” messages periodically. These messages must be acknowledged by the

destination to confirm that the communication is active. When bidirectional connection is

achieved, the SCSP starts theCache Alignment Protocol.

The sending of hello messages is maintained all along the replication process. It works as a

“keep alive” procedure. This way, the LS tracks the state of its connections with every DCS.

LS DCS

Message Format:Hello(Sender ID, [Received IDs])

(2) Hello(DCS ID, [LS ID])

(1) Hello(LS ID, - )

(a)

(b)
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Figure 5 depicts the message interchange required to achieve a bidirectional connection in a

replication session. In Figure 5, only the two major parameters are represented for simplicity.

The “Sender ID” contains the identifier of the server sending the message. The “Receiver IDs” *

contains a list of the DCSs from which the DCS has received a Hello message before. For

further detail on the packets refer to [20].

LS DCS

Message Format:Hello(Sender ID, [Received IDs])

(2) Hello(DCS ID, [LS ID])

(1) Hello(LS ID, - )

(a)

(b)

Figure 5. Trace Events Diagram of the Hello Protocol in SCSP

Procedures description

(a) Add theSender IDto theReceived IDslist.

(b) If the LS ID is included in theReceived IDslist, the LS transitions to the bidirectional

Connection state. In other case, the LS transitions to Unidirectional Connection state.

Messages description

(1) The LS begins the replication session sending a Hello message which includes its server ID,

i.e. LS ID.

(2) The DCS sends a Hello message with its server ID (I.e. DCS ID) and its local “Received

IDs” list.

The Cache Alignment Protocol deals with the initial synchronization of information, i.e. the

servers exchange their current caches. As in the previous stage, one independent FSM runs for

each DCS. It is called the “Cache Alignment Finite State Machine” (CAFSM) [23]. Figure 6

describes the process of alignment. In this figure, only the major fields of the CA messages are

depicted. For further detail on the packets refer to [20].

* We use the name “Received IDs” for clarity, although it is referred as “Receiver IDs” in [20].
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CSUS (CSAS, ...)

CSU Request (CSA, ...)

CSU Reply (CSAS, ...)

(5) CSU Reply (CSAS, ...)

LS DCS

CA (DCS ID)

(1) CA (LS ID)

(2) CA (CSAS, ...)

CA (CSAS, ...)

(3) CSUS (CSAS, ...)

(4) CSU Request (CSA, ...)

(a)

(b)

(c)

(d)

Figure 6. Trace Events Diagram for Cache Alignment Protocol in SCSP

Procedures Description

(a) Bidirectional Connection state achieved.

(b) Master/slave negotiation. Replication roles are established.

(c) The LS exchanges summaries of its content with each DCS. CSASs received from the DCS

are compared against the local cache records. The LS creates a list of records in the DCS

which do not appear in its cache. This list is called “CSA Request List” (CRL).

(d) The LS requests to the DCS the CSAs corresponding to the CSASs in its CRL. The LS

receives the CSA records requested. When the CRL is emptied, the LS transitions to the

“Aligned” state. This means that the synchronization has been achieved. At the alignment

point, the CAFSM finishes and gives rise to theCache State Update Protocol.
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Messages Description

(1) CA messages (for Master/Slave Negotiation) are labeled with theSender IDto negotiate

replication roles*. No CSASs can be included into them.

(2) CA messages (for Cache Summarize) transport the CSASs of the entries in the local cache.

Should not all the CSASs fit in one message, several messages are sent.

(3) Cache State Update Solicit messages (CSUS) transport the CSASs in the CRL of the LS to

the DCS. These messages are used to request CSAs from the DCS. Should not all the

CSASs fit in one message, several messages are sent.

(4) Cache State Update (CSU) Request messages transport CSAs from the DCS to the LS.

Should not all the CSAs fit in one message, several messages are sent.

(5) CSU Reply messages transport acknowledgements from the LS to the DCS.

Acknowledgements are CSASs of the received CSAs. These messages are sent when a CSU

Request has been received in the LS. Should not all the CSASs fit in one message, several

messages are sent.

The Cache State Update Protocolis the last stage of the SCSP. At this moment, the caches

involved in the replication process are identical. Now, only new updates must be synchronized.

Whenever an LS detects changes in its cache, it sends a notification of the changes to the local

instance of SCSP. The LS creates a CSA record for each update and floods it to all the DCSs in

a CSU Request. When the DCS receives a CSA record, it checks if it is new in its local cache.

The server receiving the CSU Request sends a CSU Reply message acknowledging the change.

It is possible that the DCS has a newer record for that entry in its cache than the one received. In

this case, the acknowledgment message sent is filled with the summary information of the local

record and a flag set to one (For detailed explanation about the flags in the SCSP messages refer

to [20]).

The message flow is the same than the one used in Figure 6-procedure (d), excepting the CSUS

messages exchange. SCSP keeps theAlignedstate until the HFSM transitions from Biconnected

to any other state.

* During the replication session, the master is in charge of tracking the messages sequencing.
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3.2. SCSP environment

The replication system is divided into three modules. The SCSP module is the main one.

Secondly, the caching tasks are under control of a Database Management System (DBMS).

Third, an interface is in charge of communicating between all the modules, i.e. SCSP, DB and

applications using the replication service. This part describes a working environment case for

the SCSP, i.e. interface and DB. Figure 7 depicts the interrelationships between the different

modules in the system, and the role played by the interface.

SCSP (LS) SCSP (DCS)

Interface
Interface

Protocol
(E.g. TRIP)

DB System(See Figure 11)DB System(See Figure 11)

Send
Message

Receive
Message

Receive Updates
Receive Requests for RecordsSend Record

Receive Requested RecordsInput Updates
Input Query

Return Data

Insert New Record
Request Data

OBJECTS MODEL
FOR THE SCSP
ENVIRONMENT

Check validity

Confirm validity

Figure 7. SCSP environment

The following figures help to understand the flow of events executed for the three basic

operations of replication. Figure 8 describes the sequence of events executed when a local

update is generated in the cache by the user application. Figure 9 relates the inverse process, i.e.

when a remote update is generated in a DCS. Figure 10 indicates the messages exchange in the

SCSP environment when a DCS is reinitialized. In this case, the LS needs to retrieve the

information stored in its cache. The records are kept in the DB System. Therefore, the SCSP in

the LS must request the records to the DB System through the interface.
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The events “Request Data” and “Return Data” in Figure 7 are not directly involved in the SCSP

fuctioning. They represent the basic intercommunication between the user application and the

DB System (I.e. data storing and reading).

User Application DB System Interface SCSP (LS) SCSP (DCS)

g Insert New Record

Receive Requested Records Send Record Send Message

Input Query (New records)

Figure 8. Flow of a local update in the SCSP environment

SCSP (DCS) SCSP (LS) Interface User Application DB System

Receive Message Receive Updates Check Validity

Input Updates
Confirm Validity

Figure 9. Flow of a remote update in the SCSP environment

SCSP (LS) Interface DB System

Receive Requests for
Records

Input Query (All records)

Receive Requested
Records

Send Record

Figure 10. Flows in the SCSP evironment for a DCS reinitialization

Figure 11 shows a model of internal functioning of the DB system. This chart shows which

parts of the DB system deal with the different messages. The following paragraphs give an

explanation of the figure.

The messages of the application are entered directly into the information system holding the

data, i.e. “Insert new Record” and “Request Data”. The results are returned to the application by

the “ReturnData” flow. The DBMS is in charge of processing the requests and retrievals of

information. Indeed, a cached DB system consists of two components of storage, the

“ Information System” (IS) and the “Cache”. The former component holds all the information
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managed. The latter holds a relatively small copy of the information in the IS. This copy is

intended for fast-retrieval data. The selection of records to store in the cache is made according

to disparate policies. The “Caching Procedure”, internal to the DBMS, is in charge of selecting

the records that must be cached. The flows managing the data cached by the “Caching

Procedure” are “Get Records” and “Update Cache”.

In order to use the performance of the system, the queries are passed first to the cache

(“Query”). If the data is not found in the cache, it is looked into the DB itself (“Query Not

Cached Data”).

When the SCSP is added to the DBMS, it can modify cached data directly with no intervention

of the “Caching Procedure”. Therefore, the “Caching Procedure” must be augmented with

procedures which detect changes in the cache (“Retrieve External Updates”) and update the new

records in the IS if required (“Update External Updates”).

Information System

Cache

Insert New Record
Request Data

Return Data

Input Updates
Input query

Receive Requested Records

Query

Result

DATABASE SYSTEM

Caching Procedure

Update Cache

Get Records

Result

Result

Query
Not
Cached
Data

Retrieve External Updates

Update External Updates

Figure 11. The Database system in the replication environment
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3.2.1. Interface

The interface module is in charge of the internal communications between the elements of the

system. It must receive the messages from the SCSP, pass them to the DB and return the results

to the SCSP. This is organized into four mandatory tasks. First, it serves to SCSP the required

data for initialization, i.e. SCSP in Cache Alignment. Second, it asks the user application to

commit with updates received from remote replicas (if needed). Third, it updates remote

changes received to the local cache. Fourth, it transmits local cache updates to the SCSP.

Data for cache alignment (First task)

In the CA phase, the SCSP requires an access to all the cached data. This task can be executed

either at initialization of the local SCSP instance or re-initialization of any DCS into the

replication group. Thus, the interface must be able to provide the contents of every cached

record to the SCSP if required.

Remote updates (Second and third tasks)

As remote DCSs replicate their data, the LS receives new updates. The interface must be aware

of the new records received from DCSs and update them in the local cache.

When a record arrives to the interface, a validation check by the user application might be

needed. Once the record is confirmed, it can be updated in the local cache and DB.

An example of a previous implementation of an interface for SCSP can be seen in [25]. In this

case, the interface works with ATMARP information cached in the kernel of the system. The

same interface checks the validity of the remote updates received. This model is different than

the one proposed in Figure 7. The aim of the model designed for our implementation is to leave

those decisions to the protocol using SCSP. Thus, the interface proposed here is more

independent of the data contents.

Local updates (Fourth task)

The user application managing the information system enters new updates into the DBMS. The

interface must read the local changes in the cache and serve them to the SCSP.



Helsinki University of Technology - Networking Laboratory
Julio Ramírez Yébenes 

21

3.2.2. Database

A DBMS is the facility used to implement the software caching for each replication server.

SCSP replicates cached information independently of the information itself. The replication

items can be selected from two basic models. The first model is based on change records; i.e.

the item is a description of a change executed in the DB. These descriptions are called “deltas”.

The second model uses the record itself as replication item. Thus, whenever a cache record is

modified in the DB, the content of the new record is replicated.

Replication of deltas is implemented forwarding the query which executed the update in the DB

(cache) to the other replication entities. The drawback of this approach is that all deltas must be

executed in the same time sequence in every remote server. This requirement is against the

principle of weak consistency replication. Thus, this method must be discarded for application

within SCSP.

Moreover, cache records should be small amounts of information. Their main attribute is the

likelihood of change; i.e. they may be highly dynamic data. They produce flows of small

changes in the DB. Thus, the replication of the whole content of the record adds consistency to

the system with minor additional consumption of resources.

MiniSQL

Systems for DB management provide with complex selection and storage schemes that are

strong in extraction of data. They can be very useful for knowledge extraction systems or

classification procedures. However, they cause more consumption of resources than the

necessary for caching tasks.

MiniSQL [24] engine is specially designed to work with small amounts of data which need to

be rapidly accessed. The approach it takes consists of a sophisticated use of indices and trees.

Once the indexing fields have been established, the system can now create lookup keys in real

time. These features provide a performance more dependent on the quantity of data returned

than in the total amount stored in the DB. It makes this DBMS to be well suitable for the storage

and caching tasks.
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3.3. Implementation of the SCSP

3.3.1. Introduction

This part of the thesis is the result of the analysis and upgrade of a previous SCSP

implementation in this laboratory [23]. The main topics to analyze focus on four attributes of

quality for any software product: execution performance, portability, scalability and

transparency. The recommendations in the development of the new code are taken from [32] for

the main aspects (i.e. server performance and scalability). The threads system is the major issue.

To improveperformance the original code was migrated from C++ to C. To obtain a scalable

implementation I followed the guidelines at [32].

C language contributes to increased softwareportability . Although communication and

threading facilities are of relevance to achieve performance, they are not enough. I tested and

studied several libraries in order to find out the most feasible solution to the portability

problems. I concluded that the code must rest on standard libraries complying with POSIX

specifications. It provides standardized function calls, simplifies coding and increases

readability. Thus, I adapted the implementation to commit with POSIX standards.

In this thesis project, I have improved thescalability of the program in several ways. First, we

obtained an optimised code by eliminating memory leeks. Second, I used a revision of the

previous code provided with dynamic buffers and lists. The new changes were adapted to these

dynamic structures. Due to this, memory is reserved when needed and freed after use. Program

execution causes minimal memory consumption. Third, I implemented a threaded code. It

reduces consumption of kernel resources and allows parallel processing of information. The

level of threading must be taken to an acceptable degree in order to avoid overuse of threads.

The main challenge at this point is to control the concurrency and synchronisation of threads.

To obtain atransparent program I use the message queues facilities for the input and output

tasks. It allows any process to connect to the SCSP program by a simple procedure. The SCSP

runs independently from any program using its functionality. Adjoined to this, no program in

the system needs to look to the SCSP implementation to replicate its information.

The description of the implementation is structured in two sections. First, the dataflows section

describes the use of information inside and outside SCSP in the replication process. Second, the

algorithms section describes the methodologies and algorithms of the implementation.
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3.3.2. Data Flows

This section explains briefly the distribution of information in SCSP. The aim is to describe the

information exchange between the different tasks of the protocol. The notation used follows the

guidelines given for Data Flow Diagrams (DFD) in [27].

External flows

This part describes the external flow of messages between the SCSP and the interfacing process

(See Figure 12). It is divided into two kinds of flows: input and output.

Input Streams

The interface uses two streams to input data to the SCSP.

❐ Get Initial Data1 is used in the “Cache Alignment” stage of the protocol. It is in charge of

collecting the summaries of the cache data that are used in the initial (alignment) steps.

❐ Get New Entries2 stores every entry that arrived after the protocol started theAlignment State.

The records that arrived inNew Entriesare considered as up to date data. Thus, they are not

checked against other copies for newness. SCSP sends them in the next flood session to every

DCS. The procedure followed for flooding is described in theCache State Update Protocol.

In the implementation, SCSP receives all the inputs in a single point. A priority is attached to

each entry depending on its type. If the entry belongs to the initialisation group it is identified

with higher priority.

Output Streams

The program uses two streams to return the outputs to the interface (See Figure 12).

❐ Update3 returns the records that must be updated in the local cache. These records are the

result of the replication and synchronisation process.

❐ Erase4 returns the records that must be deleted in the local database. TheEraseflow is caused

by the reception of a CSAS indicating that a record is out of date (i.e. it is old, or it has been

deleted in any DCS).
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Figure 12. Level zero DFD for SCSP

The input and output files (Initial Entries, New Entries, Entries to Update, Entries to Erase)

hold the SCSP messages for communicating with external processes, i.e. the interface. The

implementation of these connection points is done by message queues. Section 3.3.4 deals with

the use of message queues.
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Internal flows

Inside SCSP, the tasks are divided into three:Input, Processand Output. Each of them is

processed in a different thread to reduce delays (eliminate I/O waiting periods) and improve

performance.

This part describes how the protocol manages the information received. Different buffers

collaborate with the exchange of CSA and CSAS between the three threads running in SCSP.

These buffers are also explained here.

This part is divided into two subsections. The first relates the internal processing of inputs. The

second explains the processing of outputs.

In Figure 13 and Figure 14, the processSCSP Finite State Machine(FSM) represents a generic

FSM. The protocol can run eitherHello, Cache Alignmentor Cache Updateprotocols at one

point. Thus, the SCSP FSM represents the algorithm regarding the state of the LS at that

moment.

Input streams

The Read Input Processretrieves the inputs and classifies them depending on their priority.

There are four buffers where it deposits the different entries. Three of them are registers of

CSASs; i.e. they hold control information. The last one stores the CSAs of the updates waiting

to be sent or acknowledged.

❐ Cache State Alignment Summary List3 (CSASL) holds the summaries of the initialization

records (i.e.Cache Alignment). The CSASL is formed by the entries labeled with higher priority

and is used in the alignment steps.

❐ NewInLocal4 is in charge of storing the record (CSAS) of the entries that must be flooded to

the DCSs after alignment (i.e.Cache Update). CSAs with lower priority are placed here.

❐ List_Buffer1 acts as a second level cache. It holds the CSAS of all the CSAs stored in the

cache. The protocol must store all updates so that it can track missed updates and check for

consistency of its replicas [33]. Keeping summaries helps to save memory instead of using the

complete CSA records. Summaries hold all the information about the CSAs. Thus, if there is a
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need to check the newness or existence of any entry, the summary information is rapidly

obtained fromList_Buffer. Otherwise, the protocol would be forced to extract the information

querying to the cache, with the corresponding delay.

❐NewCSAis a consistency buffer. It keeps all CSAs that have not been replicated in every

DCS. Whenever a CSA has been flooded and acknowledged by all DCSs, it is removed from

this buffer. Note that an emptyNewCSAmeans that the replica has achieved afull consistency

state.

Read Input Process
2

SCSP Finite State
Machine

1

NewCSA2

(CSA)
List_Buffer 1

(CSAS)
NewInLocal 4

(CSAS)
CSASList 3

(CSAS)

Get New Entries

Get Initial
Data

Insert New
Data

Extract CSAS
(CSAS)

Extract CSAS
(CSAS)

Extract CSAS
(CSAS)

ObtainCSA
(CSA),

ExtractCSA
(CSA)

Update Cache
(CSA, CSAS)
Erase Entry
(CSA, CSAS)

SendReceive

Input Data In
CSASList

Input Data In
NewInLocal

Figure 13. Level one DFD for SCSP: Input flow
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The entries coming from the local input or from a DCS are stored in the same buffer,NewCSA2.

However, they are tracked in different manners. If the new entry is a local server’s input it will

be flooded to every DCS. Hence, its CSAS has to be registered inNewInLocal. Otherwise (if the

entry is an update from a remote server), it is forwarded to every cache in the group but the one

that originated the update. The forwarding procedure is done automatically. Thus, the CSAS

does not need to be registered in theNewInLocal buffer. Note, however, thatList_Buffer

registers every entry received.

The SCSP checksCSASLor NewInLocalwhen it has to execute either alignment or flooding

sessions. When a CSA is needed, the protocol extracts it fromNewCSA2.

Note that the flowsUpdate CacheandErase Cachein Figure 13 are also involved in output

tasks (See Figure 14). These flows are in charge of passing the remote updates from DCSs to the

SCSP and the local cache. The updating towards the local cache is described as output flow in

Figure 14. The updating inside the SCSP is described as input flow in Figure 13. The internal

updating consists of the synchronization of the buffersNewCSAandList_Bufferwith the same

records that are sent as output to the local cache.

Output streams

The flow of output runs in two different threads, one for the updates and another for the erases

(See Figure 14). The output is controlled by the functionsUpdate CacheandErase Entry. These

functions output the update records received from the DCSs to the local cache.

The output buffers are calledNewCSAtoUP1 andOldCSA2. The former stores the copies of the

updated entries that must be inserted in the local cache. The latter is a list of CSAs which have

to be removed from the local cache.

The proceduresOut UpdatesandOut Erasesare in charge of unloading the regarding buffers.

They infinitely loop collecting updates received from DCSs and send them as outputs towards

the DB, i.e. to the interface.
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Figure 14. Level one DFD for SCSP: Output flow

3.3.3. Threading

Introduction

The aim of this work is to improve the concurrency features of our previous implementation of

the SCSP. The initial implementation [23] worked as a batch process. Batch processing is not

efficient and should be avoided when possible.

In the former implementation, SCSP worked in a batch sequence. First, a data set is input in the

SCSP. Second, SCSP reads a part of these inputs and builds a packet to be sent to the DCSs.

Third, SCSP sends the messages and returns to the first step. Figure 15 depicts the process.
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Initial

Process CSAs

More CSAs in
input

Receive Inputs

Send
packets

TrueFalse

Wait for inputs

Loop beginning

Figure 15. Sketch of batch processing in SCSP

The problems of this implementation are diverse. The three major drawbacks are pointed out

here:

• Client processes are not served until the input buffers are emptied. Thus, they have to wait

before setting their inputs into SCSP to be replicated.

• Communications are stopped if SCSP is serving the clients (receiving inputs).

• Delays in any point of the execution sequence are transmitted to all the parts in the process.

In the new implementation, the use of threads and message queues avoids any problem due to

input and output tasks.
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As seen before, data flows of SCSP run in two different scopes: internal and external flows. To

implement those flows in SCSP, two different approaches are used.

The internal flows are implemented using threads. Advantages of threads are multiple:

parallelism, execution, increased throughput, efficient use of system resources, alleviation of

bottlenecks... Analyzing the advantages of threads in a system is out of the scope of this thesis.

For further detail, refer to [34]. The most relevant issue in SCSP is the I/O throughput

congestion [32]. In this implementation, one thread runs to alleviate congestion on each critical

access point, i.e. local input, local output, and communication with DCSs.

The external flows carry the communications between the SCSP instance and the external

interface and the cache. Therefore, interprocess cooperation is needed. UNIX systems provide

several mechanisms for accomplishing interprocess communication tasks [28]. When several

processes want to communicate via IPC, they are using kernel system calls. The computational

cost of this is high [35]. Thus, the use of IPC facilities must be minimized. The selected tool is

theMessages Queue(MQ) library.

The rest of this section is divided in six parts. The first part briefly explains the required policies

for inter-thread communication. The second part explains the algorithms used in the threads (I.e.

Fill_CSAList, OutEraseandOutUpdate). The third part compiles the functioning of all pieces

together. The forth part describes the communications with other processes in the system

through message queues. The fifth part relates the timestamping approach implementented. The

Sixth part concludes annotating the scalability features provided in the new implementation.

Inter-thread communication

Buffers are intermediate elements between threads. Parallel flows might perform operations

simultaneously in shared buffers. The system must avoid global locks and serialization of

threads [32]. Determining the shared memory regions and setting local locks on these regions is

the solution to this problem. Executions in shared regions must be serialized to avoid errors in

the operations.

The problem of access to shared objects is defined as theCritical Region (CR) Problem. In

terms of concurrency, a CR is represented with amonitor. Figure 16 represents the design for

the CRs in SCSP. The model selected for the monitor “Buffer” is theproducer-consumer model,

with the added feature of atest(1) procedure (This procedure accesses as consumer but does not

modify it). For a description of the syntax used in this chart refer to [37].
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MAX_CSA_LIST
Length(INTEGER)
TestPointer(CSA)
FirstRecord(CSA)
LastRecord(CSA)

Monitor Buffer

Extract

InsertInserting
Process

Extracting
Process

Test1
Testing
Process

Figure 16. Monitor of access to shared buffers

Functions, constants and variables inside the monitor can not be used by external processes.

MAX_CSA_LISTis a constant which sets a maximum limit to the size of the buffer.Length

holds the number of items stored in the buffer.TestPointerpoints to the last item accessed by

Test1. FirstRecordpoints to the first item stored in the buffer. It is used by theExtractandTest

functions.LastRecordpoints to the last item in the buffer. It is used by theInsert function. The

buffer is implemented as a FIFO linked list.

Algorithms

For paralleling the execution and to divide tasks among threads, different software models are

established [38]. The model used in this program is a version of thepipeline model. It is

intended to work as an IO pipeline. Four threads are in charge of the three IO tasks. One for data

Fill_CSAList, two for data output, and another managing a list of output messages to send to the

DCSs.

Input thread: “ Fill_CSAList”

This thread is in charge of retrieving the inputs from the MQ system and posting them into the

adequate buffers. The thread stops either trying to store new entries when the buffer is full, or

waits for new inputs to come in. The SDL in Figure 17 depicts the algorithm for this thread.

The thread running theSCSP FSMdoes not have to deal with the local inputs. It is only in

charge of the replication and must receive the CSAs in the corresponding buffers (See Figure



Helsinki University of Technology - Networking Laboratory
Julio Ramírez Yébenes 

32

13). The Fill_CSAList thread frees the FSMs of delays caused retrieving inputs. While external

processes are providing information fast enough, input can be considered a continuous stream*.

Note that, in Figure 17, the input “Receive (message)” refers to the composition of the “Get new

Entries” and “Get Initial Data” flows from Figure 13.

Signal Initial
Input Collected

To SCSP

INPUT SDL
Init

Create, initialize and open messages queues.
ALIGNING = TRUE

Receive (message)
From Queue

ALIGNINGFalseEnd of replication
True

False

True
End of alignment

information

T
ru

e

False

Convert to CSA (message)

Asign local host to OID field in CSA

Check if CSA contains
timestamp

Insert New Data (CSA)
To SCSP

T
rue

False Generate
Timestamp

ALIGNING
Input data in CSASList

(CSAS)
To SCSP

Input data in
NewInLocal (CSAS)

To SCSP
False

True

Exit SCSP

Idle state

Idle state

Idle state

Signal Start Collecting Inputs
From SCSP

*
(From any state)

Signal Cancel
From SCSP

Exit thread

*
(From any state)

Signal Aligned
From SCSP

ALIGNING = FALSE

Figure 17. SDL for Input thread

* Note that the flow of inputs will still depend on the inter-thread switching policy running if the process
is running in monoprocessor machines (not parallel).
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Output threads: “ OutUpdate” and “ OutErase”

As pointed out before, there are two more threads in charge of the output collection. Therefore,

the SCSP FSM threadis released of the output tasks. Indeed, the benefits are the same as for

data entry. Outputs are deposited in eitherNewCSAtoUp(for updates) orOldCSA(for erases)

buffers. Each of these threads retrieves the information from each of the output buffers. This

avoids the complete filling of these units (It would cause theSCSP FSM threadto block until

there is some space to deposit its data). The retrieved entries are sent as output to the system of

Messages Queues. The SDL in Figure 18 depicts the algorithm for this thread.

Init

Create, Init and
Open messages

queue

Signal Ready
To SCSP

Extract new
record

Extract (CSA)
From SCSP

Build Message
(CSA)

Send
(message)
To Queue

Extract new
record

*

Signal Cancel
From SCSP

Remove
queue and
cleanup
thread

UPDATES SDL

ERASES SDL

Figure 18. SDL for the update and erase streams

Thread for communications: “ReceiveUpd”

Another bottleneck identified is the management of communications. A new thread is created to

perform these tasks. It processes the communications with DCSs. Communication packets (CA,

CSUS, … [20]) are generated in the DCSs and received by the LS. TheSCSP FSMthread can

not afford to keep listening in the socket waiting for messages to arrive. To perform this task the

ReceiveUdpthread is created. An intermediate buffer deals with the message exchange between

the SCSP FSMand the ReceiveUdp threads. TheReceiveUdp loops listening in the
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communications socket and writes the received messages in the buffer. The messages are

extracted following a FIFO order and processed by theSCSP FSMthread. If there is no

messages in the buffer,SCSP FSMthread follows its normal execution. If there are no messages

in the socket,ReceiveUdpwaits for more messages.

Functioning inside SCSP

To begin replication, the server executes an instance of SCSP. SCSP must run as system

daemon [29]. The interface links with the associated MQ and starts deploying information

packets into queues. The execution sequence of the threads in SCSP is depicted in Figure 19*.

TheReceiveUdpthread is omitted in the chart. It is created at the beginning of the process and

never stopped. No signals are exchanged and it runs completely independent from the rest of the

system.

Signal Cancel

SCSP FSMs

Fill_CSAListOutErase

T
im

eline

OutUpdate

Signal Initial Inputs Collected

Loop
for

m
ore

outputs

Loop
for

m
ore

outputs

P
rotocolLoop

(Note 1)

(1)

(2)
(4) (5)

Signal Cancel
Cancelation Signal

(Note 2)

Loop
for

m
ore

record
updates

(3)

Signal Cancel

Signal Aligned

Note 1: At this point starts running parallel.
Note 2: Threads finished and cleanup executed.

Signal Start Collecting InputsSignal Ready

Signal Ready

Insert New Data

Insert New Data

Loop
for

inputs

Extract (CSA to Update)

Extract (CSA to Erase)

Insert New Data

Input Data in CSASList

Input Data in CSASList

Input Data in NewInLocal

Figure 19. Inter-thread signals and messages

* Note: Notation used follows the recommendations at [39]
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The process starts by setting the synchronization semaphores and the I/O queues(1). The main

flow branches three threads and reads the configuration file(2) (“hosts”).

The three new threads are in charge of the I/O tasks and configure their respective output(4, 5)

and input (3) buffers (See Message Queues below). When SCSP receives the “Initial Inputs

Collected” signal, the SCSP processing begins. At this point, all the tasks are executed

simultaneously*.

For further reference,Figure 17 andFigure 18 describe the internal functioning of each thread.

The following data dictionary defines the functionality of the events in Figure 19.

Event Description

Extract (CSA to erase) Reads from theOldCSAbuffer which holds the records to erase and

sends a record to theOutUpdatethread. Blocks if the buffer is empty

(See Figure 14).

Extract (CSA to update) Reads from theNewCSAtoUPbuffer which holds the records to

update and sends a record to theOutErasethread. Blocks if the buffer

is empty (See Figure 14).

Input Data in CSASList Provides CSASs to the SCSP during the Cache Alignment phase.

CSASList holds the summary information of the CSAs in the local

cache which must be synchronized with the DCSs.

Input Data in NewInLocal Provides CSASs to the SCSP during Cache State Update phase.

NewInLocal holds the summary information of the CSAs which must

by sent in the next flood session.

Signal aligned Signals the Fill_CSAList thread that the Cache Alignment phase has

ended. After this, the thread uses “Input Data in NewInLocal” instead

of “Input Data in CSASList”.

Signal cancel Termination signal. The thread receiving this signal must clean up the

resources that it is using and exit.

Signal initial inputs collected Signals the SCSP that the summaries of the records in the local cache

have been read and entered in the buffers. The replication process can

begin now.

Signal ready Signals to the SCSP FSM that the thread has configured its buffers.

The SCSP can begin execution.

* When the input thread receives the Aligned signal, the Cache Alignment procedure has finished. This
signal is needed because now theFill_CSAListthread deposits the new CSAs into a different buffer (See
Figure 13)
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Signal start collecting inputs Signals the Fill_CSAList thread that the protocol has been correctly

configured and replication needs the records in the local cache to

begin the replication.

Insert New Data Provides local updates to the SCSP during the Cache Alignment and

Cache State Update phases (See Figure 13). It is called by the

Fill_CSAListthread. Blocks if there is no new updates from the input.

Table 1. Data dictionary (DD) for Figure 19

3.3.4. The message queues system

The environment of SCSP was depicted in section 3.2. SCSP must execute as system daemon to

be independent from any process or information being replicated [29]. The interface process

must connect with SCSP to provide local updates and retrieve remote records. This connection

must be asynchronous, i.e. both processes work independently from each other.

OutEraseFill_CSAList OutUpdate

SCSP FSM

Insert New Data (CSA)
Input Data in CSASList (CSAS)
Input Data in NewInLocal (CSAS)
Signal Initial Inputs Collected

MESSAGES
QUEUES
SYSTEM

Signal Ready

(Connections with
the interface)

Send (Erase message)

Process Messages

Signal Cancel

(Connections with DCSs)

Signal Cancel

Signal Cancel
Signal Aligned

Signal Start Collecting Inputs

Threads

Signals

Messages

Send Message

Receive (message) Send (Update message)

Extract (CSA to Erase)Extract (CSA to Erase)

Signal Cancel

Signal Ready

Figure 20. Objects model (OM) for elements in the SCSP system
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MQs allow a process to store messages asynchronously. Messages are kept there until another

process extracts them. MQs consist of a set of FIFO queues. The queues can be ordered

according to priority labels [28]. This allows selection of messages to the process which

receives them.

The interface replicates the data by linking with the MQs associated to an SCSP instance.

Messages are entered into the MQ and SCSP retrieves them when needed.

To give an overview of the SCSP system, Figure 20 depicts the message exchange between the

MQs system, IO threads, and the main thread (thread running SCSP).

The queues system is composed of two queues. The first one holds the data inputs from the LS.

This queue is accessed by theFill_CSAList thread. The second one holds the data outputs

received in SCSP from remote DCSs. The OutErase and OutUpdate threads access to this

queue. The output records in the MQ are retrieved by the interface, which is in charge of

communicating with the cache.

The data dictionary in Table 1 describes most of the signals in Figure 20. Table 2 describes the

events in this figure which are not in Figure 19.

Event Description

Receive (message) Retrieves elements from the queue according to the SCSP phase running at

the moment.

Send (Erase message) Sends a record to erase to the MQs System.

Send (Update message) Sends a record to update to the MQs System.

Table 2. DD for the OM in Figure 20

3.3.5. Timestamping

The timestamping method in replication with SCSP provides a consistent algorithm to identify

the newness of an update. Any cache record might be replicated by any of the replication

servers in a SG. Two points are considered here. First, SCSP must maintain consistency of the

updated records inside a SG. Second, once this consistency is achieved in the scope of the SG,

some nodes can replicate their caches within several groups, i.e. several replication scopes.
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Adjoined to this, servers can leave and join the SGs in different periods during a replication

session. Thus, the SCSP requires a timestamping system able to keep a global timestamping

sequence for every server which might be involved in the replication.

In our implementation, the field “CSA sequence number” [20] of every CSAS is filled with the

value returned by a call to the function “time(0)” (See UNIX man pages). It returns the local

time at the operating system in seconds.

The framework of the SCSP replication is a distributed system. Clocks in each machine are

likely not synchronized. To solve this, servers must run a synchronization daemon which keeps

local clocks synchronized. The “Network Time Protocol” (NTP) is recommended for this task

[41].

Whenever a server joins a replication group, it must ensure that its local clock is synchronized

with the other clocks in the system. Thus, if a server belongs to two SGs, the protocol must

ensure that every server replicating the same cache shares a common clock sequence.

Another solution for this problems (not implemented here) would be the use of “Lamport’s

algorithm” [42]. This algorithm synchronizes a distributed system ensuring that events maintain

the order they were executed. Clocks are not synchronized. However, the system can control the

sequence of changes in the group. Although the study of this solution could be interesting for

the SCSP timestamping problem, it is out of the scope of this thesis.

3.3.6. Conclusions

The implementation here tries to follow the recommendations of implementation for scalable

programs for servers given in [32]. The following points are committed:

First, to provide caching of frequently used data, the buffer “List_Buffer” was used as a second

lever cache internal to the process. Thus, as explained before, it stores the CSAS of every CSA

recorded in the local cache. The system does not need to query the DB to check the information

in the summary records. Those check are executed very often and would consume resources.

Second, to avoid the creation of many threads, the system has been implemented by task-

associated threads; i.e. each thread performs one task (Input, output, communications and
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processing). This solution commits with the recommendations listed in the article for this

subject.

Third, to avoid the use of global locks, the critical regions have been allocated in the shared

buffers. The locks can not be situated more locally than in these points.

Fourth, to avoid the delays due to blocking calls the I/O operations are executed in independent

threads. This solution is the same used in the second point above.

Fifth, to express the functioning of the protocol in numbers, several files and statistics are

produced during and after execution. These data are commented in the next chapter of this

thesis: Scalability tests and analysis.
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44..SSccaallaabbii ll ii ttyy tteessttss aanndd aannaallyyssiiss..

This chapter deals with the evaluation of the SCSP program. Tests are planned and documented

to obtain a record of the analysis. The aim of the tests is to analyze how the protocol responds

to growth of the replication load and consequently give a baseline of SCSP scalability

evaluation in comparison to other similar protocols. Adjoined to this, the tests are used to find

out the weakness of the current implementation.

4.1. Test goals

The objective of this study is the measurement of the protocol scalability in five cases of

simulation. The scope of the tests is the SG. They are grouped in two categories, one for

different SG load models and another for different SG topologies.

4.1.1. Server group load

The analysis of SCSP under different loads of data is the basic scalability analysis. Note that, for

these analyses, all the trials use a fix topology consisting on two servers. The only parameter

modified is the data set to replicate. The evaluation is done in respect to three parameters:

❐ The DB size is the main factor for the alignment time. Its evaluation shows the time and

messages required initializing different sizes of caches. The aim of these tests is to measure the

proportional increment of resources consumption associated to the increment in the size of the

DB.

❐ The Mean Update Time(MUT) is the rate by which updates arrive to an LS. Lower MUTs

generate higher update rates, i.e. higher number of CSAs to replicate per unit of time. The

Update Rate is studied according to an exponential model, i.e. the number updates arriving to

the LS increase exponentially in time. The aim of these tests is to show the response of the

protocol to several update flows and find out the upper limit of the protocol in terms of update

rate.
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❐ The relation “CSA size / maximum message size” influences in the number of CSAs sent per

message and the bandwidth consumption. This proportion can be tested for fixed MUTs and DB

sizes to measure the influence that it has on the replication. Longer messages send more

replication data in a packet, but are less resilient to errors. The influence ofmaximum message

sizein the replication depends on the communications bandwidth. The tests focus on the SCSP

performance. Thus, they concentrate on the analysis for different sizes of CSA records, i.e.

different sizes of information records.

4.1.2. Server group topology

SCSP works on a group basis. Different numbers of elements in the group, with disparate

topologies, raise different load flows. These tests show the behavior of SCSP for two generic

configurations:star and inline. Indeed, other configurations are not but composition of these

two basic models.

Note that an important issue for this study is the consistency analysis. For this evaluation, the

test model is taken from [33]. The aim of these tests is to analyze the convergence of the SG to a

consistent state, i.e. to which extent the servers in the group are equal during a replication

session.

❐ Star configurations show the distribution of load for caches serving as link points to more

than two servers, i.e. they generate convergent replication flows that must be processed in the

server and delivered to other DCSs.

Figure 21. Progressive scaling for topological analysis
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These tests analyze the behavior of the protocol under loads coming from increasing number of

DCSs. The basic topology consists of two connected servers. In the analyses, the configuration

is scaled by adding DCSs always to the same server. The aim of the evaluation is to determine

the load in the server acting as the nucleus for other nodes. Adjoined to this, it raises data about

the synchronization time required for different configurations.

❐ Inline configurations show the processing of cumulative replication load. Updates received in

the LS from any DCS must be flooded to every DCS in the SG but the one that originated the

update.Inline topologies generate longitudinal replication flows that hop several times before

terminating.

Figure 22. Progressive Scaling of Inline Topologies

The evaluation is always executed on an inner node and scaled to different number of group

lengths. The aim is to analyze the required time to replicate data as a function of the number of

intermediate servers that replicas traverse.

4.2. Test elements

This section explains the different types of data extracted from the tests and the kind of

information that they represent. The information returned by the SCSP is sorted into seven files.

One of them records the final statistics of the execution. The other six files store dynamic

information.
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❐ A statistics log is written into the “stat” file. This is the statistic record of the test. The

information returned corresponds to the stated in [40]. For each DCS involved in the replication,

the following data is collected:

Hello Cache Alignment Cache State Update

Hello Messages(1) ♦♦♦♦

Cache Alignment Messages(2) ♦♦♦♦

Cache State Update Solicit Messages(3) ♦♦♦♦

Cache State Update Request Messages(4) ♦♦♦♦ ♦♦♦♦*

Cache State Update Reply Messages(5) ♦♦♦♦ ♦♦♦♦*

Table 3. Data collected on each phase of the SCSP

TheHello Messages(1) are used to check connectivity of the DCSs with the LS.

TheCache Alignment(CA) Messages(2) allow synchronizing the cache of an LS with its DCSs.

They are used in the Cache Alignment Protocol [20] to send the description (CSASs) of the

local cache records.

The Cache State Update Solicit(CSUS) Messages(3) are used during the Cache Alignment

Protocol to solicit the entirety of CSA records to a DCS. They are composed of the CSASs

received in CA messages which do not exist or which are older in the LS.

TheCache State Update(CSU) Request Messages(4) are used to update cache entries in DCSs.

They contain one or more CSAs with new updates or requested CSAs (by CSUS messages).

The Cache State Update(CSU) Reply Messages(5) are sent by the DCSs acknowledging CSU

Request Messages.

In addition, the file records some extra data:

• The total amount of CSAs exchanged during the test.

• For each replication step (I.e. Cache Alignment and Cache State Update), the number of

input records received from the local server.

* CSU and CSUS messages can be exchaged during the Alignment or Update phases. Thus, to easily
identify the messages for each phase, tests must be executed separately.
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• The time spent for each DCS on each replication step (CA and CSU).

❐ The file “consistency” periodically reports about the consistency state of the LS [33]. The

information is delivered each second and classified into four columns as indicated in Table 4.

Time Size of the consistency

buffer

Updates received since the

last check

Total updates received

Table 4. Information of consistency

The number of entries is the reference to the consistency state. As explained before, the

NewCSAbuffer holds the CSA entries which currently need to be replicated. A low quantity of

elements in it means that the protocol is receiving fast enough the acknowledgments to the

updates. Thus, the consistency of the system is high (regarding the LS).

The evaluation of these results is interesting in the scope of different MUT rates and topologies.

❐ The files “communications_in” and “communications_out” trace the CSAs in each message

at any time. The measurement is done in the incoming and outgoing messages respectively. The

aim is to track the relation CSAs per message in the test. Histograms and time charts of these

data are interesting for the evaluation of the use of the bandwidth and the overhead of the

protocol. This facilitates acquiring a global view of the communications within the server group

from the analysis of only one of the servers.

Sometimes, the protocol suffers sending problems due to overload. This file also keeps counting

the socket errors.

The files record a row for each message with the format:

Time of the message Number of CSAs in the message Error in message (0 or 1)

Table 5. Information of communications (Input and output)

❐ The file “updates” displays the log register of entries received in the LS from its DCSs. It

records all the information about every update with the format:
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Cache Key Origin

Identifier

Message

length

Sending

time

Arrival time Transmissio

n time

Number of

servers

traversed

Table 6. Information of remote updates arrived

The information in this file is used to calculate the delay in CSAs delivery which is caused by

scaling the tests load.

❐ The file “inputs” is the log register of all updates locally entered in the SCSP. The CSAS data

of each new record is sorted chronologically by time of arrival. An update is entered in the

system when it is extracted from the message queue. Each row represents an update with the

following format:

Arrival time Cache Key Origin Identifier Record length

Table 7. Information of local updates arrived

The information here permits to register the time every entry was actually received by the

SCSP.

❐ The file “erases” records every CSA received from a DCS which must be erased from the

local cache. The format of this file is the same used in “updates”.

4.3. Test environment

This part is the description of the network, servers and test programs used. It aims to serve as

record of the scope of the tests.

4.3.1. The network

The schema in Figure 23 describes the network used in the tests and the position of each server

used on it.
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Figure 23. Schema of the connections between servers

The following workstations are used as node servers:

Node System Release KernelID Machine CPU#

ws2 SunOS 5.7 Generic_106541-12 sun4u 1

ws5 SunOS 5.5.1 Generic_103640-31 sun4u 1

ws7 SunOS 5.5.1 Generic_103640-31 sun4u 1

ws16 SunOS 5.8 Generic_108528-06 sun4u 1

ws17 SunOS 5.6 Generic_105181-17 sun4u 1

ws18 SunOS 5.6 Generic_105181-23 sun4u 1

ws20 SunOS 5.8 Generic_108528-01 sun4u 1

ws21 SunOS 5.5.1 Generic_103640-34 sun4u 1

ws22 SunOS 5.8 Generic_108528-02 sun4u 1

ws23 SunOS 5.7 Generic_106541-08 sun4u 1

Tele SunOS 5.6 Generic_105181-20 sun4u 4

Table 8. Description of the servers

This information is collected using the “uname –X” and “uname –a” functions.

4.3.2. The tools

Three tools are used to perform the tests. The “scsp” program, the “test” program, and the

“ formatea” program.

Tele

ATM
155



Helsinki University of Technology - Networking Laboratory
Julio Ramírez Yébenes 

47

Program “scsp”

The execution ofSCSPreturns data about the process performance in different files. These files

are explained in 4.2. For testing issues, the implementation is temporally modified to provide

the results to the “updates” and “erases” files and not to the corresponding output message

queues. This permits to analyze the resulting records more easily. The impact of the collection

of data can be neglected in the scope of the performance of the protocol. They consist of print

commands which generate the different record files. The files are opened at the beginning of the

program and closed at the end to avoid calls to the file system during execution. The statistical

files are generated in a different way. The values are kept in records and printed out at the end

of the process in their corresponding formats. These values are integer values and counters that

do not affect the performance of the protocol in measurable terms.

Program “test” (Emulating the interface)

The test program emulates a prototyped interface. The only function implemented is the input

task. It links the message queues of the runningSCSPbeing tested and provides the records to

replicate.

Functioning

The program is executed with four parameters:

test “initial file” “updates file” “updates rate” “queue name”

❐ “initial file” is the file containing the cache records used in theCache Alignmentphase.

❐ “updates file” is the file containing the cache updates used in theCache State Updatephase.

❐ “updates rate” is the selected time gap (in microseconds) between two consecutive updates.

This number is an unsigned integer between 2 and 999999.

❐ “queue name” is the name of the message queue associated with the SCSP instance which is

used to replicate the records.

The formats for the “initial file” and “updates file” are the same. These formats are defined by

the “formatea” process (See below inProgram “formatea”).

The functioning steps are two:
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First, the procedure opens the “initial file” and loops reading the inputs. During the loop, it

builds messages and sends them to the inputs message queue specified in “queue name”. The

priority label of these messages is two. The format of the messages is analogous to the format of

a CSA (See Figure 4).

When the file is empty, it sends a “finalization message” to the MQ (also with priority two) and

closes the “initial file”. The “finalization message” contains the string “END” in the cache

Cache Key field and the total count of records sent in data length field. The data field is empty.

Second, the procedure opens the “updates file” and loops reading the updates. Messages are

built in the same way and sent with priority one. The difference here is that messages are not

sent in a continuous sequence. The time function (See Variants below) calculates the gap

between two updates in each loop and sleeps the program during the resulting time before

sending the next message to the SCSP. Different time functions implement different variations

of the protocol.

When the file is empty, it sends a “finalization message” to the MQ (with priority one) and

closes the “updates file”. The format of the “finalization message” for this phase is the same

than the one used in the previous phase. The count of records is set to the amount of updates

sent during this second phase.

Third, the procedure has finished the test session. It unlinks the message queues used and exits.

Variants

The code permits to implement different variants of the test program. These variants are based

on thetime functionused. This function calculates the delay between two consecutive updates.

Note that thetime functionselected does not affect the initialization steps of the SCSP. The idea

is to provide different models of update rate to thetest program; i.e. it can simulate statistical

update rate models.

Three variants implement three update models:
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❐ The “constant model” uses the initial “updates rate”. The “updates rate” is entered in the

program call to fix the update rate. Each record is delayed during “updates rate” microseconds

before being sent*.

❐ The “exponential model” simulates exponential rates of update arrivals. Thus, it reduces the

delay time between consecutive updates exponentially. Figure 24 shows the update function to

simulate. The coordinate (y) axis represents the number of updates received.

The aim is to calculate the time gap between updates at any point in the function. The

simulation is done supposing two consecutive updates (y coordinate)yi andyi+1. Their values for

the exponential model are:

1
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yi andyi+1 are consecutive. Then:
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1 +=⇒+= +
+
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The resulting time sequence in which updates arrive is:

( )ix
i eLnx +=+ 11

The values required are the sequence of consecutive gaps between updates in the update session.

Therefore the final formula used in thetime functionis:

delay= xi+1 – xi

In each loop, thexi+1 value is recalculated and subtracted from the value in the previous loop.

The sequence begins with:x0 = 0.

❐ The “quadratic model” simulates quadratic rates of update arrivals (See Figure 24). The

functioning is the same than the exponential case. The sequence function for this case is:

2
1 1 ii xx +=+

* The time consumed for processing the records in the program is not included in the delay calculation.
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Exponential vs. Quadratic update models
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Figure 24. Standard Update Models

Outputs

The program accesses two files in the test environment. First, the “stat” file is modified to insert

the update rate used in the replication session. Second, the tool generates an internal file. The

name of this file is “register_inputs”. It traces the time sequence of updates inserted in the

message queues during the update phase.

The format of the “register_inputs” file consists of four fields:

Time Cache Key Gap Counter

Table 9. Information of updates sent from the test tool

❐ “time” represents the time in which the message has been sent to the message queue.

❐ “cache key” is the Cache Key of the sent record.

❐ “gap” is the delay of this message with respect to the previous one. It permits to trace the

behavior of the system regarding the time gap used for the message.

❐ “counter” is the number of the message in the message sequence.

Program “formatea”

This is an auxiliary tool to generate the files of records used in thetestprogram. These files are

composed of two columns of data. The first column corresponds to the Cache Key of each

record. The second column corresponds to the data in the record. Each row in the file represents

a record in the file (Cache Key and data).
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This program helps to generate arbitrary cache records used by thetestprogram with a selected

size.

Functioning

The “formatea” tool reads from a raw ASCII file and generates a file in the format expected in

“test” for the “inintial file” and “updates file”. The function call is:

formatea “input file” “output file” “slide length” “number of records”

❐ “input file” is the raw text file from which characters are taken.

❐ “output file” is the target file with the records.

❐ “slide length” is the size of the data field selected for every record in the output file. The

Cache Key size is set to 16.

❐ “number of records” is the amount of records generated in the output file, i.e. the number of

rows of the output file.

The program loops reading characters from “input file” in two steps. First, it reads sixteen

characters. They conform a Cache Key. Second, it reads the next “slide size” characters. They

are the data corresponding to this Cache Key. At this point, one record is built and written to the

output file in the format: Cache Key, blank character, data, end-of-line. The counter of records

is incremented and the read characters are discarded. When the end of the “input file” is reached

or the specified “number of records” is generated, the program exits and closes all the files in

use.

CPU use calculation

To obtain the percentage of CPU consumed by scsp during execution the UNIX “ps” tool is

used. “ps” is executed in a shell script. The script loops executing “ps –opcpu | grep scsp” each

second, which returns the CPU use of the program “scsp”. The output of the script is redirected

to a file named “datafile” in the working directory.
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4.4. Test and analysis

The following point relates the development of the tests. It presents and analyzes the most

remarkable results. All the graphs in this section show the behavior of the protocol regarding

different scaled parameters.

The data returned during the execution of SCSP is related in section 4.2. This information is

received during execution time. It tracks the performance of the protocol. To obtain the charts

below, the files containing those data are exported to Microsoft Excel format.

One generic test case is used as reference. The parameters for this case are shown in Table 10.

In each test, one parameter is modified. The others maintain their value that was specified in the

generic case.

Number of servers 2

Data Set Size in the LS (Either DB or Updates Set) 1,000

CSA data size (in characters) 100

Topology (Star or Inline) Inline

Update Rate (microseconds) 10

Time Function (See section “Program “test”) Constant

Table 10. Base configuration

Note that, if N is the Data Set Size for the test, the total update load in the SG is multiple of that

value, i.e. for two servers, the size of the shared cache in the SG is2*N. E.g. the size of the

generated DB after a replication session with 2Mbytes Data Set Size is 4Mbytes. Adjoined to

this, the DBs used in every server are different, i.e. the replication always consists of the copy of

all the records in every LS to every DCS.

The configuration of the servers is fixed in the “hosts” file. For a detailed description of it refer

to [23]. Only the addresses of the DCSs are modified in the topology tests. Times of resending

keep the same value for every test. Table 11 shows these values. This configuration aims to

avoid the retransmission of lost messages. Thus, it allows easy tracking of leaks of messages.
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Port 47123

Packet size 1000 bytes

Hosts x.x.x.x (Depending on the LS and DCSs used)

Group Identifier 35 … (Same for every server)

Family Identifier 80 … (Same for every server)

Hello Interval 12000 … (Same for every server)

Dead Factor 40000 … (Same for every server)

CSA_Rtx_Depth 40000 … (Same for every server)

DCSA_Rtx_Interval 40000 … (Same for every server)

DCSCSA_MAX_Retx 90000 … (Same for every server)

DCSCSU_Rtx_Interval 40000 … (Same for every server)

DCSCSUS_Rtx_Interval 40000 … (Same for every server)

Table 11. SCSP configuration file (“hosts”)

The working environment for the tests has on average a 90% of idle CPU use before the tests

are executed. The consumption of CPU by the test program is never higher than 8% during

CSU, i.e. for a Data Set Size of 20000 records. The CPU use of the test tool during the CA

phase does not influence in the CPU use of the SCSP (In this case, the SCSP waits for the test

tool to input the records before beginning the replication).

4.4.1. Scalability tests for different loads

Four kinds of tests characterize the behavior of the protocol under different loads of data. These

tests must show the communications and processing responses when scaling the load of SCSP

in a server. The input files and parameters described here are related to the “test” process and

“scsp” process described in 4.3.2*.

Fixing clock gaps between servers

As explained in the section 3.3.5, the servers need a distributed time facility. It must provide

consistency to the timestamps attached to the records. Therefore, during the execution of the

tests, the servers must run the NTP daemons. Adjoined to this, the gaps between servers are

calculated. In the cases in which some gap is found, the times obtained (see 4.2) are adjusted

accordingly.



Helsinki University of Technology - Networking Laboratory
Julio Ramírez Yébenes 

54

To obtain the gaps, a process is executed in pairs of servers. It runs a request of the local

machine time in both servers at the same time. The difference of times results in the time gap

between machines. To do this the process must perform a call to a remote server. The

connection times can raise errors in the times returned. However, the response times in the net

used here are fast enough to take advantage of it. Thus, the process is composed of two steps

that must be executed in one of the servers involved in the calculation.

The first step executes a request of the local time in the remote machine. This call can take some

delay, but the elapsed period between the extraction of the remote time and receiving it in the

LS can be neglected** . The second step starts when the remote time is received. The process

executes a request of the local time. Both times can be considered simultaneous in the

framework in which these tests are running. However, the calculations are executed several

times from both servers. The average delay (in seconds) is the value used to adjust the times.

Database size tests

These tests change the “Data Set Size” parameter. They are executed for 2.500 (≈270Kbytes),

5.000 (≈550Kbytes), 10.000 (≈1Mbyte), and 20.000 (≈2Mbytes) records. The records must be

allocated in the “initial file”. The “updates file” is empty. The “updates rate” does not influence

in the CA phase and it has no consequences in the tests. The servers used are ws17 and ws18.

Table 12 defines the parameters of the test. The results are analyzed from the data returned in

ws18.

Number of servers 2

Data Set Size (Either DB or Updates Set) Variable

CSA data size (in characters) 100

Topology (Star or Inline) Inline

Update Rate (microseconds) 0 (not used)

Time Function (See section “Program “test”) Constant

Table 12. Tests for DB sizes

A special test is executed in this analysis to test the processing on inputs in a multiprocessor

machine. The name of this machine is “Tele” (See Table 8). In this case, the configuration of the

* By default, the name of the messages queue in the scsp implementation used here is “tablabla”
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test is described in Table 13. The machines used are Tele and ws18. Data is collected from both

servers to obtain a comparative chart.

Number of servers 2

Data Set Size (Either DB or Updates Set) 20000

CSA data size (in characters) 100

Topology (Star or Inline) Inline

Update Rate (microseconds) 0 (not used)

Time Function (See section “Program “test”) Constant

Table 13. Test for inputs in multiprocessor machines.

The charts depicted for these tests are focused on the exchange of messages. Two points are of

most relevance. First, the messages required to achieve theAlignedstate in SCSP. Second, the

influence of the cache size in the time required to replicate it.

Messages exchange during alignment
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Figure 25. Alignment and Cache Summarize upgrowth times

Figure 25 shows the number of messages sent to synchronize different sizes of caches. It is

expressed in three terms. First, the number of CA messages. These messages are used to

exchange the summary information between caches and establish the roles of the servers

(Master/Slave). Second, the number of CSUS messages. They are used to request summary

information to the peer server. Third, the number of CSU (Request and Reply) messages. They

** Notice that the times recorded in the test files are in terms of seconds
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carry the CSA information requested by CSUS messages (Requests) and the acknowledgement

of this information (Replies).

The analysis of Figure 25 shows the breakdown of the information into SCSP messages. We can

see that the maximum CSAs that fit into a CSU Request message is 6 (for a CSA data size of

100 characters). Adjoined to this, the CSAS records inside a CSUS or CA message cannot be

more than 30.

The number of CSAS or CSAS in a message and the number of messages required can be

forecasted. Hence, for a CK of 16 bytes the size of the CSAS is 32 bytes. The size of a CSA

record includes the CSA data (E.g. 100 characters). Thus, the CSA size is 132* bytes. The

records must be inserted with the added SCSP header (See [20]) in packets of 1000 bytes size

(See Table 11). Thus, the space left by the header is free to be filled with records.

The amount of CA messages is a few elements higher than the number of CSUS messages

depending on the number of messages required to perform the Master/Slave negotiation.

Figure 26 shows the messages growth for aligning different sizes of caches. We can see linear

increments in both of them as we increase the number of records being replicated. We must

notice here that the tests do not undertake the case of leaks of messages. Therefore, there is no

resending of messages.
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Figure 26. Scalability analysis of the number of messages consumed in CA

* In the implementation, the size of the CSA packets is 8 bytes longer than it should. This can be
optimized by removing the field “CSA_Prot_Data_len”, which contains redundant information (See
CSAS format) and correcting the packing of messages. These flaws are the reason of some incorrect
packing of CSA records, i.e. the case of tests for records of 100 characters.
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Figure 27 shows the growth functions of the times required to achieve the aligned state and to

finish the replication session. These times are different due to delays in the reception of CSU

Reply messages. An LS is aligned when it has received all the CSAs previously requested. This

is defined in Figure 27 as “Alignment time”. However, the replication does not finish until all

the CSU Reply messages from the DCS have been processed, i.e. the LS notices that the DCS is

aligned also. The total time spent in the replication is defined as “Replication time” in Figure

27. The trend lines show the growth of time required for both phases. They can be used to

forecast the time required to replicate other sizes of caches.
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Figure 27. Times required for cache alignment

Figure 28 is a comparative analysis of the input of messages. The “Sending” line represents the

input of messages to the MQ by the test tool. The “Reception” line represents the extraction of

records by the SCSP. It only analyzes the case of 20000 records.

In the chart, we find the first problem in the implementation. The time consumed in the

collection of 2 Mbytes of records is high. Two factors affect this misbehavior. First, the

switching between threads in the SCSP produces oscillations in the retrieval of inputs. It is

analyzed in Figure 26. Second, the processing of records (in program “test” or program “scsp”)

delays the generation and collection of inputs. The possibility of delays caused by the

intermediate MQs system between the processes is analyzed in Figure 26.
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Figure 28.. Analysis of input during CA

Figure 29 shows a comparative analysis of the input in a machine with four processors against a

monoprocessor machine. In this chart we can see the performance of the threading in a parallel

environment. In the multiprocessor, the average input per second is increased from 1250*

(monoprocessor) to 3333’333; i.e. 1 update each 0’3 milliseconds.
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Figure 29. Comparative analysis of input in different machines

Figure 30 shows the trace of the input for a machine with four processors. If delays were

produced by the use of MQs as communication facility between the interface (program “test”)

and “scsp” the analysis of this figure would show some gap between the lines. The only visible

differences in the chart appear at the first and last seconds of the input process. The delay

produced during the first second in the input for the SCSP could be caused by the MQ.

However, this gap is reduced and canceled in the peaks of the functions (seconds 1 to 3). Thus,

we can consider the MQ a suitable facility for communication between these processes.
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Figure 30. Input in a multiprocessor machine

Figure 31 shows the use of the CPU in a monoprocessor machine. The percentage of CPU used

is maintained up to 90% during the most of the time. It means that the high times needed in

replication are due to slow processing and not to delays in I/O operations (See 3.3.3).
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Figure 31. Percentage of CPU used by SCSP during CA

CSA data size tests

These tests change the size of the CSA data. The selected sizes are 100, 200, 300, and 400

characters. The tests are performed during the CA phase. The records are allocated in the

* 1 update each 0’8 miliseconds.
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“updates file”. The “initial file” is empty. The servers used are ws17 and ws18. The results are

analyzed from the data returned in ws18. Table 14 defines the parameters of the test.

Number of servers 2

Data Set Size (Either DB or Updates Set) 1,000

CSA data size (in characters) Variable

Topology (Star or Inline) Inline

Update Rate (microseconds) 10

Time Function (See section “Program “test”) Constant

Table 14. Tests for different sizes of data

Figure 32 shows the average CSAs in the CSU Request messages for the different cases of CSA

records. The calculation of the number of CSA records that fit in a message was pointed out in

the previous tests for database sizes. In this chart, we also present a trend line of the average

number of CSAs in the messages. The function of the trendline is included in the chart.

It is important to notice that the values of the average CSAs per message are not integer in all

the cases. It is due to the functioning of the CA phase. In this phase, the CSU Requests are sent

in response to CSUS messages*. E.g. if the CSUS messages contain 30 records each, the LS

receives 30 CSAS records and replies with 30 CSA records. If the size of the cache records is

200 characters, the requests are sent a series of “4, 4, 4, 4, 4, 4, 4, and 2”. Thus, the average

CSAs per message is 3’75.
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Figure 32. Growth of the average CSAs per message for different sizes of CSA record

* A second reason is the sending of the last CSA records left in a non-full packet.
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Figure 33 shows the growth of the number of CSU Request messages delivered depending on

the size of the CSA record. Figure 32 showed that when the size of the CSA increases, the

number of records in a message decreases. The protocol reacts to this by sending more messages

per second. The reason of this can be understood looking at the implementation. When the

protocol processes the new CSAS arrived in the “NewInLocal” (See “Input thread:

“Fill_CSAList” at point 3.3.3) it loops until sending all of them. The aim is to avoid delays in

the replication of the records. If the records are longer, the protocol inserts fewer records in a

message. Thus, it needs more loops to send every record arrived.

The polynomic trend line in the chart shows the growth function. It allows forecasting the

results for other sizes of records.
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Figure 33. Growth of CSU Request messages for different sizes of records

A problem found at these tests is the leak of messages. When the rate of messages per second

increases, the protocol sends more messages to the communication sockets. In the program

“scsp”, the buffers which are supporting the sockets are extended to the maximum. However,

this is not a scalable solution. A feasible correction is to implement a windowing sending

system that increases the resilience of the protocol.

Figure 34 shows the influence of the CSAs per message in the processing. Although the number

of records in the replication session is the same for all the trials, we can see how it affects the

performance of the SCSP. The factor that generates the delay is not the size of the record but the

number of messages to process (See also Figure 35).

Messages / second
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Figure 34. Influence of the size of the CSA record in the replication time

Figure 35 shows the growth of the alignment time in terms of the CSU Request messages. The

coordinate axis represents the number of CSU Request messages used during the CA for

different sizes of records. The ordinate axis represents the time consumed during CA in the

same cases. The trendline guesses a linear increment of the relation.
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Figure 35. Alignment time against number of CSU Request messages processed
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Mean update time tests

These tests use the exponential and quadratic variants of thetestprogram. One exception raises

here. The data set does not provide enough entries to obtain a long time evaluation of the

protocol. Thus, this parameter is modified to obtain a feasible data set size. The selected size is

5,000 records.

The records are allocated in the “updates file”. The “initial file” is empty. The “updates rate”

does not have any effect in the test. The servers used are ws17 and ws18. Table 15 defines the

parameters of the test.

Number of servers 2

Data Set Size (Either DB or Updates Set) 5,000

CSA data size (in characters) 100

Topology (Star or Inline) Inline

Update Rate (microseconds) 10 (unused)

Time Function (See section “Program “test”) Variable

Table 15. Tests for different update rate models

Exponential case

The analysis of the replication model for an exponential increment of updates is dealt from the

input retrieval perspective. The protocol receives more updates each second. It allows exploring

the reaction of the protocol to different update rates.

Figure 36 shows the response of the protocol to increasing update rates in the input thread. The

analysis of the chart shows a limit in the update rate of 50 updates per second. This rate is very

low and we saw in previous tests that it must be higher (See Figure 29). Therefore, the test tool

is analyzed and checked for corrections. After several test we find out that the origin of the

incorrect functioning is the use of the library function “usleep”. This function is in charge of

delaying the next update in the sequence a specified number of microseconds. The function call

does not perform properly and the delay has its lower limit in 20 milliseconds. In order to finish

with these tests the test tool must be provided with a correct function call able to execute this

delay properly. However, Figure 37 describes the behavior of the protocol up to that update

limit.
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Figure 36. Response to the growth of external input

Figure 37 shows the relation input vs. consistency state in the exponential case. For small

update rates, the consistency is kept at the same level than the input (0 to 20 seconds of

execution). When the update rates are high enough, the two graphs separate each other

progressively (20 to 50 seconds of execution). Fluctuations in the input rate and consistency

state are sharper.
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Figure 37. Influence of the input rate in the consistency state
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4.4.2. Scalability tests for different SG configurations

Two kinds of tests characterize the behavior of the protocol working within different group

topologies and sizes. These tests aim to show the data flow and consistency of the SG regarding

its configuration. The results must show the time required updating the records and the

influence that the group topology has on it. Data is collected during the Cache Update phase.

The servers are used as required according to the following list: ws17, ws18, ws16, ws20, ws22,

ws23, ws7, ws5, ws21, and ws2. (E.g. the inline topology for six servers uses ws17, ws18,

ws16, ws20, ws22, and ws23)

Inline topology tests

These tests show the influence of the number of intermediate servers in the replication. The

generic case of two servers is extended longitudinally (See Figure 22). For each test, a number

of servers are attached to the last node in the replication sequence. The selected group sizes are

3, 6, and 10.

The number of updates must be constant for the SG in every test [33]. To generate the same set

of updates, the amount of inputs entered in each server must be divided by the size of the SG.

The data set used in the generic case is 2000. E.g. for the test using five servers, each server

must be loaded with 400 records. Table 16 describes the values used for testing. The

intermediate node analyzed is ws17. The border server analyzed is ws16. The sequence of

servers for the different SG sizes tested is always: ws16, ws17, ws18, …

Number of servers Variable

Data Set Size (Either DB or Updates Set)* above Variable

CSA data size (in characters) 100

Topology (Star or Inline) Inline

Update Rate (microseconds) 50

Time Function (See section “Program “test”) Constant

Table 16. Test for different sizes of SGs in inline topology
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The results in Figure 38 show the functioning of the protocol for an increasing number of severs

in the group. TheAverage update delayrepresents the average time required for an update to be

replicated in an intermediate node. TheUpdate timerepresents the elapsed time since the first

update was generated in the group until the last update was received in this node. It is calculated

by checking the earlier and latest timestamps in the updates received. TheReplication time

function represents the time elapsed between the Cache Alignment phase and the reception of

the last CSU Reply message.
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Figure 38. Times for the intermediate node in the inline topology (See Figure 22)

We can determine that the time to receive the CSU Replies experiences a small growth as the

size of the SG increases. The main reason to explain this increment can be found in the

subdivision of the group records into more packets. The update set of the SG is the same but the

update set for each server is smaller. It generates more flow of messages and affects the

performance of the protocol even though they replicate the same amount of records (See Figure

35 and its analysis).

Figure 38 describes also a linear growth of the delay between the updates for the scales used in

the tests. These configurations are more dependent on the network delays than in the SCSP

performance. The network used in the tests is fast enough to introduce only a negligible delay in

the replication. The factor that influences the growth of the time to replicate the data is the

distance (in hops) that the records must traverse. In each hop, the server introduces a delay,
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which affects the replication in the SG. The global delay in the group is linearly proportional to

its size.

Figure 39 shows the results of the same tests as in Figure 38 for one endpoint node. In the chart

below, we can observe the same behavior explained before. The major difference with the

previous chart to point out here is the growth of the times of replication in both lines of the chart

(Replication timeand Average delay). It is due to the longer distance that the updates must

traverse to reach these final nodes in the group.
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Figure 39. Times for endpoint nodes in the inline topology

Star topology tests

These tests show the impact of the number of servers converging to one point. The convergence

point is a node that must communicate the updates received from each server to every other in

the SG (See Figure 21). The tests increment the number of servers attached to the same node in

every step. The values selected for testing are 6, and 10. The case with three servers for star

topology is the same than for linear topology.

The description of the test parameters was the one depicted in the inline case (See Table 16).

Only the configuration of the SG is changed to acquire star configuration. The intermediate

node used is the ws17. The endpoint server analyzed is the ws16. Every other server is an

endpoint server connected to the ws17.
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Figure 40 describes the same test as in Figure 38 for star topologies. For explanation of the lines

in this chart see Figure 38.
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Figure 40. Times for intermediate nodes in the star topology

Figure 40 shows the effect of a concentration of update flows in a single node. The growth of

the delay is sharper than in the previous cases. The intermediate node funnels the updates from

every neighboring server. The node must process all this information, reply to it and transfer it

to the other DCS. The trend lines for each growth function of the different time values are

displayed in the chart above. These times are interpolated by exponential functions.

Figure 41 shows the effect of the size of the SG in the endpoint nodes. The growth of the delay

functions is higher than in Figure 39. This test pushes harder the performance of the protocol.

Although the elements in the SG are closer, the replication is slowed down. We can see how the

concentration of flows in a node is an unwise solution and damages dramatically the

performance of all the SG.
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Figure 41. Times for endpoint nodes in the star topology

Star topologies are generated in inter-group nodes, i.e. border nodes connecting different SGs. A

good configuration of the replication topology must take into account the effects of star

topologies and their influence in the whole replication system. Figure 42 and

Figure 43 show comparative delay functions for the star and inline models.

Average replication times
(Intermediate nodes)

0

5

10

15

20

25

30

0 2 4 6 8 10 12

SG size

T
im

e
(s

ec
on

ds
)

Star Inline

Figure 42. Comparative average replication time for intermediate nodes (Star vs. inline

topology)



Helsinki University of Technology - Networking Laboratory
Julio Ramírez Yébenes 

70

Average replication times
(Endpoint nodes)

0

5

10

15

20

25

30

0 2 4 6 8 10 12

SG size

T
im

e
(s

ec
on

ds
)

Star Inline

Figure 43. Comparative average replication time for endpoint nodes (Star vs. inline topology)
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55..CCoonncclluussiioonnss aanndd ffuuttuurr ee wwoorr kk

In this thesis, we have upgraded a previously implemented version of the SCSP and evaluated

its scalability. The main features added consist of threading the IO tasks and creating an

interfacing system for the program. A test of the final program concludes the study.

The new version of the protocol divides the data flows found in the functioning of the SCSP and

manages them with different threads. This minimizes waiting periods and provides optimal

throughput. In order to fulfill the current implementation, the program is provided with a

message queue system that undertakes the IO tasks. Programs using the SCSP connect to the

corresponding message queues associated with an SCSP instance and manage the replication

through them. The new program executes as a system daemon that replicates transparently any

input record.

The tests evaluate the scalability of the implementation. The evaluation is done in terms of data

being replicated and configuration of the servers involved. In the former tests, we study the

replication of possible models of caches. The caches are typified according to number of

records, size of records, and number of updates received per second. These tests are executed

for server groups with only two elements.

In the latter tests, we analyze the protocol from the view of different SG configurations. In this

case, the program is analyzed for several numbers of servers replicating among themselves. The

topology of the SG is important to obtain an effective replication. Therefore, two generic

configurations of the connections between servers are studied. First, an SG in which all of the

servers are connected to the same server (Star topology). The shared peer server within the

group becomes a bottleneck and a critical point of replication. Second, an SG in which each

server is connected to two servers. No circles are generated in the topology, thus the group

consists of a sequence of servers (Inline topology). The aim of this test is to evaluate the

influence of the number of servers traversed by a replica in the replication time.

The analysis concludes with the necessity of further improvements in several features. The

access to buffers performs poorly and is the main cause of some unexpected results, i.e.

List_Buffer and NewCSA buffers. The information held in the program must be organized so

the management of the records can be performed fast. The proposed solution consists of the use
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of some indexing or ordering method. It is important to notice that the buffers keeping track of

the messages sent to each peer must be provided with similar features, i.e. the resend buffers

perform random access to their data when receiving acknowledgments and these searchs can be

expensive tasks.

A second problem regards communications. When the protocol processes data at a high speed,

the program tends to loose messages. It is caused by the overload of the communication buffers.

Even though the protocol implements resending procedures which deal with this problem, the

program must avoid leaks of messages when possible. The solution proposed here consists of

the use of some windowing system in order to control the sending of messages up to a limit.

This limit should be dynamically configured depending on the network capacity.

We found an important lack of performance in the behavior of the protocol in tests for the star

topology. The replication time grows exponentially when it should do quadratically according to

the previous tests for different loads of replication. The main reason for this problem was related

above when commenting on the buffering problems. We found that further improvements could

be done here by forecasting if the information arrived to the central server is going to be sent to

others and cache it properly.

During the development of the program, we faced situations not anticipated in the RFC

document. Those situations were solved but they should be documented and reported.

In future works, in order to complete the implementation of the SCSP program, we recommend

the development of a dynamically configured resend timing system, instead of the current static

system. Finally, the program should be tested in a real application environment before being

ready for release. This test must support the software product.
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