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IP networks were designed to provide an efficient and robust mechanism
for transferring data between remote computers. Initially, the information
exchanged was mostly computer related data: text documents, files, web
content, etc. However, the increasing popularity of this kind of networks
is encouraging the development of new services and applications that take
advantage of the existing infrastructures.

One of the emerging applications is IP telephony, a new service aimed to al-
low end users to complete voice calls over IP networks. This a clear example
of how a service that was traditionally offered using a different technology,
i.e. public switched telephone networks (PSTN), has been adapted to the
IP networks.

Since the migration from one approach to another can not take place
overnight, both technologies will be interacting for a period of time. This in-
teraction generates new interoperability problems that must be addressed.
Data and signalling conversion between both networks is performed by spe-
cial entities called gateways.

We focus our study on the architecture that solves the problem of gateway
location. The Telephony Routing over IP (TRIP) protocol is responsible
for distributing gateway availability information between different adminis-
trative domains, while the Server Cache Synchronization Protocol (SCSP)
performs the required database replication.

This document presents security and auto-configuration modules for the
TRIP/SCSP architecture. The former is aimed to ensure that the data ex-
change takes place in a secure way, while the latter improves the scalability,
reliability and availability of the system.

We also include some test results to show how the addition of security
services to protect SCSP traffic affects the performance of the protocol.

Keywords: interoperability, gateway location, TRIP, SCSP, replication,
security, auto-configuration.
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Resumen del Proyecto de Fin de Carrera

El imparable crecimiento de las redes IP, en especial Internet, está pro-
piciando la aparición de nuevas aplicaciones que puedan aprovechar las in-
fraestructuras existentes. Dentro de estos servicios destacan aquellos que
tradicionalmente han sido ofrecidos mediante el uso de otras tecnoloǵıas de
red, entre ellos la telefońıa.

La telefońıa IP permite a los usuarios finales establecer llamadas de voz
en redes IP. En una primera fase, esta tecnoloǵıa está siendo introducida en
redes de ámbito privado, permitiendo a las compañ́ıas reducir considerable-
mente los costes de comunicaciones de voz entre diferentes sucursales.

Dado que la telefońıa IP conlleva una serie de ventajas y permite un
mejor aprovechamiento del ancho de banda, es de esperar que en un futuro no
muy lejano se acabe imponiendo sobre la telefońıa tradicional. Sin embargo,
esta transformación requiere un periodo de adaptación en el que ambas
tecnoloǵıas deben coexistir. Es precisamente esta fase intermedia la que
plantea una serie de problemas en términos de interconexión, ya que en
muchos casos el usuario que inicia la llamada y aquel al que va destinada
se encuentran en redes diferentes. Gran parte de los esfuerzos actuales en
materia de I+D se centran en el desarrollo de mecanismos eficientes que
resuelvan estos problemas de interconexión.

Cuando una llamada originada en una red IP tiene como destinatario a
un usuario situado en la PSTN, debe existir una entidad intermedia capaz de
convertir la señalización y la voz entre ambas tecnoloǵıas. Este dispositivo
recibe el nombre de gateway, y se caracteriza por tener conectividad IP y
por estar también conectado a la red de conmutación de circuitos.
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Cada operador dispone de un conjunto de gateways para enrutar lla-
madas entre las dos redes, lo cual significa que el número de gateways dis-
ponibles es muy elevado. Ante esta situación se plantea el problema de
cómo elegir un gateway cuando una nueva llamada debe ser establecida. En
principio, todo gateway es capaz de enrutar dicha llamada hacia cualquier
número de la PSTN, por lo que cualquier gateway de cualquier operador
podŕıa ser elegido arbitrariamente para llevar a cabo esta función. Una
posible solución seŕıa mantener una base de datos global con información
acerca de los gateways. Cuando un usuario desease realizar una llamada ha-
cia la PSTN, śımplemente seŕıa necesario enviar una petición al servidor de
bases de datos y obtener la dirección de un gateway con las caracteŕısticas
deseadas.

Sin embargo, existen algunos factores adicionales que imposibilitan el
uso de esta solución. Como hemos apuntado anteriormente, cada operador
dispone de su propio conjunto de gateways, pero es muy poco probable
que quiera que éstos estén disponibles para cualquier usuario final. Cada
llamada enrutada a través de un gateway supone un coste para el operador
que administra dicho gateway. Lo más probable es que el operador sólo
quiera ofrecer sus gateways a sus clientes directos, o a los clientes de otros
operadores con los que existe un acuerdo previo de interconexión.

De este modo, la disponibilidad de los gateways debe estar regida por una
poĺıtica local que recoja todos los acuerdos de interconexión entre diferentes
operadores. La consecuencia directa es que no todos los clientes finales deben
tener acceso al mismo conjunto de gateways. La disponibilidad dependerá
del operador que esté ofreciendo servicio al cliente. Esto significa que la idea
de mantener una base de datos global debe ser descartada, puesto que choca
frontalmente con el concepto de poĺıtica local.

El protocolo Telephony Routing over IP (TRIP) fue creado por el IETF
para tratar de dar solución al problema de cómo encontrar un gateway ade-
cuado para enrutar una llamada. La primera versión de este protocolo se
llamaba Gateway Location Protocol (GLP), y utilizaba el Server Cache Syn-
chronization Protocol (SCSP) para replicar la información sobre los gate-
ways. Tras unos años de investigación se decidió incluir el mecanismo de
sincronización dentro del propio protocolo, surgiendo aśı el protocolo TRIP.

Sin embargo, este documento considera una arquitectura intermedia, en
el que TRIP se encarga del proceso de toda la información sobre los gateways
y SCSP es responsable de la replicación de datos.

El objetivo de este proyecto es analizar la arquitectura TRIP/SCSP y
tratar de identificar todas sus debilidades en materia de seguridad y auto-
configuración. En principio, SCSP no contempla en su especificación ningún
mecanismo de auto-configuración para los servidores, lo cual supone una se-
ria limitación si queremos que nuestra arquitectura sea escalable. El objetivo
del módulo de auto-configuración es facilitar la adición de nuevos nodos al
sistema sin que sea necesaria ninguna intervención manual. El módulo de
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seguridad tiene a su vez como objetivo primordial el garantizar que todo
el intercambio de información de routing dentro del sistema tiene lugar de
manera segura.

El trabajo realizado en este proyecto parte de una implementación del
protocolo SCSP realizada en este mismo laboratorio. Este prototipo incluye
soporte SNMP y una implementación de la MIB de SCSP, de manera que
los nodos de la arquitectura pueden ser remotamente gestionados utilizando
el centro de gestión de red del operador.

Otro de los objetivos de este proyecto es analizar la capacidad en términos
de rendimiento del prototipo y diseñar algunas modificaciones que permitan
una optimización del mismo.
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Chapter 1

Introduction to IP Telephony

This chapter presents a brief introduction about the current state of IP tele-
phony. The introduction discusses the existing proposals aimed to address
the problem of gateway location for PSTN-IP interoperability, and describes
the TRIP/SCSP architecture.

As IP networks are becoming more popular, new applications are being
developed in order to take advantage of the existing infrastructures. IP
telephony is one of the new services. This service allows end users to com-
plete telephony calls through an IP network. The final goal is to completely
replace conventional telephony by IP based telephony. Since this process
requires some time and effort, it has to be carried out in progressive stages.
The task is not easy and the architecture needs to be well designed to suc-
ceed.

At first, IP telephony has been introduced only in private networks, as
the technology needed to expand it into public networks is under develop-
ment. In a second phase, IP telephony is expected to be gradually connected
to the existing PSTN [1]. This means that both technologies will be inter-
acting for a period of time by means of a public interface. The main part of
the current research is focused on this area. A decisive target is to develop
reliable and optimal mechanisms to make both networks interact.

Several architectures and protocols have been proposed to match the
requirements of the new telephony. A comprehensive description of the
overall architecture can be found in [2], where the required protocols and
their interactions are presented.

1.1 Telephony Routing over IP protocol

The Telephony Routing over IP (TRIP) [3] protocol was specified to address
the problem of gateway location. When a telephone call originated in an
IP network needs to be routed to a destination located within the PSTN, it
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must traverse a device capable of performing data and signaling conversion
between different technologies. This device is called a gateway, and it is
situated on the boundary between the IP and PSTN networks. A gateway
has both IP and circuit switched network connectivity, and plays a central
role in IP-PSTN integration. As telephony services over IP networks are be-
coming more popular, the number of existing gateways is increasing quickly.
In addition, different gateways may belong to different operators, and they
may have different features and capacities.

In theory, every gateway is capable of routing calls from the IP network
to the PSTN. The main problem is how to choose an optimal gateway to
route every new IP-side originated call towards the PSTN. The number of
possible candidates is large, since every gateway connected to both networks
is a potential intermediary to be used in the connection. We must also take
into account that a gateway with connectivity to the PSTN is capable to
reach every terminal on this network.

One solution to this problem could be the use of a global database to
store gateway information. Every time a call needs to be routed towards
the PSTN, the required information would be retrieved from the database.
This solution assumes that every gateway is made available to everyone,
and overlooks the possible existence of different operators running different
policies.

However, the expected scenario is likely to be rather complex, with many
gateway providers operating at the same time and making their gateways
available depending on local policies. This means that one specific provider
may be willing to let other providers make use of its resources or not, de-
pending on the policy it is running. Thus, the idea of a global database must
be discarded since it does not match the real requirements. Instead of that,
every provider will run its own local policy and, as an output of its decision
process, will make available some of its resources. This will eventually lead
to a situation where databases containing telephony routing information are
very different for each provider.

To deal with this scenario, providers can make use of the TRIP pro-
tocol to exchange information about gateway availability between different
domains.

1.2 IP telephony evolution

The first version of the TRIP protocol was called Gateway Location Proto-
col (GLP) and is defined in [4]. A description of the framework [5] was pro-
posed as well. That version used the Server Cache Synchronization Protocol
(SCSP) [6] to maintain the distributed database of routing information.

After some discussion, the IETF IPTEL working group decided to in-
clude the replication mechanism within the protocol itself, creating a new
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protocol called TRIP. This new version was modeled after the Border Gate-
way Protocol (BGP4) [7], and enhanced with some features taken from the
Open Shortest Path First (OSPF) protocol [8] and the SCSP.

The architecture that will be discussed in this document is a mixture
between the two proposals described. The TRIP protocol is responsible for
processing all the routing information, but TRIP messages are not used to
transport the information between peers. Instead, the replication task is
performed by SCSP for both inter and intra domain relationships.

1.3 The Server Cache Synchronization Protocol

The Server Cache Synchronization Protocol (SCSP) [6] addresses the prob-
lem of database synchronization within a set of servers, also called Server
Group (SG). The server under scrutiny is called Location Server (LS), and it
is connected to one or more Direct Connected Servers (DCS). Any other pro-
tocol that requires database replication may use the cache synchronization
services provided by SCSP. The protocol has three phases:

• Hello phase. During this phase, the LS and its DCSs begin to ex-
change Hello messages in order to establish a bi-directional peer-to-
peer connection. Once this connection has been successfully set up,
it must be periodically monitored to ensure that there are no changes
in the status of the peer, so Hello messages continue to be exchanged
with a predefined frequency. If one node becomes inoperable, its peers
will not receive Hello messages from it. In this case, they will close
the existing connection and will try to establish a new one.

• Cache Alignment phase. Once the connection reaches the bi-
directional state, peer servers exchange the contents of their caches
to synchronize them. Every server sends a summary of the entire
database to its peers so that they can compare it with their own
databases. The database entry summaries exchanged are called Cache
State Advertisement Summary records (CSAS records). As a result of
the comparison, a server decides what information should be requested
from each peer. Database entries are exchanged as Cache State Adver-
tisement records (CSA records). When the exchange of the requested
data is completed, all the caches within the SG are synchronized.

• Cache Update phase. After database synchronization has been
achieved, every local change produced in a server cache must be noti-
fied to its peers by means of update messages. This phase is responsible
for the propagation of updates to keep the caches synchronized so that
all the servers have always the same information available. When a
server sends an update to a peer, it always waits for the acknowledg-
ment to ensure that the update was properly received and processed.
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Introduction to IP Telephony HUT-Networking Laboratory

1.4 The proposed architecture

This section describes the architecture proposed to address the problem of
gateway location and presents some definitions about the elements that are
present in the TRIP framework. A more detailed description can be found
in [9].

All the resources under the control of the same administrative authority
form an Internet Telephony Administrative Domain (ITAD). A Location
Server (LS) is the entity that uses TRIP to exchange routing information
between different ITADs. Every provider is in charge of its own ITAD, and
therefore all the LSs belonging to a specific ITAD are driven by the same
policy. Thus, all the LSs within the same domain are expected to have the
same routing information database.

However, an operator may be interested in having different policies
within the same domain. In this case, the operator can divide the ITAD
into different areas, so that each area is driven by its own policy. All servers
within an area share the same database. The information exchange between
areas takes place by means of inter-area connections, which have at least
one representative from each area involved in the agreement.

Connections between LSs located in different ITADs are used to ex-
change routing information between domains. In this case, the connected
LSs are called external peers as they exchange inter-domain data. External
relationships may involve two or more ITADs. At least one member from
each participating ITAD must be present in the relationship.

In order to achieve database synchronization between different servers,
this architecture uses SCSP. A SG is used within an area to synchronize all
the databases of the LSs belonging to the area. Thus, an ITAD may contain
one or more SGs depending on whether it has been divided into areas or
not. Additional SGs, called inter-area SGs, are used to replicate databases
between members from different areas. Nodes belonging to an inter-area SG
must run their decision process to know what routing information they have
to propagate to neighboring areas.

Inter-domain relationships use inter-domain SGs to exchange routing
information between different ITADs. The overall architecture is illustrated
in figure 1.1.

When a node starts running the SCSP daemon, the protocol configura-
tion information is loaded from a file. This information has been determined
administratively and includes the set of SGs to which the LS belongs as well
as the topology of interconnection within every SG. The file also provides
the node with the IP addresses of the DCSs within the SGs so that it can
establish a connection to begin the data exchange.
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Figure 1.1: Gateway Location Architecture

1.5 Goals of the Thesis

The main goal of this thesis is to develop security and auto-configuration
modules for the TRIP/SCSP architecture. These new modules will help to
address some limitations identified in the system.

Performance has been a primary concern when developing the SCSP pro-
totype available at the laboratory. Thus, we will try to design and imple-
ment the modules in an efficient way. Our goal is to provide the architecture
with new functionalities without negatively affecting the performance of the
overall system.

Although the modules are planned for a specific SCSP based system, the
TRIP/SCSP architecture, our efforts have focused on designing the modules
so that they are independent from the application layer. Therefore, they
can not only be used within our architecture, where TRIP represents the
application layer, but on any other SCSP based system. This allows the
modules to be applied to all the existing and future SCSP based systems.
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1.6 Structure of the Thesis

The TRIP/SCSP architecture has been presented in this chapter, where we
have also described the different elements that take part in the system and
their relationships.

The second chapter analyzes the architecture and identifies the main
security deficiencies and the drawbacks of the static configuration approach
being used so far. Security vulnerabilities are classified into different levels,
depending on the architecture level they affect. Thus, the security module
can be also divided into different submodules, so that every submodule solves
the problems related to a specific security level.

In the third chapter we present a general introduction to cryptography.
The main current cryptographic techniques are discussed and their security
properties analyzed in order to choose suitable algorithms for our security
module.

Chapter fourth describes some performance improvements carried out in
the SCSP prototype to enhance the overall operation. Several test results
are also presented to measure the performance and characterize the behavior
of the new version.

The security module is explained in the fifth chapter. This module con-
sists of several countermeasures aimed to secure the proposed architecture.
These countermeasures are based on cryptographic algorithms, which are
expected to slow down the speed of the system. Thus, new test results are
presented to see how the addition of the module worsens the performance.

In chapter six we describe the auto-configuration module. We first set
the requirements for the module, defining those services that are needed to
address the static configuration limitations. The rest of the chapter describes
the different phases of the proposed auto-configuration procedures.
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Chapter 2

Limitations in the
architecture

The main goal of this thesis is to propose suitable countermeasures to ad-
dress some vulnerabilities and limitations that have been detected within the
TRIP/SCSP architecture, and that make it not suitable to work in real en-
vironments. Therefore, the first step is to identify these limitations in order
to achieve a better understanding of the problem.

2.1 Static configuration

As we have already mentioned, each TRIP/SCSP node loads its SCSP con-
figuration parameters from a static file. This means that every single change
introduced in the topology of the network must be handled manually by the
network administrator. For instance, if one LS is added to an existing ITAD,
we must ensure that the SCSP SG corresponding to that domain continues
working properly. The configuration files of some of the members of the
ITAD must be appropriately updated to guarantee that the routing infor-
mation is correctly propagated and replicated within the new topology.

Fortunately, SCSP places no topological constraints on a SG, and this
feature represents an important advantage over other similar protocols. As
an example, BGP, the current exterior routing protocol used for the global
Internet, requires fully meshed topologies to interconnect all the members
within the same Autonomous System (AS). It means that the addition of a
new member to a domain should be notified to all the existing nodes, and
this represents a serious scaling problem.

Conversely, SCSP allows database synchronization between nodes in-
terconnected with an arbitrary topology. It is obviously required that the
resultant graph representing the SG topology spans the whole set of servers.
It is also advisable to provide every node with at least two links with the
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rest of the group, so that single points of failure are prevented. This feature
provides a great deal of flexibility as well as simplicity in the configuration
files of the nodes.

 

Figure 2.1: Autonomous System topology vs Server Group topology

Even though this SCSP feature improves scalability, it is always better
to deal with topology changes by means of some automatic mechanism. The
advantages of such a mechanism can be summarized as follows:

• Improves the scalability of the system. Manual intervention is no
longer required, since all the changes in topology are performed auto-
matically. The automatic mechanism can handle as many changes as
needed.

• Prevents the network from accidental misconfiguration errors. Any
manual intervention when modifying the configuration files of the
servers is subjected to human errors. By eliminating this manual in-
tervention we also improve the reliability of the system.

• Servers do not need to be restarted when there is a change in topology.
This results in a higher system availability.

2.2 Security vulnerabilities

The security vulnerabilities identified within the proposed architecture have
been classified depending on which architecture level they affect. This ap-
proach provides a better comprehension of each vulnerability, and facilitates
the task of designing and implementing suitable countermeasures to address
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the problems. Table 2.1 shows the security levels of the architecture and the
problems that should be solved on each level.

Level Security problems
TCP/IP layer Vulnerabilities related to the use of the

TCP/IP protocol suite in the architecture.
TRIP layer a)TRIP speaker authentication.

b)Routing information integrity over different
TRIP hops.

Dynamic Configuration Security aspects regarding dynamic configura-
tion procedures.

Table 2.1: Summary of security vulnerabilities

2.2.1 TCP/IP related security

The TCP/IP related security lack is due to the use of the TCP/IP proto-
col suite to carry TRIP messages. TCP/IP protocols were designed almost
twenty years ago, when the Internet was still small and reliable, so security
issues like encryption and authentication were not a primary concern dur-
ing the design process. Nowadays, the Internet has evolved to become an
insecure network where transactions need to be protected from intruders.

TCP/IP traffic is highly vulnerable to different well-known attacks [10].
One of the most common is IP spoofing, where the intruder pretends to
be sending data from an IP address that is actually different from its own
address.

Within the TRIP context, IP spoofing allows intruders to capture and
modify routing information that is being exchanged between two LSs. In
order to ensure the correct operation of the protocol, we should check the
following:

• If one TRIP speaker receives some updated information from another
TRIP peer, the recipient can be assured that the information was truly
generated by the sender, and not modified during the transmission.

• Upon sending one TRIP packet with updated information, the sender
can be assured that it was only received by the desired target.

• Even if a third party has access to messages in transit, the sensitive
information must remain inaccessible.

If these security requirements are not matched, routing traffic could be vul-
nerable to several attacks that would eventually lead to an incorrect opera-
tion of the protocol. TRIP packets could be intercepted and modified during
transmission between peer nodes, and this means a violation of the ITAD
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local policies. The final consequence is an undesired operation of the whole
IP telephony architecture.

2.2.2 TRIP level related security

TRIP server authentication

Every TRIP server must be provided with some mechanism to verify the
identity of its peers. Before setting up the SCSP connections to begin the
data exchange, the server must ensure that all its peers are legitimate TRIP
speakers and that they have been authorized by their respective ITADs to
exchange routing information. This mechanism guarantees the integrity of
the routing information being exchanged and prevents the existence of fake
TRIP servers. This procedure should be supported by a deployable and
reliable authorization mechanism so that TRIP servers can be authorized
by their domains to act on behalf of them.

Integrity over TRIP hops

Even if a LS can verify that a received message comes from a determined
TRIP speaker, that it has not been modified during transmission and that
the speaker is authorized to act on behalf of its ITAD, there still remains the
problem of information integrity over different TRIP hops. Updated rout-
ing information is generated locally and then made available to neighboring
ITADs. An update generated in a specific ITAD may traverse several do-
mains before being received by another ITAD. This means that the update
message may have been processed by several LSs during the propagation pro-
cess. A misconfiguration in any of the traversed LSs would cause the data to
be corrupted. Therefore, we conclude that receivers need some mechanism
to check the integrity of TRIP route attributes and verify the identity of the
LSs that legitimately modified them.

Figure 2.2 illustrates the difference between the TCP/IP related vulner-
ability and the integrity over TRIP hops security problem.

2.2.3 Dynamic configuration security

The proposed dynamic configuration mechanism must be complemented
with some security procedures that allow a node to verify the identity of
other peer nodes that want to dynamically join the architecture. The re-
quirements are very similar to those described in the static case, with the
difference that now the server is already working.

In the simplest situation, a properly configured SCSP SG is running on
an ITAD, and a new node needs to be added to the group. The new member
must establish peer to peer connections with one or more servers in the group
(depending on the group topology) to begin the database exchange. It runs
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Figure 2.2: TCP/IP related security vs TRIP level security

the auto-configuration procedure to obtain the IP addresses of its peers,
and starts sending them Hello messages. Upon receiving a Hello message,
the peer node checks whether it comes from one of its known peers or not.
As the sender is unknown, the recipient must run a checking procedure in
order to verify that the received message truly belongs to a legitimate TRIP
speaker and that it has been authorized by its ITAD to exchange routing
information with other domains.

If this procedure is successful, the new node will be added to the SG.
Otherwise, the incoming packet will be discarded. The same description
remains valid if the new node tries to set up a connection with a node located
in a different ITAD and wants to establish an inter-domain relationship.
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Chapter 3

Cryptographic algorithms

This chapter describes the current state of cryptography and presents the
most popular algorithms being used. Both symmetric and public key cryp-
tographies are discussed, as well as the main concepts of digital signatures,
public key infrastructures and IPSec. In addition, some widespread algo-
rithms are analyzed and compared to find out their security properties and
decide whether they are suitable for our purposes or not.

3.1 General cryptographic definitions

If we have some understandable information, and we want to hide it from
others, we must apply a mechanism to convert it into unreadable data. The
process of transforming an original piece of information, called plaintext,
into an unreadable text, called ciphertext, is known as encryption. Decryp-
tion is the complementary operation that allows converting ciphertext into
plaintext [11].

The science that uses mathematical routines to perform data encryption
and decryption is called cryptography. We must not confuse this term with
cryptanalysis, which is actually a different science aimed to break secure
algorithms.

3.2 Basic security services

There are five basic security services that may be required by an application:

• Authentication. Allows an entity to validate the identity of other
peer entities within a system.

• Access control. Decides whether users are allowed to access the
resources of the system, and is typically based on user authentication.
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Users are usually given different access permissions according to a
security policy.

• Data integrity. Ensures that the information has not been modi-
fied, and is especially important in data communications over insecure
networks, where attackers can easily intercept and modify messages in
transit.

• Data confidentiality. Provides protection against unauthorized ac-
cess to private information.

• Non-repudiation. Once a transaction between two or more parties
has been carried out, this service ensures that none of the participants
can later deny that the transaction occurred.

All these basic security services are typically implemented by means of cryp-
tographic algorithms.

3.3 Symmetric cryptography

Symmetric cryptography, also known as private key cryptography, is based
on a secret shared key that is used both to encrypt and decrypt messages.
When the sender and the recipient of a communication want to exchange
messages in a secure way, the former must encrypt the information with the
secret key using some predefined algorithm. Upon receiving the message,
the recipient uses the same key to decrypt the information.

Symmetric cryptography has been widely used for many years, as it
provides a simple mechanism to make a communication secure. Its main
advantage is the high speed it achieves in the process of encrypting and
decrypting information, but it has important drawbacks that have caused it
to be replaced by public key cryptography. The most remarkable limitation
of this scheme lies in the fact that the sender and the recipient must agree
in using the same secret key before starting to exchange information. If we
assume that they are geographically dispersed, this means that the key has
to be sent over an insecure channel, so it can easily be intercepted by third
parties.

Due to this problem, also called the ”key distribution problem”, sym-
metric cryptography is mainly used only in those applications where no key
transmission is needed. Actually, as we will discuss later, many current sys-
tems take advantage of both public and private key cryptographies by using
a combination of them that is known as ”hybrid cryptography”.

3.3.1 Symmetric ciphers

A cipher is a cryptographic system that converts units of plaintext into units
of ciphertext.

Ignacio González Oĺıas 13
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Although many different symmetric ciphers have been proposed and im-
plemented, all of them can be classified into two main types: block ciphers
and stream ciphers. Block ciphers are the most commonly used and can
be easily implemented in software. Encryption is performed by converting
fixed-length blocks of plaintext into blocks of ciphertext of the same size.

Stream ciphers are usually faster than block ones, and they are more
suitable to be implemented in hardware. Encryption is performed one bit or
one byte at a time. Both block and stream ciphers are extensively described
in [12].

Block ciphers can operate at several modes, depending on the technique
used to encrypt consecutive blocks of plaintext. There are also some addi-
tional modes to let block ciphers emulate the operation of stream ciphers.
The most common is the Cipher Feedback Mode (CFB), that allows encryp-
tion of data units smaller (usually one byte) than the actual block size. This
mode is especially useful when block ciphers are used to encrypt arbitrarily
sized messages without padding.

Examples of widespread block ciphers are DES, IDEA, SAFER, Blowfish
and Rijndael. The latter is used within the Advanced Encryption Standard
(AES). The most known stream ciphers are RC4, SEAL and WAKE. De-
tailed descriptions of all these algorithms can be found in [11] and [12].

The Data Encryption Standard

The Data Encryption Standard (DES), described in [12], is by far the most
widespread symmetric algorithm nowadays. It was initially derived from
the algorithm LUCIFER, developed by IBM in the early seventies, and has
been a worldwide standard for more than 20 years1.

DES is a block cipher and operates by encrypting blocks of 64 bits.
The key length is 56 bits, but eight additional bits are added with parity
purposes. The security of the whole system lies on the security of the secret
key.

From a theoretical point of view, DES can be still considered a strong
symmetric algorithm, since the best known form to attack it is the brute
force attack. This attack consists of trying every possible key. For 56-
bit keys, this means 256 different possibilities, a number big enough to be
completely unfeasible 20 years ago. However, with the growth in power of
computer systems, DES has become a rather insecure algorithm, so its use
is not recommended.

The Advanced Encryption Standard

In 1997, the U.S. National Institute of Standards and Technology (NIST)
announced the requirements for a new encryption standard called Advanced

1In 1976 DES was officially adopted by the US government as a federal standard.
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Encryption Standard (AES). The Rijndael algorithm, designed by J.Daemen
and V.Rijmen, was selected to become the AES. It is a symmetric block
cipher that can operate with different block and key sizes. However, the
NIST standard adopted a fixed block length of 128 bits, and three possible
key lengths: 128, 192 and 256 bits.

The Rijndael algorithm has proven to be extremely resistant to linear
and differential cryptanalysis, and its authors claim that the existence of
weak keys is highly improbable. The most effective known attack is the
exhaustive search (brute force), but in this case the keys used are long
enough to ensure the security of the system for many years. The algorithm
is extensively described in [11].

3.4 Asymmetric cryptography

Asymmetric cryptography, also called public key cryptography, was invented
in 1975 by Whitfield Diffie and Martin Hellman. In this new scheme each
party involved in a communication owns two different keys: a public key and
a private key. The former is made public and accessible to everyone, whereas
the latter is kept secret. Every message encrypted with the public key can
only be decrypted by using the corresponding private key and vice versa.
However, this mechanism would not be secure if anyone could calculate
private keys from public keys. It has been proved that, although both keys
are mathematically related, it is computationally infeasible to calculate one
of them from the other one, so this scheme is secure enough to match the
requirements of most applications.

The most important advantage of public key cryptography is that we
eliminate the need to send keys over insecure channels. Public keys are pub-
lished so that they can be accessed by anyone, and this does not compromise
the security of the overall system.

Depending on which key is used to encrypt or decrypt the information,
we have different applications of asymmetric cryptography. In the most
common case, the sender encrypts the message with the public key of the
recipient, which can be retrieved by anyone from a key server. The encrypted
message is then sent to the receiver, who uses the corresponding private key
to decrypt it. By operating this way, the sender can be assured that the
information will only be decrypted by the owner of the true private key.
Even though it is possible for an intruder to get a copy of the message, it
will not be able to decrypt it, as the private key needed is kept secret by the
desired receiver.

The main disadvantage of asymmetric cryptography is that it takes much
longer to encrypt and decrypt a message than in the symmetric case. In
addition, the key length must be larger in order to achieve a similar level
of security performance. For instance, symmetric keys are usually 128 bits

Ignacio González Oĺıas 15
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long, whereas it is highly recommended that keys used with asymmetric
algorithms are at least 1024 bits long. Moreover, a 128-bit key used in
symmetric cryptography has approximately the same security strength than
a 3000-bit key used with asymmetric algorithms.

3.4.1 Public-key algorithms

Many public-key algorithms have been proposed since asymmetric cryptog-
raphy was invented by Diffie and Hellman in the mid seventies. All these
algorithms share the main features of public keys schemes: a pair of keys is
used to encrypt and decrypt the plaintext and it is computationally unfea-
sible to derive one key from the other. However, most of the existing algo-
rithms are impractical to be used in real environments. This is due either
to the slowness of the computation or to the excessive size of the cyphertext
generated. In other cases the problem lies on the lack of security, as the
algorithms have been repeatedly attacked and broken by cryptanalysts.

We will focus our study on the RSA and DSA algorithms, which are the
most widespread nowadays.

The RSA algorithm

The RSA algorithm [12] was created by R.Rivest, A. Shamir and L.Adleman
at the Massachusetts Institute of Technology (MIT) in 1977. Since it is
regarded as the easiest to implement and understand, it has been extensively
used in many applications2. So far nobody has been able to prove whether
the algorithm is secure or not. However, since it has resisted many years of
cryptoanalysis, it is considered to be secure enough. The security strength
of the RSA algorithm is based on the difficulty of factoring large numbers.

The Digital Signature Algorithm

The Digital Signature Algorithm (DSA) [12] was proposed in 1991 by the
National Institute of Standards and Technology (NIST) as part of the Dig-
ital Signature Standard (DSS). This standard can only be used for digital
signatures, which means that it is not suitable for conventional encryption.

Although the time needed for signature generation is very similar in RSA
and DSA, the latter performs considerably slower (from 10 to 40 times) in
signature verification. On the other hand, DSA has proven to be faster in
key generation, but this is not a crucial operation since it only takes place
once and it does not concern the final user.

2RSA was patented in the United States (not in any other country), but the patent
expired on September 20th 2000, so it can now be freely used worldwide.
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Security comparison between RSA and DSA

This section is aimed to carry out a security strength comparison between
the two public-key algorithms under study. One of the most important pa-
rameters we must choose when designing a cryptographic application is the
key length. Many recommendations about this parameter are given through-
out the cryptographic literature, but they are usually based on assumptions
which were only applicable at the time they were written. The security of all
public-key algorithms is based on some difficult computational problem, and
the private key can only be computed from the public one by solving this
problem. Thus, we must always be aware of the current methods available
to deal with these computational problems. In general, key length should
be carefully chosen regarding two factors: the lifetime of the system and the
state-of-the-art factoring technology.

The security strength of the RSA algorithm is based on the difficulty of
factoring large numbers, so dramatic advances in this field would compro-
mise the security of the system and would make it vulnerable to attacks.

Factoring algorithms have been slowly improved during the last decades,
and many developments have contributed to reduce the difficulty of this
task. Therefore, we can assume that this trend will be the same in the
future. The new small improvements will be addressed by small increments
in key lengths. Obviously, if a revolution in factoring algorithms takes place
in the years to come, all our assumptions will have to be revised in order to
match the new requirements.

Table 3.1 shows the recommended RSA key sizes for different system
lifetimes. These values have been taken from the key size study in [13]. The
year column represents the last year in the lifetime of our cryptographic ap-
plication, which means that our system must remain secure until that year.
To calculate these values, the study considers the expected development in
computer processing power as well as the forecast cryptanalytic progress.

We can conclude that an approximate size of 1100 bits is reasonably se-
cure for most current applications, but larger values would allow the system
to remain secure for decades. On the other hand, encryption and decryp-
tion speeds are strongly related to the key length, which means that sizes
larger than 1536 bits perform rather slowly in a normal computer. We can
thus summarize that there should be a compromise between security and
performance requirements when choosing the appropriate key length for the
system.

The DSA algorithm is a Subgroup Discrete Logarithm (SDL) system,
which means that its security lies on the difficulty of computing discrete
logarithms in certain subgroups of a finite field. We can summarize from [13]
that the security of a SDL system depends on three parameters: subgroup
size, field size and length of the digests generated by the hash function used.
Table 3.1 shows the minimum required values for these parameters in order
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Last life-
time year

RSA key
size (bits)

SDL sub-
group size
(bits)

Hash di-
gest size
(bits)

SDL field
size

2001 990 126 142 990
2002 1028 127 144 1028
2003 1068 129 146 1068
2004 1108 130 146 1108
2005 1149 131 148 1149
2006 1191 133 150 1191
2007 1235 134 152 1235
2008 1279 135 152 1279
2009 1323 137 154 1323
2010 1369 138 156 1369
2013 1513 142 160 1513
2026 2236 160 180 2236

Table 3.1: Security parameters and system lifetime

to ensure the security of the cryptographic system until the year specified
in the first column. The assumptions made to calculate the values in the
table are described in [13]. DSA was designed with the following values:

• Subgroup size : 160 bits.

• Field size : From 512 to 1024 bits.

• Hash function digest size : The DSS specification recommends the use
of SHA, with 160-bit outputs.

By checking table 3.1 we can see that SDL field sizes of 1024 bits can only be
considered secure until year 2002. For the hash digest size and the subgroup
size the last valid year would be 2013 and 2026 respectively. The lower
bound is thus set by the field size, so we can conclude that the use of the
DSS standard may not be adequate beyond the year 2002.

3.5 Digital signatures

So far we have used public keys to encrypt messages and private keys to
decrypt them. A different application of public key cryptography arises
when the private key is used to sign messages, and the receiver uses the
corresponding public key to decrypt the information. This new scheme al-
lows the sender of a piece of information to implement a ”digital signature”,
and its goal is very similar to the one that can be achieved by the use of
”conventional signatures”:
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• Authentication. If the receiver succeeds in decrypting the informa-
tion with a determined public key, then it can be assured that the
message was signed by the owner of the corresponding private key.
There is still the problem of checking whether the public key truly
belongs to the real sender, but this can be solved by means of digital
certificates, which will be explained later.

• Integrity. If a signed message changes during the transmission, the
receiver will not be able to decrypt it with the public key. This is
an easy way to detect both accidental and intentional changes in the
transmitted information.

• Non-repudiation. In some electronic transactions it is important
for one of the parties to make sure that the other party can not deny
having performed some action. Digital signatures also match this re-
quirement, as an electronic document can only have been signed by
the owner of the private key.

3.5.1 Hash functions

Messages generated by a normal application are usually too long to be signed
using public key cryptography, as it would take so long to encrypt the in-
formation. Instead of signing the whole message, the sender uses a hash
algorithm to compute a message digest, which is in fact a compressed ver-
sion of the original data, and then signs this digest with the private key.

Message digests computed with a specific hash algorithm have always
a fixed length (usually 128 or 160 bits), and this length does not depend
on the length of the message to be signed. In addition, it is not possible
to find out the original message from a digest, and the slightest change in
the data to be signed makes the algorithm generate a completely different
output value.

A well-designed hash algorithm should be able to resist both a brute
force attack and a ”birthday attack”3. Outputs of 64 bits are considered
too small to resist birthday attacks, since they only require hashing 232 ran-
dom messages to find two with the same resulting digest with a probability
of 0,5. To ensure robustness against birthday attacks, outputs of at least
128 bits are strongly recommended. This length makes the attack to be
unfeasible given today’s technology. However, the evolution in computer’s
power implies that longer digests will be needed in the future in order to
guarantee an acceptable security level.

The choice of an appropriate hash function is an essential decision when
we are designing a public key infrastructure, because the use of an insecure
algorithm could compromise the security of the whole cryptographic system.

3This attack tries to find two arbitrary messages with the same hash value, and is
computationally more feasible than the brute force attack.
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The most popular hash functions are MD2 [14], MD4 [15], MD5 [16],
SHA4, RIPEMD-160 and HAVAL. They are described in [12], [17] and [18].

Figure 3.1 shows a performance comparison between different hashing al-
gorithms. We have carried out this test using the algorithm implementations
available on the OpenSSL 0.9.6b library, available at [19]. Results show that
all the tested functions perform acceptably well in software. Moreover, they
all have a linear response to the growth in size of the messages to be signed.
Results illustrate that the choice of a hashing algorithm for a cryptographic
system is not a crucial decision in terms of performance. The SHA family
is widely regarded as the most secure, so its use is recommended.

Hash algorithms performance comparison
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Figure 3.1: Hash function performance comparison

3.5.2 Signing procedure

The required steps to sign and verify a piece of information are described
in Figure 3.2. The essential components of such a system are the hashing
and public-key algorithms, which should be carefully chosen according to
our requirements. The original data is first hashed using the one-way hash
function and then encrypted with the private key of the sender. As we
explained before, this procedure is aimed to reduce the encryption time,
since asymmetric algorithms perform considerably slower than symmetric
ones. Both the original data and the signature are sent to the potentially
insecure channel.

To validate the integrity of the data, the receiver extracts the sender’s
public key from its digital certificate and uses it to decrypt the digital sig-

4The current version is SHA-1.
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nature. The same hash function used by the sender is then applied to the
original data, and the resulting digests are compared in order to verify that
the message was not modified during the transmission and that it truly be-
longs to the pretended sender. Notice that the receiver must retrieve the
sender’s digital certificate from a certificate server, and that this step usually
implies the verification of a certificate chain.

 

Figure 3.2: Digital signature and verification procedures

3.5.3 The Man-in-the-middle attack

Digital signatures address by themselves the problem of integrity when the
information is sent over unreliable networks, but they require some addi-
tional mechanisms to ensure that the authentication and non-repudiation
properties are matched as well. Upon receiving a digital signature, the re-
ceiver entity must ensure that the public key used in the validation process
really belongs to the purported signer. Otherwise the communication is
highly vulnerable to the ”man in the middle” attack.

When two entities (sender and receiver) want to securely communicate
using digital signatures, the sender must first send its public key to the
receiver to ensure that its own signed messages can be decrypted. If this
key exchange takes place over an insecure channel, an intruder can easily
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intercept the public key and perform the following actions in order to get
access to the confidential information which is being transmitted:

• The intruder generates its own pair of keys.

• The intruder’s public key is sent to the receiver instead of the real
sender’s public key, which is kept to decrypt messages.

• Every sent message is intercepted by the intruder, who uses the sender’s
public key to decrypt them. The resulting plain text can be modified
and re-signed using the fake private key, and sent to the receiver.

• The receiver decrypts the message with the fake public key. The in-
truder has been able to intercept and modify the communication and
neither sender nor receiver have noticed the fraud.

3.5.4 Digital certificates

We can conclude that the proper verification of a digital signature implies
that the verifier must have assurance that the signer’s public key truly cor-
responds to its private key. In a public-key cryptographic system, this task
is performed by means of digital public key certificates. Digital certificates
are electronic documents used to associate the identity of an entity (person,
server, company) with a public key, and they are aimed to automate the
process of distributing public keys over the network. A certificate basically
consists of three sections:

• Information about the entity being verified.

• A public key.

• One or more digital signatures.

Although the user information attached to a digital certificate slightly varies
depending on the standard being used, it usually includes the name of the
entity, an expiration date, the name of the organization that issued the
certificate and a serial number. The certificate bounds this user information
to a public key value. Upon receiving a digital signature, the verifier retrieves
the signer’s digital certificate from a certificate server and uses the attached
public key to process the signature.

This mechanism, however, implies that the verifier firmly relies on the
contents of the certificate, assuming that the entity described in the docu-
ment is the owner of the public key. This assumption could not be valid in an
insecure environment, where an attacker could have access to the contents
of the certificate and freely modify them.

To address this drawback, digital certificates contain a digital signa-
ture from a trusted third party authority, called Certificate Authority (CA),
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which is responsible for the validation process. The purpose of the digital
signature is to assure that the certificate information has been verified by
the CA. These authorities are trustable entities that validate identities and
issue certificates. Once they have checked that the information contained in
the certificate truly belongs to the pretended owner, the CA digitally signs
the certificate using its own private key.

Whenever a third party needs to communicate securely with the subject
certified by the CA, it retrieves the certificate from a public server and
verifies it by means of the CA’s public key, which is widely known. If the
third party trusts the CA and the verification process is successful, it means
that the owner of the public key matches the identity stored in the certificate.
With this procedure we can address the problems of authentication and non-
repudiation in digital signatures, preventing the use of fake public keys.

3.6 Hybrid cryptography

As we have previously mentioned, most modern systems use a combination
of both symmetric and asymmetric algorithms to optimize the performance
of the encryption-decryption process. The sender first generates a random
session key. This key is used to encrypt all the outgoing traffic using a fast
symmetric algorithm. The session key is then encrypted with the recipient’s
public key and sent as well. Upon receiving the encrypted session key, the
recipient makes use of its private key to decrypt it. Once the session key
has been decrypted, it can be used to decrypt all the secured traffic.

This approach obtains the benefits of the two schemes already presented:
improves the speed of the asymmetric one and avoids the transmission of
plain secret keys over unreliable channels. As an example, hybrid cryptog-
raphy is used by the Pretty Good Privacy (PGP) encryption/authentication
program, one of the most popular and widespread security applications [20].

3.7 Public key infrastructures

Certificate management is a trivial task when the number of entities that
wish to communicate securely is small. A supporting infrastructure is not
needed in that case, since certificate exchange can be manually handled.
However, this approach is not practical in an Internet-based environment,
where the number of entities taking part in the communication is quickly
growing and changing every day. Public Key Infrastructures (PKI) are
aimed to solve this scalability problem by providing certificate storage and
additional management facilities.

The main components of a basic PKI can be described as follows [21]:

• Certificate Authority (CA). As we explained before, a CA is the
organization responsible for validating and issuing certificates. The
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interface between a CA and its users is provided by a Registration
Authority (RA), that authenticates the identity of users and submits
the corresponding certificate requests to the CA. The quality of this
authentication process usually determines the level of reliability of the
PKI. The CA signs the requests with its private key and stamps them
with the expiration date.

• Certificate Server (CS). A database that can be accessed by users
to store and retrieve certificates. It usually includes some additional
features to facilitate the maintenance of security policies. The most
common implementation is by means of a directory service.

• Certificate Revocation List (CRL). Digital certificates have a re-
stricted lifetime which is determined by its start and expiration dates
and times, so that it can be considered reliable only within the valid-
ity period. Once this time interval has expired, the authenticity of the
pair of keys can no longer be assured.

Furthermore, there are some specific situations in which a certificate
must be invalidated before the expiration date. The most common is
that in which the certificate holder ends the contract with its company,
but it can also happen when the security of the private key has been
compromised.

CRLs are data structures published by CAs that contain a time-
stamped list of revoked certificates. This list must be always checked
before verifying any digital signature in order to find out whether a
specific certificate is still valid or not, and prevents users from using
compromised certificates. Revoked certificates are kept in the list until
they expire.

3.7.1 PKI standards

The most important organization in PKI standardization is the PKIX work-
ing group of the Internet Engineering Task Force (IETF). Its work is focused
on interoperability issues to allow different applications accessing a PKI
through a uniform interface. In fact, this working group bases its develop-
ment on two different standards:

• X.509 recommendation from the International Telecommunication Union
(ITU). Specifies the authentication service for X.500 directories, de-
scribed in the X.500 standard, and the syntax of the X.509 certificate
format.

• Public Key Cryptography Standards from RSA Security. Developed
by RSA Laboratories, provide information about procedures and mes-
sage formats.
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3.7.2 CA hierarchies

A PKI may be composed of one or more CAs depending on the size of the
system that is being made secure. For small systems, one CA is responsible
for the whole validation process, dealing with all the procedures involved
in PKI management: certificate requests, validation, issues, elaboration of
CRLs, etc. However, this approach can not maintain a good level of quality
validation when the number of users of the PKI grows.

Large PKIs are usually made up of several CAs, so that certificate man-
agement tasks can be shared between different validators. The way in which
these CAs interact with each other is known as trust model, and the most
common one is called top-down hierarchy, where CAs are arranged as a trust
tree. This trust model is depicted in figure 3.3.

The CA on top of the tree, known as root CA, is the source of all
certification paths and has the ability to certify other CAs. Every CA in
the tree can certify their own children, but the last level authorities are
exclusively used to certify final users. The number of CA levels used depends
on the complexity and structure of the architecture. Every CA gets a signed

 

Figure 3.3: Hierarchical PKI structure

certificate from their parent, enabling it to issue certificates to other low level
entities, either other CAs or final users. Signature checking requires that the
verifier completely relies on the root CA, that owns a self-signed certificate.
The verification path starts at this root CA, and goes through the whole
tree until it reaches the final user certificate.

As an example, if an entity needs to authenticate the identity of final
user 8 in the architecture shown in figure 3.3, it must retrieve the root
CA’s public key and use it to check the digital signature attached to C’s
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certificate. Every certificate is then verified using the public key found in
the previous certificate. The final user’s public key can be obtained by using
G’s public key to verify the digital signature present in its certificate. In
this case, there are three CA levels including the root level, which means
that the certificate path involves three certificate validations.

Top-down hierarchies are especially useful in PKIs that operate globally,
where final users may be geographically dispersed. They also scale well,
since certification paths can be easily discovered. The main disadvantage is
that all final users must fully trust the root CA, and they have to obtain a
copy of its public key to properly use the PKI.

3.8 X.509 certificates

The most widespread certificate format is the X.509 standard, described in
[22], which complies with the ITU-T X.509 international standard. An X.509
certificate consists of a set of standard fields with information about the
certified entity. Table 3.2 describes these fields for the X.509v3 specification,
which is the current version in use.

3.8.1 X.509v3 certificate extensions

The X.509v3 certificate extensions, defined in [22], provide methods for as-
sociating additional attributes with users or public keys and for managing
the certification hierarchy. They can also be used by communities to specify
private extensions to carry information unique to those communities.

An extension can be defined as critical or non-critical, depending on the
procedure followed when a system can not recognize it. A critical extension
must be rejected if it can not be recognized; however, a non-critical one may
be ignored in such a case.

3.9 IPSec

The IPSec suite is a set of security protocols designed to address the lack
of security of the IP layer. In the beginning, the TCP/IP stack was mostly
used in academic environments, where designers were not concerned about
security issues. However, the significant growth of the Internet implied the
creation of new services with strong security requirements, such as banks
and e-commerce applications.

IPSec provides the IP layer in both IPv4 and IPv6 with a set of exten-
sively configurable security services which can be used to protect the flow of
IP packets between participating IPSec peers. These services include data
confidentiality and integrity, access control, data origin authentication and
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Field Description
Version number Version number of the standard that applies to

this certificate.
Serial number Certificate number assigned by the issuer CA.

CAs are responsible for assigning unique serial
numbers to the certificates they issue.

User’s public key Includes both the public key itself and a de-
scription of the cryptographic algorithms used
to generate it.

DN of the certificate
subject

A Distinguished Name (DN) is a set of name-
value pairs used to uniquely identify the certifi-
cate subject. DNs are aimed to uniquely iden-
tify entities across the whole Internet. They
consist of the following sections:
uid : user ID
e : e-mail address
cn : user’s common name
o : organization
ou : organizational unit
c : country

DN of the issuer CA Uniquely identifies the CA that issued the cer-
tificate.

Validity period Start and expiration date/time.
Signature algorithm
identifier

Cryptographic algorithm used by the CA to
sign the certificate.

Digital signature CA’s digital signature.

Table 3.2: X.509v3 certificate format

anti-replay mechanisms, and are provided at the IP layer, thus being able
to offer protection for both IP and upper layer protocols.

Since the IPSec mechanisms are algorithm independent, they can be
implemented using a wide range of different cryptographic algorithms. This
implies that the security afforded by the use of the suite services in a system
does not only depend on the correct deployment of the architecture, but also
on the security strength of the algorithms being used.

The IPSec architecture, its components and their inter-relationships are
presented in [23].

3.9.1 Security associations and modes of operation

Security Associations (SA) are a key concept in IPSec and basically rep-
resent simplex connections between nodes. SA dynamic establishment and
management are crucial tasks for the architecture and are performed by the
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Internet Key Exchange (IKE) protocol [24].
The goal of a SA is to secure all the traffic carried by it. Since they

are unidirectional by definition, the security of a bi-directional data stream
between two hosts always involves at least the establishment of two SAs,
one in each direction, although this number may be higher depending on
the security services used in the communication.

The IPSec architecture distinguishes between two types of participants:
hosts and security gateways. The latter can be regarded as intermediate
points in a communication between hosts. The secured traffic is actually
destined to a final host, but the topology of the system is arranged so that
this traffic must traverse the gateway before reaching its destination. Thus,
security gateways are typically installed in Internet routers or firewalls.

There are two different modes of operation depending on the type of the
entities involved in the communication. The transport mode is mainly used
for host to host security associations, where the ends of the communication
actually coincide with the entities speaking IPSec. In contrast, tunnel mode
basically consists of a SA applied to an IP tunnel. Although this mode can
also be applied to a host to host communication, it is especially useful when
at least one of the ends of the security association is a security gateway. In
fact, in that case the transport mode can not be employed.

Tunnel mode involves two IP headers: the outer one specifies the IPSec
processing destination whereas the inner one identifies the ultimate (real)
destination for the packet. This configuration is used in Virtual Private
Networks (VPN).

3.9.2 The IP Authentication Header (AH)

IPSec uses two protocols to secure the information in transit: the IP Au-
thentication Header (AH) and the Encapsulating Security Payload (ESP),
which can be applied alone or in combination with each other to provide
the set of security services required by the application. A SA can be used
with one of these protocols, either AH or ESP, but not both at the same
time. Whenever both AH and ESP protection needs to be applied to the
same stream, al least two SAs must be established.

The AH protocol, specified in [25], provides connectionless integrity and
data origin authentication for IP datagrams, as well as an optional anti-
replay service. It can be used in either transport or tunnel mode, but the
former is only available in host implementations. Protection is achieved by
means of the AH header, that contains an Integrity Check Value (ICV) field.
This field is a value computed over the IP datagram that can be used by the
recipient to authenticate the sender and to check whether the information
was modified in transit or not. It can be computed using either symmetric
or asymmetric cryptographic algorithms.

In order to verify an inbound packet, the receiver computes the ICV over
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the appropriate fields of the datagram, filling the mutable IP header field
with zeros and using the specified authentication algorithm. If this value
coincides with the ICV attached to the packet, then the datagram truly
belongs to the purported sender.

In transport mode, the protection covers the entire payload (upper layer
protocol data) and all those fields of the IP header which are not modified in
transit5. Tunnel mode, however, encapsulates the IP datagram with a new
IP header, so the protection extends to the payload and the whole header.

3.9.3 The IP Encapsulating Security Payload (ESP)

The ESP protocol [26] basically offers the same security services as AH, but
it also provides a confidentiality option to allow data encryption. Thus,
the main difference between ESP and AH is this additional service, as well
as the coverage of the protection, as ESP does not protect any IP header
field when used in transport mode. In tunnel mode, however, the whole IP
datagram is covered.

The operation of the ESP protocol is very similar to AH for data origin
authentication, connectionless integrity and anti-replay. Confidentiality is
achieved by encrypting the payload and inserting the resulting ciphertext in
the datagram instead of the plaintext. Although there are different mech-
anisms to encrypt the payload, ESP was specifically designed to work with
symmetric algorithms, so it is highly recommended to use them. Figure 3.4
illustrates the structure of the AH and ESP headers.

3.9.4 Security databases

The protection afforded by IPSec to IP traffic is based on a set of require-
ments defined in two databases: Security Policy Database (SPD) and Secu-
rity Association Database (SAD). The former specifies general policies and
is applied to all IP traffic inbound or outbound from a host or security gate-
way. The latter is more specific and contains parameters associated with an
individual SA.

The SPD indicates what security services are offered to IP datagrams
and the way in which they are applied. It must be consulted for all inbound
and outbound traffic, including non-IPSec traffic, and its function is to dis-
criminate among the packets that need IPSec processing and those that are
allowed to bypass it. There are actually three different processing choices
for every inbound or outbound datagram: discard the packet, process it

5All those ”mutable” fields that may be modified in transit can not be included, since
their values are unpredictable for the recipient. In the IPv4 header these fields are Type
of Service (ToS), Flags, Fragment Offset, Time to Live (TTL) and Header Checksum, and
must be filled with zeros prior to the ICV computation.
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Figure 3.4: AS and ESP headers

applying IPSec or bypass. Whenever an IP packet needs to be afforded pro-
tection, the SPD specifies the services that should be provided as well as
the protocols and algorithms to be used.

The SAD database defines the parameters associated to every singular
SA. Therefore, each SA must have its own entry in the table.

3.9.5 Key distribution in IPSec

IPSec authentication, integrity and confidentiality services are usually based
on symmetric cryptography, so they rely on secret shared keys. This im-
plies that the IPSec architecture must be supported by some parallel key
distribution mechanisms.

In order to address this requirement, the IPSec standard considers two
different approaches that may be chosen depending on the features and
constrains of the system:

• Manual key distribution. An administrator manually configures all
the devices involved in the IPSec system and provides them with the
relevant SA management data and with the secret keys. The main
drawback of this approach is the lack of scalability, but it could be
useful in small static systems.

• Automated SA and Key management. For larger systems there is a
need for a mechanism to automatically distribute keys and to accom-
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modate on-demand creation of SAs. The default mechanism to be
used with IPSec, based on a public-key approach, is the IKE protocol,
which is defined in [24].

3.10 HMAC algorithms

MAC (Message Authentication Codes) mechanisms make use of a secret
shared key to provide integrity and data origin authentication of informa-
tion that needs to be transmitted over unreliable channels, providing the
secret key is only known by the communicating entities. Thus, they can be
classified as symmetric algorithms, since the secret key must be known by
both the sender and the receiver.

A Hash Message Authentication Code (HMAC) [27] is a specific MAC
algorithm that uses two components to produce a digital signature of the
message: a cryptographic hash function and a secret key. Hash functions
themselves are not suitable to be used for authentication purposes, since they
do not share any secret key between sender and receiver. HMAC algorithms
combine the use of a hash function with a secret shared key, so that they
can be used for authenticating the ends of the communication.

Any hash function is suitable to be used providing it performs well in
software, but the most common are MD5 (HMAC-MD5) and SHA (HMAC-
SHA). The latter is considered to be more secure, although it produces an
output (160 bits) bigger than MD5 (128 bits).

Both HMAC-MD5 and HMAC-SHA-1 can be used as authentication
mechanisms within the IPSec architecture, as explained in [28] and [29]
respectively.
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Chapter 4

SCSP performance
improvements

In this chapter we discuss some performance improvements we have devel-
oped in order to speed up the overall operation of the SCSP protocol. The
limitations of buffers implemented as linked lists are analyzed, and a new
approach based on dbm databases is proposed. In addition, we address the
message loss problem detected in the previous version.

4.1 Problem description

The proposed improvements are mainly focused on the Cache Alignment
(CA) phase, which is by far the most critical in terms of execution time
and CPU consumption. During this phase, two directly connected SCSP
speakers exchange their database contents in order to synchronize them, so
that they can provide clients with the same set of database records.

Since both servers are likely to have a considerable amount of initial en-
tries, the replication process may take some time due to the heavy message
exchange required. Furthermore, the alignment process involves a substan-
tial number of database queries which can easily lead to a significant slowness
in the protocol operation if they are not implemented following an efficient
algorithm.

The performance results taken from [30] show that the alignment and
replication times for the current SCSP implementation grow quadratically
with the increase in the number of initial records. Alignment time can be
defined as the time required for a peer to receive all the previously requested
CSA records. However, the real replication process requires that all the re-
ply messages (acknowledges) have been successfully received and processed.
This time, longer by definition than the alignment time, is called replication
time.
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Figure 4.1 shows this behavior for different database sizes. The test
environment in which these measures were taken is described in table 4.1.

Figure 4.1: Times required for cache alignment (SCSP former version)

CSAS and CSA buffer implementation Linked-lists
Cache key size 9 bytes
CSA size 100 bytes
Maximum number of entries 20000
Maximum SCSP packet size 1000 bytes
Number of servers 2
Topology Inline

Table 4.1: Database size test description (SCSP former version)

These replication times are too high to be used in real environments.
The quadratic trend line implies that it is unfeasible to work with more than
20.000 records per database, as the alignment and replication times would
be unacceptable for any application. Thus, we can conclude that some
performance improvements are needed in order to optimize the protocol
implementation.

The main goal of this section is to identify those bottlenecks that cause
the protocol to perform slowly and find suitable countermeasures to address
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them. Notice that these problems were already detected in [30], so a brief
description can also be found there.

We can summarize the implementation weaknesses as follows:

• During the Cache Alignment phase, two data structures are mainly
used to perform the data exchange between two directly connected
peers. Cache State Advertisement Summary (CSAS) records contain a
summary of a database entry, and they include enough information for
SCSP to decide whether one record is already present in the local cache
and to compare the newness of the summary against the newness of
the cached entry. CSAS are exchanged between peers at the beginning
of the alignment process to let a server know about the contents of its
peer’s database. The server processes all the incoming CSAS and
compares them with those stored in its local database, so that it can
later request the missing or obsolete ones from the peer.

Cache State Advertisement (CSA) records contain database entries, so
they are used to exchange the information which is being replicated.

Both CSAS and CSA records must be kept by SCSP in internal data
structures. Since the protocol is coded in C language and these inter-
nal structures must be resized dynamically depending on the number
of received and processed records (at execution time), they are im-
plemented as linked lists. However, the seek algorithm of this kind of
data structures has proven to be inefficient, since we have to go through
the whole linked list comparing records until we find the specified one.
Moreover, even if the record is not present in the structure, we have to
inspect the whole list to realize it. The average seek time is approxi-
mately half the time required to go through the whole structure, and
this time is strongly dependent on the size of the linked list.

The conclusion is that the average seek time grows with the number
of records kept in the list, and this is clearly unacceptable because it
directly affects the scalability of the protocol.

• The second limitation is related to communications. The SCSP is an
application-level protocol which requires the services of a transport
protocol to carry out the message exchange between peers. Although
either TCP or UDP might be used, SCSP is widely considered as a
heavy protocol, so the current implementation uses UDP because of
its lightness against TCP.

Under heavy-load conditions, there is a severe packet loss in the op-
eration. This loss is mainly due to the transmission of packet bursts
in some phases of the protocol, which cause the UDP sender’s buffer
to overload and leads to an eventual packet discard. Even though the
SCSP specification includes its own mechanism to cope with packet
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loss by means of retransmissions, the implementation should prevent
this data loss in buffers when possible, since retransmissions cause the
protocol to work considerably slower.

4.2 Proposed countermeasures

4.2.1 CSAS and CSA buffers re-implementation

We have developed a new API in order to solve the described inefficiencies
in the SCSP buffers. This new API is based on dbm databases, which are
available in most UNIX implementations. Dbm libraries provide a simple
database management facility that allows programs to store simple key-value
pairs into files. The library provides the programmer with functions for
database creation and management, as well as record insertion, extraction
and deletion.

Internally, dbm files are implemented as arrays indexed by strings, also
called hash tables. This means that any data item can be randomly accessed
in constant time, no matter the position of the record within the table nor
the database size, so this solution suits well for our purposes. Since the
conventional dbm library is considered to be obsolete, the new GNU library
gdbm has been used instead.

Although the implementation internally keeps many different CSAS and
CSA buffers to deal with the SCSP complexity, only those that have been
identified as critical for the performance have been re-implemented. How-
ever, the new buffer API has been designed to provide a programmer inter-
face as similar as possible to the old one, so that all the remaining linked-list
based buffers could be easily changed by slightly modifying the code. Notice
that this would hardly improve the protocol performance, since the size of
these buffers is not significant.

Figure 4.2 shows a performance comparison between the two approaches
using CSAS buffers. The average seek time for linked-list buffers has been
measured considering the extraction time for a record located in the middle
of the list.

These experimental measures confirm that gdbm databases are capable
of accessing records in a random way, with the seek time being constant and
independent from the database size. On the other hand, average seek time
increases linearly with the total number of entries in the linked-list based
approach.

4.2.2 Solution to the UDP buffer overload problem

To overcome the UDP buffer overload problem on the sender’s side, we have
identified and re-implemented all the functions where packets were being
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Figure 4.2: GDBM buffers vs linked-lists seek times

sent in bursts. The goal is to ensure that packets are gradually sent to the
buffer in order to prevent buffer overload.

As an additional countermeasure, the internal UDP buffer size has been
set to the maximum allowed by the operating system (250.000 bytes) on
both sender and receiver sides.

4.3 Performance tests

Since the operation of the protocol is expected to improve with the imple-
mentation of the new countermeasures, we need to perform some tests to
establish a performance comparison between the former SCSP version and
the new one. All tests were performed using the UNIX machines WS17 and
WS18 located in the lab. The main features of these machines are briefly
described in table 4.2.

Machine name WS17 WS18
Memory 256 M 256 M
Operating system SunOS 5.6 SunOS 5.6
Number of processors 1 1
Processor type UltraSPARC-II UltraSPARC-II
Processor speed 300 MHz 300 MHz

Table 4.2: Description of the servers used for testing
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SCSP performance improvements HUT-Networking Laboratory

4.3.1 Database size tests

The information about the new database size test environment can be found
in table 4.3.

CSAS and CSA buffer implementation GNU gdbm library
Cache key size 9 bytes
CSA size 100 bytes
Maximum number of entries 100000
Maximum SCSP packet size 1000 bytes
Number of servers 2
Topology Inline

Table 4.3: Database size test description (SCSP enhanced version)

Results are depicted in figure 4.3, which shows that alignment and repli-
cation times have been considerably decreased in the enhanced SCSP im-
plementation. Another important achievement lies on the fact that the
response time to the growth in the number of initial entries has been lin-
earized. This feature ensures that the protocol can perform well with large
initial databases, and it is crucial for scalability.

Figure 4.3: Times required for cache alignment (SCSP enhanced version)

In order to establish a performance comparison between both SCSP ver-
sions, we define a new parameter called improvement factor. This factor
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is the quotient between the replication time of the former version and the
replication time of the enhanced one. Figure 4.1 shows that the replication
time in the former implementation when the size of the CSA is 100 bytes
can be approximated by the following trend line:

Rep T ime(Former)(x) ≈ 2 × 10−6x2 + 7, 1 × 10−3x − 5, 5 seconds (4.1)

where x is the number of records in the database. The equivalent expression
for the enhanced version is:

Rep T ime(Enhanced)(x) ≈ 3, 4 × 10−3x seconds (4.2)

Thus, the improvement factor can be calculated as:

Improvement Factor(CSA=100 bytes)(x) =
Rep T ime(Former)(x)

Rep T ime(Enhanced)(x)

=
2 × 10−6x2 + 7, 1 × 10−3x − 5, 5

3, 4 × 10−3x
(4.3)

Since the former SCSP version does not have a linear response, the im-
provement factor depends on the database size (higher database sizes will
result in higher improvement factors). Table 4.4 shows a comparison of
replication times for both versions, considering different database sizes. We
can see that the enhanced version is more than 60 times faster than the
former one when databases of 100.000 records are used.

DB size
(records)

Replication
time former
SCSP version
(seconds)

Replication
time enhanced
SCSP version
(seconds)

Improvement
factora

10.000 233 34 6,85
20.000 798 64 12,47
50.000 5.349 162 33,02
100.000 20.704 334 61,99

aCSA size=100 bytes.

Table 4.4: Replication time comparison

4.3.2 CSA data size tests

The previous test shows the protocol behavior for variable initial database
sizes, but we must also verify that it performs properly for different CSA
record sizes. The main variation in the protocol operation when we increase
the CSA record size, providing that the maximum message size is fixed to
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a value of 1.000 bytes, is that the replication process requires a heavier
message exchange. The reason is that the number of CSA records that can
be carried in a single message is smaller. Figure 4.4 shows the variation in
the number of CSA records that can be allocated in a single message when
the CSA record size is modified.
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Figure 4.4: Number of CSA records per message

Alignment and replication times for different CSA sizes and for initial
databases of 20.000 records are depicted in figure 4.5. Results show that
there are two factors that influence the replication time:

• The number of messages to be processed.

• The record size. The number of messages exchanged for CSA sizes of
300 and 400 bytes is the same, since in both cases a single message can
transport the same amount of CSA records. However, there is a 16%
increase in the replication time. We conclude that this delay must be
due to the increment in the CSA size (from 300 to 400 bytes).

4.3.3 CPU usage

Figure 4.6 depicts the CPU usage in a monoprocessor machine for the for-
mer SCSP implementation in the case of 20.000 initial entries (CSA size 100
bytes). These results have been taken from [30], and show that the percent-
age of CPU used is about 90% during the whole execution time. This is a
consequence of the multi-thread approach followed in the implementation,
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Figure 4.5: Times for cache alignment (CSA data size test)

and means that the high times needed to replicate the databases are due to
slow processing and not to delays in I/O blocking operations.

The behavior of the gdbm-based version is depicted in figure 4.7 for initial
databases of 100.000 records and CSA size of 100 bytes. The implementation
of the internal buffers as gdbm files causes a remarkable increment in the
number of I/O operations. This means that the percentage of processor
usage can not be as high as in the former version. The machine spends a
considerable amount of time waiting for I/O requests to the hard disk. This
situation could be improved by using high-performance storage systems.

The first peak in figure 4.7 is caused by the initial entries load process.
These entries are injected into SCSP through the external interface, which
is implemented as a POSIX message queue. One thread is responsible for
receiving all the records and inserting them into the corresponding internal
structures. After that, the protocol enters the Cache Summarize phase,
where peers exchange summaries of their database contents. During this
phase, the pair of servers involved in the communication have at most one
outstanding message, so the CPU load is very low. The situation changes
during the Update State Cache, where the heaviest part of the message
exchange takes place. To end up, we must remark that no packet loss was
detected during the testing process.
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Figure 4.6: CPU consumption during cache alignment (SCSP former ver-
sion)

4.4 Application of the results to the TRIP/SCSP
system

We can use the performance results obtained in the previous section to make
an estimation of the time needed to replicate the server databases in the
TRIP/SCSP architecture. Following the assumptions and the number space
analysis1 made in [31], our system must be capable of replicating 840.000
records with 342 octets of CSA size in a reasonable time. The replication
time for 20.000 records of the same length can be estimated from figure 4.5,
by computing the average of the times needed to replicate the same amount
of records with CSA sizes 300 and 400 bytes:

Rep T ime(20.000)(342) ≈

Rep T ime(20.000)(300) + Rep T ime(20.000)(400)
2

=
100 seconds + 116 seconds

2
= 108 seconds

Since the enhanced SCSP implementation has a linear response, the time
1Number Portability region of 30.000.000 subscribers and directory numbers of 10

digits.
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Figure 4.7: CPU consumption during cache alignment (SCSP enhanced ver-
sion)

needed to replicate 840.000 records can be calculated as:

Rep T ime(840.000)(342) =
840.000
20.000

× Rep T ime(20.000)(342)

= 42 × 108 seconds

= 4.536 seconds

≈ 75 minutes

Despite the improvements described in this chapter, the replication time
is still too high to be used in a real environment. In order to obtain a usable
system, this time should be reduced at least by a factor of 10. This would
allow us to achieve replication times shorter than 10 minutes.
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Chapter 5

Security countermeasures

This chapter describes the development of three security countermeasures
aimed to secure the TRIP/SCSP architecture. The SCSP security module
solves the TCP/IP related security problem and the TRIP speaker authen-
tication, although an alternative solution based on IPSec is also presented.
The solution for the TRIP level security problem is completed by both the
PKI for TRIP speaker authorization and the TRIP authentication attribute.

5.1 SCSP security module

5.1.1 Design goals

TRIP speaker authentication is a necessary requirement, since every server
must verify the identity of its direct peers before starting the data exchange.
Even in a static configuration environment, where servers get the IP ad-
dresses of their peers from a configuration file, further verifications have
to be carried out in order to authenticate peers, because the presence of
an IP address in a file does not imply that the owner of that address has
been authorized by a domain to exchange routing information with other
domains. Furthermore, servers have to make sure that nobody is spoofing
the IP addresses of their peers.

TCP/IP security is, however, a more complicated issue, since it usu-
ally involves different security services that can be used to address separate
security requirements. Designers must decide the set of services that are
needed by a specific application and the way in which they have to be ap-
plied in order to achieve the desired level of protection. Furthermore, the
use of cryptographic algorithms is especially demanding in terms of com-
puter power consumption, which implies that performance constrains could
make it unfeasible to use some security services in many situations.
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For instance, the SCSP protocol is used within our architecture to repli-
cate the databases of remote TRIP peers. As we stated in chapter 4, the
Cache Alignment phase takes a long time to complete when large databases
are used, because replication requires a heavy message exchange. SCSP
messages used during this phase have different functions depending on their
type, and not all types carry vulnerable information. As an example, mes-
sages used to exchange CSAS records contain cache keys needed by peers
to identify and index database entries. This information is useless for third-
party attackers, but the slightest change in the message could corrupt one
or more cache keys and make the recipient unable to process the message.
Thus, this particular message type clearly requires an integrity service to
prevent undesired modifications during transmission over the network, but
the time needed to encrypt messages can be saved as confidentiality is not
a primary concern.

This leads to the conclusion that security mechanisms regarding mes-
sages in transit must be implemented in a modular way, so that different
message types can be afforded different security services depending on their
requirements. These requirements determine the way in which every mes-
sage type is processed, and are defined in a security policy that is checked
whenever a message is sent to the peer or a new one is received from it.

5.1.2 Security services for SCSP traffic

We define three basic security services to protect the SCSP traffic: confi-
dentiality, data integrity and data origin authentication. As we stated in
the previous section, different message types may require different services.
Thus, our design allows the security administrator to enable or disable them
independently for every message type. This complies with the modular ap-
proach and provides the system with a great deal of flexibility when applying
security policies.

Confidentiality may be selected independent of all other services, and is
achieved by encrypting messages with a symmetric block cipher. We have
chosen for this purpose the AES standard, based on the Rijndael cipher,
as the default algorithm, but other ciphers can be easily added in future
versions.

The AES algorithm is widely accepted as the current standard, and uses
key lengths long enough to remain secure for many years. Although different
key sizes are specified in the standard, our system uses 128-bit keys, which
are considered to be unbreakable until the end of this century.

The only part of the SCSP messages that is not encrypted is the Fixed
part, present in all messages and used by the recipient to determine the type
and size of the received message. Since messages may have arbitrary sizes,
AES is used in CFB mode to avoid padding.

Data origin authentication and integrity are joint services, which means
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that they can not be selected independently. They are offered as an option
to be used in conjunction with confidentiality, and their implementation is
based on the SCSP authentication extension defined in [6]. This extension
carries a HMAC signature computed over the entire message and requires
the peers to share a secret symmetric key. The default algorithm supported
by SCSP is HMAC-MD5, that produces 128-bit authentication values, but
additional digests may be implemented if needed. In our case, we consider
that MD5 is an obsolete and insecure hash function whose use should be
avoided within our architecture. Therefore, we propose the redefinition of
the extension and the adoption of the HMAC-SHA-1 algorithm, based on
the SHA-1 hash function, which produces 160-bit outputs and is considered
to be more secure and resistant to brute force attacks.

All SCSP extensions, as defined in [6], must comply with the format
shown in figure 5.1. It consists of a triplet (Type, Length, Value), where
Type specifies the extension type code (1 for the SCSP authentication ex-
tension). The Length field stores the length in octets of the Value field,
which is different for each extension type. For the original SCSP authenti-
cation extension, this field stores a Security Parameter Index (SPI), used as
an index into a key table, and the actual authentication data field (HMAC
output). Since we do not need the SPI, our redefinition of the extension
omits this field so that the Value field only stores the 160-bit HMAC-SHA-1
value. The redefined SCSP authentication extension is also illustrated in
figure 5.11.

If one or more extensions are present in a message, the extension part is
terminated by the End of Extensions extension, defined in [6].

Whenever a message requires this authentication/integrity service, the
HMAC value is computed over the entire message, including the Fixed part,
and appended to it as an authentication extension. If the message, however,
requires both confidentiality and integrity/authentication, encryption is per-
formed first, and it does not encompass the authentication extension. The
HMAC authenticator is then computed over the whole message. This order
allows for the possibility of parallel processing of packets at the receiver,
because decryption can take place in parallel with authentication. Figure
5.2 shows the outbound packet processing when different combinations of
security services are selected.

Since both confidentiality and message integrity/authentication services
are based on symmetric algorithms (AES and HMAC-SHA-1), they require
the exchange of secret keys between peers to operate properly. These services
are applied on a peer to peer basis, which means that every single connection
between two SCSP speakers uses its own private keys. Although the problem
of secret key distribution over the Internet has been studied in depth during

1We assign the extension type 2 to the redefined extension.
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Figure 5.1: SCSP authentication extension redefinition

the last decade, and many key exchange protocols2 have been proposed so
far, our particular system can take advantage of the Hello phase to securely
exchange the symmetric keys, as will be explained in the following section.

5.1.3 Hello Security extension

Hello messages are used to establish a bi-directional connection between two
SCSP peers. Once the connection has been successfully set up, the nodes
continue exchanging Hello messages as keep-alive notifications.

When a TRIP/SCSP server starts running, the IP addresses of its peers
are stored in a configuration file. The first task that must be performed
before starting the information exchange is to ensure that those peers are
authorized TRIP speakers, certified by their respective ITADs to partici-
pate in the TRIP architecture and to export routes to other intra and inter
domain peers. Since the Hello phase is used to set up the required con-
nections between peers, it can be used to perform peer authentication as
well. We may also use Hello messages to exchange the required secret keys
between peers when either confidentiality or integrity/authentication have
been selected to secure SCSP traffic.

2The most widespread key exchange protocol nowadays is IKE [24], used in IPSec.
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Figure 5.2: SCSP message processing for different security services selected

In order to achieve these two goals, we have defined a new SCSP Security
extension to be included in every Hello message. The extension carries all
the information needed to authenticate servers using a digital signature, and
some additional fields concerning security services in SCSP traffic. These
fields contain information about the algorithms used to implement the secu-
rity services, and they also carry the required symmetric keys when needed.

The structure of the extension and the way in which it fits within the
original Hello message format are depicted in figure 5.3.

The first 32 bits are the mandatory header that must be present in every
SCSP extension. It consists of two fields:

• Type. The extension type code. The HMAC based authentication
extension has been assigned the value 2 in the previous section, so we
can use the value 3 for the Hello Security extension.

• Length of the extension. This value is variable since it depends
on the size of the digital signature to be carried and the length of the
(optional) encrypted keys.

The rest are security specific fields:

• Hash Type. Indicates the hash algorithm used to compress the mes-
sage before being signed. The recipient needs this value to perform
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Figure 5.3: Hello message security extension

the verification process, as will be explained later. The codes already
defined are:

– MD2=1
– MD5=2
– SHA-1=3 (default)
– RIPEMD=4

• Signature Type. Although the first version only implements RSA,
other algorithms could be added in future versions. RSA has been
selected as the default algorithm because it represents a de facto stan-
dard and it provides good security properties. The key length used
is 1.149 bits and has been carefully chosen taking into account the
RSA security study carried out in chapter 3. The Signature Type field
allows the recipient to know which public key should be used to verify
the message, in case the sender has different keys corresponding to
different algorithms. The codes currently defined are:

– RSA=1

• Signature Length. Total size in bytes of the digital signature carried
in this packet. This value could vary depending on the algorithm being

Ignacio González Oĺıas 48
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used to sign the message and the key length. The recipient needs to
know this value in order to unpack correctly the signature from the
message.

• Cipher Type. Symmetric cipher used to encrypt messages in transit.
As we explained before, the current version only supports AES-128,
so the codes are:

– Confidentiality service not selected=0

– AES=1

More ciphers can be easily added to future versions by defining new
codes. However, AES is used now as the default algorithm.

• HMAC Type. Specifies the HMAC algorithm used for message in-
tegrity and data origin authentication. The current version considers
three choices:

– Integrity/Authentication service not selected=0

– HMAC-MD5=1 (not recommended)

– HMAC-SHA=2 (default)

• Encrypted Symmetric Cipher Key. Symmetric key used to en-
crypt and decrypt SCSP messages in transit. This field is present
in the security extension only if the confidentiality service have been
selected. Although the default algorithm, AES, can operate with dif-
ferent key lengths, the version used in our implementation works with
128-bit keys. Since the Hello message is sent to the peer without be-
ing encrypted, this field can not store the plain key. Thus, this key
is first encrypted with the public key of the peer. This public key is
extracted from the peer’s X.509 digital certificate, which is obtained
by using the PKI facilities described later in this chapter. By encrypt-
ing the symmetric key with the peer’s public key we ensure that the
peer is the only server able to get the decrypted version of the key,
and thus the only one that will be able to decrypt the SCSP messages
in transit. The size of the resulting ciphertext is the same than the
signature length.

• Encrypted HMAC Key. Secret key needed to perform and verify
HMAC authenticators. This field is present only if the integrity (and
authentication) service has been selected, and its size is variable. As
in the previous case, the key is first encrypted with the recipients’s
public key to hide it from intruders.

• Digital Signature. Stores the digital signature of the message. Its
actual size depends on the length of the private key being used to sign
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the information, but it usually varies between 128 and 256 bits for
RSA signatures.

Whenever this Hello security extension is present in a SCSP Hello message,
and in order to comply with the SCSP specification, it must be followed by
the End of Extensions extension.

Outbound Hello packet processing

When a server needs to send a Hello message to one of its peers, it first fills
the general SCSP headers and the Hello specific fields with the appropriate
values. Then, the security extension is filled with the values corresponding
to the security parameters that have been previously obtained from the
security configuration file. This file is called ”sec conf” and provides the
server with information about the signature algorithm and hash function to
be used for peer authentication, as well as the algorithms regarding security
services.

The presence in the security extension of the symmetric keys for both
HMAC and encryption cipher is optional; they are needed only if the cor-
responding confidentiality and integrity/authentication services have been
selected. A zero value in the HMAC Type or Cipher Type fields indicates
that these features are not in use, and thus the recipient of the message
must not expect to find the corresponding keys in the message.

When needed, these keys are generated randomly by the server and
encrypted with the recipient’s public key before being placed in the message.
Key sizes are closely related to the algorithms in use. For instance, the
proposed default symmetric cipher, AES-128, requires 128-bit keys. The
key for HMAC can be of any length, although keys smaller than the length
of the output are strongly discouraged since they would decrease the security
strength of the function. Thus, for the proposed HMAC-SHA-1 algorithm,
keys of 160 bits will be used.

Since the digital signature is not available until the end of the signature
process, the Digital Signature field is first filled with zeros. Once the whole
message has been built, including the End of Extensions extension, it is
compressed using the selected hash algorithm and the resultant digest is
then digitally signed with the private key of the server. Finally, the signature
is placed on the security extension instead of the zeros.

By signing the entire message, we can ensure that any alteration caused
by transmission errors or malicious attacks in any of the fields of the message
will be detected by the recipient, so the message can be discarded. There-
fore, although the main purpose of the digital signature carried in the Hello
message is to allow peer authentication, it can be also used as an additional
way to guarantee Hello message integrity.
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Inbound Hello packet processing and key negotiation

Upon receipt of a Hello message, the recipient unpacks it to extract the
different headers and fields. The Signature length field present in the Secu-
rity extension allows it to extract the signature correctly. This signature is
stored apart while its space in the message is filled with zeros, and the mes-
sage digest is then computed over the entire packet using the hash function
specified in the Hash Type field. The public key of the sender is extracted
from the corresponding X.509v3 certificate, which has been previously ob-
tained and validated using the PKI facilities, and used to verify the digital
signature received with the message. The output of this decryption process
is another digest that is checked against the computed one to ensure that
the message truly belongs to the sender and that the message has not been
modified during the transmission.

Once peer authentication has been carried out, and assuming that either
confidentiality or integrity/authentication services have been selected to se-
cure the SCSP session, the corresponding secret keys are extracted from the
message and decrypted with the recipient’s private key. Since every server
has randomly generated its own symmetric keys, peers need a mechanism
to agree about the ones that will be used during the session. This can be
achieved by forcing the peer with a lower IP address3 to discard its own
keys and to adopt the ones received in the Hello message. This negotia-
tion scheme makes use of the Hello phase to address the symmetric key
distribution problem and avoids the use of other protocols to perform this
task.

Another possible approach would be the use of different keys for each
direction of the communication. A server generates its own symmetric keys
and uses them to process all the outgoing information. The remote server
receives these keys and uses them to process all the traffic received from the
sender. This mechanism has two advantages over the previous one:

• If the security of one key is broken, only one direction of the commu-
nication is compromised.

• No key negotiation is needed, since every server makes use of both
their own keys and the keys generated by their peers.

5.2 Public key infrastructure for TRIP server au-
thorization

Our security architecture must be supported by a parallel mechanism to
allow server authorization. Every TRIP server exchanging routing informa-
tion with other servers must have been previously authorized to represent

3IP addresses are first converted into integers in order to perform the comparison.
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its ITAD and to participate in the information exchange. This authoriza-
tion procedure is carried out by means of digital certificates. TRIP speakers
have to obtain these authorizations from their ITADs before setting up the
corresponding connections with remote peers, so that authentication can
take place during the Hello phase. Servers are also responsible for retrieving
from a certificate server all the certificates required to authenticate their
peers. Furthermore, TRIP speakers may also want to verify the identity
of ITAD owners to ensure that their peers have been authorized by reliable
organizations, and that these organizations have been assigned a valid ITAD
number to operate within the IP telephony architecture.

In order to support this hierarchical authorization system, the security
module makes use of a PKI based on X.509v3 certificates. The number of
levels needed by this PKI can be easily determined by examining the cur-
rent situation of the TRIP architecture. In this early stage, the Internet
Assigned Numbers Authority (IANA) directly assigns ITAD number to or-
ganizations. These numbers may vary within the 0-65.535 range, although
the sub-range 1-255 is reserved for private use. Requests for numbers must
include information about the organization that administers the ITAD as
well as some contact data, and must be directly submitted to the IANA.

This means that the PKI for TRIP server authorization must contain
3 levels and 3 different certificate types. The PKI structure is depicted in
figure 5.4. The IANA plays the role of root CA, and is in charge of issuing
ITAD numbers to organizations. These organizations are ITAD number
owners, and they represent the first CA level in the hierarchy. Every ITAD
owner is responsible for designating their own TRIP servers, identified by IP
addresses or DNS names, to operate within the domain. Thus, the second
and last hierarchy level is composed by servers that have been authorized
by ITAD owners to participate in the routing information exchange.

The certificate types required by this PKI are described in table 5.1.
They are based on the X.509v3 standard and make use of certificate exten-
sions to bind some application specific data about the subjects.

To authenticate a peer, a TRIP server must verify the entire certification
path. If we assume that the verifier permanently stores a copy of the IANA’s
public key, this process implies the retrieval of two certificates from the cer-
tificate server: the TRIP server certificate of the peer and the one belonging
to the owner of the peer’s ITAD. Therefore, two signature verifications must
be performed to authenticate every peer.

5.2.1 Certificate distribution

TRIP speakers are responsible for obtaining all the required certificates dur-
ing the initialization process to ensure that all peers can be authenticated
in the Hello phase. There are many ways in which a node can get the cer-
tificates. In the simplest scheme, the server stores local copies of all the
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Figure 5.4: PKI for TRIP server authorization

existing certificates, including both TRIP server and ITAD owner certifi-
cates. The main disadvantage of this approach lies on the space needed to
store the certificate database. The number of organizations owning ITAD
numbers is likely to grow quickly in the future, as well as the amount of
TRIP servers taking part in the architecture. If the number of certificates
grows excessively, it can be unfeasible to maintain the whole database in
disk or memory. Moreover, additional space is needed to store the CRL,
that must be checked to ensure that certificates have not been revoked, and
this CRL would need to be updated periodically from a central server.

The best way to address the certificate distribution problem is by means
of a certificate repository. Both the certificate database and the CRL are
stored in the repository, and TRIP servers can send requests to the server
whenever they need to retrieve a certificate. This approach improves system
scalability and allows for a centralized management of the CRL, ensuring
consistency of the information.

PKI repositories are usually implemented using either DNS servers with
security extensions, as described in [32], or LDAP servers [33].
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Certificate Type Root
Issuer IANA
Subject IANA
Description Self-signed certificate that certifies the IANA as

the root of the certificate chain.
X.509v3 extensions No
Certificate Type Organization
Issuer IANA
Subject Organization (ITAD owner)
Description Certificate issued by the IANA to an organiza-

tion that owns an ITAD number. This certifi-
cate type is not primarily used to verify the iden-
tity of the subject, but to prove ownership of the
domain number.

X.509v3 extensions One extension specifying the ITAD number as-
signed to the organization.

Certificate Type TRIP server
Issuer Organization (ITAD owner)
Subject TRIP server
Description Used by an organization that owns an ITAD

number to designate a representative TRIP
speaker.

X.509v3 extensions One extension containing the IP address of the
subject TRIP server (DNS could be used in-
stead) and the ITAD number.

Table 5.1: Certificate types required by the PKI

5.2.2 X.509v3 certificate extensions

This section defines the X.509v3 extensions required by the PKI and de-
scribed in table 5.1. Extensions must always include two components: an
OID and a ASN.1 syntax structure. The basic structure is shown below:

Extension ::=
SEQUENCE {

extnID OBJECT IDENTIFIER ,
critical BOOLEAN DEFAULT FALSE ,
extnValue OCTET STRING }

The OID is stored in the extnID field, and the ASN.1 encoded structure
is the value of the octet string extnValue. The boolean critical must also
appear in every extension, and it is set to false by default.
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Extension for TRIP server type certificates

The extnValue field is:

TRIPServerExtension ::= SEQUENCE {
ITADNumber OCTET STRING, # For example 3245
ServerID OCTET STRING } # For example 123.12.34.56

Extension for Organization type certificates

The extnValue field is:

ITADOwnerExtension ::= SEQUENCE {
ITADNumber1 OCTET STRING, # For example 3245
...
ITADNumberN OCTET STRING }

Notice that this arrangement allows the presence of several ITAD numbers
in the certificate. This feature is useful when one organization has been
allocated more than one ITAD number.

5.3 TRIP Authentication Attribute

Our security architecture uses the TRIP Authentication attribute, described
in [34], to address the problem of data integrity over different TRIP hops.
This mechanism allows the recipient of a TRIP message to verify the origi-
nator of an attribute and to make sure that it has not been modified by an
intermediate LS.

Attribute authentication is performed by including a digital signature of
the specified attribute. Therefore, the Authentication attribute includes as
many signatures as TRIP attributes have been signed by the originator.

The specification of the Authentication attribute in [34] considers both
RSA and DSA to be used as digital signature algorithms. Although every
real LS must support both in order to ensure iteroperability, our prototype
only supports RSA, since it will be mainly used for testing.

This third security countermeasure solves the TRIP layer related secu-
rity (in addition to the Hello Security extension, which addresses the TRIP
speaker authentication problem by carrying a digital signature, and the PKI
for server authorization), and thus completes the security of the overall ar-
chitecture presented in this document.

5.4 Performance tests with the security module

Encryption and decryption, as well as HMAC computations, are demanding
tasks in terms of CPU consumption, so SCSP performance is expected to
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worsen when messages in transit are being afforded security. This protocol
slowness due to security services is proportional to the number of packets
being secured as well as the set of services applied to each message type.

The highest security level within our design can be achieved when all
message types are afforded both confidentiality and integrity/authentication.
However, this ideal configuration would dramatically slow down the protocol
operation, since the time needed by servers to process messages would be
unacceptably high. Moreover, as we stated earlier, not all message types
require the same set of security services, since the nature of the carried
information varies from one type to another. Table 5.2 shows the message
types currently defined in SCSP and a brief description about their functions
and contents.

Message Type Code Description
CA 1 Used by peers to synchronize their entire

initial databases. Basically contains CSAS
records.

CSU Request 2 Aimed to update the state of database en-
tries in servers that are directly connected
to the node generating the update. It is sent
to the peers when the server becomes aware
of a change in state of a entry. Contains
CSA records.

CSU Reply 3 Sent from a server to its peer to acknowl-
edge one or more CSA records that were
received in a previous CSU Request. Trans-
ports CSAS records.

CSUS 4 Allows one server to solicit CSA records not
present in the local database but owned by
the peer. Primarily carries CSAS records.

Hello 5 Its goal is to establish bi-directional connec-
tions between directly connected peers and
to monitor the state of communications.

Table 5.2: SCSP message types description

The security services provided by our security module encompass mes-
sage types 1-4. Types 1, 3 and 4 do not carry any application layer informa-
tion, and are used to transport entry summaries (CSAS) between peers and
to index these entries in the database. On the other hand, message type 2
transports upper layer information encapsulated in CSA records.

An adequate security policy must achieve a balance between security
and performance. This means that, although all message types have to
be afforded proper security services according to their requirements, the
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protocol must keep working properly and reasonably fast.

5.4.1 Tested scenarios

In order to find a suitable security policy for the architecture, we have
tested different security configurations in terms of replication time and CPU
performance. Tests have focused on the SCSP Cache Alignment phase, the
most critical in terms of number of messages generated and processed.

The symmetric cipher used in the tests is AES with the key length of
128 bits, whereas the algorithm chosen for the authentication extension is
HMAC-SHA-1. Finding good implementations of these algorithms was not
an easy task. We did some research about the current cryptographic libraries
available for the C language. Although there are many of them in the public
domain, they usually have a rather low performance in terms of speed. We
have finally chosen OpenSSL and Cryptlib, which perform reasonably fast.
We have carried out some speed tests for these libraries. The results can be
found in Appendix A.

We have defined and tested four basic scenarios to understand how the
security countermeasures proposed in this chapter affect the behavior of the
protocol.

• Scenario 1. This scenario does not define any security policy, since
messages are sent to the network without being protected by any se-
curity service. It is basically used to serve as a reference to other
scenarios.

• Scenario 2. All messages in transit are afforded the authentica-
tion/integrity service provided by the HMAC based authentication
extension. Confidentiality is not applied.

• Scenario 3. All messages in transit are afforded the authentica-
tion/integrity service, but only CSU Requests are encrypted. This con-
figuration makes sense because CSU Requests are the only messages
that carry upper layer related information, so they require encryption
to hide this sensitive data from attackers. In contrast, message types
1, 3 and 4 carry SCSP related information worthless for intruders, so
they only need the services provided by the authentication extension.

• Scenario 4. All messages are afforded full security, including both
confidentiality and authentication/integrity.

The four scenarios are summarized in table 5.3.
Table 5.4 shows the alignment and replication times needed to synchro-

nize initial databases of 20.000 records with CSA size of 9 bytes for the four
scenarios under consideration.
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Message
Type

Scenario 1 Scenario 2 Scenario 3 Scenario 4

I/Aa Cb I/A C I/A C I/A C
Type 1 • • • •
Type 2 • • • • •
Type 3 • • • •
Type 4 • • • •
aIntegrity/Authentication
bConfidentiality

Table 5.3: Security scenarios for testing

Scenario Alignment
time
(seconds)

Replication
time
(seconds)

Overhead
ratioa

Scenario 1 56 64 1
Scenario 2 63 72 1,125
Scenario 3 65 73 1,140
Scenario 4 71 80 1,250

aOverhead ratio=Replication time scenario n/Replication time scenario 1

Table 5.4: Times for cache alignment for the four tested scenarios

Figure 5.5 represents the percentage of CPU consumption for all the
scenarios.

Both table 5.4 and figure 5.5 show that the addition of the SCSP security
services to all messages does not affect dramatically the overall functioning
of the protocol, since the system overhead is only 25%. The overhead due
to the authentication extension is very similar to the one caused by the
encryption-decryption process.

5.5 IPSec based security module

The security module described in section 5.1 is a built-in solution to the
security problem; the functions needed to implement the security services
are integrated into the native SCSP code, and they afford security to the
SCSP application layer.

In this section we briefly describe a different approach to implement the
security module based on the IPSec protocol suite. Obviously, the goals of
this approach are the same as those defined for the built-in solution: provide
a mechanism to authenticate TRIP speakers and address the TCP/IP layer
security problem by protecting the sensitive information sent to the network.
The proposed system consists of two elements:
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CPU consumption comparison (scenarios 1-4)
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Figure 5.5: CPU performance comparison for the security scenarios

• As in the built-in solution, the PKI described in section 5.2 is used
to address the TRIP speaker authorization problem. Before joining
the TRIP architecture, every server must be authorized by its ITAD
to participate in the information exchange and must obtain a signed
certificate.

Hello messages are used to carry the digital signature needed for peer
authentication, but no secret keys are negotiated during the Hello
phase. Thus, the optional fields reserved to transport the encrypted
cipher and HMAC keys are not present, since confidentiality and mes-
sage integrity/authentication are not provided by the SCSP layer, but
by the IP layer. This means that in this approach the Hello phase is
responsible for TRIP speaker authentication, but not for key negotia-
tion. Upon receipt of a Hello message, and providing that the sender
has not been authenticated before, a server retrieves from the PKI all
the certificates needed and verifies the entire certification path for the
peer.

• IPSec is used to secure the SCSP traffic. The selected protocol used
to afford security to the SCSP messages is ESP, which mainly pro-
vides confidentiality, data origin authentication and integrity. AH is
discarded because it does not provide confidentiality. The main dif-
ference between the authentication services offered by AH and ESP
is the extent of the coverage. The former one protects both the pay-
load and the immutable fields of the IP header, but the latter only
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covers the payload. However, this drawback can be avoided by using
the ESP protocol in tunnel mode, so that the entire inner IP header
is also protected.

In order to secure the bi-directional traffic between peers, two host-to-
host SAs must be established for every peer to peer relationship, one in
each direction. We must notice that in this approach the keys required
by the integrity/authentication and confidentiality services must be
exchanged using a separate mechanism. IKE is the current standard
protocol selected to perform this task within the IPSec environment,
and can be additionally used to accommodate on-demand creation of
SAs. This feature can be useful if an auto-configuration mechanism is
implemented in the TRIP/SCSP architecture, since it could be used
to secure new SCSP connections created dynamically.

The main advantage of the IPSec based approach is that the responsibility
for protecting the information rests on the network layer, thus affording full
protection to all SCSP traffic (including Hello messages) and to the UDP
datagrams used to transport this traffic.

On the other hand, it lacks the granularity provided by the built-in
approach. All traffic within the same SA is afforded the same protection
level, and security services can not be applied independently depending on
the application layer message type. Moreover, all servers taking part in the
architecture must support an IPSec implementation.
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Chapter 6

SCSP auto-configuration
module

The main purpose of the SCSP auto-configuration module is to address the
static configuration problem described in chapter 2 by providing the SCSP
protocol with an efficient auto-configuration mechanism. Such a mechanism
must be able to handle dynamic changes in both intra and inter domain
topologies when needed, so that servers can be added to existing SGs or new
SGs can be created on-demand without any manual intervention.

6.1 Design goals

Reliability is a primary concern when designing the module. Nodes that
require auto-configuration services can not rely on the presence of central
servers to obtain the topology information, since this would create single
failure points within the architecture. Instead, the mechanism must be
as decentralized as possible and all the required information should not
be available on central databases, but distributed on other existing SCSP
servers. This approach also improves the scalability of all those architectures
that are using SCSP as the underlying replication service.

The second point to take into consideration is security. The SCSP secu-
rity module described in chapter 5 is aimed to improve the security of the
SCSP based architectures. Assuming that the module works properly within
a statically configured environment, we must ensure that the introduction
of automatic mechanisms to deal with auto-configuration does not result in
negative repercussions for the system.

Transport layer independence is also an important issue. SCSP was
designed to operate on Non Broadcast Multiple Access (NBMA) networks, so
it is independent from the underlying transport protocol. Any module aimed
to enhance the protocol must maintain this independence. However, the
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auto-configuration module discussed in this chapter imposes an additional
limitation to the transport layer; it must provide a multicast mechanism to
carry out the Neighbor Discovery and Gateway Discovery phases, as will be
explained later. Thus, the module is suitable to work with any transport
mechanism that complies with this restriction. Since our existing SCSP
implementation uses TCP/UDP to transport messages between servers, we
will also present some optimizations for this particular case.

The SCSP protocol is always used by other applications or protocols that
require database replication. Thus, we can consider it as a low level layer
providing replication services to the upper or application layer. Primitive
operations and services are offered to the application layer by means of the
application interface between both levels. The interface defines the available
services and the Service Access Points (SAP) through which they can be
invoked.

In the architecture presented in this thesis, TRIP represents the ap-
plication layer. However, we have tried to design an open and extensively
configurable auto-configuration module that can be used by any SCSP based
architecture, no matter the nature of the upper layer application.

6.2 Application interface extension

The main functionality of SCSP is database replication, so the most relevant
primitives available in the interface are related to that function (update
record or erase record, for instance). The auto-configuration module can
be thought of as an additional set of services provided by SCSP to the
application layer. These services are invoked using new primitives and they
expand the functionality of the SCSP layer.

The current SCSP implementation communicates with the upper layer
by means of a message queue based data interface, as described in [30]. It
consists of three message queues that deal separately with local updates,
remote updates and erases. This interface has been extended with two ad-
ditional queues (one for each direction) to allow the bi-directional exchange
of control messages between the SCSP layer and the application layer. This
control interface expands the functionality of the existing data interface and
can be used by the auto-configuration module and other future SCSP mod-
ules.

The structure of the extended interface is depicted in figure 6.1. Figure
6.2 details the six new interface messages needed by the auto-configuration
module. The functionality of these messages will be explained throughout
this chapter.
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Figure 6.1: Application interface extension

 

Figure 6.2: Primitives used by the auto-configuration module
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6.3 Static configuration file

Every server obtains the configuration parameters from the ”hosts” file,
which consists of a set of columns with information about the server’s DCSs.
Nodes belonging to more than one SG have a set of peers for each group.

The configuration file begins with information about the port and the
packet size of the system. The current version uses the same values for all
the SGs, but it would be feasible to have different values depending on the
group. Thus, a server replicating in two groups at the same time could be
using different ports and packet sizes for each group.

Every column contains the address of the DCS, the SG, and some other
SCSP related parameters. This arrangement allows for a customized pa-
rameter set for every single peer. The SCSP related parameters refer to
timer values needed by the SCSP state machines, and their description can
be found in [6]. A more detailed explanation of the ”hosts” file format is
given in both [30] and [35].

6.4 Auto-configuration services description

The proposed auto-configuration module comprises two basic services: intra-
SG and inter-SG. The former one is aimed to facilitate the on-demand addi-
tion of servers to an existing SG, so its scope is limited to a single replication
group. Since this is a very general mechanism designed to deal with the ex-
pansion of pre-existing SGs, it can be used by any SCSP based architecture.

The inter-SG mechanism, however, addresses a more specific problem
closely related to the TRIP/SCSP architecture. As explained in chapter
1, every ITAD makes use of at least one internal SG to perform the intra-
domain synchronization. All SCSP nodes taking part in the ITAD must
belong to the intra-domain SG. An operator may decide to further divide
its ITAD into areas. In this case, there is a separate SG to perform the syn-
chronization within each area, and additional SGs, called inter-area SGs,
are set up to distribute the routing information between two or more ar-
eas. Inter-domain agreements between different operators also use addi-
tional SGs, known as inter-domain SGs, whose members are representatives
of the ITADs involved in the agreement.

The main goal of the inter-SG mechanism is to accommodate on-demand
creation of inter-area and inter-domain relationships. This task is usually
more complicated than the intra-SG auto-configuration, since it involves the
dynamic establishment of SGs.
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6.5 Intra-SG auto-configuration service

6.5.1 Server Group topology considerations

The purpose of the intra-domain auto-configuration mechanism is to accom-
modate on-demand addition of SCSP servers to pre-existing SGs. The new
server must be able to select a set of DCSs to connect to within the SG. As we
stated in chapter 2, SCSP places no topological requirements on SGs, which
means that servers do not need to be connected in a fully-meshed fashion.
The number of connection links in the group determines both the amount
of traffic exchanged and the reliability of the communications. By minimiz-
ing the number of links we can reduce the amount of messages needed to
propagate updates, but the reliability of the group is negatively affected.
When servers are connected by many different paths, the disconnection of
one node does not affect the operation of the rest of the group, since it is
always possible to find alternative paths to route the information. On the
other hand, weakly connected groups are more vulnerable to node failures
since they can easily lead to the disconnection of the group.

The internal topology of a SG can be represented as an undirected graph,
which is a simple diagram consisting of points (vertices) connected by lines
(edges) [36]. In our case, the vertices represent SCSP servers and the edges
are the direct connections between peers. In order to ensure that the infor-
mation is replicated to all servers within a group, we must guarantee that
the graph representing the group is connected, which means that there ex-
ists at least one path between every pair of vertices. The parameter that
measures ”how connected” is a graph is the connectivity, and gives an idea
about how many elements should be removed from the graph to disconnect
it. Within this model, server failure can be represented as the removal of
the corresponding node from the graph.

A graph is said to be k − connected if there does not exist a set of k − 1
vertices whose removal disconnects the graph. Graph connectivity can be
calculated using network flow techniques [36]. Thus, we can assume that the
reliability of the SG directly depends on the connectivity of the graph that
represents it. For instance, having a 2-connected graph ensures that the SG
tolerates one node failure without being disconnected, and replication keeps
working properly between the other servers in the group.

Group topology also affects replication performance and consistency, as
proven in [30]. Both the number of elements in the group and the way in
which they are connected determine the information flow within the group.
Every topology can be considered as a composition of two basic models: star
and inline. The evaluation tests carried out in [30] show that the perfor-
mance of these models strongly depends on the update rate, i.e. the number
of updates per second sent to the group. The star topology performs well for
low update rates, since messages have to traverse fewer hops to reach their
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destinations. The intermediate node (the one located in the middle of the
star) is responsible for forwarding the updates generated in the neighboring
servers. On the other hand, high update rates make this intermediate node
to saturate quickly, worsening the replication performance considerably. In
such cases it is more advisable not to focus the entire processing load on
one single server. This can be achieved by using the inline topology, even
though messages have to traverse more hops on average.

We can conclude that connectivity must be considered a fundamental
parameter when designing SG topologies. It has to be carefully chosen to
achieve a reasonable balance between traffic load and reliability. The new
server runs the auto-configuration procedure to discover the other existing
servers in the group and to decide the subset of servers it will connect to.
Assuming that the existing group is k-connected, we must ensure that the
addition of the new server does not modify the connectivity of the group (i.e.
the group maintains at least the same connectivity after the node addition).
This will normally be achieved by choosing an appropriate number of peers.

Furthermore, the design must take into account the nature of the upper
layer application that is using the SCSP replication services, and character-
ize the update rates it will generate. This information is useful to decide
whether to base our design on inline or star topologies.

6.5.2 Neighbor Discovery phase

The auto-configuration procedure begins with an unconfigured SCSP server
with transport level connectivity. The ”unconfigured” term means that it
does not know any peer and does not have any configuration file. The
procedure is triggered by the Join SG signal, which is sent to the control
interface by the application layer. This signal contains the SG identifier
(SG ID) of the SG the server has to be added to.

Upon receipt of the signal, the node enters the Neighbor Discovery phase.
It starts sending Neighbor Discovery messages encapsulated in transport
level multicast packets to the SCSP auto-configuration multicast address1.
Thus, this phase requires that the NBMA network where SCSP is running
provides multicast capabilities. Neighbor Discovery messages, which are
identified by the SCSP type code 62, contain the SG ID parameter. The al-
ready configured SCSP servers run a special thread that listens for incoming
messages in the same multicast address. Although all of them are supposed
to receive the Neighbor Discovery message, only those that belong to the
SG ID group must send a Neighbor Response message (SCSP type code 7)
to the sender.

If SCSP is running over TCP/IP, as in the TRIP/SCSP architecture,
the Time To Live (TTL) value of the Neighbor Discovery messages can be

1An IP multicast address has to be obtained for the TRIP/SCSP architecture.
2Type codes 1-5 are already in use.
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controlled in order to keep track of the distance in IP hops to the destina-
tions. This information can be used later by the unconfigured server as one
of the input parameters to the decision process (decide the servers that will
be DCSs). Thus, the first Neighbor Discovery message sent has TTL = 1,
which means that it is only broadcasted in the local network. The server
then sets a timer and waits for responses. All packets received within this
interval are assigned the value TTL = 1. Once the timer expires, the TTL
is increased and the server repeats the same steps. The timer value can be
also updated according to the TTL, since responses from remote nodes are
expected to take longer to come back to the sender. Both the TTL values
and the timer values can be chosen freely by the administrator, although
there must be a set of standard values to be used by default. When the TTL
value reaches TTL MAXIMUM VALUE, the server stops sending packets.
By then, it is supposed to have received one message from every server in
SG ID, providing TTL MAXIMUM VALUE is high enough.

6.5.3 Decision process

The Neighbor Response message contains the configuration information of
the corresponding remote server. By receiving one of these packets from
every node in the SG, the unconfigured server can gather enough information
to run the decision process and choose a set of servers to connect.

As we stated earlier, every SCSP based architecture may have its own
requirements. This implies that the criteria followed to select the peers
during the decision process has to be system-dependent. Thus, we provide a
configurable open mechanism that can be easily adapted to the requirements
of every single system. The mechanism has two components:

• Neighbor response message open format. The Neighbor Re-
sponse message contains the following information:

1. Identity of the remote server that sends the Neighbor Response
back to the unconfigured node.

2. Neighbor Weight. An integer value that specifies the weight the
remote server gives to itself. This value represents the informa-
tion that the remote server knows about itself.

3. Identity of all the remote server’s DCSs.

4. Neighbor Peer Weight. For every DCS, an integer value specify-
ing the weight assigned by the remote server to the DCS. This
represents the information that the remote server knows about
its peers.

By receiving a Neighbor Response from every remote server, the un-
configured node knows both the identities of the servers in the SG and
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the relationships between them. In other words, it gets a ”picture” of
the SG topology. The way in which the weights are calculated is com-
pletely system-dependent and must be chosen taking into account the
requirements of the SCSP based architecture. Therefore, the Neigh-
bor Response message provides an open way to exchange information
about the SG members and the SG topology. The format of the Neigh-
bor Discovery and Neighbor Response messages is illustrated in figure
6.3.

 

Figure 6.3: Neighbor Discovery and Neighbor Response message formats

• Decision function.

The decision function is used to calculate a priority for every remote
server present in the SG. It takes the following information as input
parameters:

1. Static Neighbor Weight values. The weights assigned by the un-
configured server to the remote servers. Before starting running,
the unconfigured server might be provided by the administrator
with some static priorities about the servers to be chosen.

2. The Neighbor Weight values received in the Neighbor Response
messages.
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3. The Neighbor Peer Weight values received in the Neighbor Re-
sponse messages.

4. The TTL value calculated for the remote servers during the net-
work discovery phase, providing the underlying transport layer
supports this functionality.

All weights and TTL values are integer numbers. The function must
process the information and assign a priority (also an integer num-
ber) to every remote server. The operations used to process the input
parameters depend on the function itself, which is also system depen-
dent.

This arrangement provides the auto-configuration module with a great deal
of flexibility. For instance, the decision function can be calculated in such
a way that it encourages the presence of star topologies within the SG.
The weights sent in the Neighbor Response message can be based on any
type of information: amount of traffic between peers, number of peers per
server, etc. Furthermore, the distance in hops given by TTL values may
be ignored by a specific decision function if geographic proximity is not a
primary concern when selecting the peers.

6.5.4 SG connectivity calculation

When the decision process ends, every remote server must have been as-
signed an integer priority. The unconfigured server has then to calculate the
number of DCSs to connect, which depends on the SG connectivity. Assum-
ing that the SG is k− connected before the server addition, we must ensure
that at least the same connectivity value is maintained once the new node
has been included into the SG structure.

We have developed a function that calculates the SG connectivity using
graph theory algorithms. This function uses all the topological information
received within the Neighbor Response messages to create a graph that
represents the internal topology of the SG. If the SG connectivity turns out
to be k, then the server must select k peers to maintain at least the same
connectivity.

Since we have not been able to find an implementation of the vertex
k − connectivity in C programming language, we have developed our own
function based on a free implementation of the maximum network flow al-
gorithm. This implementation can be found in [37].

Servers with higher priorities are selected first. For instance, if the SG
is 3-connected, the unconfigured server selects the three remote servers with
the higher priorities to be DCSs.
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6.5.5 Configuration file creation

The server creates a ”hosts” file and adds the information about the selected
peers to it. Thus, it can directly obtain the configuration information from
this file if it goes down, which ensures that every server only needs to run
the intra-domain auto-configuration procedure once. Both the port and
packet size values are taken from the Neighbor Response messages received
and included in the file. The SCSP related parameters are assigned default
values.

6.5.6 Connection establishment

Once the configuration file has been created, the server has gathered enough
information to run SCSP, so it starts sending Hello messages to the selected
peers. Upon reception of one of these messages, the remote peer detects that
it comes from an unknown server and runs a procedure to add the sender
to the ”hosts” file.

6.5.7 Certificate handling

If the architecture is making use of the SCSP security services provided
by the security module, every server must possess the digital certificates
of all its DCSs in order to have access to the corresponding public keys.
Therefore, the new server has to obtain the certificates of its future peers
and vice versa. Since SCSP is not responsible for dealing with certificates,
they must be requested from the application layer.

Whenever the SCSP layer requires new certificates, a Certificate Request
message is sent to the control interface. This message carries a set of IP
addresses. The request message is retrieved by the application layer, which
is responsible for obtaining the certificates of the nodes identified by the IP
addresses. The way to perform this task is also system-dependent (i.e. the
mechanism being used to store and distribute the certificates), but is usually
done by sending the corresponding queries to a certificate server based on
LDAP or DNSSEC. Once the certificates have been obtained, the application
layer sends a Certificate Response to the control interface, indicating the file
system paths where they have been stored.

In the TRIP/SCSP architecture, the application layer is represented
by TRIP, that performs the certificate requests by querying the certificate
server of the TRIP server authentication PKI described in section 5.2.

6.5.8 Memory consumption

The current SCSP implementation available at the lab, described in [35],
was designed to minimize the amount of memory required in the SCSP
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servers. This minimum memory space is needed for the Finite State Ma-
chine (FSM) allocation corresponding to each DCS. Following this criteria,
we have also tried to design the auto-configuration module for minimum
memory consumption.

The amount of memory required in the unconfigured server when the
intra-SG auto-configuration procedure is executed can be easily obtained by
examining the data structures used in the process. The Neighbor Discov-
ery phase is the most critical in terms of memory consumption, since the
unconfigured server must store all the information received in the Neighbor
Response messages. The current implementation uses linked lists as the
basic structure to store the information about remote servers. The Neigh-
bor Response message contains information about the remote server and all
its DCSs, as shown in figure 6.3, and this information is mapped into the
memory structures, which are dynamically allocated. Assuming 4 bytes for
integers and pointers, and two bytes for shorts, the expression that gives the
amount of memory required during the Neighbor Discovery phase is:

16 + 60 ∗ N +
N∑

i=1

24 ∗ Pi bytes (6.1)

where N is the total number of remote servers that have sent a Neighbor
Response message back to the unconfigured server, and Pi is the number of
peers of remote server i.

For instance, if there are 50 servers in the SG with 3 peers per server
on average, and all of them receive the Neighbor Discovery request, the
unconfigured server is expected to receive 50 Neighbor Response messages.
Applying equation 6.1, the total amount of memory required turns out to
be:

16 + 60 ∗ 50 +
50∑

i=1

24 ∗ 3 = 16 + 60 ∗ 50 + 50 ∗ 24 ∗ 3 = 6616 bytes

We must remark that all this memory is freed once the auto-configuration
process has been completed.

6.5.9 Intra-SG auto-configuration SDL model

We have developed a SDL model in order to clarify the operation of the intra-
SG auto-configuration module. This model can be found in the Appendix
B.

6.6 Inter-SG auto-configuration service

The purpose of this service is to automatically create new SGs to intercon-
nect other existing SGs. It can be used in two different contexts: inter-area
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SCSP auto-configuration module HUT-Networking Laboratory

and inter-domain. In the former one, an operator owns an ITAD which is
divided into different areas. All servers in one area belong to the same SG.
The information exchange between areas requires the establishment of addi-
tional inter-area SGs, which must contain at least one server from each area
involved in the exchange. We will not impose any restriction on the number
of areas represented in the inter-area SG nor to the number of servers of
each area participating in it.

In the inter-domain case, we consider two or more ITADs belonging to
different operators. The internal structures of the ITADs are irrelevant, i.e.
they may consist of a single SG or be divided into separate areas (several
SGs). The information exchange between operators is carried out by means
of inter-domain SGs, whose components are representatives of the ITADs
involved in the agreement. As in the previous case, we do not restrict the
number of operators taking part in the inter-domain SG nor the number of
representatives of each ITAD.

Although the contexts described are different, the auto-configuration
requirements are basically the same for both of them, so our module only
provides one common inter-SG auto-configuration service to be used in either
situation.

The inter-SG procedure begins when a SCSP server receives the Cre-
ate SG signal from the application layer. This signal carries a set of SG
identifiers representing the remote SGs that will participate in the new inter-
area or inter-domain SG. The way in which these identifiers are obtained is
responsibility of the application layer. For instance, within the TRIP/SCSP
architecture there are two possible mechanisms to obtain them, depending
on whether we have an inter-area or an inter-domain context:

• For inter-area, the TRIP layer contains a table with information about
all the areas present in the ITAD and their corresponding SGs. This
table can be used to select the set of SG identifiers carried in the Cre-
ate SG signal depending on the topology requirements of the ITAD.

• For the inter-domain context, the TRIP layer contains a table with
information about remote ITADs and their corresponding SGs (or
single SG if the operator has not defined areas within the domain).
The TRIP server must first decide the remote ITADs that will be in-
volved in the new agreement and then look up their corresponding SG
identifiers in the table.

The SCSP server that receives the Create SG signal acts as a master server
in the inter-SG auto-configuration procedure.

6.6.1 Gateway Discovery phase

Upon receiving the Create SG signal, the master server must find other
remote servers belonging to the SGs that will participate in the new SG,
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including its own SG3. We will refer to these servers as gateways, since they
act as ”gateways” between different SGs. The master server starts sending
Gateway Discovery messages which include the SG identifiers obtained from
the application layer. The identifier of the master server’s SG is appended
as well. As in the Neighbor Discovery phase described in section 6.5.2,
messages are encapsulated in transport level multicast messages and sent
to the SCSP auto-configuration multicast address. If SCSP is running over
TCP/IP, the TTL of the messages may be increased in the way described in
section 6.5.2 to keep track of the distance in hops to the gateway candidates.

Remote servers belonging to any of the SG identifiers carried by the
Gateway Discovery message must process the incoming message. The new
SG will be used to share information between all the SGs whose identifiers
are present in the message received, so before replying to this message the
gateway has to make sure that it is authorized to exchange information with
these SGs. Again, the application layer is responsible for this task. The
SCSP layer creates a new Authorize SG Request message which includes all
the SG identifiers present in the Neighbor Discovery message, and sends it to
the interface. The application layer processes this message and checks if the
local SG has agreements with all the other SGs. The response is sent back
to the SCSP layer by means of an Authorize SG Response. If this response
is affirmative, then the gateway sends a Gateway Response message back to
the master server. Otherwise the incoming Neighbor Discovery message is
ignored and no response is generated.

We must remark that this security procedure is absolutely required to
maintain the security of the overall architecture. It prevents the establish-
ment of unauthorized inter-area and inter-domain SGs and ensures that an
area (or domain) is exchanging information only with those areas (or do-
mains) with which previous exchange agreements have been established.

The Gateway Discovery phase ends when the master server has collected
all the Gateway Response messages from the remote servers.

6.6.2 Decision process

As in the intra-SG auto-configuration service, we provide an open mecha-
nism that can be customized in order to match the requirements of different
architectures. The mechanism has two components:

• Gateway Response message open format. The Response mes-
sage contains the following information:

1. Identity of the gateway that sends the Gateway Response back
to the master server.

3This can be useful to include in the new SG more servers from the master server’s
SG.
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2. Gateway Weight. An integer value that represents the ”willing-
ness” of the remote server to become a gateway and to be included
in the new SG. The way in which this value is calculated depends
on the specific requirements of the SCSP based architecture.

3. SG Identifier List. The identifiers of all the SGs the remote gate-
way belongs to. The master server needs this information in
order to choose a free SG identifier for the new group. Choos-
ing an identifier which is not being used by any of the selected
gateways is a crucial task to ensure the proper operation of the
protocol and to prevent undesired behaviours.

The format of the Gateway Discovery and Gateway Response messages
is illustrated in figure 6.4. Gateways can also include a port number
and a packet size value in the message, so that these parameters can
be negotiated during the establishment of the new SG.

 

Figure 6.4: Gayeway Discovery and Gateway Response message formats

• Decision function. The master server then runs its decision function
in order to compute a priority for every remote gateway. Again, this
function is completely system-dependent and must be configured con-
sidering the system requirements. The following information is taken
as input parameters:
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SCSP auto-configuration module HUT-Networking Laboratory

1. Static Gateway Weight values. The master server may be given
some preferences about the identities of the gateways to be in-
cluded in the new SG before running the inter-SG procedure.
This represents the information the master server knows about
the gateways prior to the execution of the procedure, and may
be optionally considered when selecting gateways.

2. The Gateway Weigth values received in the Gateway Response
messages.

3. The SG Identifier List lists received in the Gateway Response
messages.

4. Distance in hops to the remote gateways (providing the TTL
mechanism is in use).

6.6.3 Selection of the SG identifier

The master server has to select a SG identifier for the new SG. SCSP reserves
16 bits to store SG identifiers, which means that there might be a maximum
of 65.536 different SGs in a system.

If we assume that SG identifiers can not be reused, the master server
should have knowledge about all the identifiers being used in the system in
order to select a free one. This task is completely unfeasible, since it requires
a parallel mechanism to distribute the used SG identifiers throughout the
entire architecture.

Instead, we divide the total range of identifiers into two groups. The
first one encompasses identifiers 0-59.999, and is reserved for conventional
SGs, i.e. not inter-area nor inter-domain SGs. Any SG used to replicate
the information within an area or an ITAD is identified by an integer taken
from this interval, and these identifiers can not be reused.

The second group encompasses identifiers 60.000-65.535 and is reserved
for inter-area and inter-domain SGs. These identifiers can be reused provid-
ing we ensure that one server does not belong to two SGs with the same SG
identifier.

Since the Gateway Response message includes the list of SG identifiers
the remote server belongs to, the master server knows all the SGs where the
selected gateways are already replicating. The lowest unused identifier is
chosen for the new SG. For instance, if none of the gateways selected to take
part in the new SG (including the master server) belongs to any inter-area
or inter-domain SG, the identifier 60.000 will be chosen for the SG. On the
other hand, if any of the gateways is already using the SG 60.000, then the
master server will choose the identifier 60.001. The master server applies
this mechanism in order to ensure that SG identifiers are not repeated and
that the lowest possible identifier is always chosen. Therefore, identifiers are
locally unique. Even though they can be reused throughout the system, the
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proper operation of the architecture is guaranteed and servers can not be
replicating in two SGs with the same identifier.

The auto-configuration module is not responsible for allocation of iden-
tifiers 0-59.999 to ITADs or areas. This task is left to the administrator of
the system, who must ensure that they are unique.

6.6.4 Topology limitations and Hello Forward extension

We must notice that so far the inter-area or inter-domain SGs created as
a result of the inter-SG auto-configuration procedure would always have
star topologies, with the master server located in the centre of the star.
The master server is directly connected to all the remote gateways, while
the gateways are only connected to the master server. This is due to the
fact that the master is the only server which knows the identities of all the
members of the new SG. As we explained in section 6.5.1, star topologies
do not perform well for high update rates, because the intermediate node
quickly saturates. Furthermore, the star topology is rather unreliable in
terms of fault tolerance, since it is a 1-connected graph. This means that
the failure of any of the servers in the SG makes the entire group to become
disconnected as well.

In order to address these limitations, we have designed a mechanism that
allows the master server to manage the topology of the new SG. The mech-
anism consists of a new SCSP extension, called Hello Forward extension,
optionally carried by Hello messages. Once the master server has selected a
set of gateways to be included in the new SG, it runs a function to choose
a suitable topology for the group. The primary concern when selecting the
topology is reliability. If we want the new SG to operate properly when k-1
nodes go down simultaneously, then the graph representing the SG must be
at least k-connected, and the topology has to be configured to match this
connectivity.

The Hello Forward extension can be used by the master server to in-
form the remote gateways about their peers in the group and to control the
topology. The extension tells gateways about the identities of other gate-
ways that must be directly connected to them so that the topology of the
new SG matches the desired connectivity. Thus, after running the topology
management function the master server knows which gateways are going to
be contacted directly and the ones which are going to be contacted indirectly
through other gateways. When a gateway receives the first Hello message
from the master server, it checks if the Hello Forward extension is present in
the message. This extension carries one ore more server addresses identifying
those servers that must become peers of the gateway. With this information,
the gateway can add the servers to its configuration file and start sending
Hello messages to them. The structure of the new Hello Forward extension
is depicted in figure 6.5.
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Figure 6.5: Hello Forward extension format

Let us consider a simple example in order to clarify the topology manage-
ment mechanism presented in this section and the use of the Hello Forward
extension. Figure 6.6 shows a system using SCSP as the underlying repli-
cation layer. There are three domains and a new inter-domain SG must
be established so that the three domains can share information with each
other. The master server (server 4) runs the Gateway Discovery and receives
Gateway Response messages from servers 1-3 and 5-10. After running the
decision process, servers 2, 5, 6 and 8 are assigned the higher priorities. As-
suming that the master server selects these servers to take part in the new
SG, and that it does not use the Hello Forward extension mechanism, direct
connections are established between the master server and all the selected
gateways. The resulting SG presents a star topology, with the master server
acting as an intermediate server. The main drawback of this approach, de-
picted in figure 6.6, is that we have no control over the SG topology. The
k-connectivity of the resulting graph is always 1 and any single server failure
may disconnect the graph.

Figure 6.7 depicts the same scenario when topology management is used.
The master server runs the decision function to calculate the gateway pri-
orities, as in the previous case. However, now we impose the additional
requirement that the resulting inter-domain SG (which will include servers
2, 5, 6 and 8) is 3-connected, so that it can tolerate a maximum of two
simultaneous server failures. The master server runs the topology manage-
ment function in order to find a topology that matches this requirement. By
using the Hello Forward extension, the selected gateways are informed about
their peers in the new SG. For instance, upon receiving the Hello message
from the master, server 5 unpacks the Hello Forward extension carried in
the message and finds out that it must set up a direct connection with server
6.
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Figure 6.6: Hello Forward extension usage example (1)

Figure 6.7 shows that in this case the resulting graph is the 5-element
wheel graph, which is 3-connected and matches the reliability requirements.
This structure tolerates up to 2 simultaneous server failures without being
disconnected.

The topology management facilities provided by the Hello Forward ex-
tension add a considerable complexity to the inter-SG auto-configuration
procedure, but they are absolutely necessary if we want to have fine control
over the topologies of the inter-area or inter-domain SGs being created. The
use of this mechanism is optional, and it can be omitted in those systems
where star topologies are good enough to fulfil the requirements.

6.6.5 Connection establishment and configuration file up-
date

The master server creates an entry for the new SG in the configuration file
and adds the information about the selected gateways to it. This guaranties
that the new SG is registered in the ”hosts” file of the master server and that
it is automatically restored after a system failure. If the system uses topology
management, then the master server only adds to the file the information
about those servers which are going to be contacted directly, and fills the
Hello messages with the Hello Forward extensions needed to achieve the
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Figure 6.7: Hello Forward extension usage example (2)

desired SG topology. The master server then starts sending Hello messages
to the selected gateways, which detect that the sender is unknown and run
a procedure to update their configuration files. The gateway finds out the
identifier of the new SG by inspecting the Hello message received, and creates
a new entry for that SG in the configuration file. The information about
the master server is then added to the file as well. If the message carries a
Hello Forward extension, it means that the master server is using topology
management. The gateway must add the servers present in the extension to
the configuration file and establish connections with them.

6.6.6 Certificate handling

If SCSP is using the security services provided by the security module,
servers involved in the new SG have to obtain the certificates of their future
DCSs. The procedure described in section 6.5.7 for the intra-SG procedure
is also applicable here to retrieve the required certificates.

6.6.7 Memory consumption

The master server must store all the information received in the Gateway
Response messages, because this information is needed to run the decision
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function. As in the intra-SG case, the information is kept in memory struc-
tures that are dynamically allocated. The expression that calculates the
total amount of bytes required in the master server is (again assuming 4
bytes for integers and pointers and 2 bytes for shorts):

12 + 48 ∗ N +
N∑

i=1

8 ∗ Si bytes (6.2)

where N is the total number of remote gateways that have sent a Gateway
Response message back to the master server, and Si is the number of SGs
in which server i is already replicating.

As an example, lets assume that the master server receives a response
from 50 remote gateways and that they belong to three SGs on average.
Then, the amount of memory required to store all the received information
in the master server is:

12 + 48 ∗ 50 +
50∑

i=1

8 ∗ 3 = 12 + 48 ∗ 50 + 50 ∗ 8 ∗ 3 = 3612 bytes

6.6.8 Inter-SG auto-configuration SDL model

The SDL model for the inter-SG auto-configuration procedure is presented
in the Appendix B.

6.7 Definition of profiles for the auto-configuration
module

The auto-configuration module proposed in this chapter provides SCSP
based architectures with an open and customizable auto-configuration mech-
anism. This means that it can not be directly used by a system, since the
way in which the different priorities and weights are calculated, as well as
the way in which those values are processed by the decision functions, is not
defined. In order to be applicable, the module has to be completed with
an auto-configuration profile. Every SCSP based system has to define its
own profile taking into account the requirements of the architecture and the
nature of the information which is going to be replicated by SCSP. This
nature determines the update rates that SCSP must support.

Tables 6.1 and 6.2 summarize the parameters that must be defined by
any auto-configuration profile. These tables can be used as guidelines when
designing new profiles.
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Parameter Description
Static Neighbor Weight
values

Decide whether these values are going to be used
by the system and the way in which the uncon-
figured server becomes aware of them

Neighbor Weight values Mechanism used by a remote server to calculate
its own weight.

Neighbor Peer Weight
values

Mechanism used by a remote server to compute
weights for its directly connected peers.

Decision function Decide the function that transforms all the in-
puts to the decision function into a single value
for each server that represents the final priority
of the server. Also decide whether the TTL val-
ues (if available) are taken into account when
computing the priorities.

Table 6.1: System-dependent parameters in the intra-SG auto-configuration
procedure

Parameter Description
Static Gateway Weight
values

Define whether these values are going to be used
by the system and the way in which the master
server becomes aware of them.

Gateway Weight values Mechanism used by a remote gateway to calcu-
late its own weight.

Decision function Decide the function that transforms all the in-
puts to the decision function into a single value
for each server that represents the final priority
of the server. Also decide whether the TTL val-
ues (if available) are taken into account when
computing the priorities.

Topology management Decide if topology management is required in
the system. Specify the mechanism to select
suitable topologies for the new SGs and define
how the Hello Forward extensions are used to
deploy the topologies.

Table 6.2: System-dependent parameters in the inter-SG auto-configuration
procedure
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6.8 Auto-configuration profile for the TRIP/SCSP
architecture

6.8.1 Characterizing the TRIP/SCSP architecture

The main parameter we must consider in order to successfully characterize
a SCSP-based architecture is the update rate generated by the application
layer, since this determines the amount of information sent to the SCSP
layer to be replicated. In general, TRIP generates very low update rates.
For instance, following the assumptions made in [31], when TRIP is used
to implement Local Number Portability (LNP), the system must tolerate
between 0.5 and 4 updates per second.

6.8.2 Intra-SG profile

This low update rate means that our system can be mainly based on star
topologies, since a server can support several DCSs without getting satu-
rated. The presence of star topologies will help to reduce the replication
time for the updates (updates must traverse fewer hops to reach their des-
tinations), and the overall replication time for the SG will be reduced.

Encouraging star topologies implies that the unconfigured servers must
always connect to those neighbours with the highest number of DCSs within
the SG under consideration. However, the following factors have to be taken
into account when running the decision function:

• The maximum number of DCSs supported by a server. Although we
encourage star topologies, an excessive number of DCSs worsens the
performance of the server. The reason is that every peer requires the
establishment and maintenance of several finite state machines and
data structures which consume memory and CPU capacity. There-
fore, we have to limit the maximum number of DCSs per LS, even
though the amount of updates generated by them is not critical. The
Neighbor Weight value is calculated as the maximum number of DCSs
supported by the remote server. This value can be manually loaded
into the server when it is first set up, and is calculated considering the
features of the machine (amount of memory, CPU speed, etc). Thus,
the more powerful a server is the more DCSs it can support.

• The amount of updates a remote server is receiving from its DCSs.
Even though a server may be able to support more DCSs (because the
maximum number of DCSs, specified by the Neighbor Weight value
has not been reached yet), we need to monitor the amount of up-
dates it is receiving in order to ensure that the server will not satu-
rate if a new DCS is added. Our current SCSP implementation in-
cludes support for the SCSP Management Information Base (MIB)
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described in [38]. This allows the network administrator to remotely
manage SCSP servers. The MIB definition consists of three tables:
scspServerGroupTable, scspLSTable and scspDCSTable. The scspD-
CSTable contains information associated with the opened session be-
tween the LS and the corresponding DCS, and keeps track of statistics
about message exchanges. The LS maintains a separate scspDCSTable
for every DCS. One of the entries of the scspDCSTable is scspDCSC-
SURequestIn, which registers the number of CSU Requests received
from the DCS. This value can be used to calculate the update rate
generated by the peer. The scspDCSCSURequestIn value is inspected
every Time Interval seconds. The update rate (in updates per second)
of DCS i in Time Interval k is computed by applying the following
expression:

Update Ratei(k) =
CSU Requestsi(k)

Time Interval seconds

=
scspDCSCSURequestIni(k) − scspDCSCSURequestIni(k − 1)

Time Interval seconds
(6.3)

Every Time Interval seconds the LS must update the rates of all its
DCSs. The value of Time Interval must be carefully chosen. A small
value will cause the update rates to be inaccurate. However, a big
value may cause them to be useless.

The Neighbor Peer Weight of peer is calculated as the update rate (in
bytes per second and taking the integer part) generated by the peer.

• The distance in IP hops to the remote peer. Since the TRIP/SCSP
architecture runs over TCP/UDP, the TTL mechanism is available
and can be used to estimate the topological distance to the server.
Communications with closer servers are expected to be more reliable
and the delay due to router processing grows with the number of IP
hops. Thus, remote servers with low TTL are more likely to be chosen.

We assume that the unconfigured server has no prior knowledge about the
neighbours present in the SG, so the Static Neighbor Weight values are not
used within this auto-configuration profile.

Decision function

The final priority of a server is calculated as the number of DCSs the server
has in the SG under consideration. This value is computed by inspecting the
Neighbor Response message received from the remote server. Following this
criteria, nodes with more peers will be assigned higher priorities. However,
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SCSP auto-configuration module HUT-Networking Laboratory

the priority of a server is set to zero if any of the following conditions is
matched:

• The server has already reached its DCS limit, i.e. the DCS Num-
ber value (received in the Neighbor Response message, see figure 6.3)
equals the Neighbor Weight value of the node.

• The server is being subjected to heavy traffic loads. The total current
load supported by the node is computed as the addition of all the
Neighbor DCS Weight values of the DCSs. If the resulting rate ex-
ceeds a threshold, then the server is close to saturation (it is receiving
too many updates from its existing DCSs), and new DCSs can not be
supported.

In case two servers are assigned the same priority, the one with a lower TTL
value is selected first.

6.8.3 Inter-SG profile

Unlike conventional SGs, the topology of the inter-area or inter-domain SGs
can be completely managed by the master server using the topology man-
agement function. Therefore, we can decide which topology the new SG is
going to have, and there is no need to encourage star topologies. Based on
this fact, the proposed inter-SG profile for the TRIP/SCSP architecture can
be summarized as follows:

• The Gateway Weight values are computed as the total number of DCSs
connected to the gateway.

• We assume that the master server has no prior knowledge about the
other gateways, so the Static Gateway Weight values are not used
within this auto-configuration profile.

• The TTL mechanism is used to keep track of the distance in IP hops
from the master server to the gateways.

• Two gateways from each area (or ITAD) will be selected. This ensures
the presence of two representatives from every area (or ITAD) in the
new SG and guarantees the replication in all the areas (or ITADs)
when an arbitrary node goes down.

• The decision function computes the final priority for a gateway as the
sum of the TTL value and the Gateway Weight value. In this case,
gateways with lower priorities will be selected first. Thus, we tend to
select those servers with low processing loads (few DCSs) and short
distances to the master server (low TTL values).
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• The topology of the new SGs is always the wheel, which is a 3-
connected graph. To achieve this topology, all the gateways become
DCSs of the master server. In addition, every gateway receives a Hello
Forward extension from the master server with the address of another
gateway.

To sum up, servers are organized in wheel arrangements, with the master
server located in the middle of the wheel. With this internal disposition (a 3-
connected graph), new SGs are able to tolerate up to 2 simultaneous failures
without being disconnected. However, if the failures affect two servers of the
same area (or ITAD), then that area (or ITAD) will be isolated until one of
them is recovered.

6.9 Auto-recovery service for network load opti-
mization

This section presents an alternative auto-configuration mechanism for SCSP
based systems where network load optimization is a primary concern. The
intra-SG and inter-SG services described in this chapter provide a complete
auto-configuration mechanism for SCSP based systems. However, they make
use of the k-connectivity factor of the SG to guarantee the SG graph con-
nectivity. As we know, this approach establishes that the undirected graph
representing an SG must be k-connected if we need to guarantee connectiv-
ity when k-1 nodes fail simultaneously. Thus, giving the k-connectivity a
value of 3 ensures that the SG can tolerate up to 2 arbitrary node failures.

The main disadvantage of this approach is that it introduces redundancy
in the information exchanged within the SG. The presence of redundant
paths between servers ensures that the SG can tolerate failures without any
dynamic topology reconfiguration, but it also means that the same informa-
tion is sent through different paths. This produces an unnecessary network
load.

Although most systems will be able to accept this extra traffic in the
network, there might be some special systems with severe network traf-
fic constrictions. This section describes an alternative auto-configuration
mechanism for this kind of systems.

6.9.1 Definition of a minimum-traffic SCSP system

We define a minimum-traffic system as a SCSP based system with the fol-
lowing features:

• The system must be optimized in terms of network load.

• As a consequence of the previous statement, the graphs representing
the SGs in the system must be 1-connected.
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6.9.2 Auto-recovery service description

Since 1-connected graphs are likely to be disconnected with a single node
failure, we need to provide an additional mechanism to ensure that repli-
cation within the SG keeps working properly. We call this new mechanism
auto-recovery procedure.

The auto-recovery procedure detects the failure of a node and auto-
matically reconfigures the SG topology to ensure that the corresponding
graph remains connected. This is achieved by establishing new temporary
connections between servers. Once the server that failed is recovered, the
temporary relationships are removed and the topology of the SG returns to
its original state.

We will apply our study to the two basic 1-connected topologies: inline
and star. These topologies are illustrated in figure 6.8. We must notice
that this figure assumes that servers have a limited capacity in the star
case. When the server located in the center of the star reaches its maximum
number of DCSs, another server must be chosen as the center of a new star.
This is the reason why we present more than one star.

 

Figure 6.8: 1-connected inline and star topologies

The auto-recovery procedure involves the following tasks:

• Maintenance of up-to-date topology information. Every server located
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within the SG must have up-to-date information about the state of
the SG topology. This could be achieved by forcing all the servers
in the SG to periodically flood Neighbor Response messages using the
SCSP multicast address for auto-configuration. This mechanism would
allow servers to advertise information about their DCSs at regular
intervals. By receiving and processing all the flooded messages, a
server gathers enough information to have a picture of the SG topology.
However, flooding mechanisms always represent an extra load for the
network. Since the auto-recovery procedure is designed for minimum-
traffic systems, where network load optimization is a primary concern,
the solution based on flooding must be discarded.

In order to distribute up-to-date topology information within the SG,
we will follow an alternative approach that makes a better use of the
available bandwidth. When the system starts running, every server
floods a Neighbor Response message within their SGs. This provides
all servers with information about the initial SG topology. After that,
only the updates must be advertised. There are two basic updates:

– When a new server joins the SG (using the intra-SG service),
it floods a Neighbor Response message within the SG to adver-
tise its information. The other servers receive this message and
register the incoming node.

– When a new SG is created using the inter-SG auto-configuration
service, all the servers taking part in the SG must advertise their
information by flooding a message within the SG.

The distribution of reliable topology information in the system is cru-
cial for the correct operation of the auto-recovery procedure. All the
actions taken by servers when a failure occurs will be based on this
information, so it must be as accurate and consistent as possible.

• Failure detection. The DCSs of the server that goes down must become
aware of the failure. This task is performed by the Hello Finite State
Machine (HFSM) of the SCSP, which is responsible for monitoring
the state of the connection between the LS and the DCS. Once the
connection has been established, peers keep exchanging Hello messages
to ensure that the connection remains active.

As explained in [6], the HelloInterval parameter determines the time
in seconds between sending of consecutive Hello messages. If the LS
does not receive a Hello message from the DCS in HelloInterval sec-
onds, then the message is late. After HelloInterval*DeadFactor sec-
onds (DeadFactor being another SCSP parameter, an integer number),
the DCS is considered to be inoperative.
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Thus, servers can use this mechanism to check the connection and to
decide when a DCS has gone down. The values of HelloInterval and
DeadFactor must be carefully chosen. A big value will make the mech-
anism useless, since the LS will only be aware of the failure long after
the peer has actually gone down. A too small value would generate
an excessive amount of traffic in the network.

• The auto-recovery function. This function is run by a server when a
failure in the SG is detected. The set of actions to be taken depends on
the base topology being used (inline or star) and the position occupied
by the server that breaks down.

As we have explained, the auto-recovery procedure assumes that the
SGs within our system have 1-connected topologies. Thus, we must first
define new auto-configuration profiles for the intra-SG and inter-SG auto-
configuration services so that this assumption is fulfilled. By defining a
proper intra-SG profile we ensure that new nodes are added to the existing
SGs in a proper way. For instance, if the SG has an inline 1-connected
topology, then new nodes must always connect to one of the ends of the
line in order to respect the topology. Likewise, we must define the inter-
SG profile so that the dynamically established SGs have always 1-connected
(either inline or star, depending on our requirements) graphs.

For brevity, we do not include the profiles here, but they can be easily
generated by following the guidelines given in tables 6.1 and 6.2.

The following sections present the auto-recovery functions for the inline
and star topologies.

6.9.3 Auto-recovery function for the inline topology

When a server detects the failure of a DCS, it first floods a Neighbor Re-
sponse message to advertise the change detected in the topology. This mes-
sage does not include any information about the peer that has gone down,
allowing the rest of the servers to become aware of the failure and to update
their information about the SG topology.

Upon receiving this update, all the servers present in the SG must de-
termine whether the failure affects an end node or an intermediate node.
This can be easily done by inspecting the topology information of the SG.
As we stated earlier, at this point it is crucial that all servers have access
to up-to-date information about the current SG topology. The two possible
situations are depicted in figure 6.9. A failure in an end node does not dis-
connect the SG, so no further actions have to be taken. Servers only wait
for the inoperative node to recover.

A failure in an intermediate node requires a more complex processing,
since it causes the SG to become disconnected. The rest of the servers
of the SG must reconfigure the SG topology by establishing the required
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Figure 6.9: Possible failures in the inline topology

temporary connections. In an inline arrangement, the intermediate server
that breaks down always has 2 DCSs. The first DCS that detects the failure
must identify the other DCS of the node that failed and set up a temporary
connection with it.

A temporary connection must be always associated with a node failure.
As soon as the node that failed is recovered, it must perform the following
actions:

• Send a multicast Neighbor Response message to the SG to advertise
that it is fully operative again. Upon receipt of this message, all the
servers of the SG will update their topology information to register the
change. The temporary connection associated with the failure must
be removed as well, since it is no longer needed.

• Send a Neighbor Discovery message to the SG. The reception of this
message will force the other servers present in the SG to reply with the
corresponding Neighbor Response message. This allows the recovered
server to update its topology information.

Figure 6.10 shows a basic example of the auto-recovery function for the
inline topology. Server 3 is not likely to be using the same HelloInterval
and DeadFactor values for its connections with servers 2 and 4. This means
that they will not become aware of the failure at the same time. The DCS
that first notices the change (server 4 in figure 6.10) is always responsible for
sending the Neighbor Response message and initiating the communication
with the other DCS (server 2) to set up the temporary connection.

The association of temporary connections with server failures enables
the system to cope with more than one failure at the same time. Figure
6.11 shows a more complex example with two simultaneous server failures.
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Figure 6.10: Basic auto-recovery example for the inline topology

The establishment of temporary connections must take place in a secure
way. Thus, the pair of servers involved in the connection must get the
digital certificates of each other. This will enable them to perform the peer
authentication procedure during the Hello phase.

6.9.4 Auto-recovery function for the star topology

The auto-recovery function in this case is very similar to the one presented
for the inline topology. There are also two possible failures, which are de-
picted in figure 6.12. In addition to the server ID, a server is also represented
by its maximum DCS capacity, which specifies the maximum number of
connections the server can accept. This value is calculated considering the
resources available at the machine (memory, CPU, etc). The example in
figure 6.12 shows three servers able to act as intermediate nodes (servers 3,
6 and 9). For simplicity, we consider that the rest of the servers can only
accept one connection, which means that they can only act as end servers.
We must notice that the topology depicted in figure 6.12 is in fact a com-
bination of a simple star topology (one single star) and the inline topology.
The intermediate nodes located in the middle of the stars are organized fol-
lowing the inline arrangement. This feature will allow us to reuse here the
auto-recovery function developed for the inline case.

Ignacio González Oĺıas 90
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Figure 6.11: Advanced auto-recovery example for the inline topology

 

Figure 6.12: Possible failures in the star topology
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To have a better understanding about how the auto-recovery function for
the star case works, we must first briefly explain the intra-SG profile needed
to achieve this kind of arrangement. When a new node wants to join a 1-
connected SG based on the star topology, like the one shown in figure 6.12,
it runs the intra-SG auto-configuration procedure. The policy specifies that
the neighbor with a higher DCS capacity will be selected first, providing it
has not reached its maximum capacity. This server will be called the active
server of the SG. Thus, in our example, an incoming node will select server
9 to connect, since it is the active server (it has the higher DCS capacity
(6) and it has not reached the limit yet, because there are only 3 servers
connected to it).

The end server failure is again the easiest to deal with. The first server
that becomes aware of the failure sends a multicast Neighbor Response mes-
sage to advertise the change. An end server failure does not trigger further
actions. The rest of the servers in the SG only wait for the node to recover.

If an intermediate server failure is detected, i.e. the failure has affected
a node located in the middle of the star (server 6 in the example of figure
6.12), then the rest of the servers of the SG will react depending on their
location within the topology:

• End servers which are not directly connected to the inoperative one
(servers 2,4,8 and 10 in figure 6.12) do not perform any action.

• The rest of the intermediate servers present in the SG (servers 3 and
9 in figure 6.12) will behave as in the inline case, running the auto-
recovery function for the inline case described in the previous section.
End servers are ignored by intermediate servers when running this
function.

• End servers which are directly connected to the inoperative one (servers
5 and 7 in figure 6.12 must behave as if they were new unconfigured
nodes trying to join the SG. This means that they have to run the
intra-SG procedure to find the active server and connect to it.

Figure 6.13 shows the resulting temporary connections for the interme-
diate server failure depicted in figure 6.12. We can see how servers 5 and 7
connect to server 9 after running the intra-SG auto-configuration procedure,
since it is the active server.

As in the inline case, all the temporary connections created as a result
of a server failure must be associated with the failure, so that they can be
removed once the server in question has recovered.
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Figure 6.13: Auto-recovery example for the star topology
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Chapter 7

Conclusions and future work

7.1 Conclusions

The first goal of this thesis has been to upgrade the previous version of the
SCSP available at the laboratory. After re-implementing all the internal
buffers using the gdbm technology, we carried out some tests to measure the
performance of the new version. Results show that the replication speed has
been considerably improved. Furthermore, the enhanced prototype has a lin-
ear response to the growth in the number of initial entries. Since the former
version did not have such a linear response, it is rather difficult to estab-
lish a direct comparison between them in terms of speed. The improvement
factor defined in chapter 4 can be used to perform the comparison, but it
varies depending on the database size. This factor shows that the enhanced
version is about 60 times faster when databases of 100.000 records are used.

The packet loss problem detected in the former version has been solved
by eliminating all the points in the source code where packets were being
sent in bursts to the network.

Despite all these improvements, the SCSP prototype keeps performing
rather slowly for large databases. This means that it is still not suitable
to be used in our architecture, where we need to replicate initial databases
of 840.000 records (CSA size of 342 bytes) in a reasonable time. This task
would take around 75 minutes with our prototype. The reason is that the
protocol has a poor behavior for large database sizes. We conclude that
this is mainly due to two different limitations. The first one regards the
programming techniques used to implement the protocol (algorithms, data
structures, etc) and was the main limitation in the former version. However,
we consider that this factor has been minimized in the enhanced version
with the improvements described in chapter 4. The second one is related to
the SCSP itself. It has some design deficiencies that make it not suitable
to operate with large databases. The most significant deficiencies can be
summarized as follows:
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• During the Cache Summarize phase, peers exchange summaries of their
databases. Every time one of the servers goes down, this phase has
to be performed again. Servers exchange messages filled with CSAS
records. At any given time, both peers have at most one outstanding
message. For large database sizes, this message exchange takes a long
time. One possible solution would be the addition of a windowing
system so that many messages could be sent at the same time.

• To acknowledge the reception of a CSA record, the recipient must
send the entire CSAS record to the sender. This mechanism produces
a huge amount of data to be transferred over the network. This could
be solved by adding some kind of numbering to the CSA records, so
that we could acknowledge ranges of records with the same message.

We must also point out that the SCSP is very similar to the OSPF
protocol. Therefore, the results obtained in this document can be used to
identify analogous deficiencies in OSPF. This could be useful in order to
improve the performance in future versions of that protocol.

In order to address the lack of security in the architecture, we have
implemented some security countermeasures, which are described in chapter
5. Among them, the most important is the SCSP security module, used to
afford security to the SCSP traffic. We have chosen the Rijndael algorithm
to implement the confidentiality service. The reason is that this algorithm
is considered the most secure nowadays and it has been recently selected
as the AES. Furthermore, it is the algorithm proposed to secure the future
3G networks. We have selected HMAC-SHA as the default authentication
algorithm, as SHA has proven to be more secure than the obsolete MD5.

We have also performed some tests to show how the addition of these
security services worsens the speed of the SCSP. As we expected, and despite
the obvious overload due to the cryptographic computations, the use of the
module does not dramatically affect the overall operation. In the worst
scenario, where all SCSP messages are afforded both confidentiality and
authentication/integrity, there is a 25% increment in the replication time.
Even though we can tolerate this value, we could also reduce it by selecting
which SCSP messages types we want to secure.

We have also presented an alternative SCSP security module based on
IPSec. However, we have not been able to test the performance of this
approach because there is no IPSec implementation available at the lab. We
assume that the overload in this case would be very similar to the built-in
solution providing the same security services and the same cryptographic
algorithms are used. Nevertheless, we recommend the use of the built-in
solution because it does not depend on whether our network supports IPSec
and it provides a smart solution to the key distribution problem. Moreover,
it allows us to select different security services for different message types.
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this is not possible with the IPSec based module, which considers all the
application traffic as a whole.

The auto-configuration module described in chapter 6 provides two basic
services: intra-SG and inter-SG. The former one can be used to expand the
existing SGs. The latter is aimed to facilitate the on-demand creation of
new SGs. The basic version of the module deals with failures in a static
way. Servers are connected by redundant links so that no reconfiguration is
required when a failure occurs. The k-connectivity factor of the SG deter-
mines the maximum number of failures needed to disconnect the SG. The
disadvantage of this approach is that it is not optimal in terms of traffic
load.

To address this problem, we present an alternative auto-recovery proce-
dure to be used in conjunction with the intra-SG and inter-SG services. This
new approach minimizes the network load by using 1-connected SGs, which
do not introduce any redundancy. The auto-recovery service is responsible
for dynamically reconfiguring the SG topology when a failure occurs.

7.2 Future work

As we stated earlier, we consider that our SCSP prototype has almost
reached the upper limit in terms of speed and performance optimization.
Even though we could still improve some parts of the implementation, the
replication times would not be significantly improved.

This leads to the conclusion that further work should focus on looking for
new replication schemes for our architecture. We propose here two different
approaches:

• Test other existing mechanisms. Many commercial and non-commercial
database packages provide their own replication mechanisms, so that
they are responsible for guaranteeing that remote databases have con-
sistent information. They do not require an external synchronization
protocol, since it is already included in the packages.

• Based on our SCSP experience, we can document all the SCSP limi-
tations when large databases are being synchronized. This work could
be used in the future to develop a new replication protocol, lighter
than the SCSP, suitable for working with arbitrarily sized databases.

The IPSec based security module for SCSP could also be tested in or-
der to establish a direct comparison between this proposal and the built-in
module. Providing it proves to be an interesting approach in terms of perfor-
mance, it requires further work to become operative. We just presented the
basic proposal in this thesis, but there are still many issues to address, such
as the key distribution mechanism. Furthermore, we would need to ensure
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that this solution is fully compatible with the auto-configuration module
proposed in chapter 6.

Finally, the future work regarding the auto-configuration module should
focus on the auto-recovery procedure. While the intra-SG and inter-SG
services have been fully tested, we only carried out very basic tests with
that procedure. Furthermore, the procedure could be added new features to
improve its functionality. For instance, we could use SCSP itself to replicate
the SG topology information instead of using multicast messages for that
purpose.
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Appendix A

Cryptographic libraries

To implement the countermeasures proposed in this document, we have to
develop some security functions that can be accessed by the existing SCSP
implementation. Since the current code is written in C, we must use a
cryptographic library available for the same programming language.

A.1 OpenSSL

OpenSSL 0.9.6b is a set of freely available cryptographic libraries that im-
plements many of the features needed to build our solutions. The OpenSSL
project is aimed to develop an Open Source implementation of SSL (Security
Sockets Layer v2/v3) and TLS (Transport Layer Security v1) protocols, and
it uses the SSLeay library developed by Eric A. Young and Tim J. Hudson
to accomplish the required cryptographic tasks.

The library provides support for:

• Hashing functions: MD2, MD4, MD5, RIPEMD-160, SHA, SHA-1.

• Message Authentication Codes (HMAC).

• Symmetric cryptography: DES, IDEA, BLOWFISH, CAST, RC2,
RC4, RC5.

• Public key cryptography: RSA, DH, DSA.

• X.509v3 certificate creation and handling.

• Creation of CRLs and CSRs.

• Data encoding: PEM format.
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A.2 Cryptlib

Cryptlib 3.0 is a security toolkit aimed to provide an easy mechanism to
add encryption and authentication services to applications. It provides im-
plementations for the most popular symmetric and asymmetric algorithms,
including the Rijndael cipher, recently selected for the AES standard. Since
most of the algorithms are written in assembly language, the library of-
fers a good performance and is suitable to work even for high-bandwidth
applications such as video/audio and online network encryption.

A.3 Algorithm benchmarks

This section provides speed benchmarks for the cryptographic algorithms
used in the implementation of the security module. All tests were performed
in WS18. The main features of that machine can be found in table 4.2.
Tables A.1 and A.2 show the obtained results.

Algorithm Library Bytes
pro-
cessed

Time
(sec-
onds)

Megabytes(106

bytes)/second

SHA-1 OpenSSL
0.9.6b

107 0,772 13,850

HMAC-SHA-1
(160 bits key)

Cryptlib
3.0 beta

107 0,922 10,846

Rijndael-128
(Encryption)

Cryptlib
3.0 beta

107 2,151 4,649

Rijndael-128
(Decryption)

Cryptlib
3.0 beta

107 2,314 4,321

Table A.1: HMAC-SHA-1 and Rijndael performance benchmarks

RSA-1149 (SHA-1) signature and verification performance
Library used: OpenSSL 0.9.6b
Data size (bytes) Signature time

(milliseconds)
Verification time
(milliseconds)

100 71 5
1000 70 5
10000 71 5
100000 78 11

Table A.2: RSA performance benchmarks
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Appendix B

Auto-configuration module
SDL models

This appendix presents the SDL models developed to clarify the operation of
the intra-SG and inter-SG auto-configuration procedures.

B.1 Intra-SG auto-configuration SDL model

This model considers a system with three different processes:

• Unconfigured SCSP. Represents an unconfigured SCSP server run-
ning the auto-configuration procedure.

• Configured SCSP. An existing SCSP server.

• Application layer. Represents the entity (protocol, application, etc)
that is using the SCSP replication services.

A general view of the system including these processes and the set of sig-
nals used to communicate them is depicted in figure B.1. Figures B.2-B.7
show the SDL model, and a description of the signals is given in table B.1.
The mechanism used to obtain digital certificates is out of the scope of the
model and belongs to the system’s environment. The interaction between
the Application layer process and that mechanism is represented by the
Query Certificates and Obtain Certificates signals.

B.2 Inter-SG auto-configuration SDL model

The SDL model for the inter-SG auto-configuration procedure is based on
a system with three different processes:

• Master Server. Represents the server which receives the Create SG
signal.
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• SCSP Server. An existing SCSP server.

• Application layer. Represents the entity (protocol, application, etc)
that is using the SCSP replication services.

Figure B.8 depicts a general view of the system. Figures B.9-B.14 show the
SDL model, and a description of the new signals is given in table B.2.

 

Figure B.1: Intra SG auto-configuration system
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Figure B.2: Unconfigured SCSP process

 

Figure B.3: Configured SCSP process
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Figure B.4: Application Layer process (intra-SG)

 

Figure B.5: Discover Neighbors procedure
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Figure B.6: Run Decision Function procedure (intra-SG)

 

Figure B.7: Request Certificates procedure
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Signal Description
Join SG (SG ID) Sent by the application layer to the control inter-

face to trigger the intra-SG auto-configuration
procedure. SG ID identifies the SG the server
has to join.

Neighbor Discovery
(IP Multicast Address,
TTL, SG ID)

Multicast message sent by the unconfigured
server to discover remote servers belonging to
SG ID. IP multicast address is the SCSP auto-
configuration assigned address. TTL is used to
limit the scope of the message. The Neighbor
Discovery message format is depicted in figure
6.3.

Neighbor Response
(Server ID,
Server Info)

Message sent by Server ID in response to a
Neighbor Discovery message. The message car-
ries information about the server and its DCSs
(Server Info). The format of this message is
shown in figure 6.3.

Initial Hello
(Sender Address,
Remote Address,
SG ID)

SCSP Hello message sent by the unconfigured
server to the remote selected peers. The recip-
ient of this message detects that it comes from
an unknown server and runs a procedure to add
the server to its set of peers.

Certificate Request
(IP Address List)

Sent by SCSP to the application layer (using
the control interface) to request the certificates
of the servers identified by the IP addresses in
IP Address List.

Query Certificate
(IP Address List)

Query sent by the application layer to the ap-
propriate entity (usually a certificate server)
to obtain the certificates corresponding to
IP Address List.

Obtain Certificates
(IP Address List,
Certificate List)

Sent to the application layer in response to a
Query Certificate message. Certificate List con-
tains the requested digital certificates.

Certificate Response
(IP Address List,
Certificate Path List)

Used by the application layer to inform SCSP
about the file system paths where the cer-
tificates corresponding to IP Address List have
been stored.

Table B.1: Signal description for the Intra-SG SDL model
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Figure B.8: Inter SG auto-configuration system

 

Figure B.9: Master Server process
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Figure B.10: SCSP Server process

 

Figure B.11: Application Layer process (inter-SG)
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Figure B.12: Discover Gateways procedure

 

Figure B.13: Run Decision Function procedure (inter-SG)

Ignacio González Oĺıas 108



Auto-configuration module SDL models HUT-Networking Laboratory

Signal Description
Create SG
(SG ID List)

Sent by the application layer to the control inter-
face to trigger the inter-SG auto-configuration
procedure. SG ID List identifies the SGs that
will be involved in the new group.

Gateway Discovery
(IP Multicast Address,
TTL, SG ID List)

Multicast message sent by the Master server
to discover remote gateways. IP multicast ad-
dress is the SCSP auto-configuration assigned
address. TTL is used to limit the scope of the
message. The Gateway Discovery message for-
mat is depicted in figure 6.4.

Gateway Response
(Server ID,
Server Info)

Message sent by Server ID in response to a
Gateway Discovery message. The message car-
ries both information about the gateway and
about the SGs it belongs to. The format of this
message is shown in figure 6.4.

Authorize SG Request
(SG ID List)

This message is sent by SCSP to the application
layer to check whether the server is authorized
to share information with all the SGs identified
in SG ID List. This is needed to ensure that the
gateway is allowed to join the new SG.

Authorize SG Response
(Boolean)

Message sent by the application layer to SCSP
in response to a Authorize SG Request message.
The Boolean parameter tells SCSP whether the
server is authorized to take part in the new SG
or not.

Table B.2: Signal description for the Inter-SG SDL model
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Figure B.14: Run Topology Management Function procedure
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