
Flow-level modeling and analysis of
dynamic TDD in LTE

Pasi Lassila, Aleksi Penttinen, Samuli Aalto
Aalto University School of Electrical Engineering, Otakaari 5, FI-02150, Finland

Email: firstname.lastname@tkk.fi

Abstract—We present a queueing analysis of elastic traffic
performance in LTE systems using the dynamic TDD scheme.
Both fair resource sharing and performance optimization using
different approaches are considered. We first analyze the system
without any restrictions in the resource allocation between the
uplink and downlink and demonstrate that a simple dynamic
scheduling scheme (called here dynamic-PS), where the allocation
for a single flow is always inversely proportional to the total
number active flows, shows good performance and fairness
properties compared with any optimized static allocation scheme.
We also consider the achievable gains with more detailed traffic
statistics, including the application of the Gittins index policy
and SRPT. However, the actual LTE TDD system only supports
a discrete set of possible allocations in the capacity region.
We then investigate how these allocation constraints impact the
performance of the discretized variant of the dynamic-PS policy
by using different approaches. To optimize the performance
we apply MDP for exponential service times and, for example,
derive a structural result that the optimal policy always selects
among two corner points of the capacity region. Also, an SRPT-
like heuristic scheduling algorithm is given. The analytical and
simulated results suggest that the discrete dynamic-PS policy is
robust against impact of different service time distributions, fair
and performs reasonably well.

I. INTRODUCTION

Modern cellular systems (LTE) allow the radio resources
to be scheduled very flexibly. The scheduling interval is also
very short (in the order of milliseconds) and the scheduler
has state information allowing the selection of the coding
and modulation to match the state of the users’ channels.
Also, the 3GPP standards for LTE specify the possibility
of using the same frequency band for transmitting both the
uplink (UL) and downlink (DL) traffic, i.e., the so-called TDD
(time division duplexing) mode. The dynamic TDD scheme
refers to the possibility of making the adaptation dynamically
based on traffic conditions, which can, e.g., lead to improved
downloading performance for elastic TCP file transfers [1].

Performance of elastic traffic in a given system manifests
itself at the so-called flow level (with a much longer time scale
compared to the scheduling interval), where the system must
be considered in a dynamic setting with random-sized flows
arriving stochastically. Flow-level models for cellular systems
typically focus on only downlink traffic or uplink traffic,
see, e.g., [2]–[5]. The performance of time-slot level resource
allocation in dynamic TDD has been considered recently, e.g.,
in [1], [6], [7]. However, these studies fail to account for the
inherently random nature of the active user population.

In this paper we model and analyze the flow-level perfor-
mance of elastic data traffic in a cellular system operating
under dynamic TDD. To gain preliminary insights to the
problem, we first consider the simplified case where the
allocation of time between the two classes (UL and DL) can be
done arbitrarily, which leads to standard (multi-class) M/G/1
models. We consider two fair policies which correspond to
PS-models at the flow level. In the static-PS policy, the time
allocation is fixed between the classes but can be optimized.
We note that this optimization has been recently considered
in [8] for a system with both streaming and elastic flows.
The static-PS policy also represents the currently considered
approaches in 3GPP standardization [1]. However, the optimal
static policy can be improved by making the division of time
more dynamic so that the allocation is always proportional to
the number of active flows in the classes. This constitutes the
dynamic-PS policy and it can be shown to have always a better
performance than the static-PS policy. To further optimize the
mean delay performance, we introduce the optimal distance-
aware non-anticipating policy, based on the Gittins index
policy [9]–[11], as well as the globally optimal SRPT policy
[12]. For the special case with exponential file sizes, we
show that the Gittins index policy corresponds to a specific
priority policy for which the mean delay analysis can be
done analytically. The Gittins index policy provides one point
of comparison for what can be achieved with more detailed
information about the flows and the optimal SRPT policy
provides the absolute lower bound. Our main finding here
is that the dynamic-PS policy represents a practical, simple
and robust approach showing good performance and fairness
properties compared with the static-PS policy. Also, the results
demonstrate that the benefits of having SRPT-like knowledge
of remaining service times are considerable, although at the
expense of increased unfairness between UL/DL performance.

In practice the allocation of time between the two classes
cannot be done in an arbitrary manner but the system is con-
strained to a small set of possible allocations, see [1]. In this
more realistic case with the allocation constraints, the problem
cannot any longer be mapped to a standard M/G/1 queue
and no theoretical results are available for determining the
optimal performance. The region of feasible time allocations
can be interpreted as the capacity region, and our problem is
similar to issues already analyzed for bandwidth sharing in
wired and wireless networks with different capacity regions
[13], [14]. Motivated by the robust properties of dynamic-



PS in the unconstrained case, we first present the discrete
variant of the dynamic-PS policy. In addition, we apply the
MDP (Markov Decision Processes) theory [15] to optimize
the scheduling by policy iteration under exponential service
times and knowledge of only the number of flows in the
classes. We obtain an interesting structural result that the
optimal policy always uses either of the extreme points (corner
points) in the allocation region. Third, we apply results for
Balanced Fairness in order to obtain an insensitive bound for
the performance that approximates the discrete dynamic PS-
policy [13]. Here we utilize the fact that the capacity region
of our system can be interpreted as the same as for a tree
network with two access links and one common link having
fixed capacities. Finally, we develop an SRPT-like heuristic
that is based on the obtained insights. Our results indicate that
the performance of the discrete dynamic-PS policy is close to
that of the unconstrained dynamic-PS and it cannot be much
improved by purely knowing the number of flows. Only after
having detailed SRPT-like information, the performance can
still be significantly improved. Thus, the discrete dynamic-PS
policy is indeed a practical approach for realizing flow-level
scheduling in a dynamic TDD system.

Note that we are in this paper focusing on the case, where
the scheduler does not utilize instantaneous channel state
information. Flow-level analysis of channel aware schedulers
is difficult as the capacity region becomes state dependent.
Stability of such schedulers has been considered in [16]
and optimization jointly with size-based information poses a
challenging trade-off, see [17], [18].

The paper is organized as follows. The model is introduced
in Section II. In Section III we consider the system without
the allocation constraints and obtain preliminary insights to the
problem. Section IV contains the analysis of the constrained
system. Conclusions are given in Section V.

II. THE SYSTEM MODEL

Consider a single base station that is serving the users
within its coverage area. In the model, we will jointly consider
both uplink and downlink transmissions from these users. The
traffic consists of elastic flows representing, e.g., file transfers.
Each flow is associated with a particular user, and thus
subsequently we may use the words user/flow interchangeably.

The uplink and downlink flows are represented as classes,
and in each class, flows arrive according to a Poisson process
with rate λu for the uplink class and with rate λd for
the downlink class, respectively. To characterize the random
variables for service times of the classes, denoted by Su

(uplink) and Sd (downlink), we use a similar spatial model as
in [2], [19]. Users are distributed inside the cell according to a
spatial Poisson process. Consider a user, say from the uplink
class, with a random size Xu and at a random distance R
(which is independent of Xu). The service time Su is defined
as Xu/cu(R), where the function cu(r) represents the mean
achievable rate of a user at distance r (when scheduled). The
service time for the downlink class, Sd, is defined in the same
way. The generic capacity function c(r) for the rate at distance

Fig. 1. The region of feasible allocations in the dynamic TDD system.

r can be, for instance, defined as

c(r) = min{C0, (r0/r)
α}, (1)

where C0 is the maximum achievable rate within a disk of
radius r0 around the base station, and outside of this, the rate
decays according to the path loss exponent α outside. The
parameters C0, r0 and α can be different for the uplink and
downlink classes, resulting in different capacity functions for
the uplink and the downlink. Thus, we assume a time scale
separation between the time slot level and the flow level, as
in [2]–[5], [19]. Typically, the service times Su and Sd do not
have identical distributions, i.e., they are asymmetric.

Let (ϕu, ϕd) denote the fraction of time allocated to the
uplink and the downlink flows, respectively. The discrete set
of possible (time slot level) allocations of dynamic TDD
in LTE are indicated by black circles in Figure 1. Let us
denote this set of possible allocations for the uplink class
by Φu = {ϕu,1, . . . , ϕu,K}, where it is assumed that ϕu,1 <
. . . < ϕu,K . Furthermore, we denote by ϕmin

u = ϕu,1 and
ϕmax
u = ϕu,K . Of special importance are the corner points,

denoted by (ϕmin
u , 1 − ϕmin

u ) and (ϕmax
u , 1 − ϕmax

u ). For the
dynamic TDD in LTE, K = 5, ϕmin

u = 1/10, and ϕmax
u = 3/5

[1]. The colored area in Figure 1 (including all the points
along the line ϕu + ϕd = 1 with ϕu ∈ [ϕmin

u , ϕmax
u ]) gives

the capacity region at the flow level, which can be realized by
time sharing at a faster time scale. The entire area under the
dashed line, representing ϕu + ϕd = 1, corresponds to the set
of feasible allocations without any constraints.

The load of uplink flows, ρu, is given by ρu = λuE[Su] and
similarly the load of downlink flows equals ρd = λdE[Sd]. A
necessary condition for the system to be stable is

ρ = ρu + ρd < 1, ρu < ϕmax
u , and ρd < 1− ϕmin

u .

However, depending on the policy and the distribution of the
service time requirements this may not be sufficient. Further-
more, the performance can be optimized with an appropriate
scheduling policy.

III. ANALYSIS OF UNCONSTRAINED DYNAMIC TDD

Here we discuss the simplified case where we assume that
the time allocation (ϕu, ϕd) can be done in an unconstrained
manner, i.e., it can be selected freely along the line ϕu+ϕd = 1



in Figure 1. Under this assumption, the system corresponds to
a standard M/G/1 queue with two traffic classes and existing
results can be applied to analyze the system. To study the
performance of the system, our main focus is on minimizing
the mean flow delay by scheduling.

A. Scheduling under fair sharing

Here we consider simple fair policies, which offer a rea-
sonable practical approach for realizing the scheduling in the
system.

Optimal static-PS: In the static-PS policy, the time alloca-
tion between the classes is defined in a static manner, and the
base station is assumed to know the loads of the classes ρu and
ρd. Additionally, it is assumed that within each class the sched-
uler at the time-slot level shares the resources in a round-robin
manner, which at the flow level can be modeled as a processor-
sharing (PS) queue [20]. Since the time allocation between
the classes is static, the system reduces to two independent
M/G/1 PS queues. It is straightforward to minimize the mean
number of flows E[N ] = ρu/(ϕu − ρu) + ρd/(1 − ϕu − ρd)
with respect to ϕu, which yields as the optimal resource
sharing ϕu = (

√
ρu + ρu

√
ρd − √

ρuρd)/(
√
ρd +

√
ρu) and

the performance of the optimal static-PS policy

E[NS−PS] =

(√
ρd +

√
ρu
)2

1− ρ
.

The performance is also insensitive to the service time distri-
butions. This also represents a practical comparison policy for
our study, as it represents the currently considered approaches
in 3GPP standardization, see [1].

Dynamic-PS: To improve the static policy, in the dynamic-
PS policy the base station allocates dynamically the fraction
of time between each class to be proportional to the number
of flows in the class, i.e., ϕu = Nu/(Nu + Nd) with Nu

and Nd denoting the number of uplink and dowlink flows.
Within each class users are served according to PS. In this
case, the total number of customers evolves as in a single class
M/G/1 PS queue with joint arrival rate λu+λd and the service
time is distributed according to Su or Sd with probabilities
λu/(λu+λd) and λd/(λu+λd), respectively. Thus, the mean
number of flows in the system under the dynamic-PS policy,
E[ND−PS], is given by

E[ND−PS] =
ρ

1− ρ
.

Again, the performance is insensitive to the service time
distribution. In addition, it is easy to see that E[ND−PS] <
E[NS−PS] for any stable load.

Note that the dynamic-PS policy only requires knowledge
about the number of active flows, and based on that, dynam-
ically adapts the service. Also, this information may actually
be easier to estimate than the loads of the classes, as is
required in the static-PS policy. However, the drawback is that
the allocation changes as the number of active flows varies
randomly, i.e., the time scale of scheduling decisions is faster
than in the static-PS policy.

B. Optimization of the mean delay
The above PS policies are simple and assume relatively little

information about the traffic. To optimize the performance it is
possible to apply size-based scheduling where the underlying
idea is to favor smaller flows in order to efficiently minimize
the number of flows in the system, which also minimizes the
mean flow delay. Next we consider two such approaches.

Gittins index: First we consider the case, where the base
station only has information on how the service of the flows
has progressed up to time t, i.e., information on how much is
remaining is not available. Hence, we speak about so-called
non-anticipating policies. Within this family of policies, the
Gittins index approach yields the optimal policy for minimiz-
ing the mean flow-delay in the M/G/1 queue with multiple
classes [9]–[11].

The Gittins index (GI) policy is a preemptive policy where
the scheduler always serves the flow with the highest Gittins
index. The general form of the policy is rather implicit, see,
e.g. [19] for its definition. It requires knowledge of the attained
service from each flow and it depends on the exact distribution
of the service times Su and Sd. By definition the service
time for uplink flows at distance R is Su = Xu/cu(R), and
correspondingly for the downlink flows, Sd = Xd/cd(R). In
addition to the notion of uplink/dowlink flows representing
classes, the random distance R of a user forms a continuous
valued class index for the flows, i.e., we can consider an
M/G/1 queue where the class is defined by information about
whether the flow is uplink/downlink and its distance. The
Gittins index then allows us to obtain the optimal distance-
aware non-anticipating policy.

Unfortunately, for general flow size distributions of Xu

and Xd there are no analytical results available for the
performance. However, if we assume that Xu and Xd obey
exponential distributions with mean values E[Xu] and E[Xd],
respectively, the Gittins index is simply the inverse of the mean
service time, i.e., 1/E[Su,r] = cu(r)/E[Xu] for an uplink flow
at distance r, and correspondingly 1/E[Sd,r] = cd(r)/E[Xd]
for a downlink flow at distance r. Thus, Gittins index policy
becomes a greedy priority policy with respect to the service
rate of the flow, which is also referred to as the cµ-rule, cf.
[21]. By applying the well known results for priority queues
[20], we conclude that the mean delay for an uplink flow
with the receiving terminal located at distance r from the base
station is as follows:

E[TGI
u,r] =

E[S∗
u,r]

(1− σu,r)2
+

E[Su,r]

1− σu,r
,

=
E[S∗

u,r]

(1− σu,r)2
+

E[Xu]

cu(r)(1− σu,r)
.

Here, σu,r is the expected load seen by an uplink flow at
distance r, and it depends on the uplink flows up to distance
r and downlink flows up to distance s(r) defined as

s(r) = sup{x : E[Sd,x] < E[Su,r]},

i.e., all these uplink and downlink flows have a higher priority
than the considered uplink flow at r. The expression for σu,r



reads as

σu,r = λu

∫ r

0

E[Su,z]dFR(z) + λd

∫ s(r)

0

E[Sd,z]dFR(z),

= λu E[Xu]

∫ r

0

dFR(z)

cu(z)
+ λd E[Xd]

∫ s(r)

0

dFR(z)

cd(z)
,

where dFR(z) = 2z dz, and S∗
r refers to the so called

remaining service time for terminals up to distance r with
mean

E[S∗
u,r]=

λu

2

∫ r

0

E[S2
u,z]dFR(z) +

λd

2

∫ s(r)

0

E[S2
d,z]dFR(z),

=λuE[Xu]
2

∫ r

0

dFR(z)

c2u(z)
+ λdE[Xd]

2

∫ s(r)

0

dFR(z)

c2d(z)
.

The mean delay of uplink flows is given by

E[TGI
u ] =

∫ 1

0

E[TGI(u, r)] dFR(r).

Correspondingly, we have similar equations for the conditional
delay of the downlink flows E[TGI

d,r]. The overall performance
expressed as the mean number of flows in the system is simply
E[NGI] = λuE[T

GI
u ] + λdE[T

GI
d ].

While the Gittins index policy requires very detailed knowl-
edge, some of which certainly can not be known with very
good accuracy, for example, the distribution of the mean
service rates over different distances, it serves as a useful
bound against which the more robust PS policies can be
compared.

SRPT: Finally, assume that the base station has exact
information about the remaining service time of each flow,
which implies that the base station knows both the remaining
size in bits as well as the service rate (i.e., the location of
the user in our model). Then the system is represented by
a standard M/G/1 queue (as in the case with dynamic-PS)
for which shortest-remaining-processing-time (SRPT) is the
optimal policy for minimizing the mean flow delay [12].

Similarly as in the case of the dynamic PS policy, the system
behaves as an M/G/1 queue with a joint arrival rate λu + λd

and the density of the service time distribution, f(t), is the
weighted combination of the uplink and dowlink service time
densities, fu(t) and fd(t),

f(t) =
λu

λu + λd
fu(t) +

λd

λu + λd
fd(t).

It is easy to see that

fu(t) =

∫ 1

0

fXu(cu(r)t)cu(r)fR(r)dr,

and correspondingly for fd(t).
The conditional mean delay formula for SRPT originates

from [22]:

E[T SRPT(t)] =
λE[(S ∧ t)2]

2(1− ρ(t))2
+

∫ t

0

1

1− ρ(s)
ds,

where S ∧ t = min{S, t} and ρ(t) refers to ρ(t) =
λ
∫ t

0
sf(s) ds. The mean delay of uplink flows is then given

by

E[T SRPT
u ] =

∫ ∞

0

E[T SRPT(t)]fu(t)dt,

and similarly for the mean delay of downlink flows E[T SRPT
d ].

Finally, the total mean number of flows is obtained from
E[NSRPT] = λuE[T

SRPT
u ] + λdE[T

SRPT
d ].

Again, the assumptions of the SRPT policy may be some-
what restrictive in practice (complete knowledge of the re-
maining sizes in bits as well as the service rate of a given
flow), but it serves as the absolute lower bound in terms of
the mean delay under any scheduling discipline.

C. Comparison of the policies

Here we illustrate the analytical results and compare the
different scheduling policies. The parameter values are chosen
to reflect realistic system values. As the capacity function
for the flows we use the simple form (1). The cell radius is
assumed to be 100 m and the radius inside which the maximum
rate is achieved is 10 m, and in our unit circle model this
corresponds to having r0 = 10/100 = 0.1. Additionally, path
loss is α = 3. Both r0 and α were the same for both uplink and
downlink. In LTE systems the uplink and downlink rates are
asymmetric and thus we use in the downlink the maximum
rate Cd = 200 Mbps and in the uplink the maximum rate
Cu = 100 Mbps. The traffic parameters are also asymmetric
with respect to the file sizes so that in the downlink the sizes
have mean E[Xd] = 200 KB and in the uplink E[Xu] = 20
KB. This reflects the fact that users are typically downloading
larger flows/files than uploading. Correspondingly, this gives
for the mean service time requirements E[Su] = 0.66 s
and E[Sd] = 3.28 s, respectively, i.e., the asymmetry in the
service time requirement equals 5. For the arrival rates we
consider two settings. In the first one, the arrival rate of flows
in the uplink and downlink are equal, λu = λd, reflecting
roughly that every TCP file download results actually in a
bidirectional flow. To increase the load, the arrival rate is
increased uniformly. In the other case, the arrival rates are
asymmetric in order to see the impact of this. Specifically, we
fix ρu = 0.2 (giving λu = 0.31) and vary ρd.

Of main importance for our insights are how the poli-
cies perform compared with each other. Thus, for the
overall performance we consider the ratio of the mean
number of customers relative to the dynamic PS policy,
i.e., the ratios E[NS−PS]/E[ND−PS],E[NGI]/E[ND−PS] and
E[NSRPT]/E[ND−PS] (due to Little’s result, the ratio of the
mean number of flows is equal to the ratio of the mean
delays). This is depicted as a function of the load ρ in
Figure 2 for the different policies (S-PS = optimal static-
PS, D-PS = dynamic-PS, GI = Gittins). In the figure, the
solid lines correspond to the symmetric arrival rate scenario,
while the dashed lines are the results of the asymmetric arrival
rate scenario. From the figure, we observe that the dynamic-
PS policy is able to perform remarkably well; it gives a



SRPT

GI

S-PS

D-PS

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Ρ

Pe
rf

or
m

an
ce

ra
tio

Fig. 2. The relative performance with respect to the dynamic-PS policy for
the different policies. The solid and the dashed lines correspond to the results
for the symmetric and asymmetric scenarios, respectively.

significant improvement over the static-PS approach, in fact
by a factor that equals (

√
ρd +

√
ρu)

2/(ρd + ρu) > 1. Note
that in the symmetric arrival rate scenario, this becomes a
constant, independent of the arrival rate. Also, the dynamic-
PS policy with very limited information (number of flows in
uplink and downlink) is still able to perform reasonably well
against the Gittins index policy that itself depends on quite
specific assumptions. Nevertheless, the performance gap to the
optimal SRPT policy increases quickly with the load showing
the potential usefulness of exploiting size information. These
conclusions hold for both the symmetric and the asymmetric
arrival rate scenarios; in fact, only the static PS result is clearly
affected, while for the Gittins index case it can be barely seen
and for SRPT the results are virtually the same.

Next we investigate the fairness properties of the policies.
To this end we consider the ratio of the normalized uplink
and downlink mean delays E[Td]/E[Tu] · E[Su]/E[Sd], i.e.,
the uplink mean delay is normalized with respect to the uplink
mean service time (and similarly for the downlink case). This
is shown for the different policies in Figure 3, where the
solid lines and dashed lines correspond to the symmetric and
asymmetric arrival rate scenarios, respectively. As can be seen,
for both PS policies the ratio remains a constant indicating
that the fairness between uplink and downlink is unaffected
by load. The D-PS policy is in some sense ideally fair while
the static-PS policy favors the downlink class somewhat.
The Gittins index policy is highly unfair with respect to the
downlink due to its inherent strict priority mechanism (uplink
has a smaller service time requirement). SRPT is not quite as
bad, but still somewhat penalizes the downlink flows and the
unfairness increases with load. Again, only the static PS policy
is affected by the symmetric/asymmetric arrival rate setting,
while the others (Gittins index and SRPT) are hardly affected
at all.

IV. DYNAMIC TDD WITH ALLOCATION CONSTRAINTS

Here we analyze the impact of having practical constraints
in the time allocation between the classes. Under this as-
sumption, the system no longer corresponds to a standard
M/G/1 queue and the analysis becomes more challenging. We

SRPT

GI

D-PS

S-PS

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Ρ

N
or

m
al

iz
ed

de
la

y
ra

tio

Fig. 3. The ratio of the normalized downlink delay to the normalized uplink
delay for different policies as a function of load ρ. The solid and the dashed
lines correspond to the results for the symmetric and asymmetric scenarios,
respectively.

present the discrete D-PS policy, analyze its performance and
consider the performance optimization problem using different
techniques.

A. Discrete D-PS policy

We consider the setting where the scheduler can only
select the allocation from the discrete set of allocations, see
Figure 1. Recall that the set of feasible allocations for the
uplink is denoted by Φu. Previously, in the unconstrained
case, we observed that the D-PS policy offers a good tradeoff
between performance and fairness. Additionally, it is simple
requiring very little knowledge about the traffic. The discrete
D-PS policy simply rounds the ideal allocation to the closest
realizable allocation in the set Φu. More exactly, let ϕD-PS

u =
Nu/(Nu + Nd), i.e., the ideal allocation according to D-PS
policy. The uplink allocation ϕu is given by

ϕu = ϕu,n∗,

where

n∗ = argmin{|ϕu,n − ϕD-PS
u |, n = 1, . . . ,K}.

Note that under this policy the system loses its nice in-
sensitivity property. Thus, below we analyze the performance
separately with exponential service times and general service
times.

Exponential service times: Consider first the case where
the service times Su and Sd obey an exponential distribution.
The system under the discrete D-PS policy corresponds to a
2-dimensional Markov process with the transition rates

(Nu, Nd) → (Nu + 1, Nd) : λu,
(Nu, Nd) → (Nu, Nd + 1) : λd,
(Nu, Nd) → (Nu − 1, Nd) : ϕu/E[Su],
(Nu, Nd) → (Nu, Nd − 1) : (1− ϕu)/E[Sd].

The steady state distribution of the process can be then
obtained using standard numerical methods.

General service times: The above analysis specifically
relied on Markovian assumptions. Balanced Fairness (BF)
resource sharing scheme offers a tractable approach to eval-
uating the performance of fair sharing under general service



time requirements, see [13]. In our case, we can make the
following interpretation of the TDD system. First assume that,
in Figure 1, all time allocations along the line ϕu+ϕd = 1 with
ϕu ∈ [ϕmin

u , ϕmax
u ] can be realized (by using fast scheduling

between the discrete points). Then the system under BF can be
represented by a tree network with fixed capacities containing
two access links with capacities 1−ϕmin

u (downlink class) and
ϕmax
u (uplink class) and one shared link with unit capacity.
The explicit expression of the normalization constant for the

above two-branch tree network originates from [23] and reads

G(ρu, ρd) =
1

1− ρu − ρd

(
1− ρu
1− ρu

ϕmax
u

+
1− ρd

1− ρd

1−ϕmin
u

− 1

)
.

Then the mean number of uplink flows is given by

E[Nu] =
ρu

G(ρu, ρd)

∂G(ρu, ρd)

∂ρu
,

and similarly for the mean number of downlink flows. These
results can be used to obtain approximations of the impact of
general service time distributions on the fair sharing of the
capacity region, such as provided by the discrete D-PS policy
in the real TDD system with allocation constraints.

B. Optimizing the mean delay for exponential service times

Assume that the service times Su and Sd obey an ex-
ponential distribution. To optimize the performance we can
apply the policy iteration method from the MDP theory [15].
This enables numerical evaluation of the gains from optimal
allocation of (ϕu, ϕd) when only the number of flows in each
class is known. Without any allocation constraints, the optimal
policy would be a priority policy that gives priority to the class
with the highest departure rate, i.e., the well-known cµ-rule
[21]. By using policy iteration we can analyze how this is
affected by the introduction of the allocation constraints.

The policy improvement algorithm operates as follows. Let
n = (nu, nd) denote a generic state in the state space. In
each state, a decision ϕu can be made which of the possible
time allocations in Φu is going to be used. Furthermore, let
πi denote the policy in the i:th iteration of the algorithm, i.e.,
which action ϕu to take in each state and n̄u(π

i) and n̄d(π
i)

correspond to the mean number of uplink and downlink flows,
respectively, under the policy πi. Also, the transition rate from
state n to m when action ϕu is taken is given by qnm(ϕu).
The iterated policy when minimizing the number of flows in
the system is obtained from πi by performing for each state
n the following optimization

πi+1(n) = argmin
ϕu∈Φu

(
nu+nd − (n̄u(π

i) + n̄d(π
i))

+
∑
m

qnm(ϕu)vm(πi)

)
,

(2)

where vm(πi) gives the so-called relative value of state m
characterizing the difference in the expected mean number
of flows for a process that is started from initial state m
and a stationary process under the policy πi. The relative

values vm(πi) are obtained by solving the associated Howard
equations,

nu + nd−(n̄u(π
i) + n̄d(π

i))+∑
m

qnm(vm(πi)− vn(π
i)) = 0, ∀n.

Additionally, an initial policy π0 needs to be defined, which
in our numerical studies is given by the discrete D-PS policy,
as described in the previous section. Thus, starting from the
initial policy one first solves the associated relative values
after which the first iterated policy π1 is given by solving (2).
Given the new policy one again solves the new relative values
vm(π1), for all m, after which the next iterated policy π2 can
be solved. Eventually, the iteration converges and yields the
optimal policy π∗. Typically, the convergence happens after a
few iterations.

The policy iteration algorithm allows us to numerically
investigate how much performance can be optimized by just
knowing the number of flows in each class. However, the
properties of the policy iteration step (2) reveal additionally the
following interesting structural result that the optimal policy
is such that the optimal action in state n is to always choose
among the corner points of the capacity region.

Proposition 1: For exponential service times, the optimal
policy π∗(n) in any state n is given by π∗(n) = ϕmin

u or
π∗(n) = ϕmax

u . Thus, the optimal policy always uses either of
the extreme values in the set Φu.

Proof: In the policy iteration optimization step (2), for
any state n the only terms that are affected by the choice of
the action ϕu are the terms that correspond to a departure
of either an uplink or downlink flow. Thus, the minimization
corresponds to determining (the dependence on πi has been
omitted for clarity)

π∗(n) = argmin
ϕu∈Φu

(
ϕu/Su(vnu−1,nd

− vnu,nd
)

+ (1− ϕu)/Sd(vnu,nd−1 − vnu,nd
)

)
.

The above function is linear with respect to ϕu and thus the
minimum value is obtained at either of the extreme values
of ϕu, i.e., π∗(n) = ϕmin

u or π∗(n) = ϕmax
u . This holds at

every iteration step of the policy iteration algorithm, which
completes the proof.

C. SRPT-like heuristic

As shown above, for exponential service times, the op-
timized policy always uses either of the corner points for
allocation. This is plausibly also a good principle even under
general service times. On the other hand, the SRPT principle
is that one always concentrates the service on those jobs that
have the shortest remaining service. These observations lead
us to an SRPT-like heuristic where we serve in both classes the
shortest flow (in terms of remaining service time) and allocate
the largest possible rate to the class with the smallest flow,
in order to get rid that flow as quickly as possible under the
allocation constraints.



D. Numerical results

Next we provide some illustrative numerical examples. We
consider the same setting as earlier in Section III-C with
symmetric arrival rates in both classes, but we assume that the
service times are exponentially distributed with mean E[Su]
and E[Sd].

We first consider the overall performance in terms of the
total mean number of flows in the system. Figure 4 (upper
panel) shows, as a function of the load ρ, the ratio of the
mean number of flows for the different policies operating in
the constrained capacity region relative to the mean number
of flows for the unconstrained D-PS policy. Thus, the figure
depicts the loss in performance (in terms of mean number
of flows) due to the allocation constraints compared with the
unconstrained D-PS policy. The performance of discrete D-
PS policy is never very far (at most about 20% worse) from
D-PS and the policy iteration (MDP in the figure) cannot
improve much the performance. The MDP results have been
obtained after 5 iteration steps when starting from the discrete
D-PS policy. The Balanced Fairness (BF in the figure) result
shows what to expect under general service time distributions.
Again, using SRPT-like size information (SRPT heuristic in
the figure) can offer a significant gain, especially at moderate
loads, but our heuristic may favor uplink flows too much at
higher loads. This becomes clear in Figure 4 (lower panel),
which shows the normalized delay ratio (recall our definition
for this from Section III-C) for the different policies; indeed,
the SRPT heuristic unfairness starts to increase quickly with
load. However, all the other fair policies (BF and discrete
D-PS) are, as expected, close to ideal in term of fairness.
Interestingly, the policy iteration method also results in a very
fair policy.

Finally, we make some observations on the properties of
the optimal policy that can be obtained using the policy
iteration algorithm. These results are actually obtained from an
asymmetric arrival rate setting with ρu = 0.05 and ρd = 0.85
in order to better visualize the observations. Figure 5 (left
panel) depicts the initial policy for our truncated state space
(truncated at 50 flows in both classes), i.e., the allocation
for ϕu under the discrete D-PS policy. The different colors
indicate the 5 possible actions. Of special importance are the
black (darkest shade) and yellow (lightest shade) areas that
represent the corner points in the capacity region; the yellow
area corresponds to the allocation (ϕu, ϕd) = (1/10, 9/10)
and the black area to (ϕu, ϕd) = (3/5, 2/5). Figure 5 (right
panel) presents the optimized policy after 5 steps of the policy
iteration algorithm and shows that indeed only the corner
points are used (as predicted by Proposition 1). Recall that
without the allocation constraints, the delay optimal policy
would be the cµ-rule. If one directly applies the cµ-rule to
the constrained capacity region, the optimal policy would be
to use either of the corner points (ϕu, ϕd) = (1/10, 9/10) or
(ϕu, ϕd) = (3/5, 2/5), depending on the parameters. In our
setting, this would correspond to (ϕu, ϕd) = (3/5, 2/5), i.e.,
in Figure 5 the area would be black (except on the y-axis).

BF

discrete D-PS

MDP

SRPT-heuristic

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ρ

Pe
rf

or
m

an
ce

ra
tio

BF

discrete D-PS

MDP

SRPT-heuristic

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Ρ

N
or

m
al

iz
ed

de
la

y
ra

tio

Fig. 4. The relative performance with respect to the unconstrained D-PS
policy for the different policies that operate in the constrained capacity region
(upper panel) and the ratio of the normalized downlink delay to the normalized
uplink delay for the different policies (lower panel).

0 10 20 30 40 50

0

10

20

30

40

50

UL class

D
L
-

cl
as

s

0 10 20 30 40 50

0

10

20

30

40

50

UL class

D
L
-

cl
as

s

Fig. 5. Illustration of the initial policy (left panel), i.e., the discrete D-
PS policy, and the optimized policy (right panel) after 5 iterations of the
policy iteration algorithm. Different colors indicate the allocation among the
5 possibilities. The black and the yellow areas correspond to the corner points
of the capacity region.

The shape of the area clearly suggests that the optimal policy
is characterized by a switching curve with an exponential form
(the turning towards y-axis is a border effect and due to the
truncation of the state space) and shows how the cµ-rule is
affected by the constraints in the capacity region.

V. CONCLUSIONS

We have considered the scheduling of flows (file transfers)
in a single cell using dynamic TDD for controlling the resource
allocation between the uplink and downlink traffic. A dynamic
model was derived that takes into account stochastically arriv-
ing flows distributed randomly in space and with random sizes.
The dynamic TDD resource allocation problem was modeled



as a scheduling problem in an M/G/1 queue with multiple
traffic classes. The objective was to gain insights to the
performance improvements achievable by dynamic adaptation
of the uplink/downlink resource allocation, and to assess the
impacts of practical constraints in the resource allocation.

To obtain preliminary insights, we first considered the case
where the time allocation between the uplink and downlink
can be done arbitrarily. We studied two fair policies (optimal
static PS and dynamic PS) and two delay optimal schedulers
(Gittins index and SRPT), which differ in the level of detail
required from the traffic characteristics. Notably for the Gittins
index policy, we established that for exponentially distributed
flow sizes the policy is equivalent to a specific priority system
with a continuous valued class index. Closed form expressions
were provided for the performance of all policies (PS and
SRPT results hold for arbitrary flow size distributions). In
summary, the dynamic-PS policy represents a practical, simple
and robust (recall the insensitivity property) approach show-
ing good performance and fairness properties compared with
the static-PS policy. Also, the results demonstrated that the
benefits of having SRPT-like knowledge of remaining service
time are considerable, but it increases unfairness between
downlink/uplink.

Then we considered the impacts of practical constraints on
the resource allocation between the uplink/dowlink. Motivated
by the promising properties of the dynamic-PS policy, we
presented the discrete dynamic-PS policy. The performance of
the discrete dynamic-PS policy was analyzed by solving the
steady state distribution of the corresponding Markov process
for exponentially distributed service times. For general service
time distributions, we applied results from Balanced Fairness,
relying on the special shape of the capacity region, to provide
an insensitive bound on the performance that can be used
to approximate the performance of the discrete dynamic-PS
policy. Also, for exponentially distributed service times we
used MDP theory to establish a structural result that even in the
system with allocation constraints, the optimal policy always
selects among the corner points of the capacity region. The
policy iteration algorithm was utilized to numerically evaluate
the achievable gain from just knowing the number of jobs
in the classes. Finally, based on the obtained insights, we
derived an SRPT-like heuristic. The results showed that the
performance of the discrete dynamic-PS policy is close to that
of the unconstrained dynamic-PS, and that only detailed SRPT-
like knowledge can significantly improve the performance,
although, again, at the expense of increased unfairness. Thus,
the discrete dynamic-PS policy is indeed a practical approach
for realizing flow-level scheduling in a dynamic TDD system.

In the future research, it is, e.g., important to better address
the impact of channel-aware schedulers, interference between
neighboring base stations and to include correlations between
flow arrivals in uplink/downlink. Also, on the theoretical
side in the exponential setting, determining the form of the
switching curve (even in an asymptotic sense) is an interesting
problem in itself.

ACKNOWLEDGEMENT

This research has been partially supported by the
HEWINETS (Dynamic Heterogeneous Wireless Access Net-
works) project, funded by Ericsson, Cassidian Systems and
TEKES.

REFERENCES

[1] R. Susitaival, H. Wiemann, J. Östergaard, and A. Larmo, “Internet access
performance in LTE TDD,” in IEEE VTC-Spring, may 2010, pp. 1 –5.

[2] T. Bonald and A. Proutière, “Wireless downlink data channels: user
performance and cell dimensioning,” in Proc. of ACM MobiCom, Sep.
2003, pp. 339–352.

[3] H. van den Berg, R. Litjens, and J. Laverman, “HSDPA flow level
performance: the impact of key system and traffic aspects,” in Proc.
of ACM MSWiM, Oct. 2004, pp. 283–292.

[4] D. C. Dimitrova, H. Van Den Berg, G. Heijenk, and R. Litjens, “Flow
level performance comparison of packet scheduling schemes for umts
eul,” in WWIC’08: Proceedings of the 6th international conference on
Wired/wireless internet communications, 2008, pp. 27–40.

[5] T. Bonald and H. N., “Capacity gains of some frequency reuse schemes
in OFDMA networks,” in Proceedings of IEEE GLOBECOM, 2009.

[6] C. Chiang, W. Liao, T. Liu, I. Chan, and H. Chao, “Adaptive downlink
and uplink channel split ratio determination for TCP-based best effort
traffic in TDD-based WiMAX networks,” IEEE Journal Selected Areas
in Communications, vol. 27, no. 2, pp. 182 –190, february 2009.

[7] M. Al-Rawi and R. Jäntti, “A dynamic TDD inter-cell interference
coordination scheme for long term evolution networks,” in IEEE PIMRC,
april 2011, pp. 1 –5.

[8] T. Chahed, S.-E. Elayoubi, and E. Altman, “On design of TDD for joint
uplink and downlink resource allocation in OFDMA-based WiMax,” in
IEEE VTC-Fall, sept. 2008, pp. 1 –5.

[9] J. C. Gittins, Multi-armed bandit allocation indices. Wiley, Chichester,
1989.

[10] S. Aalto, U. Ayesta, and R. Righter, “On the Gittins index in the M/G/1
queue,” Queueing Systems, vol. 63, no. 1–4, pp. 437–458, 2009.

[11] ——, “Properties of the Gittins index with application to optimal
scheduling,” Probability in the Engineering and Informational Sciences,
vol. 25, no. 3, pp. 269–288, 2011.

[12] L. E. Schrage, “A proof of the optimality of the shortest remaining
processing time discipline,” Operations Research, vol. 16, pp. 687–690,
1968.

[13] T. Bonald, L. Massoulié, A. Proutière, and J. Virtamo, “A queueing anal-
ysis of max-min fairness, proportional fairness and balanced fairness,”
Queueing Systems, vol. 53, pp. 65–84, June 2006.

[14] T. Bonald, S. Borst, N. Hegde, M. Jonckheere, and A. Proutiére, “Flow-
level performance and capacity of wireless networks with user mobility,”
Queueing Systems, vol. 63, pp. 131–164, 2009.

[15] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. New York, NY, USA: John Wiley & Sons,
Inc., 1994.

[16] S. Borst, “User-level performance of channel-aware scheduling algo-
rithms in wireless data networks,” IEEE/ACM Transactions on Network-
ing, vol. 13, no. 3, pp. 636–647, 2005.

[17] B. Sadiq and G. de Veciana, “Balancing srpt prioritization vs oppor-
tunistic gain in wireless systems with flow dynamics,” in Proceedings
of 22nd International Teletraffic Congress (ITC-22), 2010, pp. 1–8.

[18] S. Aalto, A. Penttinen, P. Lassila, and P. Osti, “Optimal size-based
opportunistic scheduler for wireless systems,” Queueing Systems, pp.
1–26, 2012, available online.

[19] S. Aalto and P. Lassila, “Impact of size-based scheduling on flow-level
performance in wireless downlink data channels,” in Proc. of ITC-20,
Jun. 2007, pp. 1096–1107.

[20] L. Kleinrock, Queueing systems, vol II: computer applications, 1st ed.
John Wiley & Sons, 1976.

[21] C. Buyukkoc, P. Varaiya, and J. Walrand, “The cµ rule revisited,”
Advances in Applied Probability, vol. 17, pp. 237–238, 1985.

[22] L. E. Schrage and L. W. Miller, “The queue M/G/1 with the shortest
remaining processing time discipline,” Operations Research, vol. 14, pp.
670–683, 1966.

[23] T. Bonald and J. Virtamo, “Calculating the flow level performance of
balanced fairness in tree networks,” Performance Evaluation, vol. 58,
pp. 1–14, October 2004.


