
Flow-level Modeling and Optimization of Intercell
Coordination with Dynamic TDD

Prajwal Osti
Aalto University
P.O.Box 13000

00076 Aalto
Espoo, Finland

prajwal.osti@aalto.fi

Samuli Aalto
Aalto University
P.O.Box 13000

00076 Aalto
Espoo, Finland

samuli.aalto@aalto.fi

Pasi Lassila
Aalto University
P.O.Box 13000

00076 Aalto
Espoo, Finland

pasi.lassila@aalto.fi

ABSTRACT
We study the intercell coordination problem between two
interfering cells combined with dynamic time-division du-
plexing (TDD). In dynamic TDD, each station selects in
each time slot whether it is serving uplink (u) or downlink
(d) traffic. Thus, the system has four possible operation
modes (uu, ud, du, dd). The amount of intercell interfer-
ence between the stations clearly depends on the operation
mode. We consider a flow-level model where traffic consists
of elastic data flows in both cells (cells 1 and 2) and in both
directions (uplink and downlink). We first characterize the
maximal stability region, and then determine the optimal
static (i.e., state-independent) policy. Our main objective is
to analyze the potential gains from applying dynamic (i.e.,
state-dependent) policies, where the chosen operation mode
depends on the instantaneous state of the system. To this
end, motivated by certain stochastic optimality results in the
literature, we define several priority policies. As a reference
policy, we have the well-known max-weight policy, and we
also develop another dynamic policy by applying the policy
iteration algorithm. Notably we prove that certain simple
priority policies are, in fact, stochastically optimal in some
special cases, but which policy is optimal depends on the set-
ting. To study the exact performance gains achieved by the
dynamic policies, we perform extensive simulations. While
our stochastic optimality results require exponential service
times, in the simulations, we also study the impact of nonex-
ponential service times and consider a physical model where
the service time distribution is determined by the joint dis-
tribution of flow sizes and the random location of the corre-
sponding user in the cell area. The max-weight policy is, as
expected, performing well but the various priority policies
are sometimes better and even optimal. Jointly the results
indicate that dynamic policies give significant performance
gains compared with the optimal static policy.
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1. INTRODUCTION
LTE-based cellular networks support the dynamic shar-

ing of the spectrum between uplink and downlink traffic.
This mechanism is known as dynamic TDD (time-division
duplexing), which may be useful especially if traffic load
between the uplink and downlink varies considerably over
time, see [1, 2]. Additionally, the continuously increasing
volume of mobile data in modern cellular networks is calling
for denser deployment of the base stations, which increases
the interference between base stations. This creates signif-
icant challenges for the (intercell) coordination of the base
stations operating under dynamic TDD in order to minimize
the interference, see [2, 3].

We study the intercell coordination problem combined
with dynamic TDD for elastic data flows (such as TCP file
transfers). Time-slot-level resource allocation in dynamic
TDD has recently been considered, e.g., in [1, 4, 5]. How-
ever, the performance of elastic traffic manifests itself at
the time scale where the number of flows is varying ran-
domly, which is not covered by these time-slot-level models
but requires flow-level models. On the other hand, flow-level
models for cellular systems typically focus on only downlink
traffic or uplink traffic, see, e.g., [6, 7, 8, 9, 10, 11, 12].

In [13], we studied how to model and optimize the dynamic
TDD scheme for a single cell at the flow level. In the present
paper, we extend this flow-level model to cover an essentially
more complicated setting with two interfering base stations
using dynamic TDD. Traffic consists of elastic data flows
in both cells (cells 1 and 2) and in both directions (uplink
and downlink), resulting in four separate traffic classes. The
service requirement of an arbitrary flow can include the joint
effect of a random size and random location determining
the channel quality, as, e.g., in [6]. Thus, the transmission
rate in a cell is not identical but depends on the location



of the user downloading/uploading the flow. Moreover, it
depends on the TDD operation mode used. According to
the dynamic TDD scheme, each station selects whether it is
serving uplink (u) or downlink (d) traffic. Thus, the system
has four possible operation modes (uu, ud, du, dd).

Our model corresponds to a system of interacting queues,
where the service rates of the queues are coupled and de-
pend on the chosen operating policy. For such systems even
stability is not easy to characterize, and, indeed, most of
the available literature focuses on the stability properties,
see [12, 14, 15]. Results on optimal policies are significantly
more scarce. In a related discrete-time model with arbitrar-
ily coupled service rates between the queues, the max-weight
scheduler is known to be maximally stable [16] and even has
certain asymptotical optimality properties [17]. Recently,
for a model with only two classes representing, e.g., the
downlink flows and thus excluding the dynamic TDD as-
pect, some interesting structural optimality properties were
given in [18].

In the present paper, we first derive an explicit expression
for the maximal stability condition, and then formulate the
optimization problem to determine the optimal static policy
that minimizes the average flow-level delay. A static policy
chooses the operation mode in each time slot independently
and randomly from a given distribution (and thus indepen-
dently of the state of the system). We determine the optimal
static policy in various scenarios. To further optimize the
performance, we consider dynamic policies, where the cho-
sen operation mode depends on the instantaneous state of
the system. In the dynamic setting, inspired by the stochas-
tic optimality results for the both stations on priority policy
in [18], we define several priority policies that take into ac-
count the dynamic TDD setting. Additionally, we derive
the dynamic policy called FPI resulting from applying the
policy iteration algorithm from the MDP theory to the op-
timal static policy [19]. As a reference policy, we have the
max-weight policy. We consider the stability properties of
dynamic policies and argue that some of the priority poli-
cies potentially suffer from instability. Our main theoretical
results show, however, that in certain special cases a simple
priority policy can even be stochastically optimal.

To analyze the performance gains from the dynamic poli-
cies, we rely on numerical methods. The dynamic policies
are simulated extensively in order to obtain insight into how
the policies are performing relative to each other and what
the optimal performance could be. As expected, the max-
weight policy is robust, performing overall well. Also, the
FPI policy behaves in a robust way, yielding performance
that is close to that of the max-weight policy. However, by
using the priority policies, we are able to obtain even better
results. Namely, for a given scenario and traffic load, some
of the priority policies typically yield better results than the
max-weight and FPI policies. Among these, the best result
then gives a feasible estimate of the optimal performance. In
addition, in certain special cases we even know the optimal
dynamic policy, and the simulated results give a very accu-
rate estimate of the optimal performance. Jointly all the
results give us an indication that in our scenarios the maxi-
mal gain from the optimal dynamic coordination compared
with the optimal static one is considerable (approximately
50%–60%).

The rest of the paper is organized as follows. In Section
2, we describe the basic model of the problem we consider

here. Then, in Section 3, we introduce the static policies
and characterize the maximal stability region in the general
case. The optimal static policy is considered in Section 4.
This is followed by Section 5, in which we introduce the dy-
namic policies that are used in this paper. Then we discuss
the stability issues of different dynamic policies in Section 6.
In Section 7, we give the main theoretical results of the pa-
per concerning the stochastic optimality of certain dynamic
policies. This is followed by the numerical study of various
dynamic policies in Section 8 with the help of simulation,
and finally conclusions of the study are drawn in Section 9.

2. MODEL
We consider the problem of optimally coordinating two

neighboring base stations with identical properties which
operate in a dynamic TDD configuration and are affected
by each other’s operations. We take two adjacent cells with
base stations B1 and B2, which serve elastic flows in both
uplink (u) and downlink (d) directions. The flows arrive
according to an independent Poisson process to each class
(identified by the index of the station and the direction of
transmission) with intensity λδi , where δ ∈ {u, d} denotes
the direction of transfer while i ∈ {1, 2} indicates the index
of the base station. The size of an arriving flow has a gen-
eral distribution depending on the direction δ of the flow.
The sizes are assumed to be independent of each other. The
location of the flow within its cell is also random and inde-
pendent of the other flows.

Each station can decide to operate on u-direction or d-
direction flows in each time slot. Thus, there are four dif-
ferent operation modes (uu, ud, du, dd). In the ‘dd’ mode,
both stations decide to transmit in the downlink direction.
Let Sdd

d denote the service time of a downlink flow in the ‘dd’
mode, i.e., the time needed to transfer all bits of the flow
in the ‘dd’ mode when there is just one downlink flow in a
random position within the cell. We assume that the cells
are symmetric in the sense that Sdd

d represents the generic
service time of a downlink flow for both cells with the mean
value denoted by E[Sdd

d ] = 1/µdd
d .

In the ‘du’ mode, B1 decides to transmit in the down-
link direction and B2 in the uplink direction. Let Sdu

d de-
note the service time of a downlink flow in the ‘du’ mode.
Correspondingly, let Sud

d denote the service time of a down-
link flow in the ‘ud’ mode, where B1 decides to transmit
in the uplink direction and B2 in the downlink direction.
We assume that the cells are symmetric in the sense that
E[Sdu

d ] = E[Sud
d ] = 1/µdu

d . In addition, we assume that in
the ‘du’ and ‘ud’ modes, the uplink flows are not served at
all because the downlink transmission power is considerably
greater than the uplink power leading to heavy interference
for the uplink [2].

Finally, let Suu
u denote the service time of an uplink flow

in the ‘uu’ mode, where both stations decide to transmit in
the uplink direction. Because of the low uplink power, we
assume that the transmissions do not interfere. In addition,
we again assume that the cells are symmetric in the sense
that Suu

u represents the service time of an uplink flow for
both cells with the mean value denoted by E[Suu

u ] = 1/µuu
u .

Note that the service time of a flow depends on its random
size, its random location, and the operation mode used. The
latter two together determine the transmission rate for the
user. Thus, for example, Sdd

d = Y d/cdd(Z), where Y d refers
to the size of the downlink flow (in bits), Z its distance from



the base station, and cdd(z) the transmission rate (in bits/s)
at distance z in the ‘dd’ mode.

Since the intercell interference is much higher in the ‘dd’
mode (compared to the ‘du’ and ‘ud’ modes), we may assume
that

µdu
d > µdd

d . (1)

Throughout this paper, we focus on the low downlink inter-
ference case which is defined by further requiring that

2µdd
d > µdu

d . (2)

The high downlink interference case, where 2µdd
d ≤ µdu

d , is
also of interest and apparently leads to qualitatively different
results. However, due to lack of space, it is not considered
in this paper.

In each class, the flows are assumed to be served in a round
robin manner at the time-slot level. With the additional
assumption of time-scale separation [6, 7, 8, 9, 10, 11, 12]
between time-slot and flow levels, we conclude that at the
flow level each class is served according to the processor
sharing (PS) service discipline.

3. STATIC POLICIES AND THE MAXIMAL
STABILITY REGION

As mentioned in Section 2, the system has four opera-
tional modes (uu, ud, du, dd). In static sharing, these four
modes are allocated some fixed time shares without taking
into account the underlying state of the system. In dynamic
sharing, instead, the modes are allocated dynamically de-
pending on the state of the system. In this section, we con-
sider static (sharing) policies and derive the maximal sta-
bility region. Dynamic policies are introduced then in the
following section.

A static policy selects the mode randomly and indepen-
dently (in each time slot) from a given probability distri-
bution p = (puu, pud, pdu, pdd). Elements pm thus refer to
the fraction of time the two stations are operated in the
corresponding mode m.

According to our assumptions given in Section 2, static
sharing results in four independent M/G/1-PS queues with
service completion rates

µ̄u
1 = µ̄u

2 = puuµuu
u , µ̄d

1 = pduµdu
d + pddµdd

d ,

µ̄d
2 = pudµdu

d + pddµdd
d .

(3)

A static policy p is stable if

max{λu
1 , λ

u
2} < puuµuu

u , λd
1 < pduµdu

d + pddµdd
d ,

λd
2 < pudµdu

d + pddµdd
d .

(4)

Let Xδ
i denote the number of flows in station i and direction

δ. For a stable policy, the mean total number of flows in the
whole system is X̄ = X̄u

1 + X̄d
1 + X̄u

2 + X̄d
2 , where

X̄δ
i =

λδi
µ̄δi − λδi

, δ ∈ {u, d}, i ∈ {1, 2}.

By Little’s result, the mean flow-level delay (i.e., the time
needed to complete the transmission) is given by T̄ = X̄/λ,
where λ = λu

1 + λu
2 + λd

1 + λd
2 denotes the total arrival rate.

Our first result characterizes the maximal stability region.

Theorem 1. There exists a stable static policy if and only
if

max{λu
1 , λ

u
2}

µuu
u

+
min{λd

1 , λ
d
2}

µdd
d

+
|λd

1 − λd
2 |

µdu
d

< 1. (5)

Proof: Without loss of generality, we assume that λd
1 ≥ λd

2 .

1◦ Assume first that condition (5) is satisfied, i.e.,

max{λu
1 , λ

u
2}

µuu
u

+
λd

2

µdd
d

+
λd

1 − λd
2

µdu
d

< 1,

Consider the static policy defined by

puu =
max{λu

1 , λ
u
2}

µuu
u

+
ε

3
, pdd =

λd
2

µdd
d

+
ε

3
,

pdu =
λd

1 − λd
2

µdu
d

+
ε

3
, pud = 0,

where

ε = 1− max{λu
1 , λ

u
2}

µuu
u

− λd
2

µdd
d

− λd
1 − λd

2

µdu
d

> 0.

It is easy to see that all conditions (4) are satisfied so that
the policy is well-defined and stable.

2◦ Assume now that condition (5) is not satisfied, i.e.,

max{λu
1 , λ

u
2}

µuu
u

+
λd

2

µdd
d

+
λd

1 − λd
2

µdu
d

≥ 1, (6)

Consider first the static policies for which

pdd ≤ λd
2/µ

dd
d . (7)

Now

puu + pud + pdu + pdd

(4)
>

max{λu
1 , λ

u
2}

µuu
u

+
λd

1

µdu
d

+
λd

2

µdu
d

− pdd 2µdd
d − µdu

d

µdu
d

(2),(7)

≥ max{λu
1 , λ

u
2}

µuu
u

+
λd

1

µdu
d

+
λd

2

µdu
d

− λd
2

µdd
d

2µdd
d − µdu

d

µdu
d

(6)

≥ 1,

which contradicts with the requirement that p = (puu, pud,
pdu, pdd) is a probability distribution. Thus, there is no sta-
ble static policy satisfying (7).

Consider then the static policies for which

pdd > λd
2/µ

dd
d . (8)

Now

puu + pdu + pdd

(4)
>

max{λu
1 , λ

u
2}

µuu
u

+
λd

1

µdu
d

+ pdd µ
du
d − µdd

d

µdu
d

(1),(8)
>

max{λu
1 , λ

u
2}

µuu
u

+
λd

1

µdu
d

+
λd

2

µdd
d

µdu
d − µdd

d

µdu
d

(6)

≥ 1,

which again contradicts with the requirement that p is a
probability distribution. Thus, there is neither any stable
static policy that satisfies (8). 2

Based on Theorem 1, it is natural to define

ρu =
max{λu

1 , λ
u
2}

µuu
u

, ρd =
min{λd

1 , λ
d
2}

µdd
d

+
|λd

1 − λd
2 |

µdu
d

(9)

so that the maximal stability condition reads as ρu +ρd < 1.



4. OPTIMAL STATIC POLICY
In this section, we consider the optimal static sharing

problem so that the mean total number of flows (or, equiv-
alently by Little’s result, the mean flow-level delay) is mini-
mized. Clearly, the optimal static policy exists whenever the
system satisfies the maximal stability condition (5) and is
obtained as the solution of the following optimization prob-
lem:

X̄∗ = min
p

{
λu

1

puuµuu
u − λu

1

+
λd

1

pduµdu
d + pddµdd

d − λd
1

+
λu

2

puuµuu
u − λu

2

+
λd

2

pudµdu
d + pddµdd

d − λd
2

}
,

s.t. puu ≥ 0, pud ≥ 0, pdu ≥ 0, pdd ≥ 0,
puuµuu

u − λu
1 > 0, pduµdu

d + pddµdd
d − λd

1 > 0,
puuµuu

u − λu
2 > 0, pudµdu

d + pddµdd
d − λd

2 > 0,
puu + pud + pdu + pdd = 1.

(10)

Due to the complexity of the optimization problem, we
restrict ourselves to a number of scenarios that are later
on illustrated by numerical examples. These scenarios are
defined utilizing two free parameters, λu and λd. In Sce-
nario 1 (symmetric case), the uplink (and downlink) arrival
rates are equal in both the stations, i.e., λu

1 = λu
2 = λu

and λd
1 = λd

2 = λd. In Scenario 2 (uplink asymmetric),
the downlink arrival rates are the same in both the stations
while the uplink flows arrive only in B1, i.e., λd

1 = λd
2 = λd,

λu
1 = λu, and λu

2 = 0. In Scenario 3 (downlink asym-
metric), the uplink arrival rates are equal in both the sta-
tions but there are no downlink flows arriving in B2, i.e.,
λu

1 = λu
2 = λu, λd

1 = λd, and λd
2 = 0. Finally, in Sce-

nario 4 (station asymmetric), the uplink (and downlink)
arrival rates in station B1 are twice as large as those in sta-
tion B2, i.e., λu

1 = 2λu
2 = 2λu and λd

1 = 2λd
2 = 2λd. The

four scenarios are summarized in Table 1.

Table 1: Summary of scenarios considered
Scenario λu

1 λd
1 λu

2 λd
2

1 λu λd λu λd

2 λu λd 0 λd

3 λu λd λu 0

4 2λu 2λd λu λd

4.1 Symmetric arrivals
In Scenario 1, where λu

1 = λu
2 = λu and λd

1 = λd
2 = λd, it is

clearly sufficient to consider the policies for which pdu = pud

so that the optimization problem reads as follows:

X̄∗ = min
p

{
2λu

puuµuu
u − λu

+
2λd

pduµdu
d + pddµdd

d − λd

}
,

s.t. puu ≥ 0, pdu = pud ≥ 0, pdd ≥ 0,
puuµuu

u − λu > 0, pduµdu
d + pddµdd

d − λd > 0,
puu + 2pdu + pdd = 1.

To get the minimum value of X̄, we substitute pdd = 1 −
2pdu − puu and differentiate X̄ with respect to pdu and puu,
from which we observe that, for any fixed puu, X̄ is an
increasing function of pdu as ∂X̄

∂pdu > 0 under the low in-

terference condition (2). This means that the minimum is

achieved at pdu = 0. So the optimization problem now be-
comes

X̄∗ = min
puu

2λu

puuµuu
u − λu

+
2λd

(1− puu)µdd
d − λd

,

s.t. ρu < puu < 1− ρd,

where ρu = λu/µuu
u and ρd = λd/µdd

d . To calculate the

optimal value of puu, we set ∂X̄
∂puu

to zero taking into account

that pdu = 0 for the optimal share, which gives

(puu)∗ =
(1− ρd)

√
ρu + ρu

√
ρd

√
ρu +

√
ρd

, (pdd)∗ = 1− (puu)∗,

X̄∗ =
2(
√
ρu +

√
ρd)2

1− ρu − ρd
.

4.2 Asymmetric arrivals
We now consider the first two cases with asymmetric ar-

rivals. In Scenario 2 with uplink asymmetry, the uplink flows
arrive only in B1 and never in B2, i.e., λu

2 = 0. In this case,

(puu)∗ =
(1− ρd)

√
ρu + ρu

√
2ρd

√
ρu +

√
2ρd

, (pdd)∗ = 1− (puu)∗,

X̄∗ =
(
√
ρu +

√
2ρd)2

1− ρu − ρd
.

where ρu = λu/µuu
u and ρd = λd/µdd

d .
On the other hand, in Scenario 3 with downlink asymme-

try, only B1 gets the downlink requests while B2 does not
get any downlink service request, i.e., λd

2 = 0. It can be
shown that

(puu)∗ =
(1− ρd)

√
2ρu + ρu

√
ρd

√
2ρu +

√
ρd

, (pdu)∗ = 1− (puu)∗,

X̄∗ =
(
√

2ρu +
√
ρd)2

1− ρu − ρd
.

where ρu = λu/µuu
u and ρd = λd/µdu

d .
For Scenario 4, where flows arrive in all four queues, there

are, however, no explicit expressions for the optimal time
shares nor the average total number of flows. Therefore we
have to solve the optimization problem numerically in this
case.

5. DYNAMIC POLICIES
In a dynamic setting, the stations operate in one of the

four modes (uu, ud, du, dd) depending on the state of the
system. Here, the state of the system refers to the vector of
the number of flows in each queue, x = (xu

1 , x
d
1 , x

u
2 , x

d
2) ∈ X .

Then an action aπ(x) ∈ {uu, ud, du, dd} is chosen for each
state x defined by the policy π. Such dynamic policies are
discussed below.

5.1 Uplink priority heuristic (HU)
In this policy, we serve both the uplink queues with the

highest priority and serve the downlink only if both the up-
link queues are empty. When both the uplink queues are
empty, the ‘dd’ mode is used if there are flows in both the
downlink queues, and either the ‘du’ or ‘ud’ mode is used



when one of the downlink queues is empty. So, we have

aHU(x) =


uu, ifxu

1 + xu
2 > 0,

dd, ifxu
1 + xu

2 = 0, xd
1x

d
2 > 0,

du, ifxu
1 + xu

2 = 0, xd
1x

d
2 = 0, xd

1 > 0,

ud, ifxu
1 + xu

2 = 0, xd
1x

d
2 = 0, xd

2 > 0.

(11)

Clearly, it is a good heuristic to use when the uplink flow
completion rate, µuu

u , is high compared to the downlink flow
completion rates, µdu

d and µdd
d , and the traffic load is suffi-

ciently small. Indeed we will later observe (in Theorem 2)
that HU is even stochastically optimal in certain cases with
large enough µuu

u . However, due to the high priority given to
the uplink, it may run into stability problems at high load
as we will witness in Sections 6 and 8.

5.2 Downlink priority heuristic (HD)
In this policy, the downlink is given the highest priority,

and the uplink (‘uu’) mode is chosen only when both the
downlink queues are empty. If there are flows in both the
downlink queues, then the ‘dd’ mode is used. When the
downlink queue for one station is empty, the downlink queue
for the other is served at a higher rate (the ‘du’ or ‘ud’
mode). Thus,

aHD(x) =


dd, ifxd

1x
d
2 > 0,

du, ifxd
1x

d
2 = 0, xd

1 > 0,

ud, ifxd
1x

d
2 = 0, xd

2 > 0,

uu, ifxd
1 + xd

2 = 0.

(12)

It is reasonable to assume that this policy will give good
performance when the downlink flow completion rates, µdu

d

and µdd
d , are high compared to the uplink flow completion

rate, µuu
u . Under some conditions, HD even turns out to be

stochastically optimal (see Theorem 3).

5.3 Modified uplink priority heuristics (H3, H4)
The uplink priority policy, HU, may become unstable at

high loads (see Sections 6 and 8). To mitigate this problem,
we attempt to exploit the high aggregate downlink trans-
mission rate as much as possible (by using the ‘dd’ mode)
and modify the HU policy to get the H3 policy. In H3, both
the uplink queues are served (the ‘uu’ mode) when there are
flows in both the queues. However, unlike the HU policy, it
serves both the downlink queues (the ‘dd’ mode) if there are
flows in both of them while at least one of the uplink queues
is empty. Otherwise, it is similar to HU. Thus,

aH3(x) =



uu, ifxu
1x

u
2 > 0,

dd, ifxu
1x

u
2 = 0, xd

1x
d
2 > 0,

uu, ifxu
1 + xu

2 > 0, xd
1x

d
2 = 0,

du, ifxu
1 + xu

2 = 0, xd
1x

d
2 = 0, xd

1 > 0,

ud, ifxu
1 + xu

2 = 0, xd
1x

d
2 = 0, xd

2 > 0.

(13)

In Scenario 3 (asymmetric downlink), where λd
2 = 0, we

should apparently not apply the ‘dd’ mode at all. We still
serve the uplink queues (the ‘uu’ mode) whenever both of
them are non-empty. But if at least one of the uplink queues
is empty, then we choose the ‘du’ mode (instead of ‘dd’).
Otherwise, this modified policy, H4, is similar to H3 and

HU. So, we have

aH4(x) =


uu, ifxu

1x
u
2 > 0,

du, ifxu
1x

u
2 = 0, xd

1 > 0,

uu, ifxu
1x

u
2 = 0, xd

1 = 0.

(14)

5.4 Max-weight policy (MW)
In this policy, the mode that has the maximum weight

for a state is chosen. The weight is defined as the sum of
the product of the service completion rate of the queues in
the chosen mode and the queue lengths of the same queues.
Thus, in the MW policy, the action chosen in state x is
defined by

aMW(x) = arg max
{
µuu

u (xu
1 + xu

2), µdu
d xd

2 , µ
du
d xd

1 ,

µdd
d (xd

1 + xd
2)
}
.

(15)

This policy is maximally stable [16] and even asymptotically
optimal [17] for discrete-time queues.

5.5 First Policy Iteration (FPI)
In this approach, a baseline policy is improved by the

method of policy iteration which follows from the theory
of Markov decision processes [19]. In the policy iteration
algorithm, the initial policy π is used to construct a new

policy π′, for which the action, aπ
′
(x), in state x is given by

aπ
′
(x) = arg min

a∈A

{
r(x, a)− r̄π

+
∑
y 6=x

qxy(a)(vπ(y)− vπ(x))

 ,
(16)

where r(x, a) is the instantaneous cost rate when action a is
chosen, r̄π is the average cost rate when the initial policy π
is used, qxy(a) is the transition rate from state x to state y
when the action a is chosen, and vπ(x) is the relative value
of state under the initial policy. To apply this approach,
we have to assume that the service times in each mode are
exponential.

We take the optimal static policy as our initial policy π
and derive an improved dynamic policy π′ (FPI) by applying
the policy iteration algorithm once. The state is given by
x = (xu

1 , x
d
1 , x

u
2 , x

d
2), and the action space consists of the four

operation modes, A = {uu, ud, du, dd}. The instantaneous
cost rate r(x, a) is equal to the total number of flows in the
whole system, xu

1 + xd
1 + xu

2 + xd
2 , and is thus independent

of the chosen action a. As we have parallel PS queues, the
relative value of state of the system is the sum of the relative
values of each PS queue. The relative value of state of an
M/M/1-PS queue with service rate µ and arrival rate λ when
there are n customers present is (see, e.g., [20])

v(n) = v(0) +
n(n+ 1)

2(µ− λ)
. (17)

Now, the quantity inside the brackets in (16) becomes

xu
1 + xd

1 + xu
2 + xd

2 − r̄π + µπ(x, a)

+ λu
1 [vπ(x+ eu

1)− vπ(x)] + λd
1 [vπ(x+ ed

1)− vπ(x)]

+ λu
2 [vπ(x+ eu

2)− vπ(x)] + λd
2 [vπ(x+ ed

2)− vπ(x)],



where the unit vectors eδi are defined as

eu
1 = (1, 0, 0, 0), ed

1 = (0, 1, 0, 0), eu
2 = (0, 0, 1, 0),

ed
2 = (0, 0, 0, 1),

and µπ(x, a) is the action-specific part of future cost associ-
ated with action a. By utilizing (17), we get

µπ(x,uu) = µuu
u (vπ(x− eu

1) + vπ(x− eu
2)− 2vπ(x))

= − µuu
u xu

1

µ̄u
1 − λu

1

− µuu
u xu

2

µ̄u
2 − λu

2

,

µπ(x,ud) = µdu
d (vπ(x− ed

2)− vπ(x)) = − µdu
d xd

2

µ̄d
2 − λd

2

,

µπ(x,du) = µdu
d (vπ(x− ed

1)− vπ(x)) = − µdu
d xd

1

µ̄d
1 − λd

1

,

µπ(x,dd) = µdd
d (vπ(x− ed

1) + vπ(x− ed
2)− 2vπ(x))

= − µdd
d xd

1

µ̄d
1 − λd

1

− µdd
d xd

2

µ̄d
2 − λd

2

,

where the completion rates µ̄δi are given by (3) when applied
with shares p related to the optimal static policy π. Thus,
in this FPI policy, the action chosen in state x is defined by

aFPI(x) = arg max

{
µuu

u xu
1

µ̄u
1 − λu

1

+
µuu

u xu
2

µ̄u
2 − λu

2

,
µdu

d xd
2

µ̄d
2 − λd

2

,

µdu
d xd

1

µ̄d
1 − λd

1

,
µdd

d xd
1

µ̄d
1 − λd

1

+
µdd

d xd
2

µ̄d
2 − λd

2

}
.

(18)

6. STABILITY OF DYNAMIC POLICIES
The stability region for a dynamic policy may be different

from the maximal stability region given in Theorem 1. In
this section we discuss the stability regions of the various
dynamic policies we have considered.

We know that, under the assumption of exponential ser-
vice times, the FPI policy improves the optimal static policy
and is thus maximally stable. In other words, it is stable
whenever ρu + ρd < 1, where ρu and ρd are defined in (9).
Moreover, the MW policy has been proven to be maximally
stable [16].

From the numerical results (given in Section 8), we ob-
serve, however, that some of the priority policies are not
maximally stable. In particular we take the HU policy as
an example. Since it gives the absolute priority to the up-
link flows, it is obvious that the stability problems first arise
in the downlink queues. As the uplink queues are always
served whenever non-empty, the downlink queues will be
served only when both of them are empty, i.e., with proba-
bility

P{Xu
1 = 0, Xu

2 = 0} = (1− ρu
1)(1− ρu

2), (19)

where ρu
1 = λu

1/µ
uu
u , ρu

2 = λu
2/µ

uu
u . This means that the

downlink flows do not accumulate (and the queue length
remains finite) if the fraction of time the downlink queue
is occupied is less than the fraction of time both the up-
link queues are empty. Thus, for stability, we require that
λd
i /µ

dd
d < (1 − ρu

1)(1 − ρu
2) for i = 1, 2. Here we have as-

sumed that near the stability limit only the ‘dd’ mode is
operational due to the low DL interference assumption (2).

For the symmetric setting (Scenario 1), the stability condi-
tion becomes

ρu + ρd < 1− ρu(1− ρu), (20)

where ρu = λu/µuu
u , ρd = λd/µdd

d . Clearly the right hand
side of (20) is strictly less than 1, which shrinks the stability
region of the HU policy compared to that of the maximally
stable policies.

7. STOCHASTIC OPTIMALITY RESULTS
In this section, we give our main theoretical results. We

state that the HU policy is stochastically optimal in the spe-
cial case that one of the uplink classes has no arrivals, say
λu

2 = 0, and that the completion rate of uplink flows is suffi-
ciently high, µuu

u ≥ 2µdd
d . On the other hand, the HD policy

is optimal if one of the downlink classes has no arrivals, say
λd

2 = 0, and the maximal completion rate of downlink flows
is high enough, µdu

d ≥ 2µuu
u . For these stochastic optimality

results, we have to assume that the service times in each
mode are exponential.1

Let Xπ(t) denote the total number of flows in the system
at time t under policy π. Policy π∗ is stochastically optimal
(with respect to the total number of flows in the system) if,
for all x, s, t,

P{Xπ∗(t) > s | Xπ∗(0) = x}
= min

π
P{Xπ(t) > s | Xπ(0) = x}.

Theorem 2. The HU policy is stochastically optimal if

λu
1 > 0, λu

2 = 0 and µuu
u ≥ 2µdd

d > µdu
d .

Theorem 3. The HD policy is stochastically optimal if

λd
1 > 0, λd

2 = 0 and µdu
d ≥ 2µuu

u .

8. NUMERICAL RESULTS
We first show simulation results, where the service times

are based on a spatial model taking explicitly into account
the different locations of users. After that we present a
systematic study with exponential service time distributions
to figure out the potential performance gains of dynamic
policies.

8.1 Physical model with non-exponential ser-
vice times

We use a similar spatial model for the service times as in
[6], where users with flows having a random size arrive in a
random location in the cell where they are able to attain a
certain mean transmission rate.

Consider a linear network of two sectorized base stations.
The cell radius R = 400 [m] and hence the base stations are
at a distance 2R from each other. Given a fixed number of
flows in any class in our model, the location of the flow inside
the cell is uniformly distributed in [0, R], i.e., flows arrive to
the base station area according to a spatial Poisson process.
Let Z denote the random location of a flow with a uniform
pdf fZ(z) = 1/R, z ∈ [0, R]. Assume that the size of any
flow is exponentially distributed with mean E[Y ] = 100 [kB].
Moreover, we denote the base station power by P bs = 20 [W]
and the user equipment power by P ue = 0.2 [W]. Finally, we

1Due to lack of space, the proofs are not included in this
paper but are given in a separate technical document [21].
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Figure 1: Linear sectorized network with two base
stations.

assume that from outside the cells there is additional noise
and interference equal to I = 10−7 [W]. This is illustrated
in Figure 1, which shows two base stations separated by a
distance 2R together with a flow at distance z. The arrows
reflect that in the ‘dd’ mode the useful signal is interfered
by the signal from the other base station.

Thus, given an uplink flow at distance Z from the base sta-
tion, the service time of the flow is given by Suu

u = Y/cuu(Z),
where cuu(z) represents the mean transmission rate of the
flow at distance z in the ‘uu’ mode. Correspondingly, we
get Sud

d = Y/cud(Z), Sdu
d = Y/cdu(Z), and Sdd

d = Y/cdd(Z).
Note that, due to our symmetry assumption with respect to
the stations, Sud

d and Sdu
d are identically distributed. Now

the transmission rates in the different modes at distance z
are given by

cuu(z) = min

{
B log2

(
1 +

P ue(1/z)α

I

)
, Cmax

u

}
, (21)

cdu(z) = cud(z) = min

B log2

(
1 +

P bs(1/z)α

I

)
, Cmax

d

 ,

(22)

cdd(z) = min

B log2

(
1 +

P bs(1/z)α

P bs(1/(2R− z))α + I

)
, Cmax

d

 ,

(23)

where the parameter values are taken to correspond to typ-
ical values for an LTE system, such that bandwidth of the
system B = 10 [MHz], path loss exponent α = 3, uplink
maximum rate Cmax

u = 50 [Mbit/s], and downlink maxi-
mum rate Cmax

d = 150 [Mbit/s]. The capacity functions
reflect our interference modeling assumptions: in the ‘uu’,
‘ud’, and ‘du’ modes the other base station is not causing
additional interference and only external interference I lim-
its the rates, but in the ‘dd’ mode, the other base station is
causing additional interference (dashed arrow) from distance
2R− z.

Hence we have for the mean completion rate in the ‘uu’
mode

1/µuu
u = E[Suu

u ] = E[Y ] · E
[
1/cuu(Z)

]
≈ 0.48 [1/s].

Similarly, with our parameter values, we obtain 1/µud
d =

0.02 [1/s] and 1/µdd
d = 0.03 [1/s]. Calculating also the

variances, one sees that the squared coefficient of variation
ranges from 1.6 (‘ud’ mode) to 3.3 (‘uu’ mode) and hence
the distance dependent rates twist the original exponential
size distribution to a more variable than exponential dis-

tribution. We fix the arrival rates as in Scenario 4, i.e.,
λu

1 = 2λu
2 6= 0 and λd

1 = 2λd
2 6= 0, and we vary the load

within the stability limit.
We compare the performance of the physical model and

the corresponding model with exponentially distributed ser-
vice times in Figure 2. We clearly observe that HU and H3
become unstable quite soon. On the other hand, we see that
MW and FPI are performing very robustly. Interestingly, al-
though FPI is not guaranteed to be better than the optimal
static policy in this physical model, we see that it is working
very well. We also observe that HD is the best performing
policy unless the load is very heavy. The simulations give
some indications that HD is not necessarily maximally sta-
ble. All in all, the results for the physical model are very
similar to those with exponential assumptions.

8.2 Potential performance gain of dynamic poli-
cies

We compare the performance of the proposed dynamic
policies in the scenarios defined in Table 1 (in Section 4)
by simulations. In all these scenarios, there are two free
parameters λu and λd. In our numerical studies, we consider
the case where the uplink and downlink loads are equal, i.e.,
ρu = ρd = ρ/2. With this assumption, we still have one
free parameter, the total load ρ = ρu + ρd. In addition, we
assume that µdu

d = 5 [1/s], µdd
d = 3 [1/s], and let µuu

u vary
taking values in {1, 3, 5, 7} [1/s].

The results for Scenarios 2-4 are shown in Figures 3–
4.2 In these figures, the ratio of the mean flow-level de-
lay using a dynamic policy to that of the optimal static
policy, T̄ dyn/T̄ sta, is plotted against the total load ρ. Due
to Little’s result, we have the ratio of the average delays
equal to the ratio of the average total number of flows, i.e.,
T̄ dyn/T̄ sta = X̄dyn/X̄sta. For each fixed set of parameter
values, the mean delay of a dynamic policy is estimated from
a simulation run consisting of 500 000 arrivals. To reduce
randomness in these comparisons, we have used the same
random arrival sequences and the same random flow sizes
for all the policies.

To gain further insight, we applied the policy iteration al-
gorithm from the MDP theory to numerically estimate the
performance of the optimal policy. The results have been
obtained by truncating the state space and solving in each
iteration step the value functions for each state from the
associated Howard’s equations and then performing numeri-
cally in each state the optimization step (16). This iteration
is continued for a fixed number of steps. In our results, the
maximum number of flows in each class was limited to 7 and
the number of iteration rounds was 5. The ratio of the re-
sults from the policy iteration to the optimal static policy is
depicted by the lines labeled MDP. Results are shown only
up to load ρ = 0.7 because beyond that the truncation will
start affecting them significantly. In fact, due to truncation,
the graphs for the iterated MDP policy are curving down
already for ρ ≈ 0.6.

In Scenario 2 (Figure 3 (a) and (b)), where we have only
one uplink queue being served, at low values of µuu

u , HD
performs very well and HU is the worst policy. When we
increase the uplink service rate, µuu

u , the performance of
HU and H3 both become gradually better, but as long as
µuu

u ≤ 3, the performance of HD is still the best and very

2Due to lack of space, the results of Scenario 1 are only given
in the related technical document [21].
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Figure 2: Performance of Scenario 4 using the physical model. The horizontal axis represents the traffic
intensity ρ and the vertical axis is the ratio of the mean delay of the dynamic policy to that of the optimal
static policy, T̄ dyn/T̄ sta. The left panel shows the performance of the different policies in the physical model
while the right panel shows the performance of the same policies in an equivalent case where the service
times are assumed to be exponentially distributed.

close to the optimal policy (as indicated by its closeness
to the MDP curve) whenever the traffic load is not very
high. When µuu

u = 7 (Figure 3 (b)), we have µuu
u = 7 >

2µdd
d = 6, and thus, HU gives the best performance as it is

the stochastically optimal policy according to Theorem 2. In
addition, we see that MW and FPI, although not optimal,
are relatively robust and maximally stable.

In Scenario 3 (Figure 3 (c) and (d)), where we have only
one downlink queue being served so that HU and H3 are
identical as expected and suffer from severe stability prob-
lem. When µuu

u = 1 (Figure 3 (c)), then 2µuu
u ≤ µdu

d = 5,
and we have HD as the stochastically optimal policy ac-
cording to Theorem 3. But when we set µuu

u = 7, we have
2µuu

u > µdu
d = 5 and HD loses its optimality. Under this

condition, the policy which gives priority to the uplink (H4)
begins to perform better, although it is not optimal for all ρ.
At higher values of µuu

u , HD becomes worse than all of H4,
FPI and MW, although it looks maximally stable like H4,
FPI and MW. Moreover, based on Figures 3 (b) and 3 (c),
the MDP results are numerically very close to the simulated
performance of the stochastically optimal policies up to load
ρ = 0.6.

Scenario 4 depicts the station asymmetric setting where
the arrival rate in Station 1 is twice the arrival rate in Station
2, i.e., λu

1 = 2λu
2 6= 0 and λd

1 = 2λd
2 6= 0. In Figure 4,

we again observe that HD is performing very nicely when
µuu

u = 3 or µuu
u = 5 while the policies that give priority to

uplink (HU and H3) perform the worst. As the value of
µuu

u increases, the uplink prioritizing policies, HU and H3,
start to perform better and become more stable while the
performance of HD begins to deteriorate and turns into the
worst performing policy for lower values of ρ when µuu

u = 7.
In all these cases, the performance of MW is very close to
the optimal policy represented by the MDP curve. As µuu

u

increases, the performance of FPI starts to get better and is
practically indistinguishable from MW for µuu

u ≥ 3.

9. CONCLUSIONS
In this paper we have considered the intercell coordina-

tion problem between two interfering cells combined with

dynamic TDD. Traffic in our model consists of elastic data
flows in both cells and in both directions.

We have derived an explicit expression for the maximal
stability condition. With this, it is possible to define the
uplink and downlink traffic loads. The main focus is on the
performance comparisons between various policies that can
be used to operate the two stations. We have determined the
optimal static policy for various scenarios, and considered
further optimizing the performance by dynamic policies. In
particular, we have experimented with various heuristic pri-
ority policies. We have also considered the dynamic policy
called FPI resulting from applying the policy iteration algo-
rithm from the MDP theory and the well-known max-weight
policy in our performance comparisons.

Our main theoretical results show that under certain spe-
cial conditions for the model parameters either giving abso-
lute priority to the ‘uu’ mode or the ‘dd’ mode is stochas-
tically optimal for exponential service times. These results
generalize the earlier stochastic optimality results in a simi-
lar system with two base stations but supporting only down-
link traffic. The dynamic TDD setting adds more classes and
more modes to the system, which makes it significantly more
challenging to establish the optimality for a given policy.

To obtain insight into the performance gains from the dy-
namic policies, we have carried out extensive simulations.
We have observed that the priority policies, indeed, may
give relatively good performance but some of them may run
into stability problems when the load becomes too high. The
max-weight and FPI policies are more robust and perform
overall well. Even in the physical model with nonexponential
service times, all the policies, excluding the ones prioritizing
the uplinks, seem to be performing nicely for a wide range
of load. Moreover, as we have experimented with many dy-
namic policies, the performance of the best among these
policies appears to be close to the optimal policy. Jointly
all the results give us an indication that in our scenarios the
maximal gain from optimal dynamic coordination compared
with the optimal static policy is approximately 50%–60%.

In this paper, we have focused on the low downlink inter-
ference case. In the future, it is worth investigating the high
downlink interference case, as well.
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Figure 3: Performance of Scenario 2 (panels (a) and (b)) and Scenario 3 (panels (c) and (d)). The horizontal
axis represents the total load ρ and the vertical axis is the ratio of the mean delay of the dynamic policy to
that of the optimal static policy, T̄ dyn/T̄ sta. The legend in panel (a) shows the dynamic policies involved in
Scenario 1 and the legend in panel (c) shows the different dynamic policies involved in Scenario 3.
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Figure 4: Performance of Scenario 4. The horizontal axis represents the traffic intensity ρ and the vertical
axis is the ratio of the mean delay of the dynamic policy to that of the optimal static policy, T̄ dyn/T̄ sta. The
legend in panel (b) shows the different dynamic policies involved.
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