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Abstract—The problem of the capacity of a massively dense
wireless multihop network can be broken down into separate
problems at macroscopic and microscopic levels. At the micro-
scopic level, from the local perspective, the network appears
like an infinite plane with traffic that is uniform but flowing
in many directions. Previous studies have assumed that it is
sufficient to find the maximum sustainable density of packet
flow in a single direction and use time sharing to serve flows
in different directions. We show that this time-sharing limit
can be exceeded by scheduling that truly interleaves the traffic
flows in different directions. Determining the forwarding ca-
pacity for multidirectional traffic defines a new problem that
has not been studied earlier. For finding numerical values, we
adopt a constructive approach by simulating a finite but large
network using greedy maximum weight scheduling. Bi- and four-
directional balanced traffic patterns are studied. For the latter, an
improved greedy algorithm is developed, using insights from our
earlier work. Isotropic traffic plausibly yields the highest benefits
for multidirectional forwarding, and our results show that a
significant gain compared with single-directional forwarding can
be achieved.

I. INTRODUCTION

Efficient utilization of radio resources in wireless multihop
networks, to achieve maximum capacity, is of great importance
especially when the network in question is large. The seminal
papers [5], [6] give important insight in the asymptotic scaling
of this maximum capacity. However, these studies leave the
question of the magnitude of the capacity unresolved. We
aim at providing numerical results that shed light on this
fundamental capacity problem.

In the limit of a massively dense network, a natural sep-
aration of spatial scales emerges, and the network capacity
problem can be separated into two independent problems at
the macroscopic and microscopic levels, respecpectively, see
[7], [8]. At the macroscopic level, the underlying network is
considered a continuous medium, where the routes are smooth
geometric curves [2], [9], [12], [18], and the problem is to
define the most efficient routing given the traffic matrix and
the constraints set by the microscopic level. At the microscopic
level, representing the network from a single nodes point of
view, a massively dense network appears to be infinite, and
the task is to forward traffic as efficiently as possible.

Here we focus on the microscopic level problem. In general,
at the microscopic level there is traffic flowing in many
directions, as characterized by the directional distribution of
the traffic. A key assumption made in the above macroscopic

level studies is that the constraint set by the microscopic level
reduces the microscopic level problem to one of determining
the maximum density of packet flow in a given direction and
this single-directional forwarding capacity is shared in time
between the different directions. In our previous papers [15],
[16], we have provided increasingly accurate estimates on the
single-directional forwarding capacity.

However, an important observation is that the earlier form
of the constraint only represents a sufficient condition for the
capacity problem in dense networks, i.e., time sharing between
directions is not optimal. Significantly higher capacities can be
achieved by exploiting the fact that traffic flowing in different
directions can be interleaved in the microscopic level schedul-
ing. The necessary condition characterizing the microscopic
level problem states that the sustainable local traffic load is
bounded by a limit, which is a functional of the directional dis-
tribution of the traffic, and which we call the multidirectional
forwarding capacity. To our knowledge the multidirectional
forwarding capacity problem has not been studied earlier. Our
objective is to evaluate the gain from the multidirectional
forwarding compared with only single-directional forwarding
in certain special cases, namely balanced bidirectional and
balanced four-directional cases. Throughout this paper we use
the word balanced to describe a traffic pattern where the traffic
streams are equal in the different directions.

At the microscopic level, the network consists of nodes
distributed according to a spatial Poisson process in an infinite
plane, and the traffic to be carried is uniform but non-isotropic.
The interference caused by simultaneous transmissions is
modelled using the Boolean interference model. To obtain
an estimate of the multidirectional forwarding capacity, we
simulate a large but finite network in a square area carrying
only relay traffic. In the simulations, we apply maximum
weight scheduling where the decision about the resource
allocation in each time slot is based on the current queue-
length-based weight of each link. In this case, the different
directions of the traffic correspond to classes. It is well known
that maximum weight scheduling is throughput optimal [20].
However, considering the size of the network realizations that
we use, finding the true maximum weight independent set in
each time slot is infeasible. Therefore, we need to resort to a
greedy method.

While being suboptimal, greedy scheduling [3], [14], [21]
represents a more practical approach from the network simu-



lation point of view for determining the maximal forwarding
capacity than other throughput optimal approaches, such as
randomized maximum weight scheduling [4], [19] or dis-
tributed CSMA approaches [11]. Also, approximate linear
programming formulations using only a subset of the neces-
sary schedulability constraints [10], [13] are computationally
inefficient for the network sizes we consider, or the bounds
become loose, see, e.g., [15].

In the examples of the directional distribution that we
consider (balanced bi- and four-directional), the naive basic
greedy method works well for the bidirectional case. However,
it fails when cross traffic is mixed with the bidirectional
stream as happens in the four-directional case. Based on our
insights at high network densities, we develop an improved
greedy algorithm that solves the problem. It represents a
parameterized variant of the basic greedy; in one extreme it
works as the basic greedy and in the other extreme the four
directions are treated as two bidirectional ones.

Our results demonstrate the significant gains from the
multidirectional forwarding. We argue that the isotropic traffic
case provides the highest gains in comparison with traffic in a
single direction and that already the results with four directions
provide a rough order of magnitude estimate of the gain.

The remainder of this paper is structured as follows. In
Section 2, we formulate the problem along with the used
notation and the network model. Section 3 presents the greedy
maximum weight scheduling algorithms, while section 4 dis-
cusses the implementation issues. The numerical results are
given in Section 5. Finally, Section 6 concludes the study.

II. PROBLEM FORMULATION

In this section, we present the network model and the
microscopic level multidirectional forwarding problem with
the related definitions.

A. Network model

The network consists of nodes, v ∈ V , distributed randomly
over a plane according to a spatial Poisson point process with
density n. We assume that time is slotted and that the length of
a time slot matches the duration of a packet transmission with
the nominal link capacity C. The network is further modeled
as a directed graph G = (V,L), where there exists a link
(u, v) ∈ L, u, v ∈ V if the distance between the nodes, |u−
v|, is less than the transmission range ρ. Two links l and l′

interfere with each other if

|tl − rl′ | ≤ ρ ∨ |rl − tl′ | ≤ ρ,

where tl is the location of the transmitting node, tl, of link l ∈
L, rl is the location of the receiving node, rl. This interference
model, referred to as the Boolean interference model, says that
a node is only capable of receiving a transmission if it is inside
the transmission radius of only one active node.

Because not all links can be active simultaneously, we have
to establish a schedule α which tells us how the links are
used. All the links that are active simultaneously have to
belong to the same independent set of links to avoid collisions.

The independent sets that are used for transmitting are also
referred to as transmission modes, and we denote the set of
transmission modes with M = {m1, . . . ,mM}. The schedule
α = {α1, . . . , αM} assigns each transmission mode mi with
the proportion of time αi that it is used. Now the effective
capacity of link l is

c(l) = C

M∑
i=1

αi1{l∈mi},

that is, the nominal capacity times the time share the link is
active.

B. Multidirectional forwarding capacity problem

A massively dense network corresponds to a dense network
in a closed domain A with the nodes having an infinitesimal
transmission range, and the paths being smooth geometric
curves allowing a continuous representation of the network
allowing a continuous representation of the network at the
global scale. From the local perspective, a single node sees
the network as an infinite network, and locally the carried
traffic consists essentially only of relay traffic. According to
[8], the network capacity problem separates into two scales:

1) Macroscopic level routing tries to find routes enabling
to carry as much traffic as possible through the network
without exceeding the microscopic level capacity con-
straint.

2) Microscopic level forwarding aims at coordinating the
transmission so that the packets are relayed hop-by-hop
as efficiently as possible.

In general, the problem at the microscopic level relates
to the following macroscopic level quantities, the directional
distribution of the traffic f(θ) and the local traffic load
Φ.1 The directional distribution of traffic f(θ) represents the
fraction of traffic in a given direction θ. The local traffic
load Φ gives the total offered traffic intensity in [pkts/s/m]
summed over all the angles. Previous work on the capacity
problem, based on the above separation of microscopic and
macroscopic scale problems [7], [8], [18], has assumed that
the microscopic scale sets the limit Φ ≤ I∗1 for the local traffic
load, where I∗1 is the (single-directional) forwarding capacity
defined as the maximum sustainable density of directed packet
flow [pkts/m/s]. In fact, this constraint expresses a sufficient
condition for the sustainable traffic. Namely, if the traffic flow
of intensity I∗1 can be sustained in a single direction, then
a traffic load Φ with arbitrary directional distribution f(θ)
satisfying Φ ≤ I∗1 can be handled by a simple time-sharing,
by allocating the traffic in the direction increment (θ, θ+ dθ)
the time share f(θ)dθ.

While the stated constraint is sufficient, it is not a necessary
condition. Namely, when the traffic consists of a mixture

1Angular flux of packets [8] in direction θ, denoted by ϕ(θ) is equal to
the rate [pkts/s/m/rad] at which packets flow in the angle interval (θ, θ+ dθ)
across a small line segment of the length ds perpendicular to direction θ
divided by ds · dθ in the limit when ds→ 0 and dθ → 0.

We write ϕ(θ) = Φ · f(θ), where Φ is the scalar flux Φ =
∫ 2π
0 ϕ(θ)dθ

and f(θ) is the directional distribution
∫ 2π
0 f(θ)dθ = 1.



of flows in different directions, it is, in general, possible to
carry more traffic by properly interleaving the use of links for
flows in different directions in the same time slot. The actual
limit, the multidirectional forwarding capacity, depends of the
directional distribution, f(θ) of the traffic, and we denote it
by I∗[f(θ)], using square brackets to emphasize the functional
dependence on f(θ).

In earlier papers [15], [16], we have found bounds or
approximations for the constant I∗1 (previously denoted by
I∗). But finding the functional I∗[f(θ)], to our knowledge, has
not been addressed before. Virtually nothing is known about
I∗[f(θ)], but on general grounds one can state that for any
f(θ)

I∗1 ≤ I∗[f(θ)] ≤ I∗∞,

where I∗∞ is the limit for the case where the directional
distribution is uniform, f(θ) = 1/2π, and I∗1 is the above
limit with traffic in a single direction with f(θ) = δ(θ),
i.e., the Dirac delta function. The first inequality is the above
sufficiency condition, and the second, while an exact proof
is missing, is rather obvious, i.e., the interleaving advantage
is greatest for isotropic traffic. It should be noted that all the
quantities depend also on the network parameters, suppressed
here for clarity (see Sec. II-D below).

In the simulations, we apply a greedy implementation of
the maximum weight scheduling algorithm to obtain estimates
of the multidirectional forwarding capacity for certain special
cases of the directional distribution. The covered cases include
two opposite directions with equal flows, f(θ) = (δ(θ)+δ(θ−
π))/2, and the four cardinal directions with balanced flows,
f(θ) = (δ(θ) + δ(θ − π/2) + δ(θ − π) + δ(θ − 3π/2))/4.
We will find that the corresponding limits I∗2 and I∗4 indeed
can be considerably greater than I∗1 depending on the network
parameters.

C. The macroscopic level problem

Note that the fact that the actual capacity limit on the
microscopic scale, I∗[f(θ)], depends functionally on f(θ)
does not destroy the separation into two subproblems on the
microscopic and macroscopic scales: the microscopic limit still
depends on the local characterization of the traffic only, on its
directional distribution, but not on the global characterization,
i.e., where the actual sources of a stream in any given direction
are located. It is certainly true that having the functional
I∗[f(θ)] instead of a constant I∗1 as the limit renders the
routing problem on the macroscopic scale more difficult.

As mentioned, on the macroscopic scale the problem is the
following: given a network area A and the traffic matrix, find
a routing system P , i.e., a set of paths (smooth curves), such
that at every point x, the local microscopic scale capacity
constraint is satisfied. With the multidirectional forwarding
capacity it reads,

Φ(x;P) ≤ I∗[f(θ,x;P)] ∀x ∈ A,

where the scalar flux Φ and the directional distribution f(θ)
are now functions of x as determined by the routing system

P . In particular, the network capacity problem is to find a
routing system P such that the above condition is satisfied
with the maximal possible scalar multiplier of a given form
of the traffic matrix. To be explicit, this leads to the following
modified load balancing problem

max
P

min
x∈A

I∗[f(θ,x;P)]/Φ(x;P),

where the numerator, instead of being constant I∗1 as was
assumed in the earlier work [8], [18], now depends on P .
When the above maxmin problem is solved with a unit traffic
matrix with the total traffic of 1 pkts/s, then the maxmin
value gives the network capacity. While solving the maxmin
problem is outside the scope of this paper, we will return to
the question of the impact of multidirectional forwarding on
the macroscopic level problem later on in Section V-D.

D. Dimensional analysis

In the microscopic level problem, the number of parameters
needed to describe the problem can be reduced by dimensional
analysis [1]. The maximum sustainable density of flow (ob-
tained with optimal global coordination of the transmissions)
depends on the physical parameters at hand: density of nodes
n [1/m2], (maximum) transmission range ρ [m], and nominal
capacity of a link C [1/s]. For a given directional distribution
f(θ), the multidirectional forwarding capacity, I∗[f(θ)], can
be expressed as any combination of the parameters having
the dimension 1/m/s times a function of all the independent
dimensionless parameters that can be formed. A combination
of parameters of dimension 1/m/s is provided by C

√
n, and

there is only one dimensionless parameter, namely the mean
degree of a node ν = nπρ2 (the constant π is unimportant as
it can be absorbed in the definition). Thus,

I∗[f(θ)](C, n, ρ) = C
√
nu∗(ν; f), (1)

where u∗ is an unknown dimensionless function to be deter-
mined.

III. GREEDY MAXIMUM WEIGHT SCHEDULING

In this section, we describe a method for resolving the
problems related to finding a feasible way to schedule the
transmissions efficiently. We also modify the basic greedy
maximum weight scheduling algorithm to be more suitable
for traffic flowing in the four cardinal directions.

A. Maximum weight scheduling

In their paper [20], the authors present a maximum through-
put policy that stabilizes the network for all arrival rates of
multiclass traffic for which it is stabilizable. In our setting,
the customer classes of the algorithm correspond to the traffic
flows in different directions. In the simulations, the classes
are discrete. Generally, the traffic in the direction increment
(θ, θ + dθ) is equivalent to a class. The original algorithm
also allows multiple link capacities, but here all the links are
assumed to have the same nominal capacity.



The algorithm has three stages. In time slot t, the first stage
is to calculate a weight wtl for each link l ∈ L as follows,

wtl = max
j

(
qt−1j (tl)− qt−1j (rl)

)
, (2)

where j is the class index and qj(tl) (qj(rl)) is the queue
length of class j at node tl (rl). In the second stage, a
maximum weight transmission mode is selected

m∗(t) = arg max
m∈M

∑
l∈m

wtl . (3)

Finally, in the third and last stage, if we index the links with
i = 1, . . . , |L|, and denote by j∗ the direction for which wtl =
qt−1j∗ (tl)− qt−1j∗ (rl), we get the activation vector E(t) at time
slot t as follows,

Eij(t) =

{
1, if li ∈ m∗(t), j = j∗, and qt−1j (tli) > 0,
0, otherwise.

In each timeslot the policy finds the transmission mode
that is of the maximum weight. Since all the links have the
same nominal capacity, the weight of each link is simply the
maximum (over the classes) difference in the queue lengths
between the transmitting and receiving end of the link. A link
in the maximum weight transmission mode is always activated
if the transmitter has a packet to send.

B. Basic greedy algorithm

If it were possible to run the maximum weight algorithm
properly, we could find out the true forwarding capacity. Un-
fortunately, finding the maximum weight transmission mode
(3) is NP-complete. Because of the limitations in the com-
puting capacity and the large network size, it is necessary to
simplify the problem. Therefore, we choose the links of the
transmission mode greedily.

In the basic greedy algorithm, the used transmission mode
is chosen in each time slot in the following fashion. The links
are sorted in the descending order according to their weigth
(2). The heaviest link is added to the transmission mode, and
all the links interfering with it are removed from the list of
possible links. The next heaviest link (that does not interfere
with first one) is then added to the transmission mode. Again,
the links interfering with the added link are removed from the
list. The procedure is continued until there are no links left to
add to the transmission mode, i.e., the mode is maximal.

The basic greedy algorithm was found to work well in all the
cases when ν is small. When ν is very large, however, better
results were obtained in the case of traffic in four cardinal
directions by making time sharing, with equal shares, between
the two pairs of opposite streams and applying the greedy
algorithm for one pair in turn.

This behaviour can be understood as follows. According
to [17], if links can be arbitrarily placed on a continuous
plane, then the most efficient way of packing them for carrying
traffic in the horizontal direction is to form vertical columns of
horizontal links. The Boolean interference model sets no limit
on how close two parallel links of maximal length, ρ, can
be. When the direction of the columns alternate the endpoints

close to each other are all either transmitters or receivers and
a small distance ε is enough between the columns.

The above suggests that for a high ν, when there are nodes
almost everywhere, a good strategy is to try to form vertical
columns. Since the transport network is very dense, the same
kind of transmission mode can be used in every time slot.
The configuration is just rotated and/or moved by ε resulting
in a flow where the same packet is moved once in every ρ/ε
time slots allocated for this pair of opposite directions. Thus,
packets traversing in two opposite directions are transmitted
in a single timeslot, and different directions are handled via
time sharing.

In order to have a single algorithm that covers all values
of ν in the case of equal traffic streams in the four cardinal
directions, we developed an improved algorithm described in
detail in the next subsection.

C. Improved greedy algorithm

In the basic greedy algorithm, as described, the links are
ordered in a list according to their weights. The links are
chosen from this list starting from the link with greatest weight
and skipping links that are in conflict with some of the already
chosen links.

In the improved algorithm we introduce two parameters, one
discrete, k = 1, 2, and one continuous, β ∈ [0, 1]. For given
values of k and β, the algorithm works as follows. First, the
greatest weight of all the links, wmax, is found. Then, priority
is given to the pair k of opposite streams, k = 1 corresponds to
the left-right pair, and k = 2 corresponds to the up-down pair.
Weights (2) are calculated taking into account only the two
customer classes in the preferred pair of directions. Links are
ordered according to these weights and conflict-free links are
chosen as in the basic greedy algorithm from this list, starting
from the link with the greatest weight, as long as the weight
exceeds the value β · wmax. After this point, the weights (2)
are calculated for all the remaining links taking into account
all four customer classes and links are chosen as in the basic
greedy algorithm.

For each setting of the parameters (k, β) we get a different
algorithm yielding a different set of selected links with associ-
ated total weight. In principle, we could make an optimization
to find the parameters that give the highest total weight in each
time slot, to become as close as possible to the max weight
scheduling. However, making such an optimization in every
time slot for the continuous parameter β would be too time
consuming. Therefore, in the algorithm we use a fixed value of
β, the same in all time slots. This value is, however, optimized
externally to give maximal flow for a given ν. Optimization
over the two values of k is done explicitly in each time slot,
i.e., both values are tried, and the one that gives the higher
total weight is selected.

Note that when β = 1 the algorithm reduces to the basic
greedy algorithm. One can also see that when β = 0 the result
cannot be worse than time sharing between the two pairs of
opposite directions. Hence, with the optimized k and β, we



always get results that are at least as good as those of the two
simpler algorithms, as substantiated in Figure 3 of Section V.

IV. IMPLEMENTATION ISSUES

This section covers the simulation setup and the factors
affecting the accuracy of the results.

A. Simulation setup

Since in a massively dense network the nodes commu-
nicating with each other are much further apart than two
neighboring ones, a route between a source and a destination
consists of a large number of hops. Therefore, the relay traffic
dominates the amount of traffic in a specific area of the
network In order to simulate this setting, we consider a finite
transport network with a set of artificial sources and sinks
on different sides of the network. The sources generate the
relay traffic that actually consists of the packets of multiple
OD-pairs with the same direction at this point of the network.
The problem is studied as a function of the network size to
determine a size that properly represents an infinite network.

The transport network with an average of N nodes resides
in a unit square that has a strip of sources added to each side
of the network with a large fixed queue length of q0. Each
source doubles as a sink for the sources of the opposite strip.
The queue length at sinks is always set to be zero. The width
of the strips is ρ.

The top and the bottom of the unit square are connected
together to form a cylinder and the ends of the ’unit-square’
cylinder are connected together to further form a torus. The
packets moving in the horizontal direction (originating from
the sources on the left or right) can move over the seam of
the cylinder. The packets moving in the vertical direction can
move over the other seam of the torus and also see the network
as a cylinder. This is done to reduce the border effects.

The above construction allows us study multidirectional
forwarding capacities when the directional distribution f(θ)
contains traffic in two and four directions, in addition to the
single-directional forwarding capacity. We are still limited to
the cases with right angles between the flows, but these cases
include arguably the most interesting ones, e.g., two flows in
opposite directions. If all of the four directions are not used
the corresponding sources are turned off.

As a result, the method gives the average progress of packets
in their direction per slot, x̄, when the network has been
stabilized. Alternatively, it is possible to monitor the number
of packets per slot arriving to the sinks or the number of
packets leaving the sources. When these three quantities are
approximately the same, the simulation can be considered to
have reached steady state. As we have a unit-area network, we
can calculate the dimensionless mean progress as u = x̄/

√
N .

Now, there are three sources of error affecting the result.
Firstly, the true maximum weight transmission mode is not
found but a suboptimal greedy approach is used. Secondly, the
fixed queue length of the sources, q0, affects the set of possible
link weights and thus the accuracy of the scheduling. The
queue length initialization of the other nodes is also important

because of the length of the initial transient. Thirdly, the size
of the network used in the simulations should be as large as
possible to properly represent the infinite network. The effects
of these approximations are discussed in the following.
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Fig. 1. The dimensionless mean progress for four directions and ν = 10 as
a function of N for different values of q0.

B. Greedy scheduling

The main factor limiting the applicability of the original
method is our inability to solve the maximum weight inde-
pendent set problem exactly since this is a computationally
complex problem. Although the improved algorithm changes
the order of the links compared to their original weights, both
the basic and the improved version of the algorithm still select
the activated links from an ordered list. Because of this greedy
scheduling, we get a lower bound for the capacity with the
particular size of the simulated network.

C. Queue length initialization

When the number of packets in the network is small, the
link weights are also small, and the probability that two
links have equal weights is notable. Since the choice between
two transmission modes that are of the maximum weight is
arbitrary, the operation of the scheduler is, at this point, more
random. This leads to suboptimal performance that results in
increasing queue lengths. When the queues grow, some of
the ties are resolved, and eventually the policy stabilizes the
queues for all arrival rates for which it is possible. This might
however require very long queues. When the queue length at
sources is fixed, the number of possible link weights is also
fixed. This means that to assure the best possible performance,
the queue length at sources, q0, should be as large as possible.

In practice, the choice of the queue length at sources is a
compromise since a large q0 means a long initial transient.
Because of the finite queue length at the sources, we get a
capacity lower than the true capacity. Figure 1 shows the effect
in different size networks when the queue length at sources
varies from 100 to 1000 packets.

D. Network size

The size of the simulated network needs to be large enough
in order for the results to be meaningful for a network with



infinite size. A small network gives too high values for the
achievable forwarding capacity since it is easier to establish a
flow through shorter paths.

Because of the finite network size, we get a capacity higher
than the true capacity. By eliminating the effect of the limited
network size, it would be possible to study capacities that are
actually achievable with greedy maximum weight scheduling.
Figure 1 represents u as a function of the network size N .

V. RESULTS AND DISCUSSION

This section contains the numerical results and the dis-
cussion on their significance on more general directional
distributions as well as on the macroscopic level problem.

A. Improved greedy algorithm

The performance of the improved greedy algorithm as a
function of the priority threshold parameter β with q0 = 100
is presented in Figure 2. The figure illustrates how the optimal
value of β becomes smaller as the transport network density,
ν, increases. The data points are averages over 10 network
realizations and the error bars show the 95 % confidence
intervals. The maximum values of each curve, corresponding
to the optimization over β, form the capacity curve of the
improved algorithm. This curve is represented in Figure 3
along with the results from the basic greedy algorithm with
two and four directions. The figure shows clearly how the
improved algorithm is able to outperform the basic greedy
algorithm with four directions when ν is large, achieving the
level of the two-directional one, but is still able to utilize the
multidirectional gain from all of the four directions when ν is
smaller.
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Fig. 2. The results from the improved greedy algorithm as a function of the
threshold β.

B. Comparison with the single-directional capacity

Figure 4 presents the dimensionless components, u∗ in (1),
of I∗1 , I∗2 , and I∗4 obtained using N = 1000 and q0 = 100 from
the basic greedy maximum weight scheduling algorithm with
one and two directions and the improved greedy maximum
weight scheduling algorithm with four directions. The results
are averages over 10 network realizations and the error bars
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Fig. 3. The improved algorithm for traffic in four directions compared with
the basic greedy algorithm with two and four directions.

show the 95 % confidence intervals. The values of q0 and
N are a practical compromise, based on Figure 1, between
the accuracy and the necessity to keep the simulation times
reasonable.
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As can be seen from the figure, the multidirectional gain
is, indeed, considerable ranging from a factor of 1.5 in
a dense transport network to over 2 in a sparse transport
network. Traffic in two opposite directions is enough to
generate the gain in a dense transport network, as discussed
in Section III-B, but having the four-directional distribution
is beneficial in a sparse transport network. In general, the
possibility to use more directions can only improve the result
as it is always possible to regress back to using only a subset
of the directions in a time-shared manner. It is safe to presume
that the capacity is the greatest for isotropic traffic and that
the four cardinal directions with equal flows should already
be a good approximation for the isotropic traffic.

The forwarding capacity with two opposite directions is
close to 1.5 times the single-directional when the network
is sparse. This can be understood as follows. When the
transport network is operated close to the percolation threshold
(ν ≈ 4.5), the number of paths connecting different sides of



the network is small. The small number of paths also implies
that they are far from each other and the interference between
two paths is negligible. When the schedule is chosen in the
way that the links of the path only interfere with the previous
and following link of the path, it is possible to use every third
link of the path simultaneously with a single direction. This
idea has been utilized in [16] to construct a lower bound for
the forwarding capacity also when the mean neighborhood
size, ν, is larger. In the multidirectional case, it is possible
to activate more than every third link. With two opposite
directions, every other link can be active when the directions
of the transmissions alternate. A single-directional schedule
consisting of three transmission modes leads to capacity C/3
for a single path while a two-directional schedule consisting
of four transmission modes leads to capacity C/2 for a
path. Hence, the two-directional case should give 1.5 times
the single-directional capacity when the transport network is
sparse.

C. On the accuracy of the results

For a very small ν, the error in the simulations is mainly
due to the network size. The C/3 flow that the one-directional
scheduling is able to achieve along a single path is maximal.
Also the two-directional greedy scheme can schedule close
to the maximum flow of one half along a path. Thus, the
results do not suffer from the greedy heuristic with the smallest
neighborhoods. The used network size of 1000 nodes leads to
a slightly too high capacity as there is more likely to be better
connectivity through a small network.

When ν is large, the effect of the size of the simulated
network is less relevant since the network is more homo-
geneous from the scheduling point of view. That is to say,
there are always multiple possible links to choose from, and
no clear bottlenecks appear as the network is made larger.
The capacities are achievable since the greedy scheduling
moves the result downwards. Greedy scheduling is not able
to coordinate the transmissions efficiently enough when the
number of interfering links is large, and, in addition to the
weight, one should also consider how the links interfere with
each other.

This is manifested in Figure 3 in that the greedy scheduling
performs worse with four directions than with two when
the network is dense. As concluded in Section III-B, the
optimal configuration for a dense network uses only two
opposite directions at a time. The two-directional greedy
scheduling automatically selects transmission modes that have
this characteristic, and it is thus able to outperform the four-
directional greedy method that cannot achieve the same spatial
reuse. The improved greedy algorithm is able to rectify this
for four-directional traffic, but it is still unable to coordinate
the transmissions further, e.g., to form columns.

D. Discussion

Next we consider what can be said about I∗[f(θ)] with a
general directional distribution f(θ). Assume that the multi-
directional forwarding capacities are known for some set of

directional distributions, {g1(θ), g2(θ), . . .}, and let these ca-
pacities be {J∗1 , J∗2 , . . .}, respectively. We can always express
the distribution f(θ) in the form

f(θ) =
∑
i

aigi(θ) + b h(θ), (4)

where the ai and b are non-negative constants, and the remain-
der term h(θ) ≥ 0 for all θ. Note that also h(θ) represents a
distribution (with the integral over the angle equalling one).

Given f(θ), we try to determine the maximal scalar flux
Φ, i.e., the constant multiplier in front of f(θ), such that the
traffic can be sustained. Each of the components of the sum in
(4) can be handled in Φ·ai/J∗i fraction of time. The remainder
requires a fraction smaller than or equal to Φ · b/I∗1 , where I∗1
is the single-directional forwarding capacity. The total traffic
can be sustained using time sharing between the components
if the sum of the time shares is at most 1. Then, for this f(θ)
we have the following lower bound for the multidirectional
forwarding capacity

I∗[f(θ)] ≥
(∑

i

ai/J
∗
i + b/I∗1

)−1
.

This is a sure lower bound since the handling of the remainder
term is upper bounded (by only using time-shared single-
directional forwarding) and also since time-sharing among the
components i is not necessarily optimal.

In our case, the directional distributions for which the
multidirectional forwarding capacity is known are the single-,
bi- and four-directional balanced traffic patterns. These can
be utilized to forward non-balanced four-directional traffic by
first separating the four-directional balanced traffic pattern,
in which case the remaining traffic equals zero in at least
one direction. In the other orthogonal direction, the balanced
bidirectional traffic can again be extracted. This only leaves
two single-directional orthogonal flows that can be handled
using time sharing with single-directional forwarding. This
yields the lower bound. By rotating this pattern over all angles
(0, π/2), a lower bound is obtained for the multidirectional
forwarding capacity for any directional distribution. Explicitly,
we have

I∗[f(θ)] ≥
(
K1 −K2

I∗1
+
K2 −K4

I∗2
+
K4

I∗4

)−1
,

where
K1 =

∫ 2π

0
f(θ) dθ = 1,

K2 = 2
∫ π
0

min{f(θ), f(θ+π)} dθ,

K4 = 4
∫ π/2
0

min{f(θ), f(θ+ π
2 ), f(θ+π), f(θ+ 3π

2 )} dθ.

Finally, we make a remark on the impact of multidirectional
forwarding in the macroscopic level routing problem with a
uniform traffic matrix. Under the assumption that only single
directional forwarding is used at the microscopic level, the
macroscopic-level routing problem is to determine the routes
so that the maximum local load is minimized, i.e., a problem



of load balancing, see [8], [18]. This causes the routes to be
long so that traffic is pushed away from the center towards the
edges, in order to avoid congesting the center of the area. Now,
the multidirectional forwarding capacity increases the capacity
compared with single directional forwarding, especially when
the traffic is nearly isotropic. Because the traffic is naturally
more isotropic at the center of the area (e.g., a disk) than at
the border, there is less need to push the traffic away from
the central area, and the optimal paths under multidirectional
forwarding will be more straight. It might even be that shortest
path routing (direct lines) is close to optimum.

VI. CONCLUSIONS

In this paper, we studied the forwarding capacity of a
homogeneous infinite network of Poisson distributed nodes
for multidirectional, non-isotropic but uniform traffic under
the Boolean interference model. This problem is relevant
for determining the network capacity of a massively dense
network, where a natural spatial separation of scales occurs,
and the multidirectional forwarding problem constitutes the
microscopic level part of the overall problem.

By using a constructive, simulation-based approach, we
were able to obtain numerical results for the hitherto unknown
multidirectional forwarding capacity, which depends both on
the directional distribution of the traffic and on the network
parameters through the mean node degree. More precisely,
we applied the multiclass maximum weight scheduling with a
greedy heuristic for finding a good candidate for the maximum
weight transmission mode in each time slot. This provided a
practical approach for our simulations, allowing us to consider
reasonably large networks and to produce what we believe are
the most accurate numerical results that are presently available.

Specifically, the multidirectional forwarding capacity was
determined as a function of the mean node degree for different
directional traffic patterns: bi- and four-directional balanced
traffic. The results confirm the intuition that as the traffic
becomes more isotropic the total forwarding capacity in-
creases. Indeed, a notable gain can be achieved over the single-
directional forwarding capacity.

An interesting observation was that in the regime of high
network density, i.e., high node degree, bidirectional balanced
traffic defines the maximum capacity. This is due to the
fact that in a dense network the Boolean model allows very
efficient packing of links by stacking them into columns of
parallel links, pointing to one traffic direction in one column
and to the opposite direction in the adjacent column. The best
strategy for any balanced traffic pattern is to make time sharing
between opposite pairs of traffic in different directions. This
insight was also used for designing an improved greedy algo-
rithm for four-directional traffic, that is able to produce good
results both at low- and and high-density regimes. A general,
time-sharing lower bound for any directional distribution of
the traffic was derived based on our results for the three basic
traffic patterns.

The possibility for the very tight packing of the transmit-
ting links in dense networks is a peculiarity of the Boolean

interference model. If the footprint of an active link is larger,
as it is when using, e.g., RTS/CTS-type two-way handshake
or additional interference, the gain is likely to be smaller. The
study of other interference models and a more detailed study
of the macroscopic level problem are left as future research.
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