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Abstract—Heterogeneous wireless networks have been intro-
duced to enable cellular networks to handle the continuously
increasing amount of mobile data traffic. In heterogeneous
networks, the deployment of macrocells is accompanied by the
use of low power pico and femtocells (referred to as microcells) in
hotspot areas inside the macrocell, which increases the data rate
per unit area. In this paper, we study the load balancing problem
of elastic data traffic in heterogeneous wireless networks focusing
on a single macrocell that is supported by a number of microcells.
This results in a parallel queueing system where individual cells
are modelled as single server processor sharing queues. Both
static and dynamic load balancing schemes are developed to
balance the data flows between the macrocell and the microcells so
that the mean flow-level delay is minimized. The performance of
static policies is evaluated by analytical and numerical methods,
whereas for the dynamic policies, we need to resort to simulations.
Our numerical experiments indicate that all dynamic policies can
significantly improve the flow-level delay performance compared
to the optimal static policy. Among the implemented policies, the
so-called myopic policy appears to be systematically the best.
However, also a much simpler policy with respect to the required
state information, the modified join-the-shortest-queue policy, is
able to achieve almost the same performance. In addition, we
observe that the performance gain of most of the dynamic polices
(including the myopic one) is at least approximately insensitive
with respect to the flow size distribution.

I. INTRODUCTION

Mobile data communications has undergone significant
evolution in recent years. The introduction of smart phones
has resulted in a drastic increase in the data demand from the
mobile users. To address this demand, operators are trying to
increase the capacity of current mobile networks by enhanc-
ing the radio links and introducing so-called heterogeneous
networks [1]. These are network architectures with microcells
(i.e., pico and femtocells) overlaying the macrocell network.
The macrocells are similar to the conventional base stations
that we use in today’s networks providing the basic coverage
to the whole cell area, while the microcells are low power base
stations used for hotspot areas within a macrocell to improve
spectral efficiency per unit area or for areas that the macrocell
cannot cover efficiently.

In a cellular network, efficient allocation of resources
(channels) to cells is needed due to limited bandwidth. The
problem becomes even worse when some cells are congested
while others are not, which results in a hotspot problem in
which the quality of service in congested cells is considerably
degraded. In order to increase the overall system utilization,

the load of the overloaded cells should be distributed to less
congested cells. In heterogeneous networks, when macrocells
are overloaded, part of arriving traffic can be transferred to less
loaded overlapping microcells, or vice versa, by a suitable load
balancing algorithm.

This paper addresses the load balancing problem for het-
erogeneous wireless networks. We focus on a single macrocell
that is supported by different types of microcells having a
wired backhaul connection to the Internet. These microcells
operate on a different frequency than the macrocell and have
their own characteristics with respect to handling data traffic.
From the traffic point of view, each cell can be considered,
whether it is the macrocell or a microcell, as a server which
has its own service rate. We assume that the traffic consists
of elastic downlink data flows. By further assuming that
the resources of a cell are time-shared uniformly between
the active users and the scheduler is not able to utilize the
instantaneous rate variations across the users (non-channel-
aware scheduling), individual cells can be modelled using
the classical single server processor sharing (PS) queue [2].
Since there are different types of cells, we have a system of
heterogeneous parallel processor sharing queues. Our problem
is related to the well-known dispatching problem but it is more
complex, as discussed later.

Our target is to develop both static and dynamic load
balancing schemes that balance the elastic data flows between
the macrocell and microcells. In the static case, the load
balancing problem is formulated as an optimization problem
in which the mean flow delay is minimized. The performance
of static policies is evaluated by analytical and numerical
methods. For the dynamic case, we consider several policies
and investigate the delay performance by simulations. Our
extensive numerical experiments indicate that all dynamic poli-
cies can significantly improve the flow-level delay performance
compared to the optimal static policy. Among the implemented
dynamic policies, the classical Join the Shortest Queue (JSQ)
policy typically performs worst. On the other hand, the so-
called myopic policy, which relies on detailed knowledge of
remaining service times and is optimal when there are no
more future arrivals, appears to be systematically the best.
However, a much simpler heuristic policy, the modified JSQ
(MJSQ), is able to achieve almost the same performance but
with knowledge of number of flows and average service rates
only. Experiments with optimized policies based on the first
policy iteration of the MDP theory are not able to give any
essential improvements over MJSQ either. These lead us to



believe that the myopic policy can be very close to optimal in
minimizing the mean flow delay. Finally, we observe that the
performance gain of most of the dynamic polices (including the
myopic one) is at least approximately insensitive with respect
to the flow size distribution.

Load balancing in parallel server systems has been widely
investigated in the context of distributed server systems con-
sisting of a single dispatcher and a group of parallel servers [3].
In this classical dispatching problem, the target is to determine
an optimal dispatching policy that will, e.g., minimize the
mean response time. For static policies (see, e.g., [4], [5])
the decisions do not depend on the states of the queues,
while dynamic policies assign arriving jobs depending on
some kind of information on the state of the system (see,
e.g., [6], [7]). JSQ and Least Work Left (LWL) are well-
known dynamic policies where an arriving job is dispatched
to the least loaded server (measured in the number of jobs
for JSQ and in the amount of unfinished work for LWL).
Winston [6] showed the optimality of JSQ for homogeneous
servers with the FIFO service discipline when the job sizes
are exponential (but unknown for the dispatcher), whereas
LWL is the optimal dynamic dispatching policy when the
job sizes are deterministic [8]. A simple static rule is based
on a probabilistic approach, while the Size Interval Task
Assignment (SITA) policy represents a more advanced static
method where all jobs within a given size range are dispatched
to a particular server [9], [10]. Feng et al. [11] have shown that
SITA with suitably chosen size ranges is the optimal static
dispatching policy for homogeneous servers with the FIFO
service discipline. While the optimal static dispatching policy
for parallel FIFO queues is size-based (SITA for homogeneous
servers and more complicated for heterogeneous servers), the
optimal static dispatching policy for parallel PS queues does
not need to depend on the size of the arriving job but can be
purely probabilistic (both for homogeneous and heterogeneous
servers), see [12].

In the classical dispatching problem described above, there
is a single decision point, i.e., the dispatcher. However, in our
heterogeneous network scenario, there are n parallel decision
points corresponding to n separate microcells, which makes
the problem essentially more complex. The load balancing
problem in this setting has not been studied much. In [13], a
load balancing algorithm is introduced that improves the call
blocking probability in the heterogeneous wireless networks.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate the problem.
The optimal probabilistic dispatching policy is analyzed in
Section III. Dynamic policies are introduced in Section IV,
and their performance benefits are investigated numerically in
Section V. Conclusions are in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a heterogeneous wireless system consisting of
a single macrocell and n separate microcells located inside the
coverage area of the macrocell, where each cell has its own
dedicated wireline connection to the Internet. Traffic consists
of elastic downlink data flows (such as TCP file transfers).
Let λi denote the arrival rate of new flows within the area of
microcell i = 1, . . . , n. Each such a flow can be carried either
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Fig. 1. Load balancing model for heterogeneous networks

by the microcell itself or the macrocell (but not by the other
microcells). So upon the arrival, a dispatching decision must
be made whether the flow is carried by the microcell or the
macrocell. In addition, let λ0 denote the arrival rate of those
flows (outside the “hotspot” areas covered by the microcells)
that can only be carried by the macrocell. All these separate
flow arrival processes are assumed to be independent Poisson
processes.

We assume that the macrocell and the microcells are
operating in a different frequency band, i.e., out-band, which is
reasonable in order to minimize interference between macro-
and the microcells [1]. On the other hand, the microcells can be
assumed to be far enough from each other so that they do not
interfere each other. Hence, as also motivated in Section I, each
cell is modelled by a single server PS queue. Let µi denote the
service rate of microcell i. Thus, 1/µi, the mean service time,
is the average time that is needed to complete the transfer of
a random flow by microcell i if there were no other flows to
be carried by the same cell. We note that the service time is
affected at least by the size of the original flow, the location
of the corresponding terminal (within the microcell), and the
radio channel conditions during the flow transfer. However,
since we assume that the scheduler of the microcell does not
utilize these features, we do not model them separately. Finally,
let µ0 denote the service rate of the macrocell. See Figure 1
for an illustration of our model.

In this paper, we assume that, for all i,

µi ≥ µ0. (1)

This is motivated by the fact that in the coverage area of a
femtocell the achievable rate is typically higher than in the
whole macrocell.

In an unbalanced system, each arriving flow within a
specific microcell is served by that cell independent of whether
the cell is congested or not. However, in a balanced system



flows arriving in any microcell i may be served either by
the local microcell i or the macrocell, which can be utilized
to optimize the system performance. We investigate this load
balancing problem in two stages. First, we seek to find the
optimal probabilistic dispatching policy that minimizes the
mean sojourn time, i.e., the average total time needed to carry
the flow. Here we determine the optimal splitting probabilities
when the load parameters (arrival rates and mean service times)
are known. Then, in the second stage, we consider dynamic
load balancing polices.

However, before handling the optimization problem, we
consider the stability of such a parallel queueing system. Since
the macrocell must be able to carry both its own dedicated
arrivals and the excess traffic from the microcells, we have the
following necessary stability condition:

λ0 +

n∑
i=1

(λi − µi)+ < µ0, (2)

where (x)
+

= max{x, 0}.

III. OPTIMAL PROBABILISTIC DISPATCHING POLICY

In this section, we consider static probabilistic dispatch-
ing policies. Such a policy is described by a vector p =
(p1, p2, ..., pn) where pi refers to the probability that a flow
belonging to arrival stream i is assigned to the corresponding
microcell i. All dispatching decisions are assumed to be
independent of each other. Figure 2 illustrates this kind of
probabilistic traffic allocation.
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Fig. 2. Probabilistic traffic allocation in heterogeneous networks

Due to the splitting property of the Poisson process, the
arrival process to each of the queues is an independent Poisson
process for any probabilistic dispatching policy. Thus, the
system is composed of n + 1 parallel M/G/1-PS queues
implying that the necessary and sufficient stability condition

is clearly as follows:

λ0 +

n∑
i=1

λi (1− pi) < µ0 and λipi < µi for all i. (3)

In addition, for a stable system, the mean sojourn time is

E[T ] =
λ0 +

∑n
i=1 λi (1− pi)

(λ0 +
∑n
i=1 λi) (µ0 − (λ0 +

∑n
i=1 λi (1− pi)))

+

n∑
i=1

piλi
(λ0 +

∑n
i=1 λi) (µi − piλi)

.

(4)

Our objective is to find the optimal probabilistic dispatching
policy that minimizes the mean sojourn time E[T ]. The
optimization problem can be formulated in a standard form
as follows:

minimize E[T ]

subject to λipi − µi ≤ 0, for all i ∈ {1, ..., n}(
λ0 +

n∑
i=1

λi (1− pi)

)
− µ0 ≤ 0,

pi − 1 ≤ 0, for all i ∈ {1, ..., n}
pi ≥ 0, for all i ∈ {1, ..., n}.

(5)

Since the objective function and the constraints are convex, the
optimization problem can be solved using standard numerical
techniques. As a result, we get the optimal policy defined by
the probability vector p∗ satisfying

p∗ = argmin
p

E[T ]. (6)

Symmetric case

As explained above, we have to rely on numerical methods
when determining the optimal probabilistic dispatching policy
in the general case. However, when considering a symmetric
traffic scenario defined by requiring that λi = λ and µi = µ for
all i = 1, . . . , n, we are able to derive the optimal policy and
the resulting performance analytically. Due to the symmetry,
we may restrict the study to symmetric policies for which pi =
p for all i. The stability condition (3) for the symmetric policies
simplifies to

λ0 + nλ (1− p) < µ0 and λp < µ (7)

and the expression (5) for the mean sojourn time to

E[T ] =
λ0 + nλ (1− p)

(λ0 + nλ) (µ0 − (λ0 + nλ (1− p)))

+
npλ

(λ0 + nλ) (µ− pλ)
. (8)

The optimization problem is to find p∗ ∈ [0, 1] that min-
imizes the mean delay, E[T ]. This renders a unique solution
due to the convexity of E[T ]:

p∗ = min{p, 1}, (9)

where

p =

√
µ0µ+

√
µ ((λ0 + nλ)− µ0)

√
µ0λ+

√
µnλ

. (10)



Note that p > 0 since, due to assumption (1), we have

p >

√
µ0µ−

√
µµ0√

µ0λ+
√
µnλ

=

√
µ0
√
µ
(√
µ−√µ0

)
√
µ0λ+

√
µnλ

≥ 0. (11)

IV. DYNAMIC POLICIES

In this section, we consider dynamic policies for which
the dispatching decisions depend on the states of the queues.
The description of the state of the system, s, depends on the
chosen policy. It may, for example, be the number of flows in
the system or the remaining workload of the flows. When a
flow arrives to a specific microcell i, the dispatcher assigns it
to the microcell i or to the macrocell (indexed by 0 from this
on) based on the chosen policy. Let ∆i(s) ∈ {0, i} denote the
action that the dispatcher in microcell i takes when the system
is in state s.

A. Join the shortest queue

In the Join the Shortest Queue policy (JSQ), the dispatching
decision is determined by comparing the number of flows in
the two cells. So the system state from the microcell i point
of view is s = (n0, ni), where ni [n0] denotes the number of
flows in cell i [0]. The JSQ policy is defined by

∆i(s) = argmin {n0, ni}. (12)

When the number of flows in both the macrocell and the
microcell are equal, the policy is implemented to dispatch the
arriving flow to the microcell i. We recall that, for the original
dispatching problem (with a single decision point), JSQ is
the optimal policy for exponentially distributed job sizes and
homogeneous servers [6].

B. Modified join the shortest queue

The Modified JSQ policy (MJSQ) is a modified version of
the basic JSQ policy where the number of flows in the cell
is scaled with the service rate of the cell. So the system state
remains the same s = (n0, ni), and MJSQ is defined by

∆i(s) = argmin {n0/µ0, ni/µi}. (13)

MJSQ is close to the minimum expected delay (MED)
dispatching policy, introduced in [14]. However, MJSQ does
not take into account the size of the arriving flow. Although
not optimal, the MED policy can provide good performance
in heterogeneous multi-server queueing systems.

C. Myopic policy

The Myopic policy (MP) assigns the arriving flow based
on the additional delay cost introduced by the new flow. The
policy assumes that the remaining service requirements of the
flows and the service requirement of the arriving flow are
known. The policy stems from the idea to minimize the total
delay assuming that no further flows arrive after the flow that
has just arrived.

Consider first microcell i. As before, let ni denote the
number of flows, and define xi = (xi,1, . . . , xi,ni

), where xij
denotes the remaining service time of flow j and the flows
are indexed in the decreasing order of the remaining service

times so that xi,1 ≥ . . . ≥ xi,ni
. Bonomi [7] was the first to

determine an explicit formula for the additional delay cost:

σi = x(2ki + 1) + 2

ni∑
j=ki+1

xij , (14)

where x denotes the service time of the arriving flow and ki
refers to the number of flows “longer” than x, ki = max{j :
xij > x}.

The additional cost σ0 related to the macrocell is calculated
correspondingly. The state of the system from the microcell i
point of view is s = ((n0, x0), (ni, xi)), and the MP policy is
defined by

∆i(s) = argmin {σ0, σi}. (15)

D. Improved Policies

Now we will use the first policy iteration (FPI) technique of
the MDP theory [15] to improve the optimal probabilistic pol-
icy discussed earlier. The key observation is that the behavior
of the system with the optimal probabilistic policy can still be
characterized by parallel independent M/G/1 PS queues. Thus,
in the first policy iteration we can utilize the known relative
values of states (with respect to the sojourn time) for a single
M/M/1-PS queue [16], [17].

We consider below two FPI based policies. The first one
is the Size-unaware FPI policy (FPI-U) where the dispatcher
is only aware of the number of flows in both cells, while in
the second one, which is called the Size-aware FPI policy
(FPI-A), the dispatcher is even aware of the remaining service
times of all flows in both cells. For both of these policies, we
use the optimal probabilistic dispatching policy as the basic
policy that is needed to determine the relative values of states.
Similarly as the MP policy, the FPI policies assign the arriving
flow based on the additional delay cost introduced by the new
flow. The difference comes from the way the additional cost
is evaluated, as explained below.

1) Size-unaware FPI policy: Consider first microcell i, and
recall that ni refers to the number of flows in cell i. The
additional delay cost, σi, of one additional flow is determined
as the following difference of the relative values of states [16],
[17]:

σi = vi(ni + 1)− vi(ni) =
ni + 1

µi − p∗i λi
, (16)

Correspondingly, for the macrocell, we get the additional delay
cost

σ0 =
n0 + 1

µ0 − λ0 −
∑n
j=1 λj(1− p∗j )

, (17)

where n0 refers to the number of flows in the macrocell.

The state of the system from the microcell i point of view
is s = (n0, ni), and the FPI-U policy is defined by

∆i(s) = argmin {σ0, σi}. (18)

2) Size-aware FPI policy (FPI-A): Consider again first
microcell i. As before, let ni denote the number of flows
and define xi = (xi,1, . . . , xi,ni

), where xij denotes the
remaining service time of flow j and the flows are indexed
in the decreasing order of the remaining service times so that



xi,1 ≥ . . . ≥ xi,ni
. The additional delay cost, σi, of one

additional flow with service time x is now determined as the
following difference of the relative values of states [17]:

σi = vi(ni + 1, xi ⊕ x)− vi(ni, xi), (19)

where xi⊕x = (xi,1, . . . , xi,ki , x, xi,ki+1, . . . , xi,ni
) with ki =

max{j : xij > x} and

vi(ni, xi) = vi(ni) +
1

(1− ρ∗i )
2

ni∑
j=1

(2j − 1)xij

+
2− ρ∗i

µi (1− ρ∗i )
2

ni∑
j=1

(
− jρ∗i

1− ρ∗i

)( j∑
k=1

e−µi(1−ρ∗i )(xik−xij)

)
×(

1− e−µi(1−ρ∗i )(xij−xi,j+1)
)
.

(20)

with ρ∗i = p∗i λi/µi.

The additional cost σ0 related to the macrocell is calculated
correspondingly. The state of the system from the microcell i
point of view is s = ((n0, x0), (ni, xi), and the FPI-A policy
is defined by

∆i(s) = argmin {σ0, σi}. (21)

V. NUMERICAL RESULTS

In this section, we examine the performance of the derived
load balancing policies. We present numerical examples for
both symmetric and asymmetric traffic scenarios and illustrate
the performance gain of the implemented dynamic policies
compared to the optimal static one. Our basic system consists
of two microcells, and initially we assume that the flow sizes
follow an exponential distribution. Later on, we also study
the effect of more variable service time distributions, a greater
number of microcells, and faster service rates of the microcells.

The performance of the dynamic policies is studied by
simulations. The system is typically simulated as a function of
the load for each policy, and the mean number of flows in the
system is considered as the performance metric. To estimate
the mean number of customers, each simulation run consisted
of 5 · 106 arrivals for the FPI-A policy and 5 · 107 arrivals for
all other policies. The reason for the lower number of arrivals
for the FPI-A policy is the higher computational complexity
of the policy, especially at higher loads, see Section IV.D.2.

A. Basic traffic scenarios

In this section, we examine four different traffic scenarios.
In all these scenarios the service rates of the cells remain the
same, µ0 = 1 and µ1 = µ2 = 2, so that the difference comes
from the arrivals rates.

First, we will go through results obtained from two sym-
metric traffic scenarios where the arrival rate to the two
microcells are equal. In Traffic scenario 1, there are no arrivals
in the macrocell, λ0 = 0, and the arrival rates to the microcells
are equal, λ1 = λ2 = λ, where λ is varied. In Traffic
scenario 2, the arrival rates to the microcells are constant,
λ1 = λ2 = 2, while the arrival rate to the macrocell, λ0,
is varied.

TABLE I. SUMMARY OF TRAFFIC SCENARIOS

Traffic scenarios fixed parameters varied parameters

Traffic scenario 1 λ0 = 0 λ1 = λ2 = λ

Traffic scenario 2 λ1 = λ2 = 2 λ0 = λ

Traffic scenario 3 λ0 = 0, λ2 = 2 λ1 = λ

Traffic scenario 4 λ1 = 1, λ2 = 2 λ0 = λ

Additionally, we study two asymmetric traffic scenarios.
In Traffic scenario 3, we assume that λ0 = 0, λ1 = λ, and
λ2 = 2. So λ1 is the free parameter to be changed in this
case. Traffic scenario 4 is quite similar to Traffic scenario 2
with the only exception that the arrival rates to the microcells
are asymmetric, λ0 = λ, λ1 = 1, and λ2 = 2. So in this case
λ0 is the free parameter to be varied. Table I summarizes the
four traffic scenarios.

Figure 3 illustrates the performance of the dynamic policies
in Traffic scenarios 1-4. More precisely, we present the ratio
between the total average number of flows of the dynamic
policies and that of the optimal static policy as a function of
the free traffic parameter for each traffic scenario separately.
Note that, due to Little’s result, the ratio is exactly the same
as the ratio between the average sojourn times of the dynamic
policies and that of the optimal static policy.

As expected, all implemented dynamic policies seem to
improve the performance compared to the optimal static policy
in all examined traffic scenarios. The results also show that MP
is systematically the best among them. On the other hand, it
can be observed that JSQ performs uniformly worse than the
other dynamic policies. It can also be observed that although
FPI based policies show a significant improvement over the
optimal static policy, they cannot compete with the MP policy.
Among the two FPI based policies, FPI-A appears to be
slightly better than FPI-U. The MJSQ policy, which requires
significantly less information than FPI-A, seems, however,
to be better than the two FPI policies in these basic traffic
scenarios.

As mentioned above, the MP policy gives uniformly the
best results. In fact, it continues to be the best performing
policy in all the other tests that we have conducted, as
will be discussed in Sections V.B-V.D. On the other hand,
MJSQ and the FPI-based improved policies are not performing
much worse than MP. Thus, it is plausible that significant
improvements in the performance over the MP policy can not
be achieved and, indeed, the MP policy is close to optimal in
minimizing the mean delay.

It can also be observed that the percentage decrease in the
mean number of flows (the gain of the dynamic load balancing
policies) is usually quite clear, such as 20% – 40%, but there is
one exception. In Traffic scenario 1, the gain almost disappears
with small values of λ. This is due to the fact that the optimal
splitting probability p∗ of the (symmetric) basic policy is equal
to 1 for small values of λ indicating that there is not much
help from the macrocell in this case.

B. Effect of the flow size variation

The purpose of this section is to investigate how the
performance of the dynamic load balancing policies changes
when we increase the variation of the flow size distribution.
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Fig. 3. Ratio of the mean number of flows in the system between the dynamic policies and the base line optimal static policy for Traffic scenarios 1-4

We note that the mean delay performance of all static policies
is insensitive to the flow size distribution (as long as the mean
value remains the same), since all parallel queues are of the
M/G/1-PS type in this case. Besides the dynamic policies
discussed so far, in this section we consider the Least Work Left
policy (LWL) which chooses the cell with the least amount of
remaining work (in time units) when dispatching an arriving
flow.

Traffic scenario 2 is simulated for the bounded Pareto flow
size distribution with different values for the shape parameter
α (however, keeping the mean value fixed). The CDF of the
bounded Pareto distribution is defined by

F (x) =


0, x < p,
1− (k/x)α

1− (k/p)α
, k ≤ x ≤ p,

1, x > p.

Parameters k and p define the support of the distribution, while
α describes its variation. The lower the α, the more variable
the flow size distribution will be. The results of the simulations
are presented in Figure 4.

It can be seen from the figure that MP is still systematically
the best dynamic policy, and MJSQ is the second best in
almost all simulated cases. Another observation is that the

performance of almost all dynamic policies, except LWL, is at
least approximately insensitive with respect to the flow size
distribution. When the flow size variation is high, there is
a considerable performance degradation in the LWL policy.
Although LWL requires more information, it performs even
worse than JSQ for the shape parameter α = 1.5 and α = 2.0.
However, when α = 3.0, the performance of the LWL policy
resembles that of LWL with exponential flow size distribution.

Two major reasons were mentioned in [18] for the per-
formance degradation of LWL in the classical dispatching
problem with highly varying distributions. The first one is
related to the scheduling policy used, i.e, the PS discipline.
For PS systems, the unfinished work does not capture the
additional delay cost due to the arriving flow. The other one is
related to the service rate of the servers. The LWL policy does
not take into account the differences in these service rates as
regards the arriving flow.

C. Effect of the number microcells

The effect of increasing the number of microcells, n, within
a single macrocell is studied in this section. We consider a
generalization of Traffic scenario 2 where λ0 = λ, λ1 = . . . =
λn = 2, µ0 = 1, and µ1 = . . . = µn = 2.
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Fig. 5. Impact of the number of microcells on the performance gain of load balancing policies



Figure 5 shows the impact of the number of microcells on
the performance gain of the dynamic load balancing policies.
The y-axis represents the ratio in the mean number of flows in
the system, as compared to the base line optimal static policy,
and the x-axis shows the number of microcells in the system
for two different values of the free parameter λ0.

First we observe that, as before, MP is again systematically
the best dynamic policy, and MJSQ is the second best. It
can also be seen from the figure that there is around 40%
performance gain, compared to the optimal static policiy, when
we have two microcells. However, this percentage increases
systematically when we increase the number of microcells,
reaching around 45% when the number of microcells is 10.
Thus, we conclude that increasing the number of microcells
results in an increase in the performance gain of the system.

D. Impact of service rate difference

Finally, we study the impact of increasing the service rate
difference between the macrocell and the microcells on the
performance gain of the dynamic policies. We consider the
same four different traffic scenarios as earlier (macrocell + two
microcells), but the service rate of the microcells is doubled,
i.e., we have µ1 = µ2 = 4. The performance ratio compared
with the static optimal policy for each scenario as a function
of the load is given in Figure 6.

Qualitatively, the results are quite similar to what we
observed for the basic scenario in Section V.A. The JSQ policy
performs worst and MP is performing uniformly the best,
while the simple MJSQ gives roughly as good performance
as MP. The FPI-based improvements are more or less as good
as MJSQ. A slight difference occurs in Traffic scenario 1: in
Figure 6 under light traffic both JSQ and MJSQ perform even
worse than the static optimal. This can be explained by noting
that for µ1 = µ2 = 4 the optimal static policy never uses the
macrocell, i.e., p∗1 = p∗2 = 1, when λ < 2. However, JSQ and
MJSQ are both dynamic policies and sometimes based on the
state they dispatch flows to the very slow macrocell.

VI. CONCLUSIONS

In this paper, we have investigated the load balancing
problem of elastic data traffic in heterogeneous networks. We
have modelled a heterogeneous wireless network consisting of
a single macrocell and a number of out-band microcells as a
distributed server system with parallel heterogeneous M/G/1-
PS queues. Each queue represents a cell with its own arrival
rate of traffic. In the microcells, a decision can be made to
serve the flow locally or whether to dispatch it to the macrocell.
This gives rise to a generalized dispatching problem with
multiple decision points.

The objective was to determine policies that are able to
optimize the mean delay of the flows in the system. The
static optimal policy was used as the baseline policy. In the
symmetric case, an explicit solution was determined but in the
general case the problem can be solved numerically. In our
setting, the optimal dynamic policy minimizing the mean delay
is not known. However, we presented several dynamic policies
that are well motivated by literature and applied them in our
case. The implemented policies include: classical JSQ (optimal
in the classic dispatching problem with homogeneous servers),

MJSQ (heuristic version of JSQ for heterogeneous servers),
MP (optimal if no more future arrivals) and two optimized
policies (FPI-U and FPI-A) that are based on the first policy
iteration method of the MDP theory. Our main contribution is
in studying experimentally by simulations these increasingly
more complex dynamic policies.

To gain insight into the performance of the different poli-
cies, we conducted an extensive set of numerical experiments.
The basic setting consisted of a system with one macrocell and
two microcells with higher service rates than the macrocell.
In this setting, we evaluated four different scenarios having
both symmetric and asymmetric arrival rates to the cells. Other
aspects that were studied include the impact of more variable
service time distributions, increasing the number of microcells
and higher degree of asymmetry in the service rates.

Our main findings were the following. All dynamic policies
can significantly improve the flow-level delay performance
compared to the optimal static policy. Among the implemented
dynamic policies, the classical Join the Shortest Queue (JSQ)
policy typically performs worst. On the other hand, the so-
called MP policy, which relies on detailed knowledge of
remaining service times and is optimal when there are no
more future arrivals, appears to be systematically the best.
However, the much simpler heuristic policy, MJSQ, is able
to achieve almost the same performance but with knowledge
of number of flows and average service rates only. Optimized
policies (FPI-U and FPI-A) are not able to give any essential
improvements over MJSQ either. Thus, we believe that the MP
policy can be very close to optimal in minimizing the mean
flow delay. Finally, it appears that the performance gain of most
of the dynamic polices (except LWL) is at least approximately
insensitive with respect to the flow size distribution.

Future work for the problem includes, for example adding
spatial features in the traffic model. This would allow a more
detailed representation of the actual service time that consists
of a model for the achievable service rate of a user at a
given location. This information could also be utilized in
the load balancing policy to develop more efficient policies.
Also, considering in-band configurations of the system is one
direction, where one then needs to consider the interference
between the cells. Of course, the overall question of optimal
policies is still completely open, even for the basic model
introduced in this paper.
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