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Abstract—We consider the intercell coordination prob-
lem between two neighboring cells, assuming that the
traffic in the system consists of elastic downlink data
flows. In this case, there is an option of completely
switching off one base station at certain times, which
reduces interference and enables a higher service rate in
the neighboring base station. We use a flow level queueing
model to describe the evolution of the system based on a
symmetric capacity region. Recent results by Verloop and
Núñez-Queija show that, assuming a single class of flows
for each cell, the stochastically optimal dynamic policy
is to have both stations switched on whenever there are
users in both cells. In this paper, we consider a system
where the two stations are able to provide services to two
different classes of users — the near ones and the far
ones. In this setting, the stochastic optimality of the both
stations on policy does not necessarily hold, but it may
still be a close-to-optimal policy, at least for minimizing
the mean flow delay. We present a systematic method based
on the policy improvement algorithm of the theory of
the Markov Decision Processes to generate a near-optimal
state-dependent resource allocation policy. Our numerical
experiments with these two dynamic policies indicate that
the both stations on policy is, indeed, close to optimal even
when there are multiple user classes.

Index Terms—cellular networks, intercell coordination,
elastic traffic, flow-level models

I. INTRODUCTION

The capabilities of modern cellular systems, such as
HSPA and 4G, enable the development of sophisticated
mechanisms for mitigating the impacts of interference
from simultaneous transmissions coming from neighbor-
ing cells. Intercell coordination refers to the idea that dif-
ferent base stations, instead of operating independently,
work together in a coordinated fashion to enhance the
performance of the whole system based on some global
information of the system. For example, a base station
may take into account the traffic in neighboring cell, the
power being transmitted by other stations, the size and
the type of the flows being served, etc., before deciding

on its own service strategy. However, determining opti-
mal resource allocation strategies in a multicell setting
also poses significant challenges.

We assume that the traffic in the system consists
of elastic downlink data flows. In this case, one has
even more flexibility in coordination activities as there
is an option of completely switching off some base
stations at certain times. This reduces interference and
enables a higher service rate in the neighboring base
stations. At the flow level, the impact of such resource
allocation policies on the service rates of the system can
be formalized by the notion of the capacity region. The
capacity region characterizes the set of all possible long-
term average service rates that can be realized by the
resource allocation in order to serve the flows.

The capacity region abstraction of the system allows
the development of queuing theoretic models to analyze
the structural properties of resource allocation policies.
The base stations correspond to servers and if the base
stations are independent, the system can be modeled
using classical M/G/1 queueing models, see [1], [2].
However, as in our case, turning the stations on/off
depending on the state of the system makes the service
rate of the stations coupled, and it is reflected in the
corresponding capacity region of the system. In general,
for such models even the fundamental notion of stability
is notoriously difficult to characterize. Indeed, most of
the work focuses on these stability properties, see, e.g.,
[3]–[5]. Results on optimizing the resource allocation to
minimize the flow delay are significantly more scarce.

Recently, structural results on the optimal resource
allocation in a specific case with two base stations
have been given by Verloop and Núñez-Queija in [6].
They consider a system with asymmetric service rates,
where flows arrive at the stations according to a Poisson
process and the service requirements are exponentially
distributed. One of the results states that under a specific
condition for the service requirements and the asym-
metric rates, the stochastically optimal dynamic policy



is to have both stations switched on whenever there
are users in both cells. We also study the same system
with two interfering base stations under the assumption
of a symmetric capacity region and symmetric service
requirements. More specifically, when only one station
is on it serves at a rate c0 (the same for both stations)
and if they are both on, they both serve at a rate
c1 < c0. Moreover, we focus on the so-called low
interference case that is characterized by the assumption
that c0 < 2c1. Under this assumption, the both stations
on policy maximizes jointly the speed at which the
system operates and the rate at which flows complete.
Thus, the stochastic optimality of the both stations on
policy is intuitively quite easy to understand.

In this paper, we extend the idea of [6] and consider
a system where the two stations are able to provide
services to two different classes of users — the near ones
and the far ones. We model these user types by different
classes of a multi-class processor sharing system so that
the far off users are able to achieve only a fixed fraction
of the service rate of the near users. In this setting, the
stochastic optimality of the both stations on policy does
not necessarily hold. For example, consider a situation
where in one cell there are only near users and in the
other one only far off users. Then, with a suitable choice
of parameters, the both stations on policy no longer
jointly maximizes the speed at which the system operates
and the rate at which flows complete.

The both stations on policy may still be a close-to-
optimal policy, at least for minimizing the mean flow
delay, and our objective is to gain insight into if this
is the case. To this end, the theory of Markov Decision
Processes and the policy improvement algorithm is used
to determine an improved dynamic policy after the
first iteration step when starting from the optimal static
policy. Typically, after the first iteration, the resulting
policy is already close to optimal. Comparing then this
improved dynamic policy to the both stations on policy
yields an indication of how close the both stations on
policy is to the optimal one. For the construction of the
improved dynamic policy, we utilize the results given
by Leino and Virtamo in [7]. It turns out that this policy
is characterized by linear switching curves in the four-
dimensional state space.

In our numerical experiments, we compare the perfor-
mance of the both stations on policy and the improved
dynamic policy to the optimal static policy by means
of simulations. The results provide clear evidence of the
near-optimality of the both stations on policy, at least
in the mean value sense. When the load is symmetric,
the both stations on policy is better than the optimal
static policy by an almost constant factor as the load is

uniformly increased, and also outperforms consistently
the improved dynamic policy. In the extreme case with
only near users in one cell and far off users in the
other, we can force the system to a situation where the
both stations on policy may suffer, as discussed earlier.
However, even in this case the both stations on policy
yields virtually identical performance to the improved
dynamic policy at lower loads and at higher loads the
both stations on policy actually becomes better.

The rest of the paper is organized as follows. In
Section II, we describe in detail the model used. The
optimal static policy is derived in Section III. This is
then followed by Section IV, where the Markov Decision
Process framework is given and the improved dynamic
policy is constructed. Numerical results are given and
discussed in Section V. Finally, conclusions are pre-
sented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a two-cell system in which each cell and
the base station in it are indexed by the elements of
I = {1, 2} and let i ∈ I unless otherwise stated. Each
base station can operate at the maximum rate of c0

(bits/sec) when the other base station is turned off. When
both stations are switched on, each station is capable
of operating at maximum rate of c1 (bits/sec), where
c1 < c0 due to interference between the two cells. In
addition, we assume that c0 < 2c1, which is referred to
as the low interference case.

By means of time sharing, any rate pair r = (r1, r2) ∈
C = Conv{(0, 0), (c0, 0), (0, c0), (c1, c1)} can be allo-
cated to the two base stations in the long run, where
ConvA is the convex hull of the elements of A.
The capacity region C is clearly the intersection of the
following half planes (as illustrated in Figure 1):

r1 ≥ 0 (1)

r2 ≥ 0 (2)

r2 ≤ c0 −
c0 − c1

c1
r1 (3)

r2 ≤
c1

c0 − c1
(c0 − r1). (4)

In each cell, we have two classes of users, the near
users and the far off users. Due to the path loss effects,
the far off users can get only a fraction of the data rate
that the near users get. More specifically, if a base station
can serve the near users at the rate r, then it can give
a data rate of only kr, k < 1, to the far off users. For
each cell i, we assume that the near users arrive at rate
λi1 and the far off users at rate λi2. Traffic consists of
elastic flows (such as TCP file transfers) downloaded by



r1

r2

(c0, 0)

(c1, c1)

(0, c0)

Fig. 1: Capacity region C when c0 < 2c1

the users (one flow per user). The arrivals are assumed to
be from independent Poisson processes. In addition, we
assume that the flow sizes are exponentially distributed
with mean E[X] = X̄ (bits). Each base station shares its
transmission time fairly among the users it is serving,
working as a two-class processor-sharing (PS) system.

Let x = (x1, x2) denote the number of users present
in Cell 1 and y = (y1, y2) denote the number of users
present in Cell 2. In both cases, the first element of the
vector represents the number of the near users while the
second element represents the number of the far off users
in the cell. We are interested in state-dependent resource
allocation policies π ∈ Π described by the allocation
function π(x,y) ∈ C. An example is the Both Stations
On policy, which keeps both stations on whenever they
are non-empty, defined by

π(x,y) =


(c1, c1), for x 6= (0, 0) and y 6= (0, 0);
(c0, 0), for y = (0, 0);
(0, c0), for x = (0, 0).

In [6], the Both Stations On policy is shown to be
(i) maximally stable and (ii) even stochastically optimal
(minimizing the total number of users in the two cells
in stochastic sense) under the assumption that there is
only one class per station. As speculated in Introduction,
it is no longer clear how optimal the Both Stations
On policy is in our case with two classes per cell.
Below in Sections III and IV, we present a systematic
method based on the policy improvement algorithm of
the theory of the Markov Decision Processes that can be
used to generate a near-optimal state-dependent resource
allocation policy, which we will call the Improved Dy-
namic policy. The two policies are finally compared in

Section V.

III. OPTIMAL STATIC POLICY

In this section we consider static policies under which
the system is operated with a fixed rate pair r =
(r1, r2) ∈ C (independently of the state of the system).
We derive the Optimal Static policy r∗ that minimizes
the total average number of users in the system (as well
as the mean flow delay due to Little’s formula).

Since the service rate allocations for the two stations
are fixed with a static policy, each station can be mod-
elled as an independent M/G/1-PS queue. The traffic
intensity in station i is ρi , λi1X̄

ri
+ λi2X̄

kri
, and the average

number of users in each station is given by

E [Ni] =
ρi

1− ρi
. (5)

The average aggregate number of users in the whole
system is then

E [N ] = E [N1] + E [N2] =
ρ1

1− ρ1
+

ρ2

1− ρ2
(6)

=
α1

r1 − α1
+

α2

r2 − α2
, (7)

where αi , X̄(λi1 + λi2/k). These parameters αi can
be interpreted as the total arrival rates of bits at the base
station.

For the most efficient use, the rate pair is always taken
from the border of the capacity region, i.e.,

r2 =

{
c0 − c0−c1

c1
r1 if 0 ≤ r1 ≤ c1,

c1
c0−c1 (c0 − r1) if c1 ≤ r1 ≤ c0.

(8)

Moreover, the allocated service rates must always keep
the system stable, i.e., ri > αi for each i ∈ {1, 2}.

The optimal static operating policy can be found
by minimizing (7) over all the possible points in the
capacity region where the system is stable. Without loss
of generality, we assume here that the aggregate arrival
rate of bits in Cell 2 is greater than that in Cell 1, i.e.,
α2 ≥ α1.

If α2 ≥ c1, a portion of the upper boundary region
only (and no part of the right boundary region) is a subset
of stability region, i.e., 0 ≤ r1 ≤ c1 and

r2 = c0 −
c0 − c1

c1
r1. (9)

For minimum, dE [N ]
dr1

= 0, from which it straightfor-
wardly follows that

r∗1 =

c1
c0−c1 (c0 − α2)

√
α1 + α1

√
α2

c1
c0−c1

√
α1 +

√
α2

c1
c0−c1

, (10)



where r∗1 is the value of r1 that minimizes (6). The
corresponding r∗2 can be calculated from (9).

When α2 < c1, the right boundary of the stability
region also has stable rate pairs, and possibly an optimal
rate pair. But as the average number of users is an
increasing function of r1 in this region, the optimal value
should exist either at the common point of the left and
the top boundaries, (c1, c1), or at the upper boundary
which is given by (10).

So the optimal static rate pair for the stable arrival
rates is determined by the simple procedure highlighted
below:

1) The optimal r∗1 and the corresponding r∗2 are
calculated from (10) and (9).

2) If r∗1 ≤ c1, then this is taken as the optimal rate.
Otherwise (c1, c1) is the optimal rate.

These optimality results are obtained assuming that
the service rate allocations for the two base station are
static and that it cannot change as the system evolves.
However, one can look for a dynamic policy that checks
the system at certain instants of time and, depending on
the state of the system at that time, assigns a new service
rate pair. Such a policy can give better performance than
the optimal static policy.

IV. IMPROVED DYNAMIC POLICY

In this section we apply the policy improvement al-
gorithm of the theory of Markov Decision Processes,
originally due to Howard [8]. To run the algorithm, we
need an initial policy for which we are able to calculate
so-called relative values of states. Below in Section IV-A,
we apply the results derived by Leino and Virtamo
[7] to determine the relative values of states for the
optimal static policy. An improved dynamic policy can
then be constructed by applying the policy improvement
algorithm, as demonstrated in Section IV-B. A similar
approach (called First Policy Iteration) has recently been
used by Hyytiä et al. [9] to find near-optimal size-aware
dispatching rules for parallel queueing systems.

A. Relative values of states for multi-class PS queues

Consider a queueing system with one server which is
serving C classes. The jobs for class i arrive according
to an independent Poisson process at rate λi and have
exponentially distributed sizes with mean 1/µi. The
traffic load of the i-th class, ρi, is defined as ρi , λi

µi

and the traffic intensity of the whole system ρ defined
as ρ ,

∑C
i=1 ρi. We consider a stable system with

ρ < 1. The server processes the jobs according to the
PS discipline. These assumptions imply that the system
can be fully described as a Markov process, X(t), which

takes the values in a C-dimensional state-space X ⊆ ZC+,
where the state x = (x1, . . . , xC) ∈ X represents the
number of customers, xi, in class i.

Each job in the system generates holding costs with
rate 1. Thus, when X(t) = x, the instantaneous cost rate
r(x) is equal to r(x) =

∑C
i=1 xi. In addition, the average

cost rate r̄ is clearly equal to r̄ = ρ/(1−ρ). The relative
value of state, v(x), describes the expected cumulative
difference in costs between a system starting from state
x and a stationary system with the initial distribution
equal to the equilibrium distribution,

v(x) = E

[∫ ∞
0

(r(X(t))− r̄) dt
∣∣ X(0) = x

]
.

These relative values of states satisfy the so-called
Howard equations:

r(x)− r̄ +
∑
y∈X

qxy(v(y)− v(x)) = 0 ∀x ∈ X ,

where qxy is the transition rate from state x to state
y. For the multi-class PS queueing system, the Howard
equation for state x = (0, . . . , 0) reads as

−r̄ +

C∑
i=1

λi(v(x + ei)− v(x)) = 0, (11)

and for states x 6= (0, . . . , 0) we have

C∑
i=1

xi − r̄ +

C∑
i=1

λi(v(x + ei)− v(x))

+

C∑
i=1

µixi∑C
j=1 xi

(
v(x− ei)− v(x)

)
= 0. (12)

Here ei denotes the unit vector into corresponding to
class i.

As shown in [7], the relative values of the states v(x)
for the multi-class PS queue are given by the following
quadratic expression:

v(x) =

C∑
i=1

C∑
j=1

aijxixj +

C∑
i=1

aixi + a0, (13)

where aij = aji. Then with proper substitutions followed



by some algebraic manipulations, equations (12) become

C∑
i=1

1 + 2

C∑
j=1

λjaji − 2µiaii

x2
i

+ 2

C−1∑
i=1

C∑
j=i+1

1 +

C∑
k=1

λk(aki + akj)

−µiaij − µjaji
]
xixj

−
C∑
i=1

[
µi(ai − aii)

]
xi = 0 for all x 6= (0, . . . , 0).

(14)

The left-hand side of (14) is a quadratic polynomial in
C variables without the constant term with a total of
C + C(C−1)

2 + C = C2+3C
2 terms. These equations are

satisfied by any state of the underlying Markov process
implying that the coefficients of all the terms of the
polynomial are zero. So we get C2+3C

2 linear equations
in ai and aij , i, j ∈ {1, . . . , C} with aij = aji, i.e., again
C2+3C

2 unknowns. We can easily see, from the coeffi-
cients of the linear terms of xi, that ai = aii. Considering
the fact that the coefficients of the quadratic terms of
(14) do not depend on ai, only C2+C

2 linear equations
corresponding to the coefficients of the quadratic terms
— x2

i and xixj — can be solved to get all ai and aij
where i, j ∈ {1, . . . , C}.

For the case of two classes (C = 2) we get the
following quadratic equation:

(1 + 2λ1a11 + 2λ2a21 − 2µ1a11)x2
1

+ (1 + 2λ1a12 + 2λ2a22 − 2µ2a22)x2
2

+ 2[1 + λ1(a11 + a12) + λ2(a21 + a22)

− µ1a12 − µ2a21]x1x2

−
[
µ1(a1 − a11)

]
x1 −

[
µ2(a2 − a22)

]
x2 = 0.

Thus, there are five independent linear equation in as
many unknowns:

1 + 2λ1a11 + 2λ2a21 − 2µ1a11 = 0,

1 + 2λ1a12 + 2λ2a22 − 2µ2a22 = 0,

1 + λ1(a11 + a12) + λ2(a21 + a22)

− µ1a12 − µ2a21 = 0,

µ1(a1 − a11) = 0,

µ2(a2 − a22) = 0,

(15)

resulting in

a11 = a1 =
1

G

(
µ2

µ1
+ 1− ρ

)
,

a22 = a2 =
1

G

(
µ1

µ2
+ 1− ρ

)
,

a12 =
1

G
(2− ρ),

(16)

where G = 2(1− ρ)(µ1 + µ2 − λ1 − λ2).
Note that the parameter a0 cannot be determined by

this way. On the other hand, it does not matter since a0 is
finally not needed for the policy improvement algorithm,
as we will see below.

B. Policy improvement

Once the relative values of states are determined for
an initial policy, a policy improvement step can be
performed to determine a better policy. Below we first
describe the method in a general queueing setting, and
then apply the method to our specific queueing system.

Let X refer to the set of all states x. We define A(x)
as the set of all the actions that can be chosen when
the system is in state x. For the policy improvement
algorithm, we need an initial policy ~π = (πx) with state-
dependent actions πx ∈ A(x). Then we construct an
improved policy ~π′ = (π′x) by choosing the action π′x
in state x such that

π′x = arg min
a∈A(x)

rx(a)− r̄(~π) +
∑
y∈X

qxy(a)vy(~π)

 ,

(17)

where rx(a) is the instantaneous cost rate when action a
is chosen, r̄(~π) is the average cost rate when the initial
policy ~π is used, qxy(a) is the transition rate from state
x to state y when action a is chosen, and vy(~π) is the
relative value of state y under the initial policy.

We choose our initial policy as the optimal static
policy and then apply the policy improvement algorithm
once. As the system under the initial policy consists of
two independent two-class PS queues, we can construct
the relative values of states for each queue from the
discussion in Section IV-A. These relative values can
then be added together to get the relative values for the
whole system. The policy improvement process consists
of choosing one of three possible actions, viz., 10, 01
and 11, which correspond to only Station 1 being on,
only Station 2 being on, and both stations being on
respectively, that leads to the smallest expected costs in
the future.

As before, let x = (x1, x2) denote the number of users
present in Cell 1 and y = (y1, y2) denote the number of



users present in Cell 2. Since any static policy results in
two independent multiclass PS queues, we conclude that
the relative value of state, vs(x,y), when the optimal
static policy is used is given by,

vs(x,y) = v1s(x) + v2s(y),

where v1s(·) and v2s(·) are the relative values of states
for Cells 1 and 2, respectively, for the corresponding
optimal static policies. It follows from Section IV-A that

v1s(x) = a11x1(x1 + 1) + a22x2(x2 + 1) + 2a12x1x2 + a0,

v2s(y) = b11y1(y1 + 1) + b22y2(y2 + 1) + 2b12y1y2 + b0.

The coefficients aij and bij are the appropriate relative
value parameters for Cells 1 and 2, respectively, which
are determined by (16).

With the optimal static policy used as the initial policy,
the expressions in (17) for the three possible actions a ∈
{10, 01, 11} are as follows:

rs(x,y)− r̄s + λ11[vs(x + e1,y)− vs(x,y)]

+ λ12[vs(x + e2,y)− vs(x,y)]

+ λ21[vs(x,y + e1)− vs(x,y)]

+ λ22[vs(x,y + e2)− vs(x,y)]

+ Ca,

where the cost rate rs(x,y) and the average cost rate r̄s
are clearly given by

rs(x,y) = x1 + x2 + y1 + y2,

r̄s =
α1

r∗1 − α1
+

α2

r∗2 − α2
.

In addition, the final term Ca depending on the action a
is given by

C10 =
c0

X̄

x1

x1 + x2
[vs(x− e1,y)− vs(x,y)]

+
kc0

X̄

x2

x1 + x2
[vs(x− e2,y)− vs(x,y)],

(18)

C01 =
c0

X̄

y1

y1 + y2
[vs(x,y − e1)− vs(x,y)]

+
kc0

X̄

y2

y1 + y2
[vs(x,y − e2)− vs(x,y)],

(19)

C11 =
c1

X̄

x1

x1 + x2
[vs(x− e1,y)− vs(x,y)]

+
kc1

X̄

x2

x1 + x2
[vs(x− e2,y)− vs(x,y)]

+
c1

X̄

y1

y1 + y2
[vs(x,y − e1)− vs(x,y)]

+
kc1

X̄

y2

y1 + y2
[vs(x,y − e2)− vs(x,y)].

(20)

Here e1 = (1, 0) and e2 = (0, 1). It can be easily seen
that,

vs(x− e1,y)− vs(x,y) = −2a11x1 − 2a12x2,

vs(x− e2,y)− vs(x,y) = −2a12x1 − 2a22x2,

vs(x,y − e1)− vs(x,y) = −2b11y1 − 2b12y2,

vs(x,y − e2)− vs(x,y) = −2b12y1 − 2b22y2.

Clearly, the actions 11, 10, and 01 are optimal in (17)
if and only if,

C11 − C10 ≤ 0 C11 − C01 ≤ 0, (21)

C11 − C10 ≥ 0 C10 − C01 ≤ 0, (22)

C01 − C10 ≤ 0 C11 − C01 ≥ 0, (23)

respectively. With proper substitutions these conditions
become

c1

c0 − c1

1− ρ∗1
1− ρ∗2

(1+k)r∗1
X̄

− λ11 − λ12

(1+k)r∗2
X̄

− λ21 − λ22

≥ t(x,y)

≥ c0 − c1

c1

1− ρ∗1
1− ρ∗2

(1+k)r∗1
X̄

− λ11 − λ12

(1+k)r∗2
X̄

− λ21 − λ22

(24)

t(x,y) ≥ c1

c0 − c1

1− ρ∗1
1− ρ∗2

(1+k)r∗1
X̄

− λ11 − λ12

(1+k)r∗2
X̄

− λ21 − λ22

, (25a)

t(x,y) ≥ 1− ρ∗1
1− ρ∗2

(1+k)r∗1
X̄

− λ11 − λ12

(1+k)r∗2
X̄

− λ21 − λ22

, (25b)

t(x,y) ≤ c0 − c1

c1

1− ρ∗1
1− ρ∗2

(1+k)r∗1
X̄

− λ11 − λ12

(1+k)r∗2
X̄

− λ21 − λ22

, (26a)

t(x,y) ≤ 1− ρ∗1
1− ρ∗2

(1+k)r∗1
X̄

− λ11 − λ12

(1+k)r∗2
X̄

− λ21 − λ22

, (26b)

where

t(x,y) =
(1 + k)(x1 + x2)− (x1 + kx2)ρ∗1
(1 + k)(y1 + y2)− (y1 + ky2)ρ∗2

.

In our low interference case, c0−c1
c1

< 1. So (25a)
implies (25b). Similarly, (26a) implies (26b). Thus, we
get switching curves which are a pair of hyperplanes
through the origin.

Notice that the switching curves are linear functions
of the number of users in different class. This is not at
all apparent in the beginning where we observe that the
value functions are quadratic function of number of users



in different classes. For example, the first condition for
the optimality of C11 is,

(c0 − c1)(y1 + y2)[x1(a11x1 + a12x2)

+ kx2(a21x1 + a22x2)]

− c1(x1 + x2)[y1(b11y1 + b12y2)

+ ky2(b21y1 + b22y2)] ≤ 0,

the left hand side of which is a third degree polynomial
in four variables. Surprisingly, the switching curves (24)–
(26b) are hyperplanes as they simplify into a linear
expression in four variables when the value function
coefficient are substituted by their respective values
given by (16).

V. NUMERICAL EXAMPLES

We now observe numerically the performance of the
Improved Dynamic policy compared to the Optimal
Static policy, and then compare this improvement with
the Both Stations On policy. For the Optimal Static
policy, the total average number of users is determined
analytically, while for the two other policies we have
conducted extensive simulations to estimate the cor-
responding mean values. The ratio between the total
average number of users of the two dynamic policies
and that of the Optimal Static policy is plotted in Figures
2–5 for two different scenarios and two different values
for the path loss parameter k. In one scenario (called
symmetric user arrivals), all arrival rates of users are
symmetric with λ11 = λ12 = λ21 = λ22 = λ with λ
varying from 0 to the stability limit. In the other scenario
(called asymmetric user arrivals), λ12 = λ21 = 0 and
λ11 = λ22 = λ with λ again varying from 0 to the
stability limit.

For symmetric arrivals in both stations, it is clear
that the Improved Dynamic policy is better than the
Optimal Static policy as expected, see Figures 2 and
3. The improvement is largest for lower arrival rates,
but, with higher arrival rates, it deteriorates clearly. On
the other hand, the Both Stations On policy consistently
performs better than the Optimal Static policy as well as
the Improved Dynamic policy throughout the stability
region. There are around 40% less users in the system
when the Both Stations On policy is used compared to
the Optimal Static policy is used. At higher arrival rates,
the improvement is even slightly better.

For asymmetric arrivals, the results are quite different,
see Figures 4 and 5. We take an extreme case with only
near users in the first station and only far off users in
the second station. In such case the Improved Dynamic
policy is as good as the Both Stations On policy at lower
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Fig. 2: Symmetric user arrivals with k = 0.1. The solid
line represents the Improved Dynamic Policy and the
dotted line represents the Both Stations On Policy. In the
horizontal axis, the arrival rates are plotted normalized to
the maximum possible arrival rate that keeps the system
stable.
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Fig. 3: Symmetric user arrivals with k = 0.01. The solid
line represents the Improved Dynamic Policy and the
dotted line represents the Both Stations On Policy. In the
horizontal axis, the arrival rates are plotted normalized to
the maximum possible arrival rate that keeps the system
stable.

values of arrival rates. At higher arrival rates, the Both
Stations On policy is better but not by very much.

VI. CONCLUSIONS

In this paper, we have considered the performance
of different resource allocation policies of base stations
in a two-cell environment with two classes of users
per cell. These policies are chosen on the basis of the
knowledge of traffic information of the system, and the
one that maintains the overall lowest number of users in
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Fig. 4: Asymmetric user arrivals with k = 0.1. The solid
line represents the Improved Dynamic Policy and the
dotted line represents the Both Stations On Policy. In the
horizontal axis, the arrival rates are plotted normalized to
the maximum possible arrival rate that keeps the system
stable.
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Fig. 5: Asymmetric user arrivals with k = 0.01. The
solid line represents the Improved Dynamic Policy and
the dotted line represents the Both Stations On Policy.
In the horizontal axis, the arrival rates are plotted nor-
malized to the maximum possible arrival rate that keeps
the system stable.

average is investigated. To this end, the theory of Markov
Decision Processes and dynamic programming are used
to systematically obtain a policy that improves upon the
initial policy.

More specifically, the theory of Markov Decision Pro-
cesses is utilized for improving upon the Optimal Static
policy. Such policy improvement techniques generally
converge to optimal or close to optimal policies after a
few iteration. In our scenarios, however, such policies
are mostly outperformed by the Both Stations On policy

indicating that the latter one is indeed close to optimal.
In light of previous results which show that similar
policies are very strongly optimal when only one class of
users are present, our simulation results show this policy
performs very well even in a multi-class setting.
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