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Abstract Modern wireless cellular systems are able to utilize the opportunis-
tic scheduling gain originating from the variability in the users’ channel con-
ditions. By favoring users with good instantaneous channel conditions, the
service capacity of the system can be increased with the number of users. On
the other hand, for service systems with fixed service capacity, the system
performance can be optimized by utilizing the size information. Combining
the advantages of size-based scheduling with opportunistic scheduling gain
has proven to be a challenging task. In this paper, we consider scheduling
of data traffic (finite-size elastic flows) in wireless cellular systems. Assuming
that the channel conditions for different users are independent and identically
distributed, we show how to optimally combine opportunistic and size-based
scheduling in the transient setting with all flows available at time 0. More
specifically, by utilizing the time scale separation assumption, we develop a
recursive algorithm that produces the optimal long-run service rate vectors
within the corresponding capacity regions. We also prove that the optimal op-
erating policy applies the SRPT-FM principle, i.e., the shortest flow is served
with the highest rate of the optimal rate vector, the second shortest with the
second highest rate etc. Moreover, we determine explicitly how to implement
the optimal rate vectors in the actual time slot level opportunistic scheduler. In
addition to the transient setting, we explore the dynamic case with randomly
arriving flows under illustrative channel scenarios by simulations. Interestingly,
the scheduling policy that is optimal for the transient setting can be improved
in the dynamic case under high traffic load by applying a rate-based priority
scheduler that breaks the ties based on the SRPT principle.
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1 Introduction

We consider optimal scheduling of downlink data traffic in modern wireless
cellular systems. The traffic consists of finite-size flows that are transmitted
to users in a single cell area. We assume that the scheduler operates in a very
fast time scale of milliseconds transmitting in each time slot to exactly one
user. From the flow level performance point of view, a scheduler is optimal if it
minimizes the mean flow delay (that is, the time from the start of the transmis-
sion to its completion). The static version of the optimal scheduling problem
considers a transient system where all the flows in the system are available at
time 0 and no new flows arrive. Minimizing the mean delay corresponds to the
minimization of the total completion time. In the dynamic version, new flows
arrive randomly and the objective is to minimize the long-run mean delay (or,
the steady-state mean number of flows, as well, by Little’s result).

A fundamental phenomenon in all wireless systems is that the users per-
ceive time-varying channel conditions due to fast fading phenomena. Roughly
said, the better the instantaneous conditions, the higher the transmission
rate, which can be exploited by channel-aware schedulers that get information
on the changes in these conditions. This has led to opportunistic scheduling

schemes, such as the Proportional Fair (PF) scheduler, that favor users with
good channel conditions [4,11,21,14]. With opportunistic schedulers, the ser-
vice capacity is no longer fixed but increases as the number users increases,
which corresponds to a queueing system with scalable service capacity (or,
briefly, a scalable queue).

If the scheduler is not channel-aware, then, from the scheduling point of
view, the system boils down to a single-server queue with a fixed service capac-
ity: Each user is served with its own average transmission rate. In such a case,
the best that a size-based scheduler can do, which is aware of the remaining
flow sizes, is to transmit to the user whose flow has the smallest remaining
transmission time (which is the remaining size divided by the average trans-
mission rate). This corresponds to the Shortest-Remaining-Processing-Time
(SRPT) discipline, which is known to be optimal for the single-server queues
[18].

The idea of SRPT is to minimize the delay by getting rid of flows as
soon as possible. However, with fewer flows part of the opportunistic gain
is lost, which is the basic dilemma. Combining the advantages of size-based
scheduling with opportunistic scheduling gain has proven a challenging task.
Two different modeling approaches have been presented to solve the problem.
A direct approach [20,10,12,3] is based on time slot level models, while the
other approach [17,2] utilizes a time scale separation argument, which leads to
flow level models. A good baseline is provided by the PF scheduler that does
not utilize size information at all.

The time scale separation assumption [7,9,16,13,6,17,2] implies that, at
the flow level, the flows experience the time-average transmission rates pro-
duced by the time slot level opportunistic scheduler. The assumption is jus-
tified if the channel conditions can be modeled by a stationary and ergodic
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process and the flow transmission times are much larger than the time scale
where the scheduler operates. For a given number of flows in the system, the
set of achievable rate vectors that the time slot level scheduler can support
is characterized by the notion of the capacity region. Assuming further that
the channel conditions for different users are independent and identically dis-
tributed (up to a user-specific coefficient) results in symmetric capacity regions
[7]. The solution to the optimization problem for the flow level model gives the
optimal rate vectors within the corresponding capacity regions. How to imple-
ment these optimal rate vectors in the time slot level opportunistic scheduler
needs still to be solved separately.

Using a time slot level model and assuming that the channel conditions in
different time slots are independent and identically distributed, Tsybakov [20]
formulated the optimal scheduling problem for the transient system (without
arrivals) as a dynamic program, which can be solved numerically. However,
the dynamic program does not allow to extract any structural properties of
the optimal policy. Hu et al. [10] developed heuristic algorithms that combine
opportunistic scheduling with size-based information, and derived bounds for
their flow level performance in the transient setting. Ayesta et al. [3] considered
a slightly different problem without exact size information. They applied the
theory of restless bandits to bring in more structure for the (nearly) optimal
time slot level scheduler for the transient system. The approach, however,
requires a Markovian description of the system and is therefore limited to
geometric flow size distributions with the memoryless property. In addition,
their Potential Improvement (PI) scheduler reduces to the PF scheduler in the
symmetric setting.

Sadiq and de Veciana [17] applied the time scale separation argument and
considered the optimal scheduling problem for the transient system with a
flow level model. They were able to derive the optimal rate vectors for nested

polymatroids that are compact, convex, coordinate-convex, and symmetric ca-
pacity regions, and showed that the optimal policy applies the SRPT-FM
(SRPT-Fastest-Machine) principle, i.e., the shortest flow is served with the
highest rate of the optimal rate vector, the second shortest with the second
highest rate etc. In their proof, Sadiq and de Veciana utilized the known op-
timality result of the SRPT-FM discipline for the heterogeneous multi-server
queues [15]. While the result gives a complete structural characterization for
the optimal operating policy, its applicability (as such) is rather restricted,
since, as Sadiq and de Veciana note, capacity regions are nested polymatroids
only in some very special cases. However, the result can be utilized to find out
an optimistic bound for the flow level performance whenever capacity regions
are nested and convex.

In [2], we also made the time scale separation assumption and considered
the optimal scheduling problem under opportunistic scheduling gain in the
transient setting. We focused on the situation, where the capacity regions are
compact and symmetric (including, e.g., all nested polymatroids). We gave
a condition under which (i) the optimal rate vector does not depend on the
sizes of the flows as long as their order (in size) remains the same and (ii) the
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optimal policy applies the SRPT-FM principle. We also developed a recursive
algorithm to determine both the optimal rate vector and the minimum mean
delay. Unfortunately, our condition is rather implicit. In addition, we did not
consider the problem of implementing the optimal rate vectors in the time slot
level scheduler.

The optimal scheduling problem in the dynamic setting with new flow
arrivals for the systems with opportunistic scheduling gain is still unsolved.
Only some heuristic algorithms have been proposed and experimented with
that try to combine opportunistic scheduling gain with size-based scheduling
[10,13,12,3,17]. In this context, even stability may be an issue and, indeed,
the only available theoretical results are limited to stability analysis of some
families of policies (α-fair and priority based), see [7,9,8,1].

In this paper, we prove that the implicit condition given in [2] is, indeed,
satisfied under the assumption that the channel conditions for different users
are independent and identically distributed (up to a user-specific coefficient).
As a result, we have a recursive algorithm that produces the optimal flow level
rate vectors that minimize the mean delay in the transient setting. While the
original recursive algorithm developed in [2] requires an explicit representation
of the capacity regions, we develop another recursive algorithm that avoids this
requirement by directly utilizing the time slot level channel model. Moreover,
we also determine explicitly how to implement the optimal rate vectors in the
time slot level opportunistic scheduler. Thus, we are able to combine oppor-
tunistic and size-based scheduling optimally in the time slot level (as long as
the transient system is concerned), which is the main theoretical contribution
of the paper.

In addition to the static setting, we also explore the dynamic setting by
comparing the following opportunistic schedulers under some channel scenar-
ios: (i) PF, the baseline policy that allows an explicit performance analysis
in the symmetric setting [7]; (ii) SRPT-P, a priority based policy, for which
the priority is based on the channel conditions and ties are broken according
to the SRPT discipline [12]; (iii) SRPT-OPS(k), a policy that applies PF for
(at most) k users with the shortest remaining transmission times [17]; and
(iv) TR-OPT, the optimal policy for the transient system (developed in this
paper). Since the theoretic analysis is still beyond mathematical tractability,
we rely on simulations when comparing the policies in the dynamic setting.
Interestingly, the scheduling policy TR-OPT, which is optimal for the tran-
sient case, can be improved in the dynamic setting under high traffic load by
applying the rate-based priority scheduler SRPT-P.

The rest of the paper is organized as follows. In Section 2, we introduce the
time slot level scheduler model and the corresponding flow level capacity re-
gions. The flow level operating policies together with the time scale separation
assumption are presented in Section 3. Section 4 includes the main theoretical
results of the paper, which are related to the optimal scheduling problem in
the transient setting. The theoretical results are illustrated in Section 5 by
numerical examples including certain channel scenarios. In Section 6, we ex-
plore the dynamic setting based on simulations performed with two different
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simulators (one based directly on the time slot level model, and the other that
utilizes the time scale separation assumption). Section 7 concludes the paper
and also discusses some future research directions.

2 Time slot level scheduler model and capacity region

We consider downlink data transmission in a wireless cellular system, where
the base station always transmits to a single user within a time slot, as in
1xEV-DO systems (with the time slot equal to 1.67 ms). The traffic consists
of elastic flows (corresponding roughly to file transfers) that the users are
downloading through the base station to their mobile terminals. In the rest of
the paper we refer to flows, users and terminals interchangeably.

Assume now that there is a fixed number of users, n, in the system. The
users (and the corresponding flows and terminals) are indexed by i = 1, . . . , n.
The instantaneous rate (in bps) of user i varies over time according to some
stationary and ergodic process Ri(t) taking values in R ⊂ R+. Let Ri refer
to the corresponding steady-state variable. We assume that the instantaneous
rate processes of different users are independent and identically distributed1

with the mean denoted by γ1 = E[R1(t)]. The opportunistic gain γn is defined
by

γn = E[max{R1(t), . . . , Rn(t)}]. (1)

Thus, we have

γn =

∫ ∞

0

P {max{R1(t), . . . , Rn(t)} > r} dr

=

∫ ∞

0

(1 − P {R1(t) ≤ r}n) dr.

To simplify the presentation in this section, we assume (as in [7,9,12]) that R
is a finite set. However, the theoretical results given in this paper do not require
this restrictive assumption. Finally, let R(t) = (R1(t), . . . , Rn(t)) denote the
corresponding vector process taking values in Rn ⊂ R

n
+.

We assume that the scheduling decision is based on the instantaneous rate
vector R(t). More precisely said, we consider opportunistic schedulers π char-
acterized by the probabilities pπ

i (r) with which flow i is scheduled in state
r ∈ Rn satisfying

n
∑

i=1

pπ
i (r) ≤ 1.

Note that there may be a positive probability that the scheduler is idle even
if there are flows in the system. Let Πn denote the family of such schedulers.

1 In fact, by adjusting the corresponding flow sizes, we could, as well, have assumed that,
for each user i, there is a constant ai such that processes aiRi(t) are independent and
identically distributed, cf. [7,17].
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In addition, we assume that the traffic sources are saturated at the time slot
level [14,5,19], i.e., if time slot t is scheduled to user i, the user will receive
data with rate Ri(t) in this time slot. Thus, the long-term throughput for
user i under scheduler π ∈ Πn is as follows:

θπ
i =

∑

r∈Rn

rip
π
i (r)P {R(t) = r}. (2)

The (opportunistic) capacity region is defined by all feasible throughput vec-
tors,

Cn = {(θπ
1 , . . . , θπ

n) ∈ R
n
+ : π ∈ Πn}.

The capacity region Cn has the following three properties:

(i) Cn is a compact subset of R
n
+, i.e., Cn is closed and bounded;

(ii) Cn is symmetric, i.e., if c ∈ Cn, then any permutation c̃ of its components
also lies in Cn;

(iii) Cn is convex.

For n = 1, we clearly have
C1 = [0, γ1].

In addition, for n > 1, the capacity regions generated by this model are natu-
rally nested, i.e., for all k = 2, . . . , n and c ∈ Ck,

(c1, . . . , ck−1) ∈ Ck−1.

An important subfamily of the opportunistic schedulers Πn consists of
weight-based schedulers Πw

n . A weight-based scheduler π ∈ Πw
n is defined by

a vector w = (w1, . . . , wn) of weights wi ≥ 0 for which w1 + . . . + wn > 0.
Scheduler π allocates time slot t to a user i∗ for which

wi∗Ri∗(t) = max
i=1,...,n

wiRi(t),

augmented with a suitable tie-breaking rule.
A well-known fact (see, e.g., [7]) is that any non-dominated feasible through-

put vector c ∈ Cn can be achieved by some weight-based scheduler π ∈ Πw
n so

that c = (θπ
1 , . . . , θπ

n).
We furthermore note that, in this symmetric setting, the throughput vector

produced by the PF scheduler equals the throughput vector of the weight-
based scheduler that applies an equal weight wi = 1 for all flows i (see, e.g.,
[7]). Thus,

(θPF
1 , . . . , θPF

n ) = (γn/n, . . . , γn/n). (3)

The following observation related to the weight-based schedulers is needed
later on.

Proposition 1 Assume that wi ≥ 0 for all i = 1, . . . , n. Then

max
c∈Cn

n
∑

i=1

wici = E[ max
i=1,...,n

wiRi].
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Proof Note first that

max
c∈Cn

n
∑

i=1

wici = max
π∈Πn

n
∑

i=1

wiθ
π
i

= max
π∈Πn

n
∑

i=1

wi

∑

r∈Rn

rip
π
i (r)P {R(t) = r}

= max
π∈Πn

∑

r∈Rn

n
∑

i=1

wirip
π
i (r)P {R(t) = r}.

Since maximizing the required expression in each state separately leads to a
feasible policy, we have

max
c∈Cn

n
∑

i=1

wici = max
π∈Πn

∑

r∈Rn

n
∑

i=1

wirip
π
i (r)P {R(t) = r}

=
∑

r∈Rn

(

max
π∈Πn

n
∑

i=1

wirip
π
i (r)

)

P {R(t) = r}

=
∑

r∈Rn

(

max
i=1,...,n

wiri

)

P {R(t) = r}

= E[ max
i=1,...,n

wiRi(t)],

which completes the proof. 2

3 Time scale separation and the flow level operating model

As in [7,9,17], the flow level performance analysis and optimization is carried
out under the time scale separation assumption given below.

While the actual opportunistic scheduler operates in a very fast time scale
(typically milliseconds), the flow level performance is related to a much slower
time scale. With the current transmission rates, the file transfers typically take
from seconds to minutes. Thus, we may reasonably assume that, as long as the
number of flows remains unchanged, the flows are served in continuous time
and with fixed rates that correspond to some operating point in the capacity
region, which is called the time scale separation assumption.

At the flow level, the flows no longer look like infinite traffic sources but
they have finite sizes. Assume that there are n flows in the system, say at time
0, with sizes si, i = 1, . . . , n. Without loss of generality, we may assume that

s1 ≥ s2 ≥ . . . ≥ sn.

According to the time scale separation assumption, these flows are served
with rates ci determined by the operating point c = (c1, . . . , cn) ∈ Cn. The
operating point is implemented with the time slot level scheduler π ∈ Πn such
that ci = θπ

i for all i.
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We say that the operating point c ∈ Cn applies the SRPT-FM principle if

c1 ≤ c2 ≤ . . . ≤ cn.

In other words, the shortest flow is served with the highest rate of the operating
point, the second shortest with the second highest rate etc. Note that such an
operating point preserves the order of the flow sizes for the whole period until
the number of flows changes, i.e., for any t ∈ [0, sn/cn) (assuming no new flow
arrivals),

s1(t) ≥ s2(t) ≥ . . . ≥ sn(t),

where si(t) denotes the size of flow i at time t.
Below we consider some operating points applying the SRPT-FM principle,

which are used later on.

(i) Operating point

cPF = (γn/n, . . . , γn/n)

corresponds to the PF scheduler, see (3). The operating point may be im-
plemented (at the time slot level) by a weight-based scheduler with weight
vector

wPF = (1, . . . , 1).

(ii) Operating point

cSRPT−OPS(k) =

{

(0, . . . , 0, γk/k, . . . , γk/k), k < n,
(γn/n, . . . , γn/n), k ≥ n,

with min{n, k} non-zero elements refers to the SRPT-OPS(k) scheduler
[17] that applies the PF scheduling discipline among the min{n, k} flows
with the shortest remaining flow sizes. The operating point may be imple-
mented by a weight-based scheduler with weight vector

wSRPT−OPS(k) =

{

(0, . . . , 0, 1, . . . , 1), k < n,
(1, . . . , 1), k ≥ n,

which has min{n, k} non-zero elements.
(iii) Operating point

cSRPT−P = (θSRPT−P
1 , . . . , θSRPT−P

n ),

where

θSRPT−P
i =

∑

r∈R

rP {R1 ≤ r}i−1P {R1 = r}P {R1 < r}n−i,

corresponds to the SRPT-P scheduler [12], which is a priority based policy,
for which the priority is based on the instantaneous rate and ties are broken
according to the SRPT discipline.
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(iv) Operating point

cTR−OPT = (c∗1, . . . , c
∗
n),

where c∗i are defined recursively in Section 4, is the optimal operating
point for the transient system, see Theorem 1. The operating point may
be implemented by a weight-based scheduler with weight vector

wTR−OPT = (G∗
1, . . . , G

∗
n),

where G∗
i are defined recursively in Section 4, see Theorem 2.

4 Optimal trade-off in the transient system

Our main results in this section are given in Theorems 1 and 2. We show
that the optimal operating points that minimize mean delay in the transient
system are given by the rate vectors c∗k defined recursively below in (4). These
operating points apply the SRPT-FM principle, and they are not depending on
the actual sizes of the flows (but only on their relative order). In addition, we
show that these optimal operating points can be implemented by a sequence of
weight-based schedulers with the weights wk = G∗

k defined also in (4). While
the recursive algorithm given in (4) and originally presented in [2], requires an
explicit representation of the capacity regions, we develop another recursive
algorithm (6) that avoids this requirement by directly utilizing the time slot
level channel model.

4.1 Transient system

Assume now that, at time 0, there are n flows in the system with sizes si (in
bits). Without loss of generality, the (original) flows are indexed in such a way
that

s1 ≥ s2 ≥ . . . ≥ sn.

In this section, we do not allow any further arrivals but consider a transient

system that remains busy only until the completion of all original file transfers.

As mentioned above, the operator of the system chooses at time 0 a rate
vector c = (c1, . . . , cn) ∈ Cn. From that on, each flow i is served with rate ci

until the number of flows changes, and a new rate vector is chosen. We assume
that when choosing the rate vector the operator is aware of the (remaining)
sizes of the flows. Recall that a rate vector c ∈ Cn is achieved by an oppor-
tunistic scheduler π ∈ Πn such that θπ

i = ci for all i = 1, . . . , n. Note also
that it is only the flow level operator (operating in a much slower time scale)
that needs to be aware of the remaining sizes of flows, not the opportunistic
scheduler (operating in the fast time scale of time slots).
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4.2 Problem formulation

An operating policy φ is defined by a sequence of rate vectors, (c1, . . . , cn),
where ck = (ck1, . . . , ckk) ∈ Ck for all k = 1, . . . , n.2 In other words, the
operator applies the rate vector ck when there are k flows in the system (called
hereafter phase k). It is assumed that when a flow completes, the remaining
k − 1 flows are re-indexed in such a way that the remaining sizes sk−1,i again
satisfy

sk−1,1 ≥ sk−1,2 ≥ . . . ≥ sk−1,k−1.

Thus, in the next phase, the longest flow is served with rate ck−1,1, the second
longest with rate ck−1,2, etc. Let Φn denote the family of all operating policies,

Φn = {φ = (c1, . . . , cn) : ck ∈ Ck for all k}.

Note that any operating policy φ = (c1, . . . , cn) is implemented at the time
slot level by choosing a sequence of opportunistic schedulers (π1, . . . , πn) such
that πk ∈ Πk for all k = 1, . . . , n and

θπk

i = cki

for all i = 1, . . . , k.
The total completion time [15] for operating policy φ ∈ Φn is defined as

Tφ =

n
∑

k=1

k Tφ
k ,

where Tφ
k refers to the length of phase k for policy φ. Note that the mean delay

of a flow is now given by Tφ/n.
In this section, we consider the scheduling problem in which the optimal

operating policy minimizes the total completion time (or the mean delay, as
well) in the transient system. Let φ∗ denote such an optimal policy. Thus,

Tφ∗

= min
φ∈Φn

Tφ.

In fact, it is even more important to find the optimal schedulers (π∗
1 , . . . , π

∗
n)

that implement the optimal policy φ∗ at the time slot level.
There is a clear trade-off between size-based operating policies and the

opportunistic gain. The number of flows is reduced most effectively by choosing
the rate vector that gives the highest maximum rate to the shortest flow, but
the service capacity is maximized by choosing the rate vector that gives the
highest total rate. The optimal operating policy should find the best possible
compromise between these two extremes.

2 In the present paper, it is natural to define operating policies φ as a sequence of rate
vectors (c1, . . . , cn) due to the time scale separation assumption made in Section 3. For
more generic capacity regions, the optimal control in continuous time would, of course, be
a relevant question.
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4.3 Optimal solution

Let g1, . . . , gn be a sequence of functions with gk(ck) defined on Ck for all k,
G∗

1, . . . , G
∗
n a sequence of scalars, and c∗1, . . . , c

∗
n a sequence of rate vectors with

c∗k ∈ Ck for all k. These sequences are defined recursively as in [2, Equation (1)]:

{

g1(c1) = 1
c1

,

G∗
1 = g1(c

∗
1) = minc1∈C1

g1(c1),

{

gk(ck) = 1
ckk

(

k −
∑k−1

i=1 G∗
i cki

)

,

G∗
k = gk(c∗k) = minck∈Ck

gk(ck), k = 2, . . . , n.

(4)

Note that the existence of the minimum values G∗
k is guaranteed by the com-

pactness of capacity regions Ck (Property (i) mentioned in Section 2). In par-
ticular, we have

G∗
1 = min

c∈[0,γ1]

1

c
=

1

γ1
, c∗1 = γ1.

Coefficients G∗
k have the following interpretation. Consider two flows with

equal (unit) sizes s1 = s2 = 1. In this case, the minimum completion time
clearly satisfies

min
φ∈Φ2

Tφ = min
c2∈C2

(

2

c22
+

(

1 −
c21

c22

)

1

c∗1

)

= min
c2∈C2

(

1

c22

(

2 −
c21

c∗1

))

+
1

c∗1

= min
c2∈C2

(

1

c22
(2 − G∗

1c21)

)

+ G∗
1

= G∗
2 + G∗

1.

By a dynamic programming argument, this can be generalized to any number
of unit-size flows n (for which sk = 1 for all k = 1, . . . , n),

min
φ∈Φn

Tφ =

n
∑

k=1

G∗
k.

Thus, G∗
k can be interpreted as the cost per unit size for flow k under the

optimal operating policy. Theorem 1 reveals that this interpretation is justified
also in the general case with non-equal flow sizes.

In [2], we proved that, if the sequence G∗
1, . . . , G

∗
n is stricly increasing, i.e.,

G∗
1 < G∗

2 < . . . < G∗
n, (5)

then c∗k are optimal operating points to minimize the mean delay in the tran-
sient system. To have a self-contained paper, the result is repeated below, see
Theorem 1. However, in [2], we worked with an abstract capacity region model
(without any connection to the time slot level schedulers) so that we were not
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Fig. 1 Example with i.i.d. Exp(1) channels (Scenario A in Section 5.1). G∗

1
= 1 as it

is simply the inverse of the average rate. For two flows, G∗

2
results from an optimization

problem over the capacity set: the contours of the objective are lines that cross the c21-axis
at 2/G∗

1
and c22-axis at 2/g2(c2) (dashed line represents the contour at the optimum). As

G∗

1
is fixed from the previous step, it remains to minimize g2(c2), which results in G∗

2
such

that G∗

2
> G∗

1
. This is also in line with the result for generic capacity regions (given in [2,

p. 189]) saying that, if c21 + c22 < 2/G∗

1
for all c2 ∈ C2, then G∗

2
> G∗

1
.

able to give more explicit conditions for the optimality result. Now we have
the connection (defined in Sections 2 and 3) that allows us to prove that the
implicit condition (5) is, indeed, satisfied in our opportunistic scheduler model.
This will be done in Proposition 3 below. An example is given in Fig. 1 that
illustrates the result in the special case that n = 2.

To prove Proposition 3, we need the following auxiliary results, i.e., Propo-
sition 2 and Corollary 1.

Proposition 2 For all k = 1, . . . , n,

c∗kk > 0, G∗
k > 0, max

ck∈Ck

k
∑

i=1

G∗
i cki =

k
∑

i=1

G∗
i c

∗
ki = k.

Proof 1◦ For k = 1, we have

c∗11 = c∗1 = γ1 > 0, G∗
1 =

1

γ1
> 0, G∗

1c
∗
11 =

γ1

γ1
= 1.

2◦ Let then k ≥ 2. Assume now that the claim is true for k − 1. We will
show that it is also true for k.

Let ck ∈ Ck. Since the capacity regions are nested (as mentioned in Sec-
tion 2), we have

(ck1, . . . , ck,k−1) ∈ Ck−1

implying, by the induction assumption, that

k−1
∑

i=1

G∗
i cki ≤ k − 1.
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Thus,

gk(ck) =
1

ckk

(

k −

k−1
∑

i=1

G∗
i cki

)

≥
1

ckk

.

We see that gk(ck) → ∞ as ckk → 0. It follows that

c∗kk > 0

and

G∗
k ≥

1

c∗kk

> 0.

In addition, by definition,

G∗
k = gk(c∗k) =

1

c∗kk

(

k −

k−1
∑

i=1

G∗
i c

∗
ki

)

,

implying that
k
∑

i=1

G∗
i c

∗
ki = k.

On the other hand, again by definition, we have, for all ck ∈ Ck,

G∗
k ≤ gk(ck) =

1

ckk

(

k −

k−1
∑

i=1

G∗
i cki

)

.

Thus, for all ck ∈ Ck,

k
∑

i=1

G∗
i cki ≤ k =

k
∑

i=1

G∗
i c

∗
ki,

which completes the proof. 2

Combining Propositions 1 and 2 gives immediately the following corollary.

Corollary 1 For all k = 1, . . . , n,

E[ max
i=1,...,k

G∗
i Ri] = k.

Since the rate processes Ri(t) are assumed to be independent, we have

E[ max
i=1,...,k

G∗
i Ri] =

∫ ∞

0

P { max
i=1,...,k

G∗
i Ri > r} dr

=

∫ ∞

0

(

1 −

k
∏

i=1

P {G∗
i Ri ≤ r}

)

dr.
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By combining this with Corollary 1, we get an alternative recursion to deter-
mine the sequence G∗

1, . . . , G
∗
n:

G∗
1 = 1

γ1
,











fk(a) =

∫ ∞

0

(

1 −

k−1
∏

i=1

P {G∗
i Ri ≤ r}P {aRk ≤ r}

)

dr,

G∗
k = f−1

k (k), k = 2, . . . , n.

(6)

Note that function fk(a) is clearly strictly increasing with

fk(0) =

∫ ∞

0

(

1 −

k−1
∏

i=1

P {G∗
i Ri ≤ r}

)

dr = E[ max
i=1,...,k−1

G∗
i Ri] = k − 1

and fk(a) → ∞ as a → ∞. Thus, the inverse function f−1
k (b) is well defined

on [k − 1,∞) (including value k).
The advantage of recursion (6) is that it utilizes directly the time slot level

model for the rate processes Ri(t), while the original recursion (4) requires
that the flow level capacity regions Ck be determined.

Next we show the important result that the G∗
k sequence is strictly increas-

ing in our opportunistic scheduler model, which is based on i.i.d. rate processes
Ri(t) for separate users i.3

Proposition 3 For the opportunistic scheduler capacity regions defined in

Section 2, we have

G∗
1 < G∗

2 < . . . < G∗
n.

Proof 1◦ Define G∗
0 = 0. Then

G∗
1 =

1

γ1
> 0 = G∗

0.

2◦ Denote X0 = 0 and, for all k = 1, . . . , n− 1,

Xk = max
i=1,...,k

G∗
i Ri.

Note that X0, X1, . . . , Xn−1 is a non-decreasing sequence of random variables.
In addition, for all k = 0, 1, . . . , n−1, define functions hk(a), a ∈ R, as follows:

hk(a) = E[(aRk+1 − Xk)1{aRk+1>Xk}].

Note that hk(a) is non-decreasing as a function of a for all k. Furthermore, by
definition and Corollary 1, we have, for all k = 0, 1, . . . , n − 1,

hk(G∗
k+1) = E[(G∗

k+1Rk+1 − Xk)1{G∗

k+1
Rk+1>Xk}]

= E[Xk+1 − Xk] = 1.

3 An example is given in [2, p. 189] demonstrating that the result is not necessarily true
for more generic capacity regions.
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Now, let k = 1, . . . , n − 1, and assume that, for all j = 0, 1, . . . , k − 1,

G∗
j+1 > G∗

j .

(i) If the steady-state rate distribution is deterministic (i.e., P {R1 = γ1} =
1), then clearly P {G∗

kRk+1 > Xk} = 0 and

hk(G∗
k) = E[(G∗

kRk+1 − Xk)1{G∗

k
Rk+1>Xk}] = 0.

(ii) Assume now that the steady-state rate distribution is non-deterministic.
In this case, by the induction assumption,

P {G∗
kRk+1 > Xk > Xk−1}

≥ P {Rk+1 > Rk ≥ Rk−1 ≥ . . . ≥ R1} > 0,

which implies that

hk(G∗
k) = E[(G∗

kRk+1 − Xk)1{G∗

k
Rk+1>Xk}]

= E[(G∗
kRk+1 − Xk)1{G∗

k
Rk+1>Xk>Xk−1}]

+ E[(G∗
kRk+1 − Xk)1{G∗

k
Rk+1>Xk=Xk−1}]

< E[(G∗
kRk+1 − Xk−1)1{G∗

k
Rk+1>Xk}]

≤ E[(G∗
kRk+1 − Xk−1)1{G∗

k
Rk+1>Xk−1}]

= E[(G∗
kRk − Xk−1)1{G∗

k
Rk>Xk−1}]

= hk−1(G
∗
k) = 1.

Thus, we have hk(G∗
k) < 1 in both cases ((i) and (ii)). Since hk(G∗

k+1) = 1
and hk(a) is a non-decreasing function, we conclude that

G∗
k+1 > G∗

k,

which completes the proof. 2

Another monotonicity result is given below (cf. [2, Proposition 1]).

Proposition 4 For all k = 2, . . . , n,

c∗k,1 ≤ c∗k,2 ≤ . . . ≤ c∗k,k.

Proof 1◦ Let k ∈ {2, . . . , n} and j ∈ {1, . . . , k − 2}. In addition, let c̃∗k denote
the modification of c∗k where the service rates c∗k,j and c∗k,j+1 have changed
their places,

c̃∗k = (c∗k,1, . . . , c
∗
k,j−1, c

∗
k,j+1, c

∗
k,j, c

∗
k,j+2, . . . , c

∗
k,k).

Note that c̃∗k ∈ Ck, since Ck is symmetric (Property (ii) mentioned in Section 2).
Now

c∗kk (gk(c∗k) − gk(c̃∗k))

= c∗k,j+1G
∗
j + c∗k,jG

∗
j+1 − c∗k,jG

∗
j − c∗k,j+1G

∗
j+1

= (c∗k,j − c∗k,j+1)(G
∗
j+1 − G∗

j ).
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Since c∗kk (gk(c∗k) − gk(c̃∗k)) ≤ 0 by definition, and G∗
j+1 − G∗

j > 0 by Proposi-
tion 3, we conclude that

c∗k,j − c∗k,j+1 ≤ 0.

2◦ Consider now the remaining case where k ∈ {2, . . . , n} and j = k − 1.
If c∗k,k−1 = 0, then c∗k,k−1 − c∗kk ≤ 0 for sure. Thus, we may assume that
c∗k,k−1 > 0. Now, let c̃∗k denote the modification of c∗k where the service rates
c∗k,k−1 and c∗k,k have changed their places,

c̃∗k = (c∗k,1, . . . , c
∗
k,k−2, c

∗
k,k, c

∗
k,k−1).

Note again that c̃∗k ∈ Ck, since Ck is symmetric. Now

c∗kkc∗k,k−1 (gk(c∗k) − gk(c̃∗k))

= c∗k,k−1



k −

k−2
∑

j=1

c∗kjG
∗
j − c∗k,k−1G

∗
k−1





− c∗kk



k −

k−2
∑

j=1

c∗kjG
∗
j − c∗kkG∗

k−1





= (c∗k,k−1 − c∗kk)



k −

k−1
∑

j=1

c∗kjG
∗
j − c∗kkG

∗
k−1





= (c∗k,k−1 − c∗kk)
(

c∗kkG
∗
k − c∗kkG∗

k−1

)

= c∗kk(c∗k,k−1 − c∗kk)(G∗
k − G∗

k−1).

Since c∗kkc∗k,k−1 (gk(c∗k) − gk(c̃∗k)) ≤ 0 by definition, and G∗
k − G∗

k−1 > 0 by
Proposition 3, we conclude that

c∗k,k−1 − c∗kk ≤ 0,

which completes the proof. 2

Due to Proposition 3, the optimality result given in Theorem 1 below
follows now from [2, Theorem 1]. For completeness, however, we give the proof
also in this paper. In addition, we are now able to give the implementation of
the optimal flow level policy at the time slot level, see Theorem 2 below.

Theorem 1 For all flow sizes s1 ≥ s2 ≥ . . . ≥ sn, the optimal operating

policy is φ∗ = (c∗1 , . . . , c
∗
n). The minimum total completion time Tφ∗

satisfies

Tφ∗

=

n
∑

k=1

G∗
ksk.

In addition, for all k = 2, . . . , n,

c∗k,1 ≤ c∗k,2 ≤ . . . ≤ c∗k,k,

i.e., the optimal policy applies the SRPT-FM principle.
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Proof The monotonicity of the optimal rates is already shown in Proposition
4. The optimality result itself is proved below by induction.

1◦ For n = 1, the result is clearly true:

Tφ∗

=
s1

γ1
= min

c1∈C1

s1

c1
= min

φ
Tφ.

In addition, G∗
1 = 1/γ1 so that Tφ∗

= G∗
1s1 as claimed.

2◦ Assume now that n ≥ 2 and the result is true for all values 1, . . . , n− 1.
We will show that it is also true for value n.

It follows from the induction assumption that the optimal policy applies
rate vectors c∗k for all k = 1, . . . , n−1. Thus, for any policy φ = (c1, . . . , cn) ∈

Φn, the modified policy φ̃ = (c∗1, . . . , c
∗
n−1, cn) ∈ Φn results in a smaller total

completion time so that

Tφ ≥ T φ̃

= n T φ̃
n +

n−1
∑

k=1

k T φ̃
k

= n T φ̃
n +

n−1
∑

k=1

G∗
k

(

si(k) − T φ̃
n cn,i(k)

)

= n
si(n)

cn,i(n)
+

n−1
∑

k=1

G∗
k

(

si(k) −
si(n)

cn,i(n)
cn,i(k)

)

=
si(n)

cn,i(n)

(

n −

n−1
∑

k=1

G∗
kcn,i(k)

)

+

n−1
∑

k=1

G∗
ksi(k)

= gn((cn,i(1), . . . , cn,i(n)))si(n) +

n−1
∑

k=1

G∗
ksi(k),

where i(k) refers to the original index of the flow that completes at the end
of phase k under policy φ̃. Note that (cn,i(1), . . . , cn,i(n)) ∈ Cn, since cn =
(cn1, . . . , cnn) ∈ Cn and Cn is symmetric (Property (ii)). Thus,

gn((cn,i(1), . . . , cn,i(n))) ≥ G∗
n

implying that

Tφ ≥

n
∑

k=1

G∗
ksi(k) ≥

n
∑

k=1

G∗
ksk,

where the latter inequality follows from the facts that s1 ≥ . . . ≥ sn (by
assumption) and G∗

1 < . . . < G∗
n (by Proposition 3).

Consider then policy φ∗ = (c∗1 , . . . , c
∗
n) and let i∗(k) denote the original

index of the flow that completes at the end of phase k under this policy φ∗. It
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follows from Proposition 4 that i∗(k) = k for all k. Thus,

Tφ∗

= n Tφ∗

n +

n−1
∑

k=1

k Tφ∗

k

= n
sn

c∗nn

+

n−1
∑

k=1

G∗
k

(

sk −
sn

c∗nn

c∗nk

)

=
sn

c∗nn

(

n −

n−1
∑

k=1

G∗
kc∗nk

)

+

n−1
∑

k=1

G∗
ksk

= gn(c∗n)sn +

n−1
∑

k=1

G∗
ksk

=

n
∑

k=1

G∗
ksk

so that Tφ ≥ Tφ∗

for any φ ∈ Φn. 2

Theorem 2 The optimal operating policy φ∗ = (c∗1, . . . , c
∗
n) can be imple-

mented by a sequence of weight-based schedulers that, in phase k, use the

weight vector wk = (G∗
1, . . . , G

∗
k) and break the ties by giving the time slot

t to the flow with the highest index i∗ such that

G∗
i∗Ri∗(t) = max{G∗

1R1(t), . . . , G
∗
kRk(t)}.

Proof Let k = 1, . . . , n. For k = 1, the result is trivially true. Thus, we may
assume that k > 1.

Let π denote the weight-based scheduler based on weight vector wk =
(G∗

1, . . . , G
∗
k). In addition, let cπ = (θπ

1 , . . . , θπ
k ) ∈ Ck denote the corresponding

throughput vector. Note that, for all i = 1, . . . , k,

θπ
i = E[Ri

i−1
∏

j=1

1{G∗

i
Ri≥G∗

j
Rj}

k
∏

j=i+1

1{G∗

i
Ri>G∗

j
Rj}].

Below we will show that

gk(cπ) = min
ck∈Ck

gk(ck) = G∗
k,

which, by (4), implies that the claim is true.

First, by Proposition 1, we have

E[ max
i=1,...,k

G∗
i Ri] = max

c∈Ck

k
∑

i=1

G∗
i ci ≥

k
∑

i=1

G∗
i θ

π
i . (7)



Optimal size-based opportunistic scheduler 19

On the other hand, by definition,

k
∑

i=1

G∗
i θ

π
i =

k
∑

i=1

G∗
i E[Ri

i−1
∏

j=1

1{G∗

i Ri≥G∗

j Rj}

k
∏

j=i+1

1{G∗

i Ri>G∗

j Rj}]

= E[

k
∑

i=1

G∗
i Ri

i−1
∏

j=1

1{G∗

i
Ri≥G∗

j
Rj}

k
∏

j=i+1

1{G∗

i
Ri>G∗

j
Rj}]

= E[ max
i=1,...,k

G∗
i Ri] (8)

Equations (7) and (8), together with Proposition 2, imply that

k
∑

i=1

G∗
i θ

π
i = max

c∈Ck

k
∑

i=1

G∗
i ci = k.

Thus,

gk(cπ) =
1

θπ
k

(

k −

k−1
∑

i=1

G∗
i θ

π
i

)

=
1

θπ
k

(

k
∑

i=1

G∗
i θ

π
i −

k−1
∑

i=1

G∗
i θ

π
i

)

= G∗
k,

which completes the proof. 2

5 Numerical examples for the transient system

In this section, we present numerical examples for three different channel sce-
narios and illustrate the differences in the flow level performance of the tran-
sient system when policies mentioned in Section 3 are applied. Scenarios A
and B reflect two extreme cases: in Scenario A, the opportunistic gain grows
without limits as the number of users increases, while it is rather restricted and
bounded in Scenario B. The third one, Scenario C, lies somewhere between
the two and is motivated by a practical system.

5.1 Scenario A: Exponential channel

In the first channel scenario, we assume Rayleigh fading and linear data rate to
SINR dependency. In this model, the rate process is exponential, Ri ∼ Exp(1),
and the opportunistic gain γk in phase k is the maximum of k independent
Exp(1) random variables, which equals the harmonic number Hk,

γk = Hk =

k
∑

i=1

1

i
.

Note that the opportunistic gain for this model is unbounded, γk → ∞ as
k → ∞. Recursion (6) is now based on

fk(a) =

∫ ∞

0

(

1 −
(

1 − e−
r
a

)

k−1
∏

i=1

(

1 − e
− r

G∗

i

)

)

dr
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from which optimal weights G∗
k can be computed numerically utilizing a simple

line search. The corresponding optimal flow level operating point c∗k can then
be computed numerically as follows:

c∗ki =

∫ ∞

0

re−r
∏

j 6=i

(

1 − e
−

G∗

i
G∗

j
r

)

dr.

5.2 Scenario B: Two-state channel

In the second scenario, the instantaneous rate process has only two discrete
values, rmin and rmax, with rmin < rmax. Let p = P {Ri = rmax}. In all
forthcoming numerical examples, we use values rmin = 1, rmax = 10 and
p = 1/2 (to have a significant difference in the rates).

The opportunistic gain γk in phase k is now

γk = rmin (1 − p)k + rmax (1 − (1 − p)k),

which clearly converges to rmax as k → ∞.
To compute G∗

k, we define m(a), a > 0, as the maximum m ∈ {0, . . . , k−1}
for which G∗

mrmax < armin, with the convention G∗
0 = 0. Recursion (6) is now

based on

fk(a) = a
(

rmin (1 − p)k−m(a) + rmax p
)

+ rmax

k−1
∑

i=m(a)+1

G∗
i p(1 − p)k−i,

allowing a numerical solution for G∗
k. Once G∗

k is determined, let mk = m(G∗
k).

The optimal rate vector c∗k is obtained in a straightforward fashion:

c∗ki =







0, i ≤ mk,
rmax p(1 − p)k−i, mk < i < k,
rmin (1 − p)k−mk + rmax p, i = k.

Note that the SRPT-P policy results in a rate vector which is the same as
above but with mk ≡ 0. Indeed, the only difference between the SRPT-P and
the optimal policy is that in the optimum only the k − mk shortest flows are
served with non-zero rates whereas SRPT-P serves (in principle) all. Naturally,
the “cut point” and thus the difference between the policies depends on the
parameters of the model, i.e., rmin, rmax, and p.

5.3 Scenario C: HDR channel

The last channel model example is motivated by the empirical distribution for
the achievable rates in an actual HDR system, see [4]. The model has been
used, e.g., in [7]. In this case, there are 11 rates, given below in kbps,

r = {38.4, 76.8, 102.6, 153.6, 204.8, 307.2, 614.4, 921.6, 1228.8, 1843.2, 2457.6},
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with the respective probabilities

p = {0, 0.01, 0.04, 0.08, 0.15, 0.24, 0.18, 0.09, 0.12, 0.05, 0.04}.

The optimal weights G∗
k and the corresponding optimal flow level operating

points c∗k can be computed similarly to the two-state model but we omit the
computational details for brevity.

5.4 Performance comparison at flow level

To compare the performance of different policies in the transient system, we
consider the three channel scenarios introduced above. The considered policies
φ are the optimal policy TR-OPT together with PF and SRPT-P introduced
in Section 3. As PF represents our baseline policy, in the results below we
always study the performance relative to PF. The performance is measured
by the total completion time under the time-scale separation assumption, i.e.,
based on the flow level model.

First, the total completion time of the different policies φ relative to the
total completion time under PF, i.e., the ratio

Tφ

TPF
,

is shown in Fig. 2 (left), which depicts the performance ratio as a function
of n, the initial number of flows in the system, for 1000 randomly selected
initial sizes drawn from an exponential distribution. In Scenario A, the rate
distribution is continuous and thus PF and SRPT-P are identical policies,
but the optimal policy TR-OPT produces a significant benefit over PF. In
Scenario B, the benefit from the optimal policy TR-OPT is more significant
(close to 50% for large n), and interestingly it gives numerically identical
performance to SRPT-P. However, this is a result of the rather large difference
between rmin and rmax, recall the discussion on the relation of SRPT-P with
the optimal policy in Section 5.2. Finally, in Scenario C the benefit of the
optimal policy TR-OPT is somewhere between Scenarios A and B, and SRPT-
P is somewhat inferior to the TR-OPT policy.

To further illustrate the differences of the policies, we examine the total
service rate of the policies φ relative to the total service rate of PF, i.e., the
ratio

cφ
n1 + . . . + cφ

nn

cPF
n1 + . . . + cPF

nn

.

Note that since SRPT-P always gives priority to the highest instantaneous
rate, the total service rate is exactly the same as that achieved by PF, only
the division of the rate among the flows is different between SRPT-P and
PF. Thus, we only consider the ratio for the TR-OPT policy. The results are
given in Fig. 2 (right). There is a striking qualitative difference in the behavior
between Scenario A and Scenarios B-C. In Scenario A, where the opportunistic
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Fig. 2 The ratio of the total completion time for different policies relative to the total
completion time under PF (left) and the ratio of the total service rate of the optimal policy
TR-OPT relative to the total service rate with PF (right) for Scenarios A, B and C.

gain is unbounded, the ratio is less than one and appears to be decreasing,
i.e., the total service rate achieved by the optimal policy TR-OPT is clearly
behind that of PF. However, in Scenario B the ratio is equal to one (up to
numerical accuracy) and in Scenario C the ratio appears to approach one as
n increases.

5.5 Performance comparison at time slot level

The optimal time slot level scheduler for the transient problem without assum-

ing time-scale separation can be solved numerically using dynamic program-
ming, see [20,12]. In the following, we investigate how close the performance of
the time-slot level implementation of the TR-OPT policy, as well as SRPT-P
and PF, are to the performance of the optimal time slot level scheduler. The
numerical complexity of solving the dynamic program limits our analysis to
the two-state channel (Scenario B with varying rate ratio rmax/rmin) and two
flows (n = 2). We note that the performance of the time slot level implemen-
tations of TR-OPT, SRPT-P and PF can also be obtained numerically using
so-called Howard equations, cf. [12, Sect. 4].

For TR-OPT and its implementation at the time slot level, we conclude
that if rmax/rmin < 2 then G∗

2 = 2G∗
1 and the scheduler always serves the

shorter flow until completion. Otherwise, if rmax/rmin > 2, it holds that

G∗
2 =

2 − p(1 − p)rmax/((1 − p)rmin + p rmax)

(1 − p)2rmin + p rmax
< 2G∗

1,

and the scheduler serves the initially shorter flow 2 in all channel states except
when R1(t) = rmax and R2(t) = rmin.

In Fig. 3, we show the ratio of the mean completion time of TR-OPT,
SRPT-P and PF policies to the optimal time slot level policy as a function of
the mean size of the flows, E[X] (initial flow sizes X, expressed in time slots,
obey a geometric distribution). In the left panel, the ratio rmax/rmin = 1.5,
and TR-OPT very quickly becomes as good as the optimal solution as the
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Fig. 3 The ratio of the total completion time for the time slot level implementations of
TR-OPT, SRPT-P and PF relative to the total completion time of two flows under the
optimal time slot level scheduler for two-state channel as a function of mean flow size with
rmax/rmin = 1.5 (left) and rmax/rmin = 5 (right).

mean flow size grows, while for SRPT-P a small gap remains. In the right
panel, the ratio rmax/rmin = 5 and the difference between TR-OPT and the
optimal time slot level policy is now greater and somewhat larger flow sizes
are needed until the difference disappears. Interestingly, in this case, SRPT-P
gives practically identical performance as TR-OPT. Finally, in both cases PF
performs worst and a clear performance gap remains.

Our numerical experiments demonstrate that the time scale separation
assumption is not that bad even if the flow sizes are only one or two orders of
magnitude greater than the length of the time slot. In addition, the difference
between the truly optimal scheduler and the time slot level implementation of
TR-OPT becomes marginal when the mean flow size is sufficiently large.

6 Dynamic scheduling problem

It is also interesting to investigate how the optimal policy of the transient
system, TR-OPT, performs in the dynamic scheduling problem, where flows
are not fixed at the beginning but arrive randomly.

To study the dynamic problem, we utilize two independent simulators. The
flow level simulator (implemented in Mathematica) assumes the time scale
separation. Flows arrive according to a Poisson process with rate λ and in
each flow level state n they are served using a rate vector chosen from the
corresponding capacity region Cn according to the given policy. The second
simulator, referred to as the packet level simulator, is applied to the same flow
level scenario, but in this case the scheduling decisions are done on the packet
level: In each time slot t the rate process values Ri(t) are drawn independently
from their respective steady-state distributions and the policy defines which
flow is served in each time slot. For example, the TR-OPT policy schedules
the flow with maximum G∗

i Ri(t) in time slot t. The packet level simulator was
implemented in C++.

In the simulations, we considered the same channel scenarios as in Sec-
tion 5, i.e., Scenarios A-C. The simulations were run for exponentially dis-
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tributed flow sizes. The flow level simulations were run with 5 · 106 arrivals. In
the packet level simulator, the time slot length and the mean file size were kept
fixed and the arrival rate λ was varied to change the load. For Scenarios A
and B, the time slot duration and the mean size of the flows were chosen so
that the time-scale separation is reasonably well preserved, which resulted in
time slot duration of 0.001 and mean size of 1. For Scenario C, the time slot
duration was taken from the specifications of HDR systems and thus the time
slot duration was 1.67 ms and the mean file size was 50 KB. The simulation
runs in the packet level simulations also consisted of 5 · 106 arrivals.

In addition to the policies compared in Section 5 with PF serving as the
baseline policy, we also considered the SRPT-OPS(k) policy introduced in
Section 3. In the results below, we have optimized the value of k separately for
each value of the load. However, the optimization was not done in an exhaustive
manner over a fixed range of k, but instead, as the load was increased, the
optimization was done by searching for the next local minimizer when starting
from the current optimal value valid for the previous load value. Below the
optimized SRPT-OPS(k) policy is briefly referred to as OPS*. The simulations
with this policy were run with 106 arrivals.

6.1 Scenario A: Exponential channel

Scenario A, with a continuous rate distribution and infinitely growing oppor-
tunistic gain, resulted in the mean occupancies as a function of λ as depicted in
Fig. 4 (left). The results from the flow level simulator are shown with continu-
ous lines, and the results from the packet level simulations are indicated with
dots. PF and SRPT-P are identical policies in this case, and even the OPS*
policy resulted in almost identical performance (the difference being so small
that it can not be distinguished in the figure). The TR-OPT policy is clearly
getting increasingly worse as the arrival rate λ increases, indicating possible
stability problems. Recall also that the total service rate in Scenario A for
TR-OPT does not achieve the same as for PF, see Fig. 2 (right).

Fig. 4 (right) gives the ratio of the mean number of flows under TR-OPT
relative to PF as a function of the arrival rate λ. Note that the stability limit
of the corresponding constant rate non-opportunistic M/G/1 queue (in which
the channel information is not utilized) is at λ = 1. From the figure we observe
that at low loads, and slightly beyond the M/G/1 stability limit, TR-OPT is
still able to achieve a slight gain over PF and the other policies.

6.2 Scenario B: Two-state channel

Scenario B, the two-state channel model, represents a case where the capacity
is bounded from above by rmax. The results are shown in Fig. 5. The results
for the mean number of flows as a function of the load is given in the left panel
and the relative performance compared with PF is shown in the right panel.
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Fig. 4 Mean number of flows with different policies (left) and ratio of the mean number of
flows relative to PF (right) as a function of load for Scenario A.

The load parameter is given by ρ = λX̄/rmax, where X̄ denotes the mean file
size, and the necessary condition for stability reads ρ < 1. In this case the
stability limit of the corresponding M/G/1 queue is just r̄/rmax = 0.55, where
r̄ denotes the mean rate.

Throughout the load region, the TR-OPT and SRPT-P policies yield prac-
tically identical performance, and the performance is significantly better than
with PF and also clearly better than with OPS*.
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Fig. 5 Mean number of flows with different policies (left) and ratio of the mean number of
flows relative to PF (right) as a function of load for Scenario B.

6.3 Scenario C: HDR channel

Finally, Scenario C, the 11-state channel model gives the results shown in
Fig. 6, where the left panel gives the mean occupancy and the right panel the
relative performance compared with PF, as a function of the load. Here the
load is defined as in Scenario B but with rmax representing the maximum HDR
rate and the stability limit of the M/G/1 system is approximately at 0.27.

The results from the flow level simulator are shown with continuous lines,
and the results from the packet level simulations are indicated with dots. As
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can be seen, the time scale separation is nicely realized even in this scenario
that is based on realistic parameters.

The results confirm partly the observations from the two-state model with
SRPT-P exhibiting best performance over all loads and being superior in par-
ticular at high loads, while TR-OPT performs clearly worse at high loads than
in the two-state model. The OPS* policy is practically the same as PF, and
its irregular behavior at high loads is a result of the local optimization of the
k-parameter of the policy.
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Fig. 6 Mean number of flows with different policies (left) and ratio of the mean number of
flows relative to PF (right) as a function of load for Scenario C

6.4 Summary

As a synthesis for the dynamic case based on these three different scenarios, we
find that the scheduling policy SRPT-P is uniformly better than the baseline
policy PF or the optimized SRPT-OPS(k) policy, OPS*, and almost uniformly
better than TR-OPT. Even in the cases where SRPT-P is not the best one,
its difference to the best policy (TR-OPT) is rather marginal. The TR-OPT
policy performs well whenever the traffic load is light or the opportunistic gain
is very restricted.

7 Conclusions

In this paper we have considered the problem of combining optimally op-
portunistic and size-based scheduling in the context of data transmission in a
wireless cellular system. Our model covers the symmetric case where the chan-
nel conditions for different users are independent and identically distributed
(up to a user-specific coefficient), and our approach is based on the time scale
separation assumption that allows us to define the optimal scheduling prob-
lem at the flow level. We have found the optimal trade-off in the transient
setting where all the elastic traffic flows are available at time 0 and no new
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flows arrive. The optimal policy is characterized both at the flow level (by giv-
ing the optimal operating points in all the phases of the service process) and
at the time slot level (by giving the parameters of the optimal opportunistic
scheduler). We have also explored the dynamic case with randomly arriving
new flows by simulations in three very different scenarios. Interestingly, the
scheduling policy TR-OPT, which is optimal for the transient system, can be
improved in the dynamic case under high traffic load by applying a rate-based
priority scheduler that breaks the ties based on the SRPT principle.

While we have already been considering the trade-off between opportunistic
and size-based scheduling in our earlier works [12,1,2], in the present paper, we
are, for the first time, able to combine opportunistic and size-based scheduling
optimally at the time slot level. The results cover the symmetric case in the
static setting with a fixed number of flows. Thus, the future challenge relates to
extending the results to cover the asymmetric case with user-specific channel
conditions and/or the dynamic setting with randomly arriving new flows.

References

1. Aalto, S., Lassila, P.: Flow-level stability and performance of channel-aware priority-
based schedulers. In: Proceedings of NGI (2010)

2. Aalto, S., Penttinen, A., Lassila, P., Osti, P.: On the optimal trade-off between SRPT
and opportunistic scheduling. In: Proceedings of ACM SIGMETRICS, pp. 185–195
(2011)

3. Ayesta, U., Erausquin, M., Jacko, P.: A modeling framework for optimizing the flow-
level scheduling with time-varying channels. Performance Evaluation 67, 1014–1029
(2010)

4. Bender, P., Black, P., Grob, M., Padovani, R., Sindhushyana, N., Viterbi, S.:
CDMA/HDR: a bandwidth efficient high speed wireless data service for nomadic users.
IEEE Communications Magazine 38(7), 70–77 (2000)

5. Berggren, F., Jäntti, R.: Asymptotically fair transmission scheduling over fading chan-
nels. IEEE Transactions on Wireless Communications 3, 326–336 (2004)

6. Bonald, T., Borst, S., Hegde, N., Jonckheere, M., Proutiére, A.: Flow-level performance
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