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Impact of Multidirectional Forwarding on the
Capacity of Large Wireless Networks

Jarno Nousiainen, Jorma Virtamo, and Pasi Lassila

Abstract—We consider the capacity problem in large wireless
multihop networks by separating the problem into macroscopic
and microscopic level subproblems. At the macroscopic level,
the task is to determine the routes that are geometric curves. At
the microscopic level, we need to forward the traffic according
to its directional distribution that results from the macroscopic
level routes. Previous studies have treated the macroscopic level
problem simply as that of load balancing, implying the use of
time sharing to serve the traffic flowing in different directions.
We study how a scheduling that truly interleaves the traffic flows
in different directions affects the macroscopic level problem. We
restrict the macroscopic routes to certain simple path sets. This
together with earlier results on the microscopic level forwarding
capacity allows us to obtain new results on the macroscopic
level capacity that demonstrate the gains from multidirectional
forwarding.

Index Terms—Wireless multihop networks, load balancing,
forwarding capacity, massively dense networks.

I. INTRODUCTION

THE early papers studying the capacity of wireless mul-
tihop networks often attempted to answer the question:

“What is the optimal mean number of neighbors for maximiz-
ing the one-hop progress of a packet in its desired direction?”
The results were often referred to as the “magic numbers”, see
e.g. [1]. These were later contradicted by studies pointing out
that a random geometric network with a fixed mean number of
neighbors does not stay connected when the number of nodes
in the network, N , increases [2]. Instead, the expected node
degree should grow faster than the logarithm of the number
of nodes to keep the network asymptotically connected [3].
Famously, in [4] it was shown that in this case randomly
located nodes with a common (increasing) transmission range
can achieve the throughput of Θ(1/

√
N logN) bits per second

per node for a randomly chosen destination. However, by using
a larger transmission range for access and delivery phases
and a shorter (fixed) one for transport phase, a better scaling,
Θ(1/

√
N), can also be achieved [5]. This again opens the

optimal neighborhood size for discussion. Additionally, the
scaling laws leave the constant factor, i.e., the question of the
actual capacity, open. We continue by studying this problem
in large networks.

As the size of the network increases, a natural separation
of spatial scales emerges, and the network capacity problem
can be separated into two independent problems [6], [7]. At
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the macroscopic level, the underlying network is considered
a continuous medium, where the routes are smooth geometric
curves [6], [7], [8], [9], [10], [11], and the problem is to
define the most efficient routing given the traffic matrix and the
constraints set by the microscopic level. At the microscopic
level, representing the network from a single node’s point of
view, the network appears to be infinite [12], and the task
is to forward traffic as efficiently as possible according to the
macroscopic level routing. Jointly optimizing the macroscopic
and microscopic levels allows us to solve the total capacity of
the network.

A key assumption made in the macroscopic level studies
so far, reducing the macroscopic level problem to simple load
balancing, is that the constraints set by the microscopic level
do not depend on the directional distribution of the traffic
that results from the macroscopic level routing. This could
be achieved by determining the maximum density of packet
flow in a given direction, and sharing this single-directional
forwarding capacity in time between the different directions.
The assumption only guarantees a lower bound [12]. The
sustainable local traffic load is bounded by a limit, which
is a functional of the directional distribution of the traffic,
and which is called the multidirectional forwarding capacity
(MFC). Already the simple load balancing problem is difficult,
and it has not been fully solved, see [6] for close results.
Taking into account the multidirectionality complicates the
problem considerably.

We study how the previously found new formulation [12]
for the microscopic level constraint affects the macroscopic
level problem. The goal is to find out the order of magni-
tude of how much taking into account the multidirectionality
may increase the total capacity of the network. Our results
demonstrate that a significant gain can indeed be obtained if
the traffic flowing in different directions can be interleaved in
the microscopic level scheduling. We review the separation of
scales in Section II. In Section III, we illustrate how the micro-
scopic level results can be combined with macroscopic level
routing to find the network capacity. Section IV concludes the
paper.

II. SEPARATION OF SCALES

We study the networks at the limit where the number of
nodes in the network tends to infinity. We look at the network
from two different perspectives (see Fig. 1): the perspective
of the whole massively dense network, from which a single
node is meaningless, and the local perspective, from which the
events elsewhere in the infinite network bear no significance.
These two viewpoints represent the separation of scales [6]:

1) Macroscopic level routing tries to carry as much traffic
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Fig. 1. Macroscopic (left) and microscopic (right) levels.

as possible through the network without exceeding the
microscopic level capacity constraints.

2) Microscopic level forwarding aims at coordinating the
transmissions so that the packets are relayed hop-by-hop
as efficiently as possible and spatial reuse is maximized.

Hence, the forwarding problem at the microscopic level sets an
upper bound for the amount of traffic that the routing problem
at the macroscopic level is allowed to direct to an area of the
network. That the separation of scales is asymptotically exact
is intuitively obvious but has not been proven formally.

A. Macroscopic level problem

The interest at the macroscopic level is in the end-to-end
paths that are smooth continuous curves. The traffic demand
is defined by λ(x1,x2), where λ(x1,x2)dx1dx2 is the rate
of flow of packets from a differential area element at x1 to
another at x2. We call λ the traffic demand density [pkts/s/m4].
The total offered traffic Λ [pkts/s] in the network domain A
is given by Λ =

∫∫
A λ(x1,x2)dx1dx2. The traffic demand is

satisfied by carrying the packets along the paths of a routing
system P . This set of paths contains at least one path for every
pair of a source and a destination. The local traffic load in the
network that is formed as a result of the routing system P
and traffic demand λ is characterized by the angular flux of
packets at point x in direction θ. It is denoted by ϕ(x, θ) and
is equal to the rate [pkts/s/m/rad] at which packets flow in the
angle interval (θ, θ+dθ) across a small line segment of length
ds perpendicular to direction θ divided by ds · dθ in the limit
when ds → 0 and dθ → 0. We write ϕ(x, θ) = Φ(x)·f(θ,x),
where Φ is the scalar flux Φ(x) =

∫ 2π

0 ϕ(x, θ)dθ, giving the
total offered traffic intensity [pkts/s/m], and f(θ) = f(θ,x) is
the directional distribution

∫ 2π

0 f(θ)dθ = 1.
On the macroscopic scale the problem is the following:

given a network area A and the traffic demand density λ,
find a routing system P such that at every point x, the
local microscopic scale capacity constraint is satisfied. With
I∗ denoting the microscopic level variable, the MFC, the
constraint, as given in [12], reads,

Φ(x;P) ≤ I∗[f(θ,x;P)] ∀x ∈ A, (1)

where the scalar flux Φ and the directional distribution f(θ)
are functions of x as determined by P (and λ). In particular,
to maximize the capacity of the network, we need to find P
such that the above condition is satisfied with the maximal
possible scalar multiplier of a given λ. To be explicit, this
leads to the following modified load balancing problem:

c = max
P

min
x∈A

I∗[f(θ,x;P)]/Φ(x;P). (2)

If the above maxmin problem is solved with a traffic demand,
e.g., with the total offered traffic of Λ0 = 1 packet per second,
then Λ = cΛ0 gives the network capacity.

B. Microscopic level problem

From the local perspective, the network appears to be
infinite, and only the direction of each packet is relevant.
We assume that node locations are distributed according to a
homogeneous Poisson point process. In this “locally infinite”
network, the traffic is solely relay traffic whose directional
distribution appears the same everywhere in the network.
Finding a coordinated forwarding scheme that handles traffic
with the directional distribution determined by the routing
system P as efficiently as possible is referred to as the
microscopic level forwarding problem. The capability of the
network to forward traffic with given directional distribution in
an infinite network is called the MFC. This microscopic level
characteristic sets an upper bound for the allowed macroscopic
level load.

The multidirectional forwarding capacity (MFC), I∗, is
defined as the maximum sustainable mean density of progress
[pkts/m/s], i.e., the density of packets multiplied by their
mean velocity in their respective directions.1 It depends on the
directional distribution, f(θ), of the traffic, and we denote it by
I∗[f(θ)]. In general, this functional dependence is unknown
but some results, reviewed below, were presented in [12].

The MFC, when studied as a function of the mean node
degree, remains zero until the network percolates. According
to [13], this happens approximately at 4.51 for nodes having
a common transmission range. Additionally, one can state that
for any f(θ)

I∗1 ≤ I∗[f(θ)] ≤ I∗∞, (3)

where I∗∞ is the limit for uniform directional distribution,
f(θ) = 1/2π, and I∗1 is the limit with traffic in a single
direction with f(θ) = δ(θ), i.e., the Dirac delta function. Note
that both depend on the interference model.

Assume that the directional distribution f(θ) can be ex-
pressed as a convex combination

f(θ) =
∑
i

aigi(θ) + b h(θ), (4)

where the ai and b are constants, {g1(θ), g2(θ), . . .} is a set
of directional distributions for which the MFCs are known
(denoted by {J∗

1 , J
∗
2 , . . .}, respectively), and the remainder

term h(θ) is also a distribution. Each of the components of the
sum in (4) can be handled in Φ · ai/J∗

i fraction of time. The
remainder requires a fraction smaller than or equal to Φ ·b/I∗1 .
The total traffic can be sustained using time sharing between
the components if the sum of the time shares is at most one.
Thus, we have the following lower bound for the MFC

I∗[f(θ)] ≥
(∑

i

ai/J
∗
i + b/I∗1

)−1

.

We use the microscopic level results of [12], and the
directional distributions for which the MFC is known are
the single-, bi- and four-directional balanced traffic patterns
(denoted by subindices 1, 2 and 4 respectively). These can
be utilized to forward non-balanced four-directional traffic by
first separating the four-directional balanced traffic pattern,
in which case the remaining traffic equals zero in at least

1Information could also be measured, e.g., in bits.
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one direction. In the other orthogonal direction, the balanced
bidirectional traffic can again be extracted. This only leaves
two single-directional orthogonal flows that can be handled
using time sharing with single-directional forwarding. This
yields the lower bound. By rotating this pattern over all angles
(0, π/2), a lower bound is obtained for I∗[f(θ)] for any
directional distribution. Explicitly, we have

I∗[f(θ)] ≥
(
K1 −K2

I∗1
+

K2 −K4

I∗2
+

K4

I∗4

)−1

, (5)

where

Ki = i

∫ 2π/i

0

min
j=0,...,i−1

{f(θ + 2πj/i)}dθ.

The number of parameters needed to describe the micro-
scopic level problem can be reduced by dimensional analysis.
The MFC can be expressed as any combination of the pa-
rameters having the dimension 1/m/s multiplied by a function
of all the independent dimensionless parameters that can be
formed. Using the network model of [12], we have

I∗[f(θ)](C, n, ρ) = C
√
nu(ν; f), (6)

where C is the nominal capacity of a link [1/s], n is the density
of nodes [1/m2], and ρ is the transmission range [m]. The
dimensionless parameter, ν = πnρ2, can be interpreted as the
mean degree of a node, and u is an unknown dimensionless
function.2

III. NETWORK CAPACITY PROBLEM

We have now defined what is needed for studying the total
capacity of a network. As a numerical example, we consider a
circular disk with area A = πR2 and uniform traffic demand
density:

A =
{
x ∈ R

2 | |x| < R
}
, λ(x1,x2) = Λ/A2.

We do not attempt to solve the macroscopic level problem
(2) fully but limit ourselves to optimization over some prede-
termined path sets [7] (see the reference for further details).
At the mircoscopic level, we utilize the known results [12] for
u(ν) of (6) that are illustrated in Fig. 3a. The results are based
on a slotted-time model where the packets are forwarded using
greedy maximum weight scheduling in a network where the
nodes are located according to a homogeneous Poisson point
process, and a transmission is successful if the receiver is
inside the transmission radius of exactly one active transmitter
(Boolean interference model).

A. Shortest paths

Shortest paths are commonly used in network studies and
provide a baseline for our analysis. As the situation is rota-
tionally symmetric, it is enough to study the positive x-axis.
The angular flux on distance r from the origin in direction θ is

ϕSP(r, θ) =
ΛR(R2 − r2)

A2
·
√
1− (r/R)2 sin2 θ.

2It represents the probability that a random node transmits multiplied by
the progress of the transmission in units of 1/

√
n.

Fig. 2. Inner (dashed) and outer (solid) radial-ring paths between two pairs
of nodes.

For the scalar flux to be feasible, it is required that Φ(x) ≤ I∗,
for all x ∈ A, where the forwarding capacity is for the used
forwarding method.

As the traffic is uniform, and the shortest path routing is
bidirectional, i.e., the path from x1 to x2 is the same as the
path from x2 to x1, all the traffic can be forwarded using
either single- or bidirectional forwarding. The scalar flux has
its maximum at the origin, ΦSP(0) = (2/

√
πA) · Λ, that is

the bottleneck for both single- and bidirectional forwarding.
Hence, from (1) and (6), we have

Λ ≤ C/2 ·
√
πnA u(ν)

for the total offered traffic.
To make things more concrete, let us further assume that

we are studying a network area of 100 km2 with 0.1 nodes
per square meter (107 nodes total), the nominal link capacity
is equal to one packet per second, and the transmission range
is 5 meters. This results in an average of little under eight
neighbors per node (ν ≈ 7.85 in Fig. 3a). Now, we can
transmit at most Λ ≈ 230 packets per second with single-
directional forwarding and Λ ≈ 330 packets per second with
bidirectional forwarding.

When also four-directional forwarding is possible, the local
bottleneck capacity for SP as a function of the distance from
the origin (in units of R) can be seen in Fig. 3b. The MFC has
been calculated using the lower bound of (5). As there is only
little traffic that cannot be forwarded using four-directional
forwarding, mostly at the border of the network, the origin
remains the bottleneck, and Λ ≈ 440 packets per second.
Since the used paths were fixed and the situation is rotationally
symmetric, (2) reduces to minimization over r.

B. Radial-ring paths

In addition to the shortest paths, we study so-called inner
and outer radial-ring paths. These path sets, illustrated in
Fig. 2, consist of one radial component and one ring com-
ponent. With the inner radial-ring paths (IRR), the order is
chosen so that the ring component closer to the origin is used,
and for outer radial-ring paths (ORR), it is the opposite. The
idea is to use these paths mixed with the shortest paths to push
some of the traffic away from the center of the network.

The angular fluxes at (r, 0) in direction θ with radial-ring
paths are

ϕIRR(r, θ) =
Λ ( r

R−( r
R )3)

2πR

(
�{θ∈{0,π}}+π ·�{θ∈{π

2 , 3π2 }}
)
,

ϕORR(r, θ) =
Λ( r

R )3

2πR

(
((R

r )2−1)·�{θ∈{0,π}}+π ·�{θ∈{π
2 , 3π2 }}

)
.
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(a) Dimensionless forwarding capacity, u, as a
function of the mean node degree for balanced
four-directional traffic (highest), balanced bidi-
rectional traffic (middle), and single-directional
traffic (lowest) [12].
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(b) Local bottleneck capacity as a function of the
distance from the origin for optimal MP (solid),
MP with simple load balancing (dot-dashed), and
the different elementary path sets (dashed lines).
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(c) Traffic load, Φ/Λ, for optimal MP (solid
black) and its four- (dashed) and bidirectional
(dot-dashed) components. MP with simple load
balancing is given for comparison.

Fig. 3. Numerical results.

After the addition of the radial-ring paths, the system is
still rotationally symmetric, and it is enough to minimize
over r in (2). The maximization over the routing system now
involves selecting the optimal convex combination of the path
selection probabilities, p. Hence the path selection is now
randomized, and each packet selects the used path with the
given probabilities. The optimal path selection probabilities
for multipath (MP) routes are approximately 0.571 (SP), 0.126
(IRR), and 0.303 (ORR). Using this routing system, we can
transmit at most Λ ≈ 690 packets per second, cf. Fig. 3b.

If we ignored the different microscopic level perfor-
mance for different directional distributions and assumed
that the MFC is constant, I∗[f(θ)] = I , solving (2)
would be equivalent to minimizing the maximum local load,
minp maxr Φ(r)/I . That is, we would have a simple load
balancing problem. Since K1 = 1 in (5), all the traffic
can be handled by time sharing between single-directional
flows, and I∗1 is a lower bound for I∗[f(θ)] as given in (3).
Assuming that we utilized this time sharing to reduce (2) to
pure load balancing, the capacity would be Λ ≈ 400 packets
per second. If we still used multidirectional forwarding at the
microscopic level whenever possible, the capacity would be
Λ ≈ 550 packets per second even though the macroscopic
level performance is not optimal, cf. Fig. 3b. The traffic load
(Φ/Λ) as a function of the distance from the origin (in units
of R) for optimal MP and MP that balances the load [7], and
how they separate into four- and bidirectional components, has
been compared in Fig. 3c.

IV. DISCUSSION

Our results illustrate the benefit of taking into account the
microscopic level dependence on the directional distribution of
the traffic when balancing the load on the macroscopic level of
a very large wireless network. Significantly higher capacities
are achieved by exploiting the fact that traffic flowing in
different directions can be interleaved in the microscopic level
scheduling. The gain depends on the network model. If the
node degree of the transport network had been increased, the
difference between bi- and four-directional forwarding would
have disappeared (cf. Fig. 3a). In our case of uniform traffic

demand and bidirectional paths, this would have yielded the
same solution as simple load balancing. The difference to
single-directional forwarding would still have remained.

Multidirectional traffic gives more possibilities to choose
such combinations of active links that the interfering transmit-
ters are as far away from the receivers as possible. Hence, the
difference between single- and multidirectional traffic should
also be observable with more complex interference models
where this is beneficial. However, a more detailed study
remains as a topic for future research.
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