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Abstract. In this paper we study the so-called random waypoint (RWP) mobility model in the context of cellular networks. In
the RWP model the nodes, i.e., mobile users, move along a zigzag path consisting of straight legs from one waypoint to the nex
Each waypointis assumed to be drawn from the uniform distribution over the given convex domain. In this paper we characteris
the key performance measures, mean handover rate and mean sojourn time from the point of view of an arbitrary cell, as well
the mean handover rate in the network. To this end, we present an exact analytical formula for the mean arrival rate across ¢
arbitrary curve. This result together with the pdf of the node location, allows us to compute all other interesting measures. The
results are illustrated by several numerical examples. For instance, as a straightforward application of these results one can eax
adjust the model parameters in a simulation so that the scenario matches well with, e.g., the measured sojourn times in a cell.
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1 Introduction the nodes in the RWP model are assumed to move inde-
pendently of each other we can consider a system with a
In this paper we study one of the most popular sysingle node without loss of generality. First we concen-
thetic mobility models called the random waypoint mod#hte on the characterisation of the RWP process from the
(RWP). In the RWP model a node (i.e., a mobile usgint of view of a given cell. The interesting quantities
moves directly towards the next waypoint at a certain vie-this case are 1) the mean arrival (and departure) rate
locity v. Once the node reaches the waypoint the nénto cell j, denoted by\; = 1/R;, whereR; is the mean
waypoint is drawn randomly from the uniform distributime between two arrivals to cejl and 2) the mean so-
tion over A. Similarly, the velocity for the next leg isjourn time in cell j, denoted byS;, and its distribution
drawn independently from a velocity distribution. Fui“service time”).
thermore, it is possible to introduce “thinking times” More generally, one could be interested in the distri-
when the node reaches each waypoint. butions of these quantities, but often the mean values are
RWP model was originally proposed in [8] and hasufficient and in this paper we concentrate on those. Al-
since then been studied actively, especially within thernatively one can consider the system from the mobile
context of ad hoc networks. The spatial node distributiomde’s point of view. As a corollary of the mean arrival
in the RWP model has been studied, e.g., in [4, 2, 10].rktes into different cells one also obtains the mean han-
[6] we have derived an analytical formula for the statiowlover rate in the network.
ary node distribution in an arbitrary convex domalnin The rest of the paper is organized as follows. First, in
plane, and later, in [7] the analysis is extendeto Fur- Section 2 we formally describe the RWP process, make
thermore, the connectivity properties of ad hoc networksme remarks on its properties, and restate the main re-
have been studied in [3, 9] (including the RWP model).sults of the earlier work. Then, in Section 3 the analytical
To our knowledge, the effects of the RWP model to cébrmulae for determining the mean arrival rates into an ar-
lular network models have been only briefly studied Witrary cell are first derived. Then, results for some related
[4], where the authors limit themselves to study a domaireasures and an extension to a RWP model with think-
consisting ofa x 3 identical rectangles and are able ting times are presented and discussed. Section 4 contains
derive a brute force equation for the mean number of c&ime numerical examples and Section 5 the conclusions.
changes during a one transition (leg), which allows one
to determine the mean cell change rate (handover rate) as
well. In this paper we take a more general approach &nd

consider a system of nodes moving according to RWP . .
. . . o 1. . Inthe RWP model a node moves in a convex domain
model in an arbitrary convex domaid C R* which is

9 . : .
divided into arbitrary pointwise disjoint partitions correfél C R along a stralght_llne segment from one waypoint
sponding to, e.g., cells in a mobile cellular network AO the other. The waypoints, denoted By are uniformly

T ' (ﬁstributed inA, P, ~ U(A). Transition fromP;_; to P,

“This work has been supported by the Academy of Finland (grdfir€ferred to as théh leg, and the velocity of the node on
n:o 74524) and the Finnish Defence Forces Technical Research Cedtlarleg is given by random variabtg, v; ~ v. In particu-
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lar, in the RWP model it is assumed thats andv;'s are  The values of the important constants related to the
all independent. With this notation the RWP process (oR¥WP model for some regular domains (unit disk, unit box
single node) is defined by an infinite sequence of tripleand hexagon) are presented in Table 1.
Example: For a unit disk Eq. (1) reduces into (see [6
{(Ry, P1, v1), (P1, P2, v2), ...} P a- (1) (see [6)

™
i i ' h 45(1 — 2
First we note that in the RWP process the consecutive Iegsf(r) _ (r) _ (1—r )/\/mdqb,
64
0

are not independent as they share a common waypoint: C

However, in many cases, as pointed out in [4], one can

consider independent legs, i.e. the respective independemereC' = 1287 /45, and
random point process (IRP),

-
{(Po, Pl, Ul), (PQ, P3, ’03), .. } h(’l") = (1 ) /\/ 1—r2 COSQ¢d¢.
0

2

Furthermore, we note that the RWP process is “time
reversible” in the sense that any path along the waypoikispecially, at = 0 we get
Py, Py,..., P, is equally likely to occur as the time re- 45 T
versed pathP,, Po_1,..., Py. A direct consequence of fO)=¢; and h(0)=5. 3)
this is the fact that arrival rates across any line segment
or border are equal in both directions. In other words, the2  Mean Transition Times
average number of customers moving from ¢eédl cell ; _ _
per time unit is equal to the number of customers moviffythe basic form of the RWP process the velocity of the
from cell j to celli per time unit (cf. a detailed balance ifi0de is assumed to be a constant= 1 on all legs, in
Markovian theory [11]). However, this process lacks tfphich case the mean transition time is clearly equal to the
memoryless property of Markov chains, because, e.gMfgan length of leg. In a more general form we have a ve-
is obvious that due to the used mobility model a node $¢ity distribution, denoted by, (v), from which we draw
riving from a certain cell is more likely to continue in thé Velocity for each leg independently. In other words, on

same direction and depart the cell at the opposite bor§8f" Ieg the node travels on a constant veloaifywhich

of the cell. is drawn from the velocity distributiorf, (v) at the start
of theith leg. LettingT; denote the transition time aith
2.1 Node Distribution in RWP Model leg we have
¢
Next let us recap the main results from [6]. Let = T, = o wherel; = |P; — P;_1 |,

a1 (r, ¢) denote the distance from pointe A to the bor- _ _
der of A in direction¢. Similarly, letay denote the dis- where/; andv; are independent random variables. Hence,
tance to the border in opposite direction, i®(r, ¢) = the mean transition time, i.e., the time from one waypoint
a1(r, ¢ + 7). Definé to another, is given by [1, 6]

1

h(r,¢) = 3 ajasz(ai + as). E[T)=1¢ /% fo(v) dv=1€-E[1/v], 4)

The stationary distribution of a node moving according to )
RWP model is given by (see [6]) while the quantity

o D)= — . L)

1) = & [ bl do o SR

0 corresponds to the probability distribution of the node’s
velocity at an arbitrary point of time. In the rest of the
_ paper we assume that
C =1A?% (2)

where parametef’ is the normalisation constant,

. E[1/v] < oo, (5)
where/ is the mean length of leg and the area of the

domain.A. Hence, the mean leg length can be obtain@d oOtherwise all the nodes eventually stop moving (see

by normalisation, [14, 1, 6]). A typical choice for the velocity distribution is
o the uniform distribution fromy,i, 10 vimax, Which yields
_ 1 -
/= P //h(r, QZS) dgf) dA. E [T] _ ¢ - In (UmaX/Umin )7
A 0 Umax — Umin

Note thath(r, ) is symmetric with respect g, i.e., A(r, ¢) = where we assume that,;, > 0 in order to have a finite
h(r, ¢ + ). E [1/v] in accordance with Eq. (5).



domain 1 A C=10-A2
unitdisk | 128/(457) ~ 0.905 T ~3.142 | 1287/45 ~8.936
unit square ~ 0.521 1 ~ 0.521
hexagon ~0.83 |3v3/2 ~2.598 ~ 5.58

Table 1: Parameters of the RWP model in some symmetrical domains [6].

3 Analysis of the System 5 ariva departure
/\

We assume that the domait is partitioned inton sub- | | >

domains,A;, j = 1,...,n. EachA; corresponds to cell — time

j. Without loss of generality we consider a system with a R;

single user. The results for a system withindependent ) ) . .
jgure 1: One arrival cycle: S; is the mean sojourn time

and identically moving users are straightforward to obtd ) ) :
. in cell j and R; the mean time between two consecutive
from the single user results.

arrivals to cell j. Thus, the propability of finding a node in
cell jisp; = S;/R; = \; - S; (cf. Little’s result).
3.1 Handover Rates

As mentioned already, our first aim is to determine te2 Mean Sojourn Time

mean handover rates (or arrival rates). To this end, &%e interarrival cycle to cell is illustrated in Fig. 1. Let

Ai; denote the handover rate from cétb cell j, i.e., the . - L
) , p; denote the probability of finding a node in cgllFrom
average number of times a nhode moves from cticell ) :
9. 1 we obtain an elementary relation,

7 per unit time. Consequently, the total handover rate o
arrival rate) into cellj, denoted by\;, is given by pj = Sj/R; =\ -5, (9)

Aj = Z Aij- i.e., Little’s result for a system with one customer [5, 13].
i Thus, it is enough to know any two unknowns in (9) and

From the mobile node’s point of view the interestinghe third one can be easily determined. Using the results
quantities are, e.g., the mean handover rate (in the rngsm [6, 7] we can easily compute’s and thus we need
work) and the expected number of times a mobile nogefind a way to compute either the mean sojourn time
has to make a handover during a typical call. In our casg or the mean time between two consecutive arrivals
the mean handover rate in the network is easy to obtaﬁq, = 1/,. In this paper we present a general analytical
as it is simply the sum of the arrival rates into differemdrmula for evaluating\;;'s and\\;, which then allows us
cells, to computeS; as well.

Aot = D Aj, (6)
J=1

and the mean number of handovers during a callis T',  From (1) one can identify that the quantity
whereT" denotes the duration of the call.

Note that for a system withm > 1 users the arrival b(r, d) = h(r, 9) _ h(r, ¢)’
rates into cells are simply: times the respective arrival E[l/v]-C Cy
rate in a single user system. The handover rate from {hgne specific flux at point in direction ¢, i.e., the ex-
mobile node’s perspective naturally remains unchangefected rate of crossings across a differential line segment
Furthermore, let random variabl¢ denote the numberperpendicular to directioa per unit length of the segment
of handovers occurring within a single leg. For the me@Rq per unit angle. Note that if the velocity of the node is

3.3 Mean Flow Across a Curve

E [H] we have an elementary relationship [1] a constanty = 1, from (8) we getC, = C. Denote
EH m
Mot = Tl = B[H] =Gy ha /A% (7)
7] A,0) = [sing - u(r.0+ 6) do
where 0
C,=C-E[l/v]=0A% -E[1/]. (8) 17
Note that, unlike the handover ratesd), the number of - a, /Sm(b' h(r, 0+ ¢) do,
handovers within a single leg, denoted Hy is indepen- 0
dent of the velocity distribution (terr@’, appears also inwhich is the flux per unit length across a differential line
the denominator ok.t). segment ai pointing to the directiorf. Consequently,



3.4 Mean Flow Across a Straight Cut

In the previous section we presented general expressions
for the arrival rate across a given boundary. In this section

we focus our attention to a special case where the cells are
formed by straight cuts across the area. Consequently, the
cells themselves will be convex areas. First we make the

observation that new legs are generated uniformly at the

rate

1 1 A
Figure 2: Consider transitions across vector s in figure. E[T] A ~7.E [1/v]- A = C,

per unit time and per unit area. This observation gives us
the total flux crossing a given cure@from one side to an alternative way to determine the total flux into a con-
the other is given by vex cell A;. In particular, by conditioning on the turning
points being outsided; we get (IRP)
AC) = / A(r, 8(dr)) dr, (10) X
% A=A / Bj(r) d*r, (13)

whered(dr) is the direction of the tangent at poirt In A

particular, wherC is a closed curve, the total flux fromyhere B, (r) represents the area of the set of suitable des-
outside to inside is given by the contour integral tination pointss;(r),

A(C) = 7{ A(r, 0(dr)) dr, (11) Bj(r) ={r' € A : {(r,x')NA; # 0},
c
_ _ _ _ ~__i.e., the set of such poinis that the line segment — r’
where the integral is taken in the anti-clockwise directiog,gsses the cell;.

Consider next a line segme&tfrom pointr 10 point |t 4. is a convex set separated fras by a straight
r + s as depicted in Fig. 2. Denote ly the unit vector ine then Eq. (13) can be further simplified since then the

alongs, . integrand is constanf3;(r) = A4; forallr € A\ A;, and
ug = H = (cos @, sinf). consequently,

From Eg. (10) one obtains that in this case the flux, i.e., A\ = Aj(A = 4j) _ Aj/_A(l — AJ‘/A)_ (14)

the mean rate of transitions, across the line segfieat Cy ¢-E[1/v]

in one direction is given b .
(r, r+s) 9 y In other words, the flux across any cut obtained by a

straight line is a function of the areas, and the product
of the mean leg length anid [1/v] corresponding to the
mean transition time according to (4). Note that it is
straightforward to generalise this formula®, i.e., to

Thus, using one of Egs. (10)-(12) we can compute iihe case where nodes move according to RWP model in a

mean arrival rate into a cell. Consequently, together wfRNVEX subset k™ (see [7]).
Egs. (1) and (9), we are also able to determine the meah®t US consider next an arbitrary convex domain
sojourn time in the cellS; = p;/;. Note that if one is which has been divided inta partitions bym straight

only interested in the mean sojourn time then the norm@#ts- Each cuj splits the domain into two domains with
isation constan€ is cancelled. i.e. areasA; andA — A;. Note that in this casél; N A; is not

necessarily an empty set. The mean arrival rate across cut
4, in both directions, is given by Eq. (14),

7r Is|

A(S) = Ci/sinqﬁ/h(r—i-tus,ﬁ—i-qﬁ) dt d¢. (12)
0

0

2T
E[1/] A/ O/ h(r,¢) dp dA

/\f) _ o A4 Aj)’
Sj=——= ) Co
/ /sjn¢. h(r,0(dr) + ¢) d¢ dr and hence the mean handover rate in the whole cellular
dA; 0 network is given by
wheredA; is the boundary af4;. Thus, the mean sojourn Aot = 2 Z A;(A— A)). (15)
time in a cell is directly proportional tB [1/]. Cv o



Consequently, the mean number of handovers per traesl 7, which is clearly independent of the possible think-

tion, denoted byE [H], is given by ing times. Accordingly, denoting this quantity WJ(T)’
. we have
E[H) =\t E[T] = =S Aj(A—4;), (16
[H] = Aot - E| ]_EZ J(A—A4;), (16) E[N(T)]:_ A :Aj-A' (17)
= J C-E[1/v]-A-N; Cu- N

V,VhiCh s, ObViOUSIY’ independent of the velocity diStriblNote that this quantity includes also such visits where the
tion. We emphasize that Eq. (16) holds for an arbltral%de takes no turns inside the cell

convex domaind which has been divided into cells by

bit traight cuts.
arbifrary straight euts 3.6 Convex Cells and Number of Turns

3.5 Thinking Times Let us next limit ourselves to case where a particular cell
0 | . h dard RWP del i A; c Ais convex. Then, on condition that the node
he popular extension to the standar mode _'Srﬁ(gkes at least one turn, the number of consecutive turns

add so-callgd thinking t_|mes at the turr_ung pomts_, Siside the convex cell; is geometrically distributed,
upon reaching a waypoint the node waits a certain ran-

dom time interval before taking a new direction towardsP (T) . Ar(T) i1
N7/ =iN;7"7">0}=(A;/A (1= A;/A),
the next waypoint. Assume that the thinking times are iy in; b= (A7) i/4)
ii.d. random variablesy; ~ 7, with mean7. Formally, and consequently,

the RWP process is now defined by the infinite sequence

of quadruples, B N(T)|N(T) Sol = A
R
{(P07 P17 U1, 7_1)7 (P17 P27 V2, 7—2)7 .- }

Also we have
Let P,,, denote the proportion of the time the node is ) ) (T, (T
moving, and similarly, le, denote the proportion of the E |:Nj ] =P{N;”" >0} E [Nj IN;77 >0
time the node is still. As the lengths of the movement n P{Nm —0}-0
and the stopping periods are independent and the periods J ’

alternate we have, [12, 1, 6] By combining the last two equations with Eq. (17), we

obtain a formula for the probability that an arriving node

(-E1 T
) = # and P, = % has the next waypoint within the (convex) cell,
C-E[1/v]+7T C-E[1/v]+7T
. (T) A;j(A-Aj)
Let p; andp; denote the probabilities that a node is in- P{N;"" >0} = oSV
v Ag

side cellj in a model with and without thinking times,

respectively. Then, In particular, if.A; and.A \ A; are both convex whence

. ; Eq. (14) holds and one obtaitﬁ’s{N;T) > 0} = 1. (This
Pj = Pm-pj+Ps- A fact could have been easily deduced as well.)

o ) ) By combining the above equations we finally get,
A similar relation holds for the arrival rates. Lef denote

the mean arrival rate into cejl without thinking times, P{N(T) =il =
gnd)\j the mean arrival rate with thinking times. Then it ! 1— po, wheni = 0, (18)
is easy to see that, po-p - (1—p), wheni> 0,

Aj = P - Ay wherep, = P{NJ(T) > 0} andp = A;/A.

The mean sojourn time in a cell again follows from Lit- USing the above we can also derive an estimate for the
tle’s result. i.e. asymptotic behaviour of the sojourn tinsg. Namely, for
T a large enough we have
Vi Pnpj+Pi-Aj/A

S* t

TUox P A P{S; >t} ~PINT >__° 1
J J {Sj >t} =~ P{N; ' = -E[l/v]}
=S8+ 4 T
TUUE[L ] - AN from what we deduce that

from which we can identify a quantity corresponding to

the mean number of turns a node takes during a visit in

t
A\ TR L
P{S; >t} ~ P{N;T) >0} - (ZJ> e

5



\s 2/3, as depicted in Fig. 3. Substituting these into Eq. (16)
J gives us the mean number of handovers per transition,
dBn 16
Aj| A- A E[H]=8-(1/3)(2/3) = 3,
which matches with the result obtained in [1] by rather

tedious numerical calculations.
Figure 3: The handovers in 3x3 grid occur across 4 identi- Example 2 Similarly, it is straightforward to show that
cal cuts, each of which separates the unit square into two - for an arbitraryn x m grid consisting of identical rectan-
domains with areas 1/3 and 2/3 (right fig.) gular cells the mean number of handovers per transition

is given by
whent > 1. In other words, the tail distribution of the so- n(m? — 1) + m(n? — 1)
journ time S; decreases approximately exponentially for E[H] = v ; (20)
E>1, prg D. oot which can also be written as
where 3 3 ’

in order to show the asymptotic behavidur.

_ . (T)
D = (A/4;) P{Nj >0}, For the symmetric case = m EQ. (20) reduces into

In(A/A;)
= — L4 2
¢ -E[1/v] E[H]:M,
3n
3.7 Scaling the Domain and the Mean Velocity for which we have the obvious estimate,

Assume that the original domaid is scaled by a factor E[H]~2n/3, forn> L.

g > 0in order to obtain a new domaid*. Furthermore, Furthermore, combining this with Eq. (7) gives us an es-
the velocity in the new domain is set®0 instead of con- timate for the handover rate in a unit square divided into
stantl. In other words, the node location at timis given n x n cells,

by NI .
r*(t)—q I‘( * t) tot ~ [1/] orn > 1.

wherer(t) is the node location in the original “mathe-
matical model” and-*(¢) the node location in “real life -2 Regular Cells in Unit Square

scenario”. Then, the following relations between the k§¥yree possible example applications of Eq. (14) are illus-
performance figures hold: trated in Fig. 4. In all cases, the flows across the shaded
area and each of the white areas can be calculated using

P J — P — Eq. (14), and consequently the total arrival rate into the
Si B q_* v S (19)  shaded cell can be determined as a sum of the arrival rates
A=t across each border. Hence, with little effort one obtains
_ 1 2 2
4 Numerical Examples o) MW= hPR=R), 0<hs1/2,
1
4.1 Regular Grid Cells in Unit Square b Alh) = 2h(1 =), 0<h<1/2,
Our first example is similar to the one considered by ) () — 1 346h— 9h2’ 0<h<l
Bettstetter et al. in [1], where they consider a rectangular Cy 8 -

area divided intex x (3 identical rectangular cells. The au- In Fig. 5 the resulting arrival rates are depicted as a
thors first present a brute force method for computing thanction of parametekh. In cases (a) and (b) the resulting
mean number of cell changes (i.e., handovers) per tramsstival rate increases monotonically Asncreases from
tion by considering so-called Manhattan distance betweeto 1/2. In case (c) the arrival rate first increases and
each pair of cells, and then compute the mean cell changaches the maximum at poiAt = 1/3, and then de-

rate (handover rate) using the relation Eq. (7). creases to zero ds — 1. Nonetheless, parametéris
However, even a more general case can be easily solgady to adjust in all cases so that a desired arrival rate into
by using Eqg. (16). the shaded cell is attained.

Example 1 For a regular3 x 3 grid the partitioning  27his asymptotic behaviour is also discovered in [1] without an
consists of 4 identical cuts with; = 1/3 and(A—A;) = exact expression for the error term= /71/"

6



\J

V\
(@) (b) (©) s / arrivals,

Figure 4: Three symmetric examples in unit square where
the arrival rate into the cell is easy to determine using

Eq. (14).
1 o ® el
0.8l S i Figure 6: Transitions in unit disk from the lower half to the
‘ *. () upper correspond to arriving customers.
0.6 *.
(b) (@) -
0. 4 =
0.2 s p

0.2 0.4 0.6 0.8 1 cel
(Z; r

Figure 5: Resulting arrival rate into center cells of Fig. 4
examples as a function of parameter k. The solid curve 1
corresponds to case (a), the long dashed curve to case
(b) and the dotted curve to case (c).

4.3 Unit Disk: sector cell

In order to verify our results let us next consider a simple F'9ure 7: Concentric circular cell inside a unit disk.

example of a unit disk which is split into two areas along

the z-axis, i.e., the upper and the lower half disks. Léke given by a set of central anglesy;}, j = 1,...,n,
r = (—t,0) as depicted in Fig. 6. Then, the distance tohereg; > 0V j and}_; ¢; = 2r. Due to the symmetry
the border in directiom is we have
- pj = ¢;/2m,
= - 2 i
ar(t, ¢) =tcos ¢+ V1~ t7sin 2 and consequently the mean sojourn time in segier
For now assume that the node moves at the constant ve- 9256
locity of v = 1. Then, for instance the mean arrival rate S; =pjA; = o ¢j-

to the upper half disk is given by
Hence, for the basic case of upper and lower half disk we

obtain the mean sojourn time of

™

1
2
A= ﬁ//singb-h(t,gza) do dt,
= S; = 256457 ~ L.811.

where we have utilised the symmetry. From Table 1 we o .

obtain that the mean length of leg in a unit disk/is= 4.4 Unit Disk: circular cell

128/(45m) ~ 0.905, and hence the mean arrival rate cabonsider first a unit disk and a concentric disk with radius
be determined by evaluating the integral. Numerically Wenside it as depicted in Fig. 7. Without loss of generality

obtain the mean arrival rate 6f276. we consider poinf0, 7). It is easy to see that in this case
On the other hand, this symmetric case can also be §igs distance to border in directiogisand¢ +  are given
termined using Eq. (14), by (see [6])
(r/2)2 1 457 _ 53 :
N=~~17 — — — " ~0.276. a1 = /1 —1r2cos® ¢ — rsin ¢,
Cy 4¢ 512 —

as = /1 —12cos2 ¢ + rsin ¢,
Note that the flux in one direction across a radius of the

disk isA/2. Therefore, the flux inside an arbitrary sectavhere ¢ is the angle anti-clockwise away from the tan-
of the unit disk is agait\. In particular, let the partitioning gent at point(0, 7). It follows that the flux of arriving

7



0.3 \ cell
0.2

0 0.2 0.4 0.6 0.8

Figure 8: The arrival/departure rates to/from a concentric
circular cell as a function of the cell radius 7.

S

5

4 / Figure 10: Translated disk cells in unit disk. Cell 1 resides
/ totally inside the RWP domain while cell 2 is only partially

reachable by the RWP node(s).

3

2

1

— with a little effort one obtains
0.2 0.4 06 08 1'
™ s
2
Figure 9: The mean sojourn time inside a concentric cir- Ar,d) = = /da r(1 —2?) /dgf) .
cular cell, S(r), as a function of the cell radius r. Cy A / (22)
sin /1 — 22 cos2(¢ + a — f3),
customers into a cell with radiusis,
where
™
2rr . 9
)\(T): c Sln¢(1—T)\/1—T2COS2¢d¢) x2:d2+2drcosa+r2’
"0 B = arctan(d + r cos a, 7 sin ),
™
457(1 —1r?) VI Pl s 0 whend +r < 1
=————2 [si 1 —1r2cos?pdp. (21 ’ ’
64 - E[1/v] /bmgb récost¢do. (21) Qo = { arccos 1_2‘12;’”2, whend—r < 1 < d+r,
0

T otherwise

The mean arrival rate into a concentric circular cell,
A(r), is depicted in Fig. 8 as a function of the cell raE0r the special casé = 0 we haver = r, ap = 0 and
diusr for the casev = 1 (constant). It can be seen that = /3, and, consequently, Eq. (22) reduces to Eq. (21).
the mean arrival rate reaches the maximumy 0.511, at Furthermore, when velocity is constamt= 1, and the

a cell radius of =~ 0.553. radii of the disks are equal,= r, andr — oo, we obtain
Fig. 9 illustrates the respective mean sojourn tim@€ previous example, i.e.
S(r), which naturally goes to infinity as— 1. For small
lim A(r, ) 45
1m = —_—.
values ofr we have (cf. EqQ. (3)) A AT T 512
~ 2,2 _ 2 . . . . .
p(r) = 2m°r%-n(0)/C = mr=- f(0), In Fig. 11 the mean arrival rate into circular cells with
Ar) ~  dwr-h(0)/C = 2r- f(0), different values of the cell (center) distance from the ori-
and consequentl§’(0) = 7/2 ~ 1.571. Furthermore gin is depicted as a function of the cell radius. Obviously,
S'(r) > /2 Vr > 0. the circular cell having a center at origin obtains the high-

est mean arrival rate. As the center of the cell moves fur-
ther way from the origin, the maximum arrival rate is ob-
tained at a larger value of radius

Consider next a more general case where the disk repSimilarly, in Fig. 12 the equivalue contours of the mean
resenting the cell has a different center. In particular, Btival rate)(r, d) into a circular cell are depicted. On the
A(r, d) denote the mean arrival rate into a disk with radiusaxis is the radius of the cell and on they-axis the

r locatedd units away from the origin. The situation is il-distance from the cell center to the origin.

lustrated in Fig. 10 with two cells. Cell 1 resides totally The resulting mean sojourn times for different values
inside the RWP domain, while the cell 2 is partly outsidef the cell radius- are illustrated in Fig. 13 as a function
the RWP domain. The angle, defines the part of theof the distance between the centers of the disks. For small
boundary that must be taken into account in the integrv@lues ofr the mean sojourn time is essentially a constant
tion, ay, . .., . Similarly as above, starting from Eq. (10until the cell moves near the border of the unit disk. Near

45 Translated Disk
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Figure 11: Mean arrival rate into a circular cell, A(r, d), as =

a function of the cell radius r for different values of the cell

center distance from the origin d = 0.0, 0.2, 0.4, 0.6, 0.8 Figure 14: Hexagonal cells: there are 4 different types of
(from highest to lowest). cells and 5 different types of handover regions.

tions (19) one obtaing = 100 m/r and

S*
120s

r=5S(r).

As we are interested in the solutions with< r < 1, we
must have §'(r) > 7/2)

S* > 60ms ~ 188s.

Figure 12: The equivalue contours of the mean arrival For example, suppose we have measured that a mean

of the cell 7 and on the y-axis the distance d from the 4, ;,, _ 9405 Substituting that into (19) gives us the

center of the cell to the center of the unit disk. . i
corresponding values for our model parameters:

the border the mean sojourn time first increases due to the real-life model
fact that most of the visiting nodes make a turn inside the »* = 0.5878, p = 0.5878,
cell instead of passing through it. Then,dsontinues to r* =100m, r = 0.5768,
increase and the intersection of the disks becomes smaller A* = 0.00244921/s, A =0.50954,
the mean sojourn time decreases smoothly to zero. 5% =240 s, S =1.1536.

Suppose further, that based on the measurements, we
know that the mean number of mobile users in the cell
isn’,; = 50. As the users move independently we have

Suppose that the circular cell in unit disk with radius "cen = 7 - P*, and consequently, in the simulations we
corresponds to a cell with a radiusi6f= 100m in areal Should haven = 85 mobile users.

life scenario. Furthermore, assume that the mobile users

move with a constant velocity dfkm/h = 2m/s ~ 4.7 Hexagonal Cellular Network

6
0.83m/s (Cf. ITU pedestrian model A). Then, using rela'i'he last example serves as a more reasonable model for a

cellular network. The node is assumed to move with a ve-

4.6 Mapping to Pedestrian Model

)5 locity of 1 in a unit disk. The cellular network consists of
19 cells arranged symmetrically as illustrated in Fig. 14.
2 Due to symmetry we havedifferent cell types and dif-
LS ferent border segments to be considered. The cell types
1 are indicated in Fig. 14 with numbets-4. Furthermore,
0.5 ~ we assume that a node moves at a constant velocity of
NN By numerical calculation we obtain that the arrival rate

0 0.250.50.75 1 1.25 1.5 1.75 . . .
into the center cell is approximatel\0.352. For compar-

Figure 13: The mean sojourn time inside a circular cell, 150N, the largest disk which fits inside the hexagon tell
S(r,d), as a function of the distance from the center of has a radius of; = 1/4, while the smallest disk cover-
the cell to the origin d for different values of cell radius ing the same hexagon cell has a radius-pf= 1/21/3.
r=0.2,0.4, 0.6, 0.8 (from lower to upper). The arrival rates into such circular cells are approximately



celll | cell2 | cell3 | cell4 time. Letfj(T) denote the rate at which turns occur inside
are‘:)‘"‘tj,l_t 8?4112 8?31 8'(1)(1)1 8'3);8 a given cellj. As the turning points, i.e., the waypoints,
probability,p; . . . , ) L .
arrival rate o.352 | 0.238 | 0.039 | 0.060 ﬂre uniformly distributed over the whole domaih we
sojourntime,S; | 0.414 | 0.426 | 0.290 | 0.494 ave o "
turns / visit, N7 | 0.216 | 0.320 | 0.917 | 0.989 [ = TEJD/U]'

Table 2: Results for hexagonal cellular network. Thus, iffjm is much smaller than the arrival rate to cell,

, CAj, e if fjm < \j, then the majority of the nodes ar-
0.326 and0.367, respectively. The rest of the numericajing 1o cell just pass through it and the usability of the
values are presented in Table 2. Thus, the arrival ratgis/p model can be argued. In other words, if the area is
highest into celll and lowest into celB, as the intuition much larger than the cell, i.e4 > A, then the RWP

suggests. , model hardly characterises the possible intra cell move-
The actual handover rates between different cell tyg%%m

are (see Fig. 14)

Also, as mentioned before, in [14] the authors also
0 0059 0 0 pointed out that the velocity distribution of the RWP
3= [ 0059 0.049 0.022 0.030 | model should be chosen so that the quarfify /v] is fi-
0 0022 0  0.009 nite. Otherwise, in the stationary distribution all the nodes
0 0.030 0.009 0 are still.

Note that here we mean by, » = 0.049 the handover

rate from type2 cell to one of the type neighbouring 4.9 Composite RWP Mobility Model
cells. Hence, the total arrival rate into typeell is
As a straightforward extension to overcome the (possible)
A2 =A12+2 A2+ A32+2- M2~ 0238 problem with too straight movement, one could split the
area intoN overlapping domains denoted ;. Then,

Similarly, the handover rate the mobile node experiences o the waypoint belongs to more than one domain,

is 2.37 per unit time. For example, if we assume that ﬂ%ﬁe node first picks the next target domain among those

unit disk corresponds to a disk wi0 m radius in real . . . )

: . domains the current waypoint belongs to with some fixed
life, and assume that mobile users move at aconstantF\)/reo-babilities and then the next waypoint is chosen uni-
locity of 3km/h, thenv = 1/480 and on averagé.59 Y

handovers occur during a typicaiin call, formly from the chosen domain. The conditional pdf of

._the node location for each domain is still given by (1) with
From the table one can also note that the mean sojourn g y (1)

L . : appropriate weights, which are easy to determine by con-
time in different cells varies quite a lot. For example théDp P g easy oy
sidering the mean rate of turns in each cross section.

mean sojourn time in cell is almost twice the mean so- This kind of aporoach could be used to model. e.a.. bi
journ time in cell3. Cells1 and2 have equal sizes but PP » €9, 0id

o . . L ffi ildings, insi ity area. On Id, e.g.
are in different locations. The mean sojourn time in gell2ee buildings, inside a city area. One could, e.g., use a

. . . . 3-dimensional RWP process to model the mobile users in-
is somewhat longer than in cdll This can be explained _. o ) .
- side the buildings andZ&dimensional process for the mo-
by the fact that a node arriving to a cell nearer to the bor: . . ’ )
. . o ile users located outside the buildings. The “exchange
der is more likely to have the next waypoint in the same .
. . area (cross section) would be located at the bottom of the
cell, where as in the case of, e.g., cella considerable

proportion of the arriving nodes pass directly through tll1oclaJ llding.

cell.

In particular, we note that the mean number of turns @§r  Conclusions
visit, denoted bW](T), tends to be strongly dependent on
the distance of the cell to the boundary. In the exampiethis paper we have derived analytical formulae for the
hexagonal cellular netwoer(T) and NQ(T) are3—5times mean arrival rate into an arbitrary cell of cellular network
smallertharNéT) andNiT). Hence, the visits in the cellsVhen the nodes, i.e., the mobile users, move according
1 and2 are typically “pass through” type of movement© the random waypoint mobility model. The mean han-
where as in the cell8 and4 the arriving node typically dover rate in the network, i.e., the rate at which a mobile
makes one turn before exiting. node moving according to RWP model makes handovers,
is a direct corollary from the mean arrival rates into differ-
ent cells. Furthermore, the knowledge of the mean arrival
rate together with previously known formulee for the spa-
In the RWP model a node takes turns, i.e., changestii# node distribution allow us to derive also the mean so-
direction, on average at the ratelgf(¢ - E [1/v]) per unit journ time a cell. For convex cells we were able to derive

4.8 Applicability of the RWP Model
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the probability that an arriving node has the next wayf9]
point within the cell. This quantity characterises the the
frequency of turns along the path from the point of view
of a cell. Implications from introducing so-called think-
ing times at the turning points were also discussed and the
corresponding formulae were presented.

The analytical results were illustrated by several nt:0]
merical examples and some remarks were made concern-
ing the applicability of the RWP mobility model to the
simulation of cellular networks. For simulation purposes
the formulae allow one to adjust other parameters like
shapes and sizes of the cells, mean velocity and the num-
ber of nodes, so that the simulation setup matches, as well
as possible, with the modelled system. [12]
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