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Abstract. In this paper we study a pursuit problem in the context of
a wireless sensor network, where the pursuer (i.e., mobile sink) trying to
capture a pursuee (i.e., tracked object), moving with constant velocity, is
always directly communicating with a sensor node in the very near prox-
imity of the pursuee. Assuming that the sensor nodes can adjust their
transmission power depending on the distance ρ between the pursuer and
pursuee according to the usual power law ρ−α, the task is to find the op-
timal trajectory of the pursuer minimizing the total transmission energy.
We approach this classical control theoretic problem by the method of
dynamic programming. The cost function, describing the transmission
cost with an optimal policy, factorizes into radial and angular functions.
The partial differential equation governing the cost function can then
be reduced to an ordinary differential equation for the angular function.
This equation as well as the related optimal trajectories can be solved
numerically. The qualitative behavior of the trajectories is also discussed.
The trajectories are self-similar in the sense that any magnification of
an optimal trajectory is also an optimal trajectory for different initial
conditions.

1 Introduction

Pursuits are common in many areas, including predators that hunt for their
preys, missiles that are heading towards their moving target, or a robot that is
trying to reach (or at least get as close as possible to) its target to be monitored,
etc. (see [1, 2] and references therein). Technically speaking, in a pursuit one
particle travels along a specified curve, while a second pursues it, with a motion
directed towards the first. When the pursuer travels faster than the pursued, the
question then becomes: “At what point do the two meet?” “What is the capture
point?” Besides, an interesting study can be made if there is a cost associated
with the pursuit, and the task is to reduce this cost as much as possible. For
example, a trivial objective can be to catch the target as soon as possible. The
answer is typically given by defining the optimal strategy to drive the pursuer,



or equivalently, defining the optimal curve of pursuit that should be followed.
The curve of pursuit is simply the trajectory traced by the pursuer.

A typical assumption is that the pursuer is always heading right towards the
target, i.e., with the paths of the pursuer and pursuee parameterized in time,
the pursuee is always on the pursuer’s tangent. This is because the pursuee’s
trajectory is not known in advance, either because the pursuer is not able to
predict it, or the pursuee is actively trying to avoid the pursuer by changing
its direction and speed adaptively. However, we concentrate on the problem
where the pursuee is moving constantly along a straight line irrespective to
the pursuer’s behavior, also called as linear pursuit. (An excellent overview of
the history of pursuit curves is found in a series of articles written by Arthur
Bernhart, among which the first discusses pursuit curves where the pursued
moves along a straight line [3].) Moreover, in our model the cost rate is related
with the actual distance of the pursuer from the pursuee during the chase. The
total energy of the entire pursuit is to be minimized, with the consumed power
at each step being proportional to a given power of the relative distance between
the pursuer and pursuee.

We adopt this pursuit problem to a wireless sensor networking scenario. As
an example, consider a sensor networking application where sensor nodes detect
any moving object within their sensing range, and report on it to a sink node.
(For a general description of wireless sensor networks, please refer to [4–6].) Here
we assume a single-hop network where all sensors send radio packets directly to
the sink. The most important source of energy leakage in this scenario is the
energy needed for radio communication. We assume that the radio transmission
power obeys the well-known power-law ρ−α as a function of the distance ρ, and
the nodes are able to adjust their transmission power as needed. Since alerted
nodes report periodically, the consumed energy at each time is related to the
distance between the sink and the moving object. A pursuit problem can be
defined if we allow the sink node to move freely. The pursuer in this case is
the mobile sink, while the tracked object takes the role of the pursuee. Since
the mobile sink is constantly communicating with the sensor nodes that are
sensing the object (or, less likely, directly with that object), in order to reduce
energy consumption, the task is to find the optimal pursuit curve that leads to
minimal energy and thus extended network lifetime. (For a detailed description
on the energy consumption, sink mobility and network lifetime in wireless sensor
networks, please refer to [7].)

The task leads to a classical (non-stochastic) control theoretic problem. Dif-
ferential equations for a linear pursuit are sometimes applied, where the pursued
starts at rest and then moves along a straight line. In the simplest case, where
the pursuer is always heading directly towards the pursuee, the equation of mo-
tion for the pursuer is then solvable by first setting the first derivative equal
to a particular point. However, in our case the cost function is nonlinear. We
approach the problem with the dynamic programming approach of Bellman [8],
[9]. The state of the system is defined by the relative position of the pursuer and
the pursuee. Associated with the state there is the cost function which represents



the minimal cost from that state to the end when optimal curve of pursuit is
followed. An analogous, but for telecommunications people more familiar con-
cept is ‘distance vector’ which represents the length of the shortest path from a
given node to the destination. In this networking context, dynamic programming
principle is well-known from the solution of the shortest-path problem using the
Bellman-Ford algorithm [10]. In our pursuit setting, we derive a partial differen-
tial equation for the cost function. Assuming that the transmission power obeys
the power-law ρ−α, the partial differential equation reduces to an ordinary dif-
ferential equation that can be solved numerically. When the cost function is
known, the optimal trajectories can easily be calculated. In particular, when the
problem is to catch the pursuee in minimum time (i.e., α = 0), one easily infers
that the optimal policy is to head with full speed towards where the pursuee is
going (the meeting point) along a straight line. When large distances are very
costly in terms of transmission power (i.e., α grows), the nature of the trajectory
changes. For very large α the optimal trajectory at any instant heads towards
the pursuee’s current position in order to decrease the distance as quickly as
possible.

Another consequence of the power-law dependent transmission power is that
the optimal pursuit curves are self-similar: given an optimal trajectory from a
given initial point, magnifying the trajectory, i.e., multiplying the distance from
the origin (pursuee) of each point of the trajectory by a constant yields the
optimal pursuit curve starting from the point where the original initial point is
sent by the magnification transformation.

The rest of the paper is organized as follows. In Section 2 the investigated lin-
ear pursuit problem is formulated, and a (non-linear) partial differential equation
is derived for the optimal trajectory, using the dynamic programming method.
The way how to solve this equation is also shown. Section 3 presents numerical
results for different initial parameter settings. Finally, Section 4 concludes the
paper.

2 Pursuit, cost, optimal trajectory

2.1 Notation and problem formulation

Consider a linear pursuit game. Assume that the pursuee moves with constant
speed v, and the maximal velocity of the pursuer is u. The pursuer is faster, thus
the ratio ν = v/u is smaller than one. The positions of the pursuee and pursuer
at time t are denoted by s(t) and r(t), respectively (see Fig. 1). In particular,
we will assume that the pursuee moves along the x-axis at a constant velocity,
i.e., s(t) = s(0) + v t e1. The relative position (ρ) of the pursuer to the pursuee
can be expressed as

ρ = r− s = x e1 + y e2,

where e1 and e2 are the perpendicular unit vectors.
Assuming that the communication power (P ) depends on the relative dis-

tance as
P = |ρ|α, α ≥ 0, (1)
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Fig. 1. Notations, pursuit curve.

the task is to navigate the pursuer, i.e., specify the trajectory r(t) up to some
time T when the pursuer catches the pursuee, so that the total energy consumed
is minimized. Thus, the minimal energy consumption during the ‘chase’ is given
by

ε(ρ) = min
|u(t)|≤u,∀t

∫ T

0

|r(t)− s(t)|α dt, (2)

where u(t) = d
dtr(t), ρ = r(0) − s(0) and r(T ) = s(T ). Our task is to find u(t)

that realizes the minimum of (2).
Recalling the wireless sensor networking application mentioned earlier, the

pursuit can be interpreted as follows. Assume that a mobile object is moving
across the sensor field with a constant speed (see Fig. 2). Sensor nodes within
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Fig. 2. Minimal energy ‘chase’ trajectory.

sensing range that detect the object in its very near proximity send packets to the
sink node via their radio interface. We assume that the nodes are aware of their
actual distance from the sink, and are able to adjust their radio transmission
power according to (1) to reduce energy consumption. (For example, since we
do not have any restriction on the sink node, we can assume that it is capable of
broadcasting its position periodically to every node. Another solution would be



that—instead of receiving the coordinates from the pursuer—the received signal
strength could be used at the node to estimate the pursuer’s distance from the
node.) Assuming a mobile sink, the task is to find an optimal trajectory for the
sink to minimize the overall energy consumption (i.e., (2)) of the network.

2.2 Catch in minimum time

In the case α = 0 the transmission power is constant and the objective reduces
to catching the pursuee in minimum time. It is easy to see that then optimal
strategy for the pursuer is to go with maximal speed along a straight line to the
point where it reaches the pursuee. If the pursuee at time t = 0 is at the origin,
then at time t it is at point (vt, 0). This point is reached by a pursuer at time
t from all the points that lie on a circle with center (vt, 0) and radius ut, see
Fig. 3. The cost function ε(ρ) at point ρ = (x, y) is then the time t that solves
the equation √

(x− vt)2 + y2 = ut.

The solution is

u ε(ρ) =

√
x2 + (1− ν2) y2 − νx

1− ν2
= ρ

√
1− ν2 sin2 θ − ν cos θ

1− ν2
, (3)

where in the latter form we have used polar coordinates, where ρ = |ρ| and θ is
the angle between ρ and e1. Note that the expression factorizes into radial and
angular factors. Rescaling ρ with a constant factor multiplies ε(ρ) by the same
factor. It follows that a magnification of an equivalue contour yields another
equivalue contour as depicted in Fig. 3.

Fig. 3. Equivalue contours of ε(ρ) are circles that are obtained by a magnification or
contraction operation from each other.

2.3 Dynamic programming

For a general α we approach the problem with the method of dynamic program-
ming. Let the pursuer choose the velocity u at time zero and proceed with this



velocity over time interval dt. In order for the initial velocity to be optimal, we
must have

ε(ρ) = ρα dt + min
|u|≤u

ε(ρ + (u− v) dt)

= ρα dt + min
|u|≤u

{ε(ρ) + (u− v) · ∇ε(ρ) dt} (4)

= ρα dt + ε(ρ)− v · ∇ε(ρ) dt + min
|u|≤u

u · ∇ε(ρ) dt.

The minimum of the last term with respect to u is obtained when the direction of
u is opposite to∇ε(ρ) and |u| = u. The minimum value attained is −u|∇ε(ρ)| dt.
This leads to the first order (non-linear) partial differential equation for the
function ε(ρ),

ρα − v · ∇ε(ρ)− u|∇ε(ρ)| = 0.

In component form this reads

ρα − v
∂ε

∂x
− u

√(
∂ε

∂x

)2

+
(

∂ε

∂y

)2

= 0.

Next we focus on how the solution of this equation can be obtained.

2.4 Solving the equation

Since the important parameter is the ratio (ν) of the speeds of the pursuee and
pursuer, and not the absolute speeds, without loss of generality we may take
u = 1. Then, with the notation v = νu, the equation reads

ρα − ν
∂ε

∂x
−

√(
∂ε

∂x

)2

+
(

∂ε

∂y

)2

= 0. (5)

This is most easily solved using polar coordinates introduced above, i.e. we solve
ε = ε(ρ, θ). A solution is obtained with the separable trial (cf. the form of (3))

ε(ρ, θ) = 1
1+α ρα+1ϕ(θ), (6)

where the constant factor 1
1+α is introduced for later convenience, and ϕ(θ) is

an angular function yet to be found. With this trial we have




∂ε

∂x
= ρα

(
cos θ ϕ(θ)− sin θ ϕ′(θ)/(1 + α)

)
,

∂ε

∂y
= ρα

(
sin θ ϕ(θ) + cos θ ϕ′(θ)/(1 + α)

)
.

Upon substitution in (5) the factor ρα is canceled and we are left with an ordinary
differential equation for the angular function ϕ(θ),

ν
(
cos θ ϕ(θ)− sin θ ϕ′(θ)/(1 + α)

)
+

√
ϕ(θ)2 + ϕ′(θ)2/(1 + α)2 = 1. (7)



More explicitly, solved for ϕ′(θ) the differential equation reads3

ϕ′(θ) = (1+α)
ν sin θ −

√
1− 2νϕ(θ) cos θ − (1− ν2)ϕ2(θ)− ν2ϕ(θ) sin θ cos θ

1− ν2 sin2 θ
.

(8)
Because of symmetry, we have ϕ′(0) = ϕ′(π) = 0. The corresponding values

ϕ(0) and ϕ(π) are readily solved from (7)4,

ϕ(0) =
1

1 + ν
, ϕ(π) =

1
1− ν

. (9)

It is straightforward to check that the angular function, i.e. the coefficient
of ρ, in (3) satisfies (8) for α = 0, while an analytic solution for general α is
not known. Equation (8) can, however, easily be solved numerically5. In Fig. 4 a
family of solutions for ϕ(θ), corresponding to different values of α, α = 0, 1, 2, 5,
and 25, are depicted for a fixed value of ν = 1

2 (with this value of ν we have
ϕ(0) = 2

3 and ϕ(π) = 2).

πê2 π 3πê2 2π

0.33

0.67

1

1.33

1.67

2

Fig. 4. Angular function ϕ(θ) for α = 1, 2, 5, 25 (from top to bottom) with ν = 1
2
.

3 Numerical results

Recalling that the velocity vector u of the pursuer is opposite to the direction
of ∇ε(ρ) and that the pursuer always uses the full speed |u| = 1, the trajectory
3 One has to choose the minus sign for the square root; plus sign would lead to an

imaginary solution.
4 These results can be derived also as follows. When θ = 0 or π, the optimal strategy

is obviously to go straight along the x-axis at full speed towards the pursuee. Then,

ε(x e1) =
∫ |x|/(1±ν)

0
(|x| − (1 ± ν) t)α dt = 1

1±ν

∫ |x|
0

(|x| − y)α dy, where ± stands for

sign x. The integration yields ε(x e1) = 1
1±ν

1
1+α

|x|1+α from which, in view of (6),
result (9) follows.

5 To guarantee numerical stability, the equation has to be solved backwards from π
to 0; values in the range θ ∈ (π, 2π) are obtained by symmetry from those in range
θ ∈ (0, π).



of the pursuer can be solved when the function ε(ρ) is known. In the sequel, we
denote the unit vector in the direction of −∇ε(ρ) by ε(ρ).

It is useful to note some general properties of the trajectories. First, from the
separable form (6) it follows that the direction of ∇ε is a function of the angle θ
only. It then follows that if f(x, y) = 0 defines the path of a trajectory, then also
f(cx, cy) = 0 is a path for all c > 0. In other words, an arbitrary magnification
or contraction of an optimal path results in another optimal path.

The trajectories can be solved either in moving coordinates (moving with the
pursuee) or in fixed coordinates, i.e. one can solve either ρ(t) or r(t). These are
determined by the differential equations

d

dt
ρ(t) = ε(ρ(t))− v,

d

dt
r(t) = ε(r(t)− v t).

In Fig. 5 we give examples of the trajectories for three different values of α,
α = 0, 2, 5, with ν = 1

2 . The trajectories are drawn for t ∈ (0, 1) for a pursuer
that reaches the pursuee at time t = 1. For α = 0 the trajectories are straight
lines as they should.

Looking at the trajectories in fixed coordinates (the right hand graphs), one
notes an intuitively obvious behavior. Regarding that at time t = 0 the pursuee
is at point (− 1

2 , 0), we find that in the case α = 0 the pursuer does not head
to ‘where the pursuee is’ but directly to ‘where the pursuee is going’. When the
value of α increases the optimal trajectory more and more turns to the one that
heads to ‘where the pursuee currently is’. This happens in order to decrease
the distance between the pursuer and the pursuee as quickly as possible; this is
advantageous because for a large α the objective function decreases very rapidly
as the distance decreases.

4 Conclusions

We studied a linear pursuit problem with an application example of target de-
tection and tracking in a wireless sensor networking scenario using a mobile sink.
We identified the optimal trajectory that should be followed by the sink to min-
imize the energy consumption in the network. The energy of radio transmission
to be minimized is defined by a cost rate that obeys the well-known power-law
ρ−α as a function of the distance ρ between the mobile sink (pursuer) and the
moving target (pursuee).

We approached the problem by the method of dynamic programming. We
showed that the cost function, describing the radio transmission cost with an
optimal policy, factorizes into radial and angular functions. The partial differ-
ential equation governing the cost function reduces to an ordinary differential
equation for the angular function. This equation as well as the related optimal
trajectories can be solved numerically.
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Fig. 5. Trajectories in moving and fixed coordinates.



Parameter α gives a great flexibility to this model. When α is set to zero, the
problem reduces to the task of catching the target as soon as possible. The re-
sulting optimal trajectories in this case are straight lines leading directly towards
the rendezvous-point. On the other hand, when α is set to two or more, the cost
function is a realistic model for the energy requirement of radio transmission.
The resulting optimal trajectory ensures in this case the minimum overall en-
ergy consumption in the network. When α is large, the optimal pursuit is the
one where the sink is always heading right towards the target’s actual position,
trying to reduce the relative distance as much as possible.

An interesting consequence is that, having the power-law dependent cost
function, the optimal pursuit curves are self-similar in the sense, that any mag-
nification of the curve results in an optimal trajectory as well, but for different
initial conditions.
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