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ABSTRACT
We present a new approximation method called value ex-
trapolation for Markov processes with large or infinite state
spaces. The method can be applied for calculating any per-
formance measure that can be expressed as the expected
value of a function of the system state. Traditionally, the
state distribution of a system is solved in a truncated state
space and then an appropriate function is summed over the
states to obtain the performance measure. In our approach,
the measure is obtained directly, along with the relative val-
ues of the states, by solving the Howard equations in the
MDP setting. Instead of a simple state space truncation, the
relative values outside the truncated state space are extrap-
olated using a polynomial function. The Howard equations
remain linear, hence there is no significant computational
penalty. The accuracy of value extrapolation, even with a
heavily truncated state space, is demonstrated using proces-
sor sharing systems and data networks as examples.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes

General Terms
Performance

Keywords
Approximation, Markov processes, performance evaluation

1. INTRODUCTION
Many queueing systems, for instance those appearing in

telecommunication systems, can be modelled as Markov pro-
cesses. If the state space of the process is finite, the steady
state distribution of the system can be solved numerically
using balance equations. However, if the state space is very
large or infinite, it is unfeasible to solve the state distribu-
tion (unless an analytical solution is available). In order to
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evaluate the performance of the system, an approximative
method is needed. The traditional approach is to truncate
the state space and approximate the performance measure
by summing an appropriate function over the states in the
truncated state space. In general, the larger the truncated
state space, the more accurate results are obtained. Error
bounds and rate of convergence can be analyzed in some
cases [14]. There exists also more sophisticated methods for
approximation such as power series algorithm [8] and struc-
tured analysis approaches [5].

In this paper, we present a novel approximation method
called value extrapolation which is a generalization of the
idea we first introduced in [9]. Instead of first solving the
state distribution of the process using the balance equations,
we consider the system in the setting of Markov decision pro-
cesses (MDP’s) and solve directly the performance measure
from the so-called Howard equations, along with the relative
values of the states (see, e.g., [13]). The method can be used
to approximate any performance measure expressed as the
expected value of a random variable which is a function of
the system state. Instead of ignoring the states outside the
truncated state space, we extrapolate their relative values
using the values inside the truncated state space. This is a
kind of bootstrapping idea familiar in many other fields. If
the extrapolation is made using a polynomial function, the
Howard equations remain a closed system of linear equa-
tions and there is no significant computational penalty due
to the extrapolation. The advantage of this method is that
if the extrapolation of the relative values is accurate, an
expectation type performance measure representing a sum
over the whole state space is automatically accurately deter-
mined from the Howard equations without any summation
and separate estimation of the contribution to the sum from
the state space outside the truncated state space. There
are good reasons to anticipate that polynomial extrapola-
tion does indeed work well; in some specific simple systems
the relative values are exactly polynomial functions of the
state. Thus the performance measure can be accurately es-
timated even with a heavily truncated state space. Another
advantage of our method is its simplicity; it is very straight-
forward to apply.

We use two types of systems to evaluate the accuracy
of value extrapolation. In chapter 3, we discuss processor
sharing (PS) systems, in which a single resource is shared
among the customers. PS type queues can be used as mod-
els for many systems, e.g., in computer systems [2] and
data communications [10]. Both one-class queues with state-
dependent service rate and multi-class queues are considered



as examples. If there are multiple customer classes, the ca-
pacity allocation policy affects the system performance. We
study two well-known policies, discriminatory [1] and gen-
eralized [15] processor sharing.

In chapter 4, as examples of systems with multiple re-
sources, we evaluate the performance of simple data net-
works. While data networks can be dimensioned using deter-
ministic traffic models, it is essential to use a dynamic model
in order to analyze the quality of performance experienced
by the end users. The traditional approach is to model the
system as a Markov process and solve the equilibrium state
distribution using a truncated state space. However, the ap-
plicability of this approach is limited as the number of states
needed for accurate results is usually very large. When value
extrapolation is applied, more accurate results are obtained
with the same number of states. While value extrapolation
does not solve the state space explosion, it makes it possible
to analyze bigger networks with higher accuracy. The ap-
proach has already been applied to performance evaluation
of a simple wireless scenario [9].

2. THEORETICAL FRAMEWORK

2.1 Multidimensional Stochastic Processes
Let X(t) be a continuous-time Markov process describing

a system with K customer classes. The state of the process
is x = (x1, . . . , xK), where xk is the number of class-k cus-
tomers. We assume that the state space S of the process
is large or infinite. The transition intensity from state x to
state y is denoted qxy.

Value extrapolation approach is applicable to performance
measures that can be expressed as a mean value of a rev-
enue that is a function of the system state. Let the rev-
enue rate of the process in state x be r(x). The mean
revenue rate of the process is denoted r. A simple yet
often informative performance measure is the mean occu-
pancy E[|x|] = E[

P
i xi], which can be determined by us-

ing revenue function r(x) = |x|. Similarly, other moments
of |X| may be determined. If the first and second mo-
ments are known, variance may be solved using equation
Var[|X|] = E[|X|2] − E[|X|]2. Using the same approach,
also the distributions of the individual customer classes can
be analyzed by using revenue functions such as r(x) = xk

or r(x) = x2
k.

The steady state distribution of the process satisfies the
global balance equations

π(x)
X
y

qxy =
X
y

π(y)qyx ∀x, (1)

where π(x) is the steady state probability of state x. If the
state space is large, state distribution can be solved only in
some special cases. In general, the state space S needs to
be truncated to a smaller state space S̃ in order to solve
the set of equations (1). If the truncated state space is
large enough, the probabilities of the truncated state space
can be used to approximate the probabilities of the whole
state space. When the state distribution is known, the mean
performance measure can be approximated by summing over
the truncated state space

r ≈
X
x∈S̃

r(x)π(x).

The larger the truncated state space is, the more accurate
the results.

2.2 Value Extrapolation
Instead of solving the state probabilities using balance

equations (1), we define and solve another state metric called
relative value. The approach is well-known on the theory of
Markov decision processes (see, e.g., [13]). Relative value
v(x) of state x is the conditional expected difference in cu-
mulative revenue over infinite time horizon when starting
from state x rather than from equilibrium:

v(x) = E

�Z ∞

t=0

(r(X(t))− r) dt
??? X(0) = x

�
.

Relative values v(x) satisfy the so-called Howard equations

r(x)− r +
X
y

qxy(v(y)− v(x)) = 0 ∀x. (2)

As seen, only the differences of the relative values appear in
the equations, hence we may set, e.g., v(0) = 0 when solving
the equations. From the |S| equations, the |S| − 1 unknown
relative values along with the mean revenue rate r can be
solved.

Similarly to the traditional solution method utilizing state
probabilities and balance equations, the state space can be
truncated by setting qxy = 0, ∀y 6∈ S̃. In this paper, we
introduce an approximation method that does the trunca-
tion more efficiently. We generalize the value extrapolation
method that was briefly introduced in [9]. Instead of setting
the transition intensities to zero, the relative values outside
the truncated state space are extrapolated using the val-
ues inside (note that the Howard equations remain a closed

set of equations). If the relative values outside S̃ are cor-
rectly extrapolated, the mean value solved from (2) is exact.
While exact results are obtained only in some special cases,
extrapolation usually improves the accuracy significantly.

The extrapolation problem can be formulated as follows.
We want to fit a function f(x) to the relative values inside

the truncated state space S̃ so that it approximates also the
values outside S̃. Function f and fitting method need to be
chosen so that the approximated relative values outside S̃
are linear functions of the values inside, so that the group
of equations (2) remains linear.

One linear extrapolation method is to use a polynomial
function f(x) =

PK
i=1

Pni
j=0 ai,jx

j
i and least squares fitting.

The fitting can be done either globally or locally. When
global fitting is used, all the (x, v(x))-pairs in S̃ are used.
The fitting can also be done locally, i.e. using only a subset
Sf (x) of the truncated state space. The choice of Sf (x)
may depend on the extrapolated point x. Parameters ai,j

are determined so that the sum of squared errors

Q =
X
x∈Sf

(f(x)− v(x))2

is minimized. Function f and set Sf (x) need to be cho-
sen so that the parameters have unambiguous values, i.e.
the number of points in Sf (x) is equal or greater than the
number of parameters. If the number of parameters and
points are equal, the fitting reduces to ordinary polynomial
fitting. The optimal parameter values are found by solving



the following group of equations:

∂Q

∂ai,j
= 0 ∀i, j.

The parameter values and hence also the function f(x) is a
linear function of relative values v(x) inside the truncated
state space Sf (x).

Mean revenue rate r can be approximated by defining the
Howard equations (2) for the truncated state space and ex-

trapolating the relative values outside S̃ that appear in the
equations. Value extrapolation does not alter the number of
equations or variables in the group of equations hence there
is no significant computational penalty when value extrap-
olation is used.

2.2.1 Example of Extrapolation
We demonstrate the extrapolation using a one-dimensional

Markov process. The truncated state space of the process
is S̃ = {x | 0 ≤ x ≤ N}. When linear extrapolation is used,
the extrapolation function is of form f(x) = a1x + a0. We
use two data points in the fitting. In this particular case, the
least squares fitting corresponds to finding the straight line
crossing the two points, i.e. question is of ordinary fitting.
However, we use the least squared error method in order to
illustrate the approach. The squared error sum is

Q = (a1N + a0 − v(N))2 + (a1(N − 1) + a0 − v(N − 1))2.

The values of parameters are solved using equations8<: ∂Q
∂a0

= 2a1(2N − 1) + 4a0 − 2v(N)− 2v(N − 1) = 0
∂Q
∂a1

= 2a1(N
2 + (N − 1)2) + 4a0 − 2v(N)+

−2v(N − 1) = 0.

The solution is�
a0 = (1−N)v(N) + Nv(N − 1)
a1 = v(N)− v(N − 1),

hence the values outside S̃ are extrapolated using function

v(x) = (v(N)− v(N − 1))x + (1−N)v(N) + Nv(N − 1).

If the process is a birth-death-process, i.e. only increments
and decrements of one customer are possible, the only rela-
tive values outside the truncated state space that appear in
the Howard equations (2) are the outside values closest to
the truncated state space. In this one-dimensional example,
it would be sufficient to extrapolate the value at point N +1:

v(N + 1) = 2v(N)− v(N − 1).

3. PROCESSOR SHARING SYSTEMS
In this chapter, we study the accuracy of value extrapo-

lation using multi-class processor sharing (PS) systems as
examples. A PS system consists of a server and customers.
Customers arrive at the server as a random process and de-
part when they have received a sufficient amount of service.
Customers of a given class concurrently in the system ob-
tain equal share of the capacity. The share of the capacity
between different classes need not be egalitarian; we will
consider discriminatory and generalized processor sharing
systems as examples. We assume that the arrival process is
Poissonian and the service requirements are exponentially
distributed, hence the process is Markovian. As only one

customer arrives or departs at a time, the system is a birth-
death-process. PS processes can be used in modelling of
many systems, for example telecommunication networks [10]
or scheduling of operating systems [12].

We use the expected total number of customers E[|X|]
as the performance measure, which, of course, is related to
the mean sojourn time by Little’s result. We study also
the second moment E[|X|2] as it is needed if variance of the
mean occupancy is determined.

3.1 One-Dimensional Examples
First, we discuss simple PS systems with one customer

class and state dependent service rates. The state x of the
system is the number of customers in the system. Without
loss of generality, we assume unit mean service requirement.
The service rate φ(x) is a function of the system state. Cus-
tomer arrival process is Poissonian with intensity λ. The
Howard equations of the system read

x− r + λ(v(x + 1)− v(x)) + φ(x)(v(x− 1)− v(x)) = 0.

3.1.1 Regular Service Rate Functions
If the service rate φ(x) is constant, quadratic extrapola-

tion gives the exact mean number of customers as demon-
strated in [9], which is one of our motivations for the useful-
ness of the method. Similarly, cubic extrapolation yields the
exact result when the second moment E[|X|2] is studied. If
the service rate is not constant, the accuracy of value extrap-
olation depends on the service rate function φ(x). In some
cases, exact results are obtained similarly to the case with
constant service rate. One such function is, for example,

φ(x) =
x

x + a
, a > 0.

In general, value extrapolation does not yield exact results
when applied to one-class processor sharing systems with
arbitrary state-dependent service rates. However, it usually
estimates the performance accurately even if the truncated
state space is very small. We use function

φ(x) = 1− 1

2x

as an example and demonstrate the accuracy of value extrap-
olation using different extrapolation methods. The arrival
intensity λ is assumed to have value 1/2, i.e. the load of the
system is 0.5.

Figure 1 illustrates the calculated mean occupancy E[|X|]
as a function of the size of the truncated state space. In
figure 1(a), the order of the extrapolation polynomial is var-
ied between one and three. For comparison, we also in-
clude results calculated using the traditional method uti-
lizing the state probabilities of the truncated state space.
All the extrapolation methods are more accurate than the
regular state space truncation when state spaces with simi-
lar sizes are considered. Quadratic extrapolation converges
most rapidly hence it is used to study how the number of
data points used in the fitting affects the accuracy of value
extrapolation. The results are illustrated in figure 1(b). In
this case, the less points are used in the extrapolation, the
better results are obtained. Correspondingly, figure 2 illus-
trates the approximation of the second moment E[|X|2]. Ex-
trapolation with a cubic polynomial converges most rapidly.
In general, one may expect that for estimating E[|X|n],
(n + 1)th order extrapolation is needed. Also in this case,
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Figure 1: E[|X|] of a one-class PS queue with a regular service rate function at load 0.5 as a function of the
truncation point. In figure (a), the order of the extrapolation polynomial is studied. In figure (b), the effect
of the number of data points used in the fitting is studied using quadratic extrapolation.
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Figure 2: E[|X|2] of a one-class PS queue with load 0.5 with different extrapolation functions

the straightforward polynomial fitting with four data points
yields more accurate results than extrapolation with more
data points and least squares fitting.

We studied also other regular service rate functions. The
behaviour of value extrapolation usually resembles figures 1
and 2. Quadratic and cubic extrapolation yields the most
accurate results when first and second moments are studied.
Use of more data points in the fitting does not typically
improve the accuracy of the approximation.

3.1.2 Irregular Service Rate Function
In the previous example, quadratic value extrapolation

worked very well when only three data points were used.
However, if the process is irregular, it may be better to use
more data points in the fitting so that the results do not
depend so much on the individual values. In order to study

this issue, we construct an artificial process where the ser-
vice rates are highly irregular. For each point x, the service
rate φ(x) is drawn from a normal distribution with mean 1
and standard deviation 1/100 (once drawn, the rate is fixed,
i.e. there is no stochasticity in the system, just irregular-
ity). The load of the system is 0.75. The mean occupancies
with different extrapolation polynomials are illustrated in
figures 3(a). Each curve is extrapolated using the minimum
possible number of data points. While quadratic extrapola-
tion yields the best results, it fluctuates strongly around the
correct value. Linear extrapolation is more robust and also
outperforms the traditional approach. In order to get bet-
ter results, the second order polynomial is fitted using more
data points and least squared error fitting. Figure 3(b) illus-
trates the effect of the number of points. The more points
are used, the less fluctuations.
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Figure 3: E[|X|] of a one-class PS queue with load 0.75 and irregular service rate function as a function of the
truncation point. In figure (a), the order of the extrapolation polynomial is studied. In figure (b), the effect
of the number of data points used in the fitting is studied using quadratic extrapolation.

3.2 Multi-Dimensional Examples
Next, we study more general processor sharing systems

with one server and K customer classes. The state of the
system is x = (x1, . . . , xK), where xk is the number of class-
k customers in the system. The arrival process of class k is
Poissonian with intensity λk and the service requirement of
class k is exponentially distributed with mean 1/µk. With-
out loss of generality, the server is assumed to have unit
capacity. The service rate of class k is denoted φk(x).

When the first moment is studied, the Howard equations
of the process are

|x| − r +
X

k

λk(v(x + ek)− v(x)) +

+
X

k

φk(x)(v(x− ek)− v(x)) = 0,

where ek is a vector with 1 in element k and 0 elsewhere.
The state space is truncated so that

S̃ = {x | 0 ≤ xi ≤ N, ∀i} .

We use one-dimensional extrapolation, i.e. the value at point
(x1, . . . , N + 1, . . . , xK) is extrapolated using only points
(x1, . . . , xi, . . . , xK), xi ≤ N .

3.2.1 Discriminatory Processor Sharing
When discriminatory or weighted processor sharing (DPS)

is used, class-k bandwidth is [7]

φk(x) =
wkxkP
j wjxj

,

where wk is the weight parameter of class k. Egalitarian
processor sharing is a special case of DPS with wk = 1, ∀k.

In previous literature, many characteristics of DPS sys-
tems have been analyzed. Moments of the number of cus-
tomers in a system can be exactly determined by solving a
system of linear equations derived in [11]. The solution is
used to validate the results of value extrapolation. It seems
that the (n + 1)th order extrapolation yields exact results

when the nth moment of the occupancy is studied regardless
of the parameter values. Exact results are also obtained if
value extrapolation is used to approximate the mean number
of customers in a specific class instead of the total number,
i.e. r(x) = xk.

3.2.2 Generalized Processor Sharing
Another variant of processor sharing is generalized proces-

sor sharing (GPS), see, e.g., [15]. GPS capacity allocation
is defined as follows:

φk(x) =
wkP

j:xj>0 wj
.

While value extrapolation yields exact results when ap-
plied to DPS, this is not the case with GPS. In order to es-
timate the accuracy of value extrapolation, we compare the
different extrapolation methods using two customer classes.
The parameter values used are w1 = 3/10, w2 = 7/10,
λ1 = λ, λ2 = 2λ, µ1 = 1/2 and µ2 = 2/3. Parameter
λ is varied so that the load of the system is either 0.2 or
0.8. The first moment is illustrated in figure 4. Quadratic
extrapolation converges very quickly even with the higher
load. Second moment E[|X|2] is illustrated in figure 5. In
this case, cubic extrapolation yields the best results. In
both cases, linear extrapolation clearly outperforms regular
truncation.

4. APPLICATION IN DATA NETWORKS
Data networks can be modelled as Markov processes [6].

We assume that the traffic of the network is elastic, i.e. the
sizes of the transfered files are fixed and the transmission
duration depends on the available capacity. Flows arrive
randomly as a Poisson process and flow sizes are exponen-
tially distributed.

Balanced fairness (BF) is a new resource sharing concept
recently introduced by Bonald and Proutière [3] as a means
to approximately evaluate the performance of fair alloca-
tions like max-min fairness and proportional fairness. Un-
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Figure 4: E[|X|] of a GPS process with different extrapolation functions
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Figure 5: E[|X|2] of a GPS process with different extrapolation functions

der balanced fairness resource sharing the dynamic flow-level
model becomes more tractable. While value extrapolation
can be used to approximate any capacity allocation policy,
the use of BF allows us to estimate the accuracy of the
approximation as the exact mean occupancy can be deter-
mined in the tree networks we are analyzing [4]. BF alloca-
tion can be determined recursively starting from an empty
network. When the allocation is known, the state transition
intensities qxy can be determined.

4.1 Two-Level Tree Network
The first example network is illustrated in figure 6. As-

suming C1 < C0, C2 < C0 and C0 < C1 + C2, the exact
mean occupancy is [4]

E[|X|] =
(C1 + C2 − C0)ρ1ρ2 + C1C2(1− ρ1 − ρ2)

(C0 − ρ1 − ρ2)(C1 − ρ1)(C2 − ρ2)
,

where ρk = λk/µk is the load of class-k traffic.
We use parameter values λ1 = 2λ2, µ1 = 3 and µ2 = 2.

C0=1
C1=0.8

x1

C2=0.7
x2

Figure 6: Two-level tree network

The amount of traffic is varied so that the total load of
the system is either 0.2 or 0.8. The first moment is illus-
trated in figure 7. Quadratic extrapolation converges most
rapidly. Also linear extrapolation outperforms regular trun-
cation. For example, to get results within 1 percent of the
exact value with load 0.8, the truncated state space needs
to be at least 8 × 8 states when quadratic extrapolation is
used, 14×14 states when extrapolation is linear and 19×19
states when the traditional method is used. The differences
are even more pronounced when systems with more traffic
classes are analyzed. The use of more data points in the
polynomial fitting does not improve the accuracy.
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Figure 7: E[|X|] of a two-level tree network with different extrapolation functions

0 1 2 3 4 5 6
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Truncation point

E
[|X

|2 ]

Cubic
Quad.
Linear
Reg.

(a) Load 0.2

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Truncation point

E
[|X

|2 ]

Cubic
Quad.
Linear
Reg.

(b) Load 0.8

Figure 8: E[|X|2] of a two-level tree network with different extrapolation functions
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Figure 9: Moments of the three-level tree network with load 0.6 and different extrapolation functions
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Figure 10: Three-level tree network

Similarly, second moment is illustrated in figure 8. With
low network load, cubic extrapolation yields best results.
When the network load is higher, quadratic extrapolation
is more accurate than cubic when the size of the truncated
state space is small. When the state space is bigger, cubic
extrapolation is the most accurate.

4.2 Three-Level Tree Network
A more complex tree with three levels is illustrated in

figure 10. Traffic parameters are λ3 = λ5 = λ7 = 2, λ4 =
λ6 = 1, µ3 = µ5 = µ7 = 3 and µ4 = µ6 = 2. With these
values, the load of the system is 0.6. The accuracy results are
illustrated in figure 9. Quadratic approximation estimates
the first moment very accurately. In a system with multiple
traffic classes, the effect on computation time is significant
because the number of states needed is considerably smaller
than with regular truncation. Second moment is illustrated
in figure 9(b). Cubic extrapolation is the most accurate,
but also the quadratic approximation converges quickly. In
both cases, also linear extrapolation outperforms the regular
truncation.

5. CONCLUSIONS
Markov processes with large or infinite state spaces may

be used in modeling of many systems. Performance of such
systems can be analyzed exactly only in some special cases,
hence approximative methods are needed. The traditional
approach is to truncate the state space, solve the equilib-
rium state distribution, and use it to approximate the per-
formance.

In this paper, we presented a new approximative method
that can be used to evaluate any performance measure ex-
pressed as the expected value of a function of the system
state. Instead of solving the state probabilities using the
balance equations, the performance measure is determined
directly using relative values of the states and Howard equa-
tions. The advantage of this approach is that the relative
values outside the truncated state space can often be well
extrapolated using a polynomial function and least squared
error sum fitting without computational penalty.

We demonstrated the accuracy of value extrapolation us-
ing processor sharing systems and simple data networks as
examples. When the first moment of occupancy is approx-
imated, quadratic extrapolation yielded the best results.
Correspondingly, cubic extrapolation approximated the sec-
ond moment most accurately. When value extrapolation is
used, the size of the truncated state space needed to reach
certain accuracy is only a fraction of the size needed using
the traditional approach. The more customer classes in the
system, the more pronounced the difference is. Linear ex-
trapolation outperformed the regular truncation in every ex-

ample studied. While the higher order polynomials usually
perform better, the linear extrapolation is a robust method
to get more accurate results. If the transition intensities of
the process are irregular, more accurate results are obtained
if more data points and least squared error sum are used in
the fitting.

While value extrapolation does not solve the state space
explosion, it can significantly reduce computation time when
multi-class systems are studied. In addition to the use for
approximation, value extrapolation also showed promise as
an analytical tool in the DPS example.
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[10] L. Massoulié and J. Roberts. Bandwidth sharing and
admission control for elastic traffic.
Telecommunication Systems, 15(1):185–201, 2000.

[11] K. M. Rege and B. Sengupta. Queue-length
distribution for the discriminatory processor-sharing
queue. Operations Research, 44(4):653–657, 1996.

[12] A. Silberschatz, P. Galvin, and G. Gagne. Applied
Operating System Concepts. John Wiley & Sons, 2000.

[13] H. Tijms. Stochastic Models: An Algorithmic
Approach. John Wiley & Sons, 1994.

[14] N. van Dijk. Truncation of markov chains with
application to queueing. Operations Research,
39(6):1018–1026, 1991.

[15] M. van Uitert. Generalized Processor Sharing Queues.
PhD thesis, Eindhoven University of Technology, 2003.


