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In a communication network, the traffic has a source where that particular traffic flow
is originating from and a destination where it is terminating at. Each origin-destination
combination constitutes an origin destination (OD) pair. The knowledge of the amount
of traffic of each such OD pair in the network is represented by thetraffic matrix. The
traffic matrix is a required input in many network management and traffic engineering
tasks, where in many cases the knowledge on the traffic volumes are assumed to be
known. However, in reality, they are seldom readily obtainable in networks, as only the
link count measurements and routing information is available. Solving the OD counts
from these is an underconstrained problem. Thus, it is not solvable, unless some extra
information is brought into the situation.

This thesis gives a comprehensive overview of the estimation methods proposed in the
literature. These are divided into a few main groups based on the nature of the extra
information each approach uses. The methods based on the gravity model assume that
the traffic between two nodes is proportional to the product of the total traffic volumes
of the nodes. In the Maximum likelihood methods the sample covariance of link counts
is used. In the Bayesian methods there is an assumption about a prior distribution for
the estimate. The thesis describes each proposed method and reviews the comparative
studies made to evaluate the performance of the methods.

We propose a novel method for traffic matrix estimation: The Quick method based on
link covariances, which yields an analytical expression for the estimate and is thus com-
putationally light-weight. The accuracy of the method is compared with that of other
methods using second moment estimates by simulation under synthetic traffic scenarios.
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Tietoliikenneverkossa kulkevalla liikenteellä on tietty lähtöpiste, josta kyseinen liiken-
nevirta on lähetetty, ja määränpää, johon se on matkalla. Jokainen lähtöpiste ja määrän-
pää muodostaa niin sanotun OD-parin.Liikennematriisisisältää jokaisen tällaisen OD-
parin liikennemäärän. Monissa verkon suunnitteluun ja liikenteenhallintaan liittyvissä
tehtävissä tieto liikennematriisista on välttämätön. Monesti tämä oletetaan tunnetuk-
si, mutta todellisuudessa liikennematriisi on harvoin suoraan saatavilla. Yleensä vain
linkkien liikennemäärät ja reititystaulut ovat tiedossa. Liikennematriisin ratkaiseminen
näillä tiedoilla on alimäärätty tehtävä, eikä siis ratkaistavissa, ellei jotain lisäinformaa-
tiota tilanteesta ole käytettävissä.

Tässä työssä annetaan kattava yleiskuva esitetyistä estimointimenetelmistä. Nämä
voidaan jakaa muutamaan pääryhmään sen perusteella, millaista lisäinformaatiota on
käytetty. Gravitaatiomalliin perustuvat menetelmät olettavat liikennemäärän kahden pis-
teen välillä olevan suoraan verrannollinen kyseisten pisteiden kokonaisliikennemääriin.
Suurimman uskottavuuden menetelmissä vaadittava lisäinformaatio saadaan linkkien
liikennemäärien otoskovarianssimatriisista olettamalla funktionaalinen yhteys liiken-
nemäärän keskiarvon ja varianssin välille. Bayesilaisissa menetelmissä oletetaan, että
priori-jakauma liikennemäärille on käytettävissä. Tämä työ kuvailee jokaisen esitetyn
menetelmän ja tutkii vertailuja joita on tehty eri menetelmien tarkkuuksista.

Työssä esitetään uusi linkkikovariansseihin perustuva nopea menetelmä liikennematrii-
sin estimointiin, joka antaa analyyttisen ratkaisun estimaatille ja on siten laskennalli-
sesti kevyt. Menetelmän tarkkuutta verrataan muihin vastaaviin menetelmiin simulaatio-
tutkimuksella.

Avainsanat: Liikennematriisin estimointi, OD-pari liikenne , liikenteen karakterisointi
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Chapter 1

Introduction to Traffic Matrix

Estimation

In this chapter we give a short introduction to the area of traffic matrix estimation,

background of the field and its importance. The problem setting and difficulties

involved are introduced and discussed, using a small toy topology as an example.

Finally a short overview of the different estimation approaches is given, leaving a

detailed review for chapter 3.

1.1 Background

In a communication network, the traffic that transits through the network has a

source where that particular traffic flow is originating from and a destination where

it is terminating at. The knowledge of the amount of traffic in the network is rep-

resented by thetraffic matrix. Its elements give the volume of traffic between each

of the origin-destination (OD) pairs in the network. The traffic matrix is a required

input for the operator in many network management tasks. Such tasks include for in-

stance routing, traffic engineering problems such as balancing the traffic load in the

network as evenly as possible for all links, as well as network capacity dimension-

ing. In many cases the knowledge on the underlying traffic volumes are assumed to

be known. However, in reality, they are seldom readily available in networks.

It is widely recognized that accurate traffic matrices representing the traffic demands

in the network are crucial for traffic engineering, but only recently have there been

1



Chapter 1. Introduction to Traffic Matrix Estimation

2y1y

2x1x

3x

A CB

Figure 1.1: A simple two link, three OD-pair topology.

proposals in the literature for methods to obtain such matrices. In the following sec-

tions the problem of traffic matrix inference is formulated and we give an overview

of some of the different approaches proposed to estimate the traffic matrix.

1.2 Introduction

Each traffic flow in a network originates from some origin, and terminates at some

destination. These may be links, routers or so called points of presence (POP), de-

pending on the situation, but in the sequel we will refer to these as nodes. Each

origin (or source) nodes and destination noded constitute an OD pair. The traffic

between the origin and destination of an OD pair is denoted byxsd, which is the

element(s, d) of the traffic matrixx. For the computational purposes, the traffic

matrix is always written as ann-vectorx, wheren is the number of non-zero OD

pairs. We refer to theith OD pair byxi. The vector contains all the nonzero ele-

ments of the matrix, as zero elements are left out. Let us denote the unknown traffic

matrix by stochastic variableX andx stands for some value of this variable.

Consider the simple example network of Figure 1.1. In this topology we have three

nodes. To further simplify the situation we have here only two links. One fromA to

B and the other fromB to C. We do not consider the links in the opposite directions

between the same nodes in this example. Each of the three nodes may serve as an

origin and as a destination. Thus we have potentially six origin-destination pairs in

the network, namelyAB, BA, AC, CA, BC andCB. The traffic matrix in matrix

form would thus be 


− AB AC

BA − BC

CA CB −


 .

But since the network had only links from left to right direction in the figure, there

2



Chapter 1. Introduction to Traffic Matrix Estimation

is no traffic from right to left in the example, and half of the above elements of

the traffic matrix are zero. We leave the zero elements out and write the nonzero

elements in vector form to obtain the OD counts vector of dimensionn = 3 as

x = ( xAB xBC xAC ) ,

or we can numerate the elements and write

x = ( x1 x2 x3 ) .

These are the actual traffic volumes travelling in the network. The traffic matrix,

denoted byλ is the expected value ofx.

E[x] = λ = ( λ1 λ2 λ3 ) .

The vectorλ is what we are trying to estimate in traffic matrix estimation, although

in many cases alsox is estimated.

1.2.1 Available Data

Although direct measurement of traffic matrices is possible with tools like Netflow

[36], they are typically not available over the whole network, and network wide

use of Netflow would be quite expensive. Hence, the information about the OD-

pair volumesx is not readily available, but has to be estimated. What we do have

available are the measurements of the traffic in each link, and the routing matrix

specifying the path each OD pair uses in the network between nodess andd.

The link counts, or link loads, give the measured traffic volumes in each link at a

given time. They are denoted by them-vector vectory. The elementyj of this

vector gives the link count on a specific linkj. When consecutive measurements

are used, we denote thetth set of measurements by vectoryt. The link counts are

obtained from the measurement data available by the Simple Network Management

Protocol (SNMP) [8]. The attractive feature of SNMP is that it is usually available

everywhere in an IP network. However, it has many limitations, such as possible

inaccuracy and unreliability as data may be lost in transport. See [7] for discussion

of problems in using SNMP for traffic measurements. Despite the problems, SNMP

is the only widespread tool to obtain link count data. The SNMP poller requests

periodically each router for the amount of traffic received and transmitted from its

interfaces. Typical periods vary from a minute to few minutes, with five minutes

being the typical value, although, at least in theory, shorter periods are also possible.

3



Chapter 1. Introduction to Traffic Matrix Estimation

TheRouting matrixA is of dimensionsm× n and is usually assumed to be known

and fixed in traffic matrix estimation problems. ElementAj,i of the routing matrix

is 1 if OD pair i uses linkj, and0 otherwise. The routing matrix is obtained from

BGP configurations and through OSPF and IS-IS link weight information gathered

from the routers.

Consider again the example network of Figure 1.1. Here we have two links. We

denote the link from nodeA to nodeB as link1 and the link from nodeB to node

C as link2. Thus we have the link count vector of dimensionm = 2 as

y = ( y1 y2 ) .

The routing matrixA indicates which links are used by each OD pair. Thus it needs

to have dimensionm× n, so that each OD pairs and link is covered.

A =


 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3


 .

Each column of the routing matrix represents an OD pair, and each row represents

a link. For instance, since OD pair2 uses link2, the elementA2,2 = 1. Looking at

the Figure 1.1, we can see that in this case the routing matrix is

A =


 1 0 1

0 1 1


 .

Reading the routing matrixA row by row would thus tell us that link1 is used by

the first and third OD pair, and link2 by the second and third. By reading the routing

matrix column by column we can similarly find out which links does a specific OD

pair use. For instance, sinceA(1, 1) = 1, we know that OD pair1 uses link1. It

does not use link2, sinceA(2, 1) = 0.

1.2.2 The Link Count Relation

Should we know the traffic between OD pairs and the routing matrix, the link counts

could easily be calculated. If we again look at our example topology, it is easy to

see that link count of the first link comprises of trafficx1 andx3 and the link count

of the second link is comprised ofx2 andx3.

y1 = x1 + x3

y2 = x2 + x3. (1.1)

4



Chapter 1. Introduction to Traffic Matrix Estimation

Using the routing matrix we can write this in vector form as

y = Ax, (1.2)

which we call the link count equation.

1x

x  +  x  = 101

x3

3

2x

x  +  x  = 92

x3

3

Figure 1.2:In our two link example, there are two link constraints to consider

To understand the meaning of the link count equation we turn back to our example.

The two observed link loadsyi each give some indication of the values of the un-

known OD loadsxi, as formulated in equations (1.1). Suppose the observed link

load on link one isy1 = 10 and on link twoy2 = 9. These constraints are shown

in graphical presentation in Figure 1.2. We now know that the sum of the traffic of

OD pairs1 and3 has to be equal to10, that is it lies on the line representing the link

count constraint. Equivalently, we get a constraint from the link count measurement

on link 2.

In order to be consistent with the link counts the traffic matrix estimate has to satisfy

both of these constraints simultaneously, that is satisfy equation (1.2). The link

count constraints in our example are shown in Figure 1.3. As we had three OD

pairs, we can present the situation in three dimensional space. Each constraint that

was a line in the two-dimensional presentation of Figure 1.2, forms now a plane

in the three-dimensional space. The conditionx1 + x3 = 10 does not depend

on x2 and is therefore satisfied for any value ofx2. Thus the line shown in the

two-dimensional representation is just the intersection of the constraint plane and

the (x1, x3) co-ordinate plane. In three-dimensional representation the constraint

plane continues to the direction of thex2 co-ordinate axis, as depicted in Figure

1.3. Similarly the second constraint is plane, and the space where both conditions

hold is the intersection of these two planes, defined by the link load equations, and

depicted in the figure by the line labelledy = Ax.
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x

x  +  x  = 101

x  +  x  = 9

x2

1

y=Ax

x3

3

32

Figure 1.3:In our two link example, the link constraints form a line in three dimensional

space

The link count equation 1.2 will hold for any so-called snapshot of the network. In

any particular moment of time the link loads are deterministically obtained from

the OD loads by this equation. If we have several measurements available we can

use the sample average ofy as the expected value of the link loads and obtain an

equation including the traffic matrixλ.

E[y] = AE[x], (1.3)

y = Aλ. (1.4)

1.2.3 The Traffic Matrix Estimation Problem

The problem setting of traffic matrix estimation can be divided to two different

scenarios, depending on the amount of measurements available. Therefore, there is

some ambiguity in the literature whether the termtraffic matrixrefers to OD counts

x or their expected valueλ.

If only a single measurement snapshot of the link counts is available, the goal of the

estimation is to infer the OD countsx from the link countsy. On the other hand, if

6



Chapter 1. Introduction to Traffic Matrix Estimation

there is a time-series of several link count measurementsyt (t = 1, . . . , T ) available

the problem usually is to infer the expected valueλ of the OD counts, although in

some cases the goal is to infer also the link count time seriesxt (t = 1, . . . , T ).

Problem 1 (Snapshot problem)Given a single set of link countsy and routing

matrixA, find the traffic matrixx such that conditionsy = Ax are satisfied.

Problem 2 (Time-series problem)Given independently and identically distributed

link countsyt (t = 1, . . . , T ) and routing matrixA, find the traffic matrixλ such

that conditionsyt = Aλ are realized as close as possible.

Since in any realistic network there are many more OD pairs than links, the problem

of solvingx orλ fromA andy is strongly underdetermined and thus ill-posed. This

means that accurate explicit solutions cannot be found, as there are infinite number

of solutions that satisfy equation (1.2).

For example, consider a snapshot problem with the measurements

y1 = 10 y2 = 9.

One possible solutions would be

x1 = 5 x2 = 4 x3 = 5,

another one is

x1 = 4 x2 = 3 x3 = 6.

In fact, for anya ∈ [0, 9]

x1 = 10− a x2 = 9− a x3 = a

is a solution that satisfies the link count equation. So even for this small toy example

there are10 integer solutions, and infinite number of real value solutions.

To overcome this ill-posed nature of the problem, some type of additional infor-

mation has to be brought in before the problem can be solved. This might be

assumptions about the traffic distribution, additional measurements or some prior

knowledge about the traffic matrix. For snapshot problems prior the latter is typi-

cally used, while time-series problems allow for various approaches.

In Bayesian inference, the estimation depends on the knowledge of a prior distri-

bution for the traffic matrix. The conditional probability distribution for the traffic

7



Chapter 1. Introduction to Traffic Matrix Estimation

matrix is then computed given the prior distribution and observed link loads. This

method usually employs Markov-chain Monte Carlo simulation for computing the

posterior probability. The drawback is that the method is heavily dependent on the

accuracy of the prior.

Techniques based on the gravity model make the assumption that source and desti-

nation are independent in the sense that if a certain percentage of all traffic goes to

destinationd, the percentage is the same for any given source nodes.

Maximum likelihood methods assume that there is a relation between the mean

and variance of the OD pair counts. This approach therefore requires a time-series

of measurements to obtain a sample variance for the link counts. The variance is

then used through the relation along with the link counts in a maximum likelihood

framework to calculate an estimate for the traffic matrix. The fact that we can gain

knowledge about the mean from the sample variance makes the problem identifi-

able.

1.2.4 Contribution of the Thesis and Related Publications

In chapter 2 we analyze measurements from various networks in order to validate

or invalidate the key assumptions involved in traffic matrix estimation. Most of

the chapter is based on our analysis of novel traffic measurements from the Finnish

University network, Funet. These results were first published in [1] and [2].

The main contribution of the Thesis is the Quick estimation method based on link

count covariances, which is presented in Chapter 5 and is based on our work in [3].

It proposes an approach to the time-series problem, usually solved by maximum

likelihood estimation, where a closed from solution is obtained for the estimate

through analytical calculations. While this is not as accurate as maximum likelihood

estimate, it is significantly lighter computationally.

1.2.5 Structure of This Thesis

In chapter 2 we analyze measurements from real networks to test various common

assumptions that are made about the nature of the traffic, in order to simplify the

traffic matrix estimation problem. In chapter 3 we give a comprehensive review of

the estimation methods proposed in the literature thus far, while chapter 4 reviews

8



Chapter 1. Introduction to Traffic Matrix Estimation

comparisons between different methods found in literature currently. In chapter 5

we propose an estimation method of our own, namely the Quick Method based on

the link count covariances. Finally, a conclusion of the Thesis is given in chapter 6.

9



Chapter 2

Common Assumptions and Their

Validity in Traffic Matrix Estimation

Various assumptions are commonly made in order to solve the traffic matrix esti-

mation problem. For statistical approaches it is integral to assume a distribution

that the unknown traffic volumes are following. Assumptions about static routing

and independence between measurements and OD pairs on the other hand are not

absolutely necessary, but are made to greatly simplify the estimation problem. The

mean-variance relationship allows the use of likelihood methods. In this chapter

we explore the validity of these assumptions by studying real traffic traces from the

Funet network, Lucent local area network and a commercial network. All the re-

sults in this chapter, with the exception of section 2.3, are based on the work we

presented in [1] and [2].

2.1 Data Sets Used in This Chapter

In this section we describe the measurement data sets used in the following sections

of this chapter. One is from the Finnish University Network, Funet, another from a

local network at Lucent [5], and the third from a commercial network.

10
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2.1.1 Funet Data

Original Data

The Funet data set consists of link counts measured in one second intervals over two

periods; First one from 3am June 29th to 2pm July 6th, and the second one from 10

am August 3rd to 12 am August 10th of 2004 local time. We denote this original

measurement data byx = (xt ; t = 1, 2, . . . , T ), wherext refers to the measured

link bit count at timet seconds. The link counts are shown in Figure 2.1 for a period

of 7 days. A strong diurnal pattern is clearly visible from the figure, as the traffic

volume is almost twice as large during the day than during night. Different days

look very much the same.
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Figure 2.1: Trace of the Funet data set aggregate traffic over one week.

Traffic Components

For each time scale∆ investigated, ranging from1 to 300 seconds, we created the

corresponding time series of link countsx∆ = (x∆
n ; n = 1, 2, . . . , T/∆) by defining

x∆
n =

1

∆

(n+1)∆∑

t=n∆+1

xt.

As the diurnal variation is much larger than stochastic variation, we separate the

traffic into components

x∆
n = m∆

n + s∆
n z∆

n ,

wherem∆
n refers to the moving sample-average,s∆

n to the moving sample-standard-

deviation. The remaining componentz∆
n is then the component of stochastic varia-

tion, the sample standardized residual. The averaging period to calculate the sample

11
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Figure 2.2: From left: sample mean, sample standard deviation and the sample-

standardized residual of the Funet trace with∆ = 300 s.

mean and standard deviation was chosen to be one hour. Thus,

m∆
n =

1

3600/∆ + 1

n+1800/∆∑

k=n−1800/∆

x∆
k

and

s∆
n =

√√√√√ 1

3600/∆ + 1

n+1800/∆∑

k=n−1800/∆

(x∆
k −m∆

k )2

The moving sample-average,m∆
n , is depicted as a function of time in left side of

Figure 2.2 for the first 7 days. The moving sample-standard-deviations∆
n is depicted

for one day period in the middle of the same Figure, while the the standardized ran-

dom fluctuationz∆
n , is shown for the same time period in the right side of Figure

2.2. We will concentrate on this component in further analysis of the traffic charac-

teristics.

Virtual OD Pairs

For the purposes of sections 2.2.3 and 2.4 the traffic was divided into OD pairs by

classifying in terms of IP addresses. We used a 22 bit network mask, meaning that

each origin subnetwork could have 10 bits for host part or about 1000 IP addresses.

This corresponds to a middle size company. As the resolution here is quite high,

there are222 or over four million origin networks. By selecting the100 largest

networks, we obtain a traffic matrix with10000 origin-destination pairs. In practice,

only 844 of these OD pairs had traffic. This is depicted visually in Figure 2.3, which

demonstrates the traffic matrix, with black boxes denoting active OD pairs.

12



Chapter 2. Common Assumptions and Their Validity in Traffic Matrix Estimation

0 20 40 60 80 100
Destination network

0

20

40

60

80

100

O
r
i
g
i
n
n
e
t
w
o
r
k

Figure 2.3: Traffic matrix. Black indicates active OD pair, white inactive.
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Figure 2.4: Typical OD-pair trace for Lucent data

2.1.2 Lucent Data

The Lucent data set contains data from two star topology local area networks, which

have12 and 5 nodes, respectively, connected to the routers with one-way links.

The measurements consist of OD pair counts over5 minute periods, implying that

∆ = 300 s for this data. In Figure 2.4 a typical example of an OD-pair trace is

shown. The trace is over five days, meaning1440 values of five minute aggregates.

In some of the OD-pairs the traffic volumes are much smaller over the first two

days indicating different traffic rates in the weekends as compared to working days.

Another obvious difference to the Funet data is the variability of the traffic. In the

Lucent network, traffic is much more variable, and also values close to zero are

common for five minute aggregated, as opposed to the Funet link, where even at

13



Chapter 2. Common Assumptions and Their Validity in Traffic Matrix Estimation

∆ = 1 s there were no measurements with zero or close to zero values. This is

due to the fact that the Funet link has much more aggregated traffic compared to the

local area traffic of Lucent.

2.1.3 Commercial ISP Data

The commercial ISP network data set includes one week of link count measure-

ments from a network of160 links and50 nodes. Each measurement is a10 minute

aggregate, so altogether there are1008 measurements from each link. The OD pair

counts are not available, and the measurement period is rather large for the pur-

pose of studying the link count behavior. However, routing tables are also available

for each measurement period, and are not the same for all of them. This gives an

opportunity to study the behavior of the routing table in a real network.

2.2 Gaussian iid Model

2.2.1 Testing the Gaussian Assumption

In this section we test whether a Gaussian assumption is valid for the data sets

used. This is a typical assumption that simplifies many modelling situations. We

concentrate on the stochastic componentz∆
n as defined in Section 2.1, and study

measurements of one second interval, as well as the five minute aggregates.

In Figure 2.5 the histograms of the Funet data are shown, comparing them against

the density function of the normal distribution. For the one second time scale the

Gaussian density function follows the data nicely. For the five minute aggregates

the curve does not follow the histogram as closely, but there is still a reasonably

good fit.

A good way to evaluate the appropriateness of the Gaussian assumption is the

Normal-quantile (N-Q) plot. The original sample vectorx is ordered from the

smallest to the largest and plotted against vectora, which is defined as

ai = Φ−1(
i

n + 1
) i = 1, . . . , n,

whereΦ is the cumulative distribution function of the normal distribution. The

values given fora are uniformly distributed between0 and1, so that the vectora

14
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Figure 2.5: Histograms of Funet data with∆ = 1 s (left) and∆ = 300 s (right)

against the normal distribution density function.
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Figure 2.6: N-Q plots comparing the Funet-data with∆ = 1 s (left) and∆ = 300 s

(right) against the normal distribution.
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contains the normal quantiles, having values from approximately−3 to 3. If the

considered data follows the normal distribution, the plot should be linear. Goodness

of fit with respect to this can be calculated by the linear correlation coefficientr,

and the valuer2 is used as a measure of the fit.

r(x, a) =

∑n
i=1(xi − x)(ai − a)√∑n
i=1(xi − x)2(ai − a)2

.

The N-Q plots shown in Figure 2.6 confirm the strong Gaussianity observed in the

histograms. Ther2-values are0.999 and0.996 for the one second measurements

and the five minutes aggregates respectively. Thus we can conclude that the normal

approximation seems to be reasonably good, or at least cannot be rejected based on

this.

In [5] the N-Q plot for the Lucent data set is given. The distribution of that data set

has heavier tails than the normal distribution and also high peaks around the mean,

which causes visible concavity for the N-Q plot. This seems to be the case for most

OD pairs in the data set. Cao et al. conclude that the fit is still sufficient for the

normal-approximation to be used.

2.2.2 Independence of Consecutive Measurements

In this section we study the autocorrelations of the data with respect to different

aggregation intervals. For the observations truly to be considered IID, there should
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Figure 2.7: Autocorrelations of Funet data. Left: one second measurement interval

(∆ = 1 s), right: one minute measurement interval (∆ = 60 s).
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Figure 2.8: Autocorrelation of Funet data with five minute aggregation measure-

ments (∆ = 300 s) and autocorrelation of a typical OD-pair from the Lucent data

on the right (bottom).

not be any significant autocorrelations in the stochastic componentz∆
n .

Figure 2.7 shows autocorrelation for the one second and60 seconds measurement

intervals for one week of the Funet data. Clearly there are positive autocorrela-

tions, indicating dependency between consecutive measurements. In the case of

one minute aggregates we notice significant positive values up to a lag of a little

over five minutes, and then a set of negative autocorrelation values after that is

clearly observable. In Figure 2.8 the autocorrelation of the five minute aggregates

of the Funet data as well as the autocorrelation of a typical Lucent data OD-pair

are shown. The autocorrelation of the Funet data obviously corresponds nicely to

the behavior of the one minute aggregates of the same data set. Comparing Lucent

and Funet five minute measurements, a noticeable result is that the autocorrelation

function of these two very different data sets seem to be surprisingly similar. In both

cases it is not until a lag of more than thirty minutes that there is not any significant

autocorrelation.

2.2.3 Independence between OD Pairs

In this section we study whether the OD pairs are independent from each other. We

concentrate on the dependency between the residual components of the OD pairs,

because obviously there would be clear correlation between OD pairs with diurnal
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Figure 2.9: Correlation between 20 greatest OD pairs in Funet data

patterns, based only on the similar daily variation. Thus, it is more interesting to

study the stochastic components to find out if there is any dependency between

them.

To evaluate the dependency between OD pairs we have calculated cross-correlation

between the residualsz∆
n,k andz∆

n,k′ of different OD pairsk andk′:

r(k, k′) =

∑n
i=1(z

∆
i,k − z̄∆

k )(z∆
i,k′ − z̄∆

k′)√∑n
i=1(z

∆
i,k − z̄∆

k )2(z∆
i,k′ − z̄∆

k′)
2
.

For this purpose the 20 largest OD pairs are selected from the traffic matrix. The cor-

relation values are depicted graphically in Figure 2.9, where the correlation terms of

an OD pair with itself, which would obviously equal1.0, are left out. The distribu-

tion of the correlation terms is shown in Figure 2.10, where the vertical lines indicate

the 95% confidence interval for the hypothesis that the correlation would be zero.

That is, only5% of coefficients should fall outside that region, if the correlation

would indeed be zero. Clearly there are a large number of statistically significant

non-zero values in our data, although only a few have correlation larger than0.1.
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Figure 2.10: Distribution of correlation coefficients, with 95% confidence interval

depicted by dotted lines.

We can conclude that strictly speaking the assumption of OD pair independence

seems to be incorrect, but the observed dependencies are not very large.

To better understand the correlation between OD pairs, we concentrate on those OD

pair couples that have the greatest correlation, either positive or negative. Table

2.1 lists 10 such pairs together with the origin and destination network for all OD

pairs considered. This demonstrates that it is not only the pairs that share a com-

mon source (or destination) network that are correlated. That could be understood

by the behavior of a source which has a bursty sending rate, so that it is sending

traffic to many destinations at the same time, and then has an idle period, making

the traffic from that node to destination nodes correlated. However, also OD pairs

that have completely different origin and destination networks can have statistically

significant correlation between them.

2.3 Static Routing

A typical simplifying assumption in traffic matrix estimation is to assume that the

routing tables remain unchanged during the period of which we take measurements

into consideration. Of course, in reality, routing in a network is unstable. Thus, in

realistic situations we cannot necessary use too long collecting periods if we wish

to use a single routing matrix for that entire time period.
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Table 2.1: Origin and destination networks of pairs of OD pairs and cross-

correlations between them
s1 d1 s2 d2 r

65 42 51 36 0.29

1 5 1 2 0.22

1 4 1 2 0.15

1 21 1 2 0.14

30 5 66 5 0.13

30 46 30 4 0.11

30 5 34 1 0.11

30 5 23 35 0.10

66 5 23 35 0.10

51 36 1 3 -0.10

2.3.1 Routing Stability in the Commercial Network

We study the routing table of the commercial network as a function of time to find

out how long the stable periods are in reality. Figure 2.11 shows a trace of total

traffic volume for a period of one week. The measurements are10 minute aggre-

gates, and include the routing matrix for each10 minute period. The vertical lines

in the figure represent a change in routing from the previous measurement period

to the next. We note that there are long periods of static routing, and then in some

occasions periods of high instability, where there are many consecutive changes in

a short time period. In fact, for the most unstable moments, there were some10

minute periods that had several routing changes within the period, which are not

depicted in the figure.

If we use for instance likelihood approach or the quick method of section 5, we can

only consider collecting measurements from a period where the traffic is stationary.

As we can clearly see from the figure, local stationarity in these cases is much more

restricting than the static routing assumption. For a busy period of a few hours, it is

likely that there will not be routing changes.
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Figure 2.11: Routing changes in the commercial network

2.3.2 Random Routing in Poisson Models

However, if routing changes do occur, there are ways of handling this. Vardi [27]

and Tebaldi [26] allow for a random Markovian routing, meaning that in each router

the routing choice is independent of the path that the packet took to get there. Con-

sider an example of Figure 2.12.

In this case we have four unidirectional links, and the OD pairsxAB,xBD,xAC ,xCD

andxAD. The first four can only use one link to reach the destination, but the last

one has a choice between two routes:A− B −D andA− C −D. Let us assume

that each path is selected equally likely. Then the routing matrix would be

A =




1 0 0 0 0.5

0 1 0 0 0.5

0 0 1 0 0.5

0 0 0 1 0.5




.

The idea is to divide the two routes into separate OD pairs, thus forming a so-called
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Figure 2.12: Example topology of random routing

super-network, for which the routing matrix is expanded into

A =




1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 1




,

where the fifth column would be OD pairxABD and the sixth column OD pair

xACD. Because of the Markovian property, the likelihoods of each path can be easily

calculated even for a more complicated network. Since we know the probabilitypi

of each route, the expected value of the corresponding OD pair is just

λACD = pACDλAD.

The Poisson model used in [26, 27] is thus structurally unchanged. After the traffic

matrix of the super-network is estimated, the original traffic matrix is obtained by

just summing the elements of OD pairs, in this case

λAD = λABD + λACD.

However, in order for the Poisson process to be valid for the new situation, the

routing has to be truly random over the measurement collecting period. The data

from the commercial network indicates that a more realistic situation would be that

the routing changes are far apart and we have long stable periods in between.
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2.3.3 Routing Changes in Maximum Likelihood Estimation

In section 3.4 we consider Maximum likelihood estimation (MLE). For the MLE the

likelihood function is a product where each term corresponds to one measurement.

Thus if we know when the routing changes occur, we can easily use different routing

matrices for different measurement times without complicating the estimation.

2.4 Mean-Variance Relationship

To make the maximum likelihood approach considered in section 3.4 solvable, a

common approach is to introduce a functional relationship between the mean and

the variance of the traffic volumes. Vardi [27] and Tebaldi [26] in essence already

did this by using the Poisson distribution, with the implicit assumption of variance

being equal to the mean. Cao et al. [5] then generalized this to the Normal distri-

bution by using a two-parameter power-law relation, where the variance is related

to the mean through exponent parameterc and scaling parameterφ. This model has

been widely adopted since.

Σ = φ · diag{λc} = φΛc, (2.1)

where we denoteΛc = diag{λc} for simplicity.

In this section we study this mean-variance relation. We make the separation be-

tween two different situations that are not to be confused with one another. First,

by temporal relationwe mean that the variance of a particular OD pair’s traffic at a

given time is related to the volume of the traffic at that time. That is, when there are

more traffic, also the variation is higher. The second situation is thespatial relation

in which we consider the relation over OD pairs. That is, it is studied whether the

variance of an OD pair is larger for the OD pairs that have larger traffic volumes.

The latter one is a key assumption in many traffic matrix estimation techniques, but

we will give an overview of the temporal relation also, to clearly separate these two

different situations.

The mean-variance relation is studied by dividing the data into non-overlapping pe-

riods and calculating the sample mean and sample variance for each of the periods.

One hour periods are used here, but using different length periods yield similar re-

sults. For the temporal relation we then consider the set of these mean-variance
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pairs for a given OD pair over time. For the spatial relation the set considered is

over all OD pairs for a given hour.

The logarithm of the mean-variance power law relation (2.1) is

log Σ = c log Λ + log φ.

Thus, in the log-log scale used in the figures, the exponentc is a linear coefficient.

If the relation holds, the points would fall on a line with slopec and interceptlog φ.

2.4.1 Temporal Relation

Regarding the temporal relation, Medina et al. [16] concluded that "for some OD

pairs the Gaussian assumption may be just fine, but for others it does not work

well." They observed that the exponentc varies from one OD pair to another within

boundsc ∈ [0.5, 4.0]. These observations were based on data collected from a Tier-

1 backbone with measurement period∆ = 1 s. Soule et al. [23] found similar results

from flow data collected from a commercial Tier-1 backbone with measurement

period∆ = 300 s. They report that the power-law constantc for individual OD

flows varies in a range from1 to 4. We found that this is true also for the Lucent

local area network, examined in [5]. For some OD pairs the fit was reasonably good,

but for others it was next to non-existent.

For the Funet data, we study the temporal mean-variance relation for the virtual OD

pairs. We have selected four typical OD pairs that are among the largest in traffic

volume but are different from each other regarding their statistical characteristics.

The mean-variance pair for a given hour comprises one point in the plots of Figure

2.13 and 2.14, which thus have24 points.

Figure 2.13 depicts the situation when the measurement interval is one second, and

Figure 2.14 when it is60 seconds. The best linear fit in the least square sense

is depicted in each of the figures. The only OD pair out of the four that shows

behavior that would indicate the existence of such relation is the one on the top

right corner of the figures, which has a goodness of fit value ofR2 = 0.92 for the

mean-variance relation, and estimated parameter value ofc = 1.9. For the other

OD pairs the fits are much worse. Changing the measurement intervals made the

fit worse even for this OD pair, withR2 = 0.76 andc = 2.9. For the other pairs

the changed measurement interval changes thec-parameter even more dramatically.

This is due to the fact that even if there is no relation, some parameter value always
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gives the best fit, and it may change significantly even due to a small change in the

data.

In general, there does not seem to be a temporal mean-variance relationship in our

data. However, this is not crucial for traffic matrix estimation. The spatial relation

considered in the following section is the one we are more interested in.

2.4.2 Spatial Relation

In Cao et al. [5] the authors consider only integer values for the spatial mean-

variance relation and conclude thatc = 2 gives reasonably good fit. Our study

[1] of the same local area network data set yielded parameter value ofc = 1.96, as

shown in Figure 2.15. Medina et al. [16] reported that the mean-variance relation-

ship seems to hold over all OD pairs with the parameterc = 1.97. Gunnar et al.

[12] also confirmed the validity of the relation (during the busy hour over all OD

pairs) and reported parameter valuesc = 1.5 and1.6 based on data traces from a

global operator’s backbones in US and Europe. Soule et al. [23] found that over

all OD pairs in a backbone network the best linear fit resulted in valuec = 1.56.
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Figure 2.13: Temporal mean-variance relation for Funet virtual OD pairs on one

second resolution.
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Figure 2.14: Temporal mean-variance relation for Funet virtual OD pairs on60

second resolution.

However, they did not find the fit sufficiently good to justify the use of the relation,

although they remain uncertain as to the effect this inaccuracy brings to the estima-

tion results. We study this below through a simulation study. Also, they express

concerns that the varying parameter values of temporal relation might hinder the

use of the spatial relation in traffic matrix estimation. While it is true that reasons

that cause the temporal relation not to hold might also cause the spatial relation to

be inaccurate, clearly this is not always the case. As we will see below, the spatial

relation holds considerably better for the Funet data set than the temporal relation,

which did not hold at all.

We study the spatial relation between the40 largest virtual OD pairs of the Funet

data set, concentrating on one-hour periods that we assume approximately locally

stationary. The average goodness of fit isR2 = 0.83 with the values ranging from

0.60 to 0.95, while the estimate for the exponent parameter vary from1.11 to 1.46,

with 1.34 being the average. For some hours the fit is reasonably good, as shown

in Figure 2.16, where one point in the plot depicts the mean and variance of one

OD pair during the given hour. For some other one-hour periods the fit is not very

good. Changing the measurement interval to60 seconds or taking more OD pairs

into consideration does not affect the situation significantly.
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Figure 2.15: Spatial mean-variance relation of the Lucent data set.
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Figure 2.16: Spatial mean-variance relation of the Funet data set, examples of good

and not so good fits. Left:R2 = 0.95, right: R2 = 0.70.

We can conclude that for our OD pairs, there is a vague spatial mean-variance re-

lation, with good fits for some one hour periods. It is to be noted however, that we

have an extremely high resolution in dividing the trace into these virtual OD pairs,

so the situation is different from the typical traffic matrix estimation situation, where

the OD pairs are larger and thus more aggregated, as in the study by Gunnar et al.

for instance. This might affect also the validity of the mean-variance relation.

Effects of Inaccuracies in the mean-variance Relation

An important aspect regarding what we can conclude about the validity of the mean-

variance relation is to study the actual effect inaccuracies cause to estimates. We

study this through a simulation, using a six node topology, with30 OD pairs. Syn-

thetic data sets were created, where the mean-variance relationship holds to different

degrees. For each goodness of fit value we performed the simulation several times

by drawing new set of synthetic Gaussian measurements of sample size100, with
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Figure 2.17: Errors in traffic matrix estimation as a function of the goodness of fit

of the mean-variance relation.

the underlying parameters staying the same. After obtaining maximum likelihood

estimates by the EM algorithm, discussed in section 3.4.4, the average error of the

estimates is then computed for each scenario.

The results of the errors as a function of the goodness of fit value for the mean-

variance relation used in the simulations can be seen in Figure 2.17. The effect of

a bad fit is not as dramatic as one might think. Even withR2 = 0.70 the errors

are less than1.5 times as large as in the ideal situation, This is due to the fact that

maximum likelihood estimates are dominated by the first order equation, and the

mean-variance relation is used only to get the second order terms to bring in the

extra information needed to make the problem identifiable.

The reasonable accuracy is all the more surprising, when remembering that the

R2-values are computed on the log-log scale. Although a0.70 goodness of fit, as

depicted in Figure 2.16, looks reasonably good on that scale, on the linear scale the

accuracy is not very good.

However, we must note that at values close to1.0 the situation is quickly deterio-

rating as the fit grows worse. In our data set the average fit wasR2 = 0.83. Around

that kind of values a change of0.05 in the goodness of fit to either direction is not

too critical, but there is a clear price to be paid in estimation accuracy for the fact

that the relation does not hold exactly.
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Review of Estimation Methods

In this chapter we take a comprehensive look on various estimation techniques pro-

posed in the literature. These can be roughly divided into a few main groups based

on the nature of the extra information brought in to make the problem solvable.

In the Bayesian methods there is an assumption about a prior distribution, which

may be obtained by previous knowledge of the traffic matrix or some other type of

estimation technique. In the Maximum likelihood methods the link covariances are

used to obtain a likelihood surface with an unambiguous maximum point. This calls

for the use of the mean-variance relationship. The gravity based methods assume

that the traffic between two nodes is proportional to the product of the total traffic

volumes of the nodes.

3.1 Introduction

Even though it is agreed that the knowledge of accurate traffic matrices is crucial,

for example, for traffic engineering, for a long time there were only a few proposals

for methods to obtain the traffic matrices from information available in a typical IP

network. While in recent years more methods have been proposed, it is interesting

to notice how strikingly few different approaches there really are. We have listed

the current methods in Table 3.1, along with the number of the section where the

method in question is explained in detail.
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Table 3.1: Taxonomy of estimation methods

Method Section Source of extra information

Simple Gravity model 3.2.1 Gravity model

Kowalski and Warfield[13]

Generalized Gravity model 3.2.2 Gravity model

Zhang et al. [30]

Choice model 3.2.3 Mlogit Gravity model

Medina et al. [16]

Constant Fanout model 3.2.4 Constant fanouts

Gunnar et al. [12]

Tomogravity 3.2.5 Gravity model

Zhang et al. [30]

Information Theoretic approach 3.2.6 Gravity model

Donoho et al. [31]

Bayesian Inference 3.3.1 Known prior distribution

Tebaldi and West[26] Poisson distribution

Iterative Bayesian Inference 3.3.2 Known prior distribution

Vaton and Gravey [28] Poisson distibution

Network tomography 3.4.2 Mean-variance relation (Poisson)

Vardi [27] Poisson distribution

Time Varying Network tomography 3.4.5 Mean-variance relation (general)

Cao et al. [5] Normal distribution

Scalable likelihood approach 3.4.6 Mean-variance relation (c = 1)

Cao et al. [6] Normal distribution

Pseudo Likelihood estimation 3.4.7 Mean-variance relation (general)

Liang and Yu [15] Normal distribution

Quick Method 5 Mean-variance relation (general)

Juva et al. [3] Normal distribution

Linear Programming 3.5.1 None (Interior point method

Goldschmidt[11], Eum et al. [10] initialization as "prior")

Worst case bounds by LP 3.5.1 None

Gunnar et al. [12]

Route Change Method 3.5.2 Ability to change link weights

Soule et al. [23] at specified moments

The key element in making an estimate in an ill-posed situation is the source of the

extra information brought in to make the problem identifiable. For each method

listed in the table, the nature of this information is given in the right column. The
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two most common approaches by far are the gravity model and its extensions like

the constant fanout hypothesis, and the mean-variance relation. The role of the extra

information is in essence to single out a solution out of the subspace defined by the

link count equations. The proposed techniques are just ways to combine the link

count measurements and the extra information to produce an estimate for the traffic

matrix.

The gravity model based methods are reviewed in section 3.2. The Bayesian meth-

ods do not specifically have to use the gravity model, but they do need a prior

distribution for the traffic matrix and gravity model is a natural candidate, unless an

outdated yet somewhat accurate version of the traffic matrix is available. We will

present them in section 3.3.

The mean-variance relation was studied in section 2.4, where we mentioned that it

is a crucial assumption for a number of estimation techniques. It is used in the max-

imum likelihood framework, to make the likelihood surface have a unambiguous

maximum point. In the quick method (section 5) we propose to use it as a basis of

a closed form solution.

In the light of the fact that some extra information is always needed in an ill-posed

situation, the attention is drawn to the LP method in the table, which does not use

any extra information, other than preselection of weights in the objective function.

The worst case bound method does not yield an estimate, only bounds for the pos-

sible values of each element in the traffic matrix, so it does not require extra infor-

mation. The LP methods of [11] and [10] on the other hand are either revolutionary

breakthroughs or just don’t work. We argue for the latter in section 3.5.1.

3.2 Gravity Model and Extensions

The gravity model is named after Newton’s law of gravitation. As in the law of

gravitation the force between two objects is proportional to the masses of the objects

and the inverse of the square of the distance between them

F ∝ m1m2

r2
,

similarly in the gravity modelling for data networks the traffic between two nodes

is assumed to be proportional to the total traffic volumes of those nodes. Gravity

models have been used in social science to model the movement of people or goods
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between two areas, as well as in telephone networks. The idea is that if we have no

knowledge of where a bit is coming or where it is going, the best guess is to make

the estimate proportional to traffic volumes sent and received by each node in the

network.

3.2.1 Basic Gravity Method

The general form of the gravitation model has a repulsion term and an attraction

term that are multiplied together and then divided by a distance function. In the

case of traffic matrix estimation it can be written in the form proposed by Kowalski

and Warfield [13] for teletraffic demands:

Xsd = ks
OsTd

dαs
sd

. (3.1)

The repulsion term isOs which is the total traffic originating from nodes. The

attraction term isTd, the total traffic terminating at noded. The numeratordsd is

a distance function between nodess and d, whereαs is the distance parameter.

Coefficientks is a normalizing constant.

Zhang et al. [30] use an approach where the normalizing coefficient and distance

function are put together to form the friction factorfsd between origin and destina-

tion,

Xsd =
OsTd

fsd

. (3.2)

However, they notice that the inference of the friction factors is an equivalent prob-

lem to the traffic matric inference, and thus ill-posed. Hence, the factors have to be

estimated using fewer parameters. The authors drop the distance function altogether

and use a constant forfsd reducing it to only normalizing coefficient for the results

given by the denominator in (3.2). The equation is then

Xsd = k · T in
s T out

d , (3.3)

whereT in/out
s is the amount of traffic entering/leaving the network through nodes

and the normalizing constant is

k =
∑

i

T out
i or k =

∑

i

T in
i ,

with both yielding identical results.

The authors find that this simplification yields surprisingly accurate results. Namely,

accurate enough for the intended initialization use.
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3.2.2 Generalized Gravity Model

Zhang et al. [30] generalize the gravity model to handle additional information,

specifically to use the knowledge that some of the egress links are peering links

to other ISPs while others are access links, to differentiate between customer and

peering traffic. Access links are denoted bya, peers byP and peering links byp.

The generalized gravity model considers link to link traffic matrices. The situation

is depicted in Figure 3.1, where the topology has two peers with several peering

links and many customers connected to the backbone by access links.

Figure 3.1: Example topology for generalized gravity model [30]

The authors assume that transit traffic between peering links is negligible. Each

peerPj has several peering linkspm, but all traffic from an access link to specific

peer will use the same peering link. The peering link for access linkai is denoted

by X(ai, Pj).

We have three separate cases, each following the gravity model.

• Outbound traffic from access link to peering link.

– If the considered linkpm = X(ai, Pj), the traffic is proportional to traf-

fic terminating at peerPj and to traffic originating from linkai.

• Inbound traffic from peering link to access link

– Proportional to traffic entering the network through peering linkpi and

to traffic exiting the network through access linkaj.

• Internal traffic between access links.
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– Proportional to traffic entering the network through peering linkai and

to internal traffic exiting the network through access linkaj, meaning

that the traffic that comes from peering links is not included.

The generalized equations are as follows

Toutbound(ai, pm) =
T in

link(ai)∑
ak∈A T in

link(ak)
T out

peer(Pj), if pm = X(ai, Pj), (3.4)

Tinbound(pi, aj) =
T out

link(aj)∑
ak∈A T out

link(ak)
T in

link(pi), (3.5)

Tinternal(ai, aj) =
T in

link(ai)∑
ak∈A T in

link(ak)
T out

internal(aj), (3.6)

whereT out
internal(aj) is the portion of total trafficT out(aj) out ofaj, that is not going

to any of the peering links.

3.2.3 Choice Model

Medina at al. [16, 18, 19] introduce the choice model for POP to POP traffic matrix

estimation, where they combine the attraction term of the destination node with the

distance function to form a fanout termαsd that determines which portion of the

traffic from a source nodes is going to each destination noded. The choice model

is thus written as

Xsd = Osαsd. (3.7)

Then, to estimate the fanouts, a Discrete Choice Model (DCM) is used. The esti-

mation problem reduces to estimating the parameters of the DCM model. This can

be understood so that each ingress POP is a decision maker that makes the choice

of which egress POP it sends a packet. While the POPs are obviously not intel-

ligent agents that would make choices themselves, it can be interpreted that way

by combining to each POP the user behavior and the choices made in the network

design.

The decision process is modelled by the utility maximization criterion. The utility

function is given as a weighted sum of different attributesm affecting the attrac-

tiveness of choice of noded to nodes.

V s
d =

∑
m

µmws
d(m) + γd,
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where thew:s are the attributes,µm is the weight given to attributem, andγ is a

scaling term. The authors propose two models. The first one is a model with a

single attributewd that is the total amount of traffic coming into the egress node.

The other one has two attributes, adding attributews, that gives the total amount

of traffic leaving the ingress node. Both of these are obtained by summing the link

counts on the links adjacent to source and destination nodes, respectively.

The authors conclude that the two attribute model

V s
d = µ1w

s
d(1) + µ2w

s
d(2) + γd (3.8)

= µ1wd(1) + µ2w
s(2) + γd (3.9)

works better in their test scenarios.

The probability of nodes choosing noded is then modelled as a multinomial logit

model

αsd = P s
d =

eV s
d

∑
k eV s

k
.

These probabilities are used to model the fanout termsαsd. Thus the traffic between

s andd is given as

Xsd = Os
eV s

d

∑
k eV s

k
. (3.10)

In Figure 3.2 the choice model is compared to gravity model in a study with syn-

thetic traffic. It is found that the choice model yields more accurate estimates. This

is expected as the model has parameters that need to be calibrated, as opposed to

gravity model which does not have free parameters.
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Figure 3.2: Prior distribution comparison with synthetic traffic. Left: Gravity prior,

right: Choice model prior. [18]
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So the problem is still to find values for the parametersµ1, µ2 andγd. This cannot

be done accurately without partial direct measurement of the traffic matrix being

available. This would require having packet traces or Netflow measurements from

a few links. The linear choice model

αsd = P s
d =

V s
d∑

k V s
k

,

where the weights are set toµ = 1 does not require calibration. The single attribute

model is now equivalent to the simple gravity model, and the two-attribute model is

an extension of the gravity model.

3.2.4 Constant Fanout Model

Gunnar et al. [12] analyze real traffic from the Global Crossing backbone network.

They find that for the European network the simple gravity model is reasonably

accurate, but for the American network it is not. In that case the gravity model

significantly underestimates the traffic of the largest OD pairs. However, they find

that the fanout factorsα remain constant over time, even while the traffic amounts

fluctuates due to a diurnal pattern. The fanoutαsd gives the percentage of traffic

that source nodes sends to destination noded of its total traffic. Thus the fanouts

sum to unity for each source node.
∑

d

αsd = 1, ∀s.

Assuming the constant fanouts they write

xt = Stα,

whereSt is a time dependent scaling term andα is the vector of fanout terms, which

sum to unity for each source node. Thus the link count equations get the form

yt = AStα
∑

d

αsd = 1 ∀s. (3.11)

With a time series of link counts, the above system will quickly become overdeter-

mined, and the optimization problem

min
∑

t

||AStα− yt||22
subject to

∑

d

αsd = 1 ∀s

will have an unique solution vectorα.
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3.2.5 Tomogravity

A major drawback of the gravity model is that it does not utilize the available link

count information. The solution usually does not satisfy the link count equation

y = Ax,

and can be thus improved upon by incorporating this into the estimate. Zhang et

al. [30] use the (generalized) gravity model to obtain a starting pointx0, and solve

the quadratic programming problem of theL2 norm of a vector, e.g., the euclidian

distance

min ||(x− xo)/w|| (3.12)

so that ||Ax− y|| = 0,

wherew is a weight vector, and the division is performed componentwise. Constant

weight vector leads to the least square solution yielding the point on the link count

condition sub-space that is closest to the prior gravity solution. Weighted least

squares lead to different solution. By giving a large weight to an OD pair means

that the estimate for this OD pair will change more in the procedure of projecting

the gravity estimate to the link count condition sub-space, while smaller weight

means that it "costs" more with regard to the objective function to move away from

the prior in the direction of that particular OD pair. The weight setting has similar

effect as the covariance of the prior in Bayesian approach. We study this further in

section 3.3.3.

Finally, it is possible that due to an inaccurate prior, the least squares method will

yield negative values. These are handled by an iterative proportional fitting algo-

rithm to ensure a non-negative solution.

3.2.6 Information Theoretic Approach

In [31] the tomogravity method is generalized using an information theoretic ap-

proach. The gravity model is based on independence between origin and destina-

tion of the traffic. In information theoretic terms this can be expressed by the mutual

informationI(S, D) between source and destination addresses, whereS andD are

random variables with have valuess andd for a specific sources and destinationd.
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The mutual information can be expressed in many different ways, but the most

useful interpretation for this problem is

I(S, D) = K(p(s, d)||p(s)p(d)),

where

K(f ||g) =
∑

i

fi log

(
fi

gi

)
,

which is the Kullback-Leibler divergence measuring the distance between distribu-

tionsf andg. So we can write

I(S, D) =
∑

s,d

p(s, d) log2

(
p(s, d)

p(s)p(d)

)
.

The authors note that a typical way of solving ill-posed linear inverse problems is

to solve the regularized minimization problem with a penalty function. In this case

min
x
||y −Ax||22 + λ2J(x), (3.13)

whereλ is a regularization parameter andJ is a penalization functional. For in-

stance the Bayesian approach of Tebaldi et al. (see section 3.3.1) can be written in

this form, by choosingJ(x) = log π(x), whereπ(x) is the prior distribution forx.

The authors use probabilistic terms in their notation of the problem. Total traffic in

the network is denoted byN , and the traffic sent from sources to destinationd is

denoted byN(s, d). Thus

N(s, d) = Np(s, d),

wherep(s, d) is the probability that a random bit in the network goes from nodes

to noded. The OD pairs are indexed byi, and the origin and destination of theith

OD pair are denoted bysi anddi. The gravity estimategi for the OD pair’s traffic

is defined as the product of all traffic originating fromsi and all traffic terminating

atdi.

gi = p(si)p(di) = N(si)N(di)/N
2,

and

fi = p(si, di) = N(si, di)/N = xi/N.

In information theoretic terms the independence between source and destination,

implied by the gravity model, is equivalent to the mutual information being zero.
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As the mutual informationI(si, di) is also always positive, it is thus an appropriate

penalty function.

J(x) = I(si, di) =
∑

i

fi log

(
fi

gi

)
=

∑

i

xi

N
log

(
xi/N

gi

)
.

Now equation 3.13 can be written as

min
x

||y −Ax||2 + λ2
∑

i: gi>0

xi

N
log

(
xi/N

gi

)
(3.14)

subject to xi ≥ 0.

That is, we want a solution that is a tradeoff between satisfying the link count rela-

tion and having an a priori plausibility, which here means that the mutual informa-

tion is small and the solution is thus close to the gravity model. The final solution

depends on the selection ofλ. The authors use valueλ = 0.01, but demonstrate that

the accuracy of the method is not very sensitive to the choice ofλ.

An equivalent formulation for the problem is

min
x

K(f ||g)

subject to ||y −Ax||2 ≤ χ2,

whereχ2 is a function of the selectedλ. Using a linear approximation for the

logarithm yields

K(f ||g) ≈ ∑
x

[
f − g√

g

]2

. (3.15)

The objective function (3.15) is of the type of theL2 norm of (3.12). This shows

that the tomogravity method with a square root weight function is an approximation

of the information theoretic method. And indeed, root square weights were found

to be most effective in tomogravity method.

3.3 Bayesian Approach

The Bayesian methods can be classified as a group of their own, although the fun-

damental difference to tomogravity, for example, is really only in the computational

techniques. In principle there is not much of a difference. Bayesian approaches

typically do not specify how to obtain the necessary prior distribution, but gravity

model would be the obvious choice, leading to a situation where the Bayesian in-

ference techniques incorportate the link count information to a gravity prior. which

is exactly the idea behind tomogravity and information theoretic methods as well.
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Figure 3.3: Starting point of Bayesian inference approach

3.3.1 Bayesian Inference

In the Bayesian approach the idea is to compute conditional probability distribution

for OD pair trafficx, given the link countsy and a prior distribution. The basic

situation is shown in Figure 3.3 where the prior distribution is depicted by the circles

corresponding to multiples of standard deviation, and the solution subspace is the

line defined by the link count information.

In [26] a Poisson-distribution is used, and

Xn ∼ Poisson(λi) (3.16)

independently for all OD pairsi. The goal is to obtain

P (x,λ|y),

the joint distribution ofX andλ conditioned on the observed link countsy.

Analytical computations are difficult in this case, and thus Markov Chain Monte

Carlo (see e.g. [35]) methods are used to obtain the posterior distribution. The basic

iteration is a standard Gibbs sampling, where a step is defined as

λi = P (λ|xi,y), (3.17)

xi+1 = P (x|λi,y). (3.18)

And then iterate until feasible solution is found.
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Since the traffic matrixx and routing matrixA can be partitioned as

x =

(
x1

x2

)
, A = (A1,A2),

so thatA1 is invertible, it follows from (1.2) that

x1 = A−1
1 (y −A2 x2). (3.19)

So it suffices to compute onlyP (x2|λi,Y ) in the iteration, after whichx1 is ob-

tained from (3.19).

It is clear that a prior forx is needed to get the iteration started. Also, since the final

solution combines the prior and the link count information, it is clear that the prior

has a big effect on the final solution. For instance, the authors note that uniform pri-

ors may lead to gross over-estimation of low rates, and vice versa, under-estimation

of higher rates. Indeed, good priors are absolutely crucial for the accuracy of this

method, and this is also a major weakness of the Bayesian approach.

3.3.2 Iterative Bayesian Method

Vaton and Gravey make use of several successive link count measurements in their

iterative Bayesian method [28] that allows for modulated process for the underly-

ing traffic matrix distribution. The method consists of iteration and exchange of

information between two "boxes" as depicted in Figure 3.4. The first box follows

the method by Tebaldi, and simulates the traffic matrix from the link counts at each

fixed time period using MCMC methods, and utilizing some prior distribution. On

the first iteration the prior is obtained by the gravity model.

The first box’s output consists of the estimated traffic matrices separately for each

time period. For example, consider a toy example of three OD pairs and five mea-

E[x|y]Estimated traffic matrices

Estimated markovian regimes

Parameters of the OD flows

ylink counts

regimes
markovian
Bank of

estimation
Traffic matrix

Figure 3.4: The Vaton-Gravey iterative method
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Table 3.2: Illustration of Iterative Bayesian table of traffic matrices
OD pair 1 x1,1 x1,2 x1,3 x1,4 x1,5

OD pair 2 x2,1 x2,2 x2,3 x2,4 x2,5

OD pair 3 x3,1 x3,2 x3,3 x3,4 x3,5

surement periods. The values are depicted in table 3.2, where inxi,t the subscripti

is the number of OD pair in question, andt refers to the time slot in question. One

column of the table, denoted byxt is thus the traffic matrix for time slott. One row

of the table is a time series of values for theith OD pair. In the first box the table is

filled column by column, one time slot at a time.

The estimated traffic matrices are then given to the second box, which instead goes

through the table row by row. The values of each row are fitted to the underlying

model and the parameters for that model are estimated using maximum likelihood

estimation. The updated estimates of the traffic matrices are then inserted back to

the first box as a new prior distribution.

The authors demonstrate a case where the traffic counts for each OD pair constitute

a Markov modulated process. In that case the second box updates the parameters

of the process using the EM algorithm. These parameters are then fed back into

the first box as a Bayesian prior, and the process is repeated, until the iteration

converges.

3.3.3 Bayesian Methods under Gaussian Distribution

The methods presented in the two preceding sections both use the Poisson distribu-

tion for the traffic matrix. However, there are several reasons to consider using the

Gaussian distribution instead.

1. Internet traffic has more variation than the Poisson assumption allows. The

Gaussian model gives more leeway in modelling that extra variation.

2. Even if the Poisson assumption would hold, Gaussian distribution is a good

approximation for the Poisson distribution.

3. For the Gaussian model we do not need to use the tedious MCMC simulation.
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Figure 3.6: Effect of prior distributions covariance matrix

further to

λ = λ0 + AT(AAT)−1(yt −Aλ0), (3.21)

which is just the shortest distance projection of the priorλ0 to the subspace where

the link count conditionyt = Aλ is satisfied. We make use of this equation in our

quick method in chapter 5.

If a covariance matrix is used, the effect is as depicted for the two-dimensional

case in Figure 3.6. The covariance matrix has exactly the same function here as the

weights had in tomogravity method of section 3.2.5. It can be understood intuitively

so that as the variance in the figure is smaller in the direction of the horizontal

axis than in the vertical direction, this means that we are more certain about the

accuracy of the prior value for the horizontal co-ordinate axes, while having a larger

uncertainty about the other variable. Thus, it is natural that the mean of the posterior

is not far from the prior in the horizontal direction.

3.4 Maximum Likelihood Estimation

The extra information in the methods studied thus far has come from the gravity

model priors. In maximum likelihood estimation (MLE) the source of the extra in-

formation is the second moment of the OD pair traffic volumes. By the use of the

mean-variance relation, this can be used to help estimate the mean of the OD pair
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traffic. This approach requires that we have several consecutive link count measure-

ments available, and that these are independently and identically distributed.

The size of the problem in traffic matrix estimation is typically quite large. Thus, nu-

merical methods have to be used to find the likelihood estimate. The EM algorithm

[33] is usually used, and we review its use in this context in section 3.4.4. However,

the shape of the likelihood surface makes even the EM algorithm extremely slow to

converge. Therefore, specific methods to make the MLE approach scalable to larger

networks have been proposed. These are reviewed in sections 3.4.6 and 3.4.7.

Since the second moment plays such an integral part in MLE, we first introduce the

second moment equation in section 3.4.1 and then move on to the methods.

3.4.1 Second Moment Equation

Again we have only the link count measurements available. Denote the covariance

matrix of the link counts byΣ(y), andS(y) is a 1
2
m(m+1)-vector containing diago-

nal and upper triangle elements of the sample covariance matrix of the link counts.

The covariance matrix of the OD pair counts, assumed to be a diagonal matrix, is

similarly denoted in vector form byS(x). The diagonality of the matrix means that

the OD pairs are assumed to be independent. We studied this in section 2.2.3 and

found this assumption not completely accurate, yet reasonably good.

The second moment equation is

S(y) = BS(x), (3.22)

whereB is a matrix containing the componentwise products of the rows of the

routing matrixA.

A row of B is labelled by a compound index(ij), wherei = 1, . . . , m; j =

i, . . . , m, meaning that the index runs through1
2
m(m + 1) values,

B(ij),k = Ai,kAj,k i = 1, . . . , m; j = i, . . . , m; k = 1, . . . , n
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In vector form this can be written as

B =




A1 ? A1

A1 ? A2
...

A1 ? Am

A2 ? A2

A2 ? A3
...

Am ? Am




,

whereAi denotes theith row ofA, and the componentwise product is denoted with

the star (?). Note that a componentwise product of a row with itself is just that row.

The rows ofB indicate the elements ofx contributing to covariance between links

i andj.

Apply this to our example network from chapter 1, recalling that the routing matrix

in that case was

A =


 1 0 1

0 1 1


 .

The number of rows inA is m = 2, thus there are

1

2
m(m + 1) =

1

2
· 2 · 3 = 3

rows in the matrixB, which is

B =




A1 ? A1

A1 ? A2

A2 ? A2


 =




1 0 1

0 0 1

0 1 1


 .

The first row indicates the OD pairs using link1, thus contributing to the variance

of the link. Analogously, the third row indicates the OD pairs contributing to the

variance of the second link. The second row of the matrix indicates OD pairs using

both links1 and2, contributing to the covariance between those links.

3.4.2 Network Tomography

The work by Vardi in [27] is one of the first papers on traffic matrix estimation

in computer networks. Vardi was the first to propose a method using the second

moments to serve as the additional information to make the system identifiable, and
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coined the term network tomography, because of the similarities in the problem to

medical tomography.

A Poisson distribution is assumed, meaning that variance is equal to the mean

S(x) = λ.

This allows the sample covariance matrix of the link counts to be used to estimate

the traffic matrix. Basically, the method uses the mean-variance relation (2.1) with

parametersφ = 1, c = 1, according to the Poisson assumption.

Recall that the traffic matrix and the sample mean of the link counts are connected

through the first moment equation (1.4)

y = Aλ.

The second moment equation is now

S(y) = Bλ.

These can be now combined, and the whole system becomes
(

y

εS(y)

)
=

(
A

εB

)
λ. (3.23)

Coefficientε ∈ (0, 1] defines how much weight is given to the second moment

estimate in the final solution, withε = 1 implying a strong faith in the Poisson

assumption, while the smallerε gets the more is the estimate based on the first

moments.

This is a linear inverse positive, or LININPOS, problem and can be solved by nu-

merical likelihood methods, such as the EM algorithm. The solution obtained this

way minimizes the Kullback-Leibler distance between the observed moments and

theoretical values.

Vardi’s method does not give very accurate estimates, as was discovered by Gunnar

et al. [12]. This is due to the fact that the Poisson assumption is not accurate in

current IP networks. Thus, the general mean-variance relation and Gaussian dis-

tribution have to be used. In the next section the likelihood function under these

assumptions is introduced.
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3.4.3 Likelihood Function

In order to employ the likelihood approach, an assumption about the underlying

distribution has to be made. For instance, we may assume that OD-pair traffic

follows Gaussian distribution. If the distribution of the traffic matrix is

X ∼ N(λ,Σ) (3.24)

it follows from (1.4) that the distribution of the link counts is

Y ∼ N(Aλ, AΣAT) (3.25)

The likelihood function for theλ, conditioned onτ measurements ofy, is now

L(λ,Σ|y1, . . . , yτ ) =
1

|AΣAT| τ2 e
− 1

2

∑τ

t=1(yt−Aλ)
T
(
AΣAT

)−1

(yt−Aλ)

(3.26)

A computationally more convenient log-likelihood is

l(λ,Σ|y1, . . . , yτ ) =

−τ

2
log|AΣAT| − 1

2

τ∑

t=1

(yt −Aλ)T(AΣAT)−1(yt −Aλ). (3.27)

The log-likelihood surface is depicted in Figure 3.7. The variables here are OD pairs

1 and3 from the two link toy topology from Figure 1.1 of chapter 1. In the figure

we have scaled the variables so that for each OD pair the true value is denoted by

10. As we can see from the topology, the OD pairs in question share a link. Thus,

the likelihood surface has a constant value ridge going diagonally through it from

point (0, 20) to point(20, 0). That is to say, ifλ1 is increased andλ3 decreased by

the same value, the likelihood remains the same. Indeed, the ridge is exactly the line

shown in Figure 1.2, which is the subspace satisfying the link count constraints. The

existence of this constant value ridge follows directly from the fact that the system

is not identifiable without some extra information.

In previous sections we have seen methods that start with a prior and then either

project it to a point on the top of the ridge, or find some kind of compromise between

the prior estimate and the ridge. In maximum likelihood estimation, we cannot have

an ambiguous maximum for the likelihood surface. Thus, a relation between mean

and variance is needed to alter the surface so that it has an unambiguous maximum

point, making it possible to obtain accurate results. Imposing the mean-variance

relation 2.1, the distribution becomes

Y ∼ N(Aλ, φAΛcAT) (3.28)
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Figure 3.7: Likelihood surface without mean-variance relation

The log-likelihood function of the parameters(λ, φ, c) conditioned onτ measure-

ments ofy is

l(λ, φ, c|y1, . . . , yτ ) =

−τ

2
log|φAΛcAT| − 1

2

τ∑

t=1

(yt −Aλ)T(φAΛcAT)−1(yt −Aλ). (3.29)

The new likelihood surface is depicted in Figure 3.8. Most notable change is that

the cases where both variables would have small values are now extremely unlikely.

The important thing is, however, that the ridge is no longer of constant height.

Although there is still a clear ridge-like behavior, the mean-variance relation has

changed the surface so that there is an unambiguous maximum point. This can

be best seen from Figure 3.9, where only the values from this diagonal ridge are

depicted. On the left side, the situation without mean-variance relation shows that

the ridge is constant from corner to corner. On the right side, on the other hand, we

have the new situation, where a maximum point is clearly observable.

Usually the size of the problem in traffic matrix estimation is so large, that numer-

ical algorithms have to be used to find the maximum likelihood estimate. Most

commonly the EM algorithm [33], which we present in the next section, is used.
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Figure 3.8: Likelihood surface with mean-variance relation

3.4.4 Expectation Maximization Algorithm

The Expectation Maximization (EM) [33] algorithm is a numerical method to solve

maximum likelihood problems. In this section we give an overview of the use of the

EM algorithm in traffic matrix estimation. See also [29] for a review on the subject.

We follow the formulations of Cao et al. [5], where the exponent parameterc of the

mean-variance power law is assumed to be constant. Thus, the parameters of the

model are

θ = (φ, λ).

Now the problem can be solved numerically.

Formulation of the EM Algorithm

The EM algorithm is typically used in problems with missing data, and is thus

applicable to the traffic matrix estimation problem, where the full datax is not

observed, but a smaller set of linear combinations ofx in the form of link count

measurementsy. A parametric distribution needs to be assumed for the missing

data, for example Poisson or Gaussian distribution, and the problem is then to es-

timate the parameters based on the observed data only. If the missing data were
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Figure 3.9: The constant value ridge disappears when the the mean-variance relation

is imposed.

known, we could use the conventional likelihood estimation. That likelihood func-

tion is called the complete data likelihood in this framework. For our problem, the

complete data log-likelihood is

l(θ|X) = −τ

2
log |Σ| − 1

2

τ∑

t=1

(xt − λ)TΣ−1(xt − λ). (3.30)

But since thex is missing, it is not possible to estimateθ from this. The way

this is handled in EM is by introducing an intermediate functionQ, called the EM-

equation. It gives the expected value of equation (3.30), giveny and a previous

value for the parametersθ.

Q(θ, θ(k)) = E[l(θ|X)|Y , θ(k)],

whereθ is a variable andθ(k) the prior value for it. The parameters are updated

iteratively, using theQ-function. With each iteration round defined as

θ(k+1) = arg max
θ

Q(θ, θ(k)).

The iteration has two steps. The E-step computesQ function, that is, the distribution

of x given y andθ(k). The second step is the M-step, where theQ function is

maximized, and the parameter value yielding the maximum is the value forθ(k+1).

In the traffic matrix estimation case, TheQ function is

Q(θ,θ(k)) = E[−τ

2
log |Σ| − 1

2

τ∑

t=1

(xt − λ)TΣ−1(xt − λ)|Y ,θ(k)]

Since

E[(x− λ)TΣ−1(x− λ)] = E[Tr{Σ−1(x− λ)(x− λ)T}]
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= Tr{Σ−1E[(x− λ)(x− λ)T]}
= Tr{Σ−1E[((x−m) + (m− λ))((x−m) + (m− λ))T]}
= Tr{Σ−1(R + (m− λ)(m− λ)T)}
= Tr{Σ−1R}+ (m− λ)TΣ−1(m− λ)

we can write theQ-function in the form

Q(θ, θ(k)) = −τ

2
(log |Σ|+ Tr(Σ−1R(k)))− 1

2

τ∑

t=1

(m
(k)
t − λ)TΣ−1(m

(k)
t − λ),

(3.31)

where

m
(k)
t = E[xt|yt,θ

(k)]

= λ(k) + Σ(k)AT(AΣ(k)AT)−1(yt −Aλ(k)), (3.32)

R(k) = Var[xt|yt,θ
(k)]

= Σ(k) −Σ(k)AT(AΣ(k)AT)−1AΣ(k). (3.33)

The derivation of these equations is given in appendix A.

For updating theθ the one-step Newton-Raphson algorithm is used

θ(k+1) = θ(k) − [Ḟ (θ)]−1f(θ(k)), (3.34)

wheref = ∂Q/∂θ andḞ is the Jacobian off with respect toθ.

Convergence of EM

In one iteration of the EM, the algorithm yields a new estimate for the parameter

vector based on the current estimate. That is, the value is updated

θ(k) → θ(k+1).

We can write this as an implicit mapping from the parameter space to itself, where

one iteration step is defined by

θ(k+1) = M(θ(k)).

If the algorithm converges to the maximum likelihood estimateθ∗ it must satisfy

θ∗ = M(θ∗).
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The matrixJ is defined as the Jacobian matrix ofM(θ). Its element(i, j) is thus

Jij(θ) =
∂Mi(θ)

∂θj

.

This is called the matrix rate of convergence of the algorithm. We can approximate

the elements of the matrix by

Jij(θ) = lim
ε→0

Mi(θ + εj)−Mi(θ − εj)

2ε
.

The largest eigenvalueλ of the matrixJ(θ∗) is the global rate of convergencer.

The global speed of convergences is one minus the rate of convergence, and is

intuitively more appealing quantity, since a value close to zero indicates that the

convergence is low, while a value close to1 would indicate fast convergence.

For example, in the case of the six node topology of Figure 5.2 that we use for

simulations in chapter 5, the global speed of convergence obtained as

s = 1− r = 0.00148. (3.35)

This is an exceptionally low speed of convergence for the EM algorithm. In many

typical problems the value ofs is between0.1 and0.5. The reason for the slow

covergence is the hugely underdetermined nature of the problem, and the ridge like

behavior of the likelihood surfaces. In our example it took up to1000 iterations

to achieve convergences, while in many other problems of missing information ten

iterations is sufficient.

A Fast EM algorithm

In their Technical report [18] Medina et al. propose a faster variant of the EM al-

gorithm for traffic matrix estimation. They use additional linear constraints to add

the rank of the routing matrix and then transform it to reduced echelon form. The

key change is to abandon the Newton-Raphson approach of equation (3.34) in the

M-step. Instead they transform the problem to solving a nonlinear equation by nu-

merical methods by assigning

θ(k+1) = arg max
θ

Q(θ, θ(k)). (3.36)

This solution is obtained by solving a set of nonlinear equations using a procedure

based on least square estimates that uses a trust region method and an interior-

reflective Newton method. According to the authors this approach speeds the EM

algorithm a good deal.
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3.4.5 Time Varying Network Tomography

Using the maximum likelihood framework presented in the previous section, Cao et

al. [5] formulate a time varying method for network tomography. They take a short

window of measurements and use the EM algorithm to find the maximum likelihood

estimate of the traffic matrixλ for that time slot. As the convergence of the EM

algorithm is very slow, the authors propose to switch to a second order method

based on quadratic approximation of the likelihood surface, when the change in

EM iteration gets small.

The window is chosen small enough so that local stationary is a reasonable as-

sumption, and the measurement sample is treated as independently and identically

distributed random variables. Window size of11 is used, but5 and21 are reported

to yield similar results. Thus, for timet

yt−h, . . . , yt+h ∼ iid N(Aλt, AφΛc
tA

T),

whereh is the half-width of the window, in this caseh = 5. The window is moved

one time slot at a time, so that consecutive windows overlap in all but one measure-

ment, which causes the estimated to be implicitly smoothed.

Once a time series of estimates ofλt andφt are obtained, additional smoothing is

performed on those values. Denoting

ηt = (log(λt), log(φt))

the variableη is modelled as a random walk

ηt = ηt−1 + vt vt ∼ N(0,V ),

whereV is a variance matrix to be fixed beforehand, determining how much infor-

mation carries over from preceding observations to the next. LettingỸ t denote the

observation up to timet, a likelihood function is formulated forηt as

p(ηt|Ỹ t) ∼ p(ηt|Ỹ t−1)p(Y t|ηt). (3.37)

The first term on the right hand side of equation (3.37) is approximated by first

approximatingp(ηt|Ỹ t−1) by a normal distribution

p(ηt−1|Ỹ t−1) ∼ N(η̂t−1, Σ̂t−1),

where the posterior mode is used for mean, and the inverse curvature of the log

posterior is used for the covariance matrix. Then

π(ηt) = p(ηt|Ỹ t−1) ∼ N(η̂t−1, Σ̂t−1 + V ).
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Now the log-likelihood equivalent of equation (3.37) becomes

g(ηt) = log π(ηt) + log p(Y t|ηt).

The modeη̂t = argmax g(ηt) can now be found using numerical methods. Then

let

Σ̂t = g̈(η̂t)
−1

and move to the next time slott+1, and iterate until the whole time-series has been

gone through, and a final estimate is obtained forλt for eacht.

The problem with the time-varying network tomography is that it is rather time

consuming. The authors conclude that it does not readily scale for realistic size

networks. The problem has to be divided into smaller subproblems in order to

handle larger networks.

3.4.6 Scalable Likelihood Approach

In [6] Cao et al. present a way to modify their method in [5] in order to use it for

realistic size networks. They call the new method a divide-and-conquer approach,

as the idea is to form several smaller subproblems and solve them separately.

All OD pairs are divided into disjoint setsSi. For each setSi some subsetL of the

links is chosen to estimate the OD pairs involved. The OD pairs that do not belong

to the subsetSi, but are still using some of the selected links need to be involved

in the estimation, but they can be aggregated together as much as possible. All the

OD pairs using only a given linkj ∈ L can be all grouped together, for instance, as

they are similar as far as this subproblem is concerned.

The most simple example of this approach is to formulate a separate subproblem

for each OD pair. The simplest link set for this subset of one OD pair is just the first

and last link in the path of that OD pair. As for the other OD pairs, all OD pairs

using the first link are grouped together, all OD pairs using the last link are grouped

together, and the rest are irrelevant for this subproblem. Now the familiar link count

relationy = Ax for this subproblem can be formulated as

(
y[s]

y[d]

)
=

(
1 1 0

1 0 1

)



x[sd]

x[sd]

x[sd]



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wheres is the source node andd the destination node of the OD pair in question,

while s/d represents any other source/destination node.

The way to form subproblems larger than one OD pair is to select, for instance, set

of nodes that are located near each other, or select OD pairs that are close to one

another according to some distance parameter. Examples of distances used are

d(i, j) = number of links used byi or j but not both,

which groups together OD pairs that a share a lot of links. A more complex distance

criterion is

d(i, j) = 1− |Iij|√
IiiIjj

,

where

Iij(λ) = 〈∂i, ∂j〉,
and∂i is a information theoretic variable, namely the information direction corre-

sponding toλi. That is to say, changing the distribution in this direction would

changeλi the most of any direction. The disadvantages of this model are that the

computation cost is larger than with the simpler approach. Also it depends onλ

which is unknown.

Link selection for larger subproblem is carried out by first selecting the first and

last link of each OD pair in the subset. Then, intermediate links and also the re-

versal of these links are added for each OD pair. At each intermediate node in the

subnetwork, the incoming links not inL are grouped together by forming a vir-

tual superlink. Finally the OD pairs using exactly the same links from linksetL

are grouped together. The approach of [5], presented in section 3.4.5, can then be

applied to each subproblem, yielding the estimates for traffic matrix elements.

The authors note that this scalable method works only when exponent valuec = 1

is used in the mean-variance relation. This might be a big problem, since in many

casesc = 1 is not a realistic parameter value.

3.4.7 Pseudo Likelihood Estimation

The Pseudo likelihood approach [15] is another scalable method for likelihood esti-

mation. The idea is to use a slightly modified EM algorithm. The problem is divided

into subproblems with each covering one OD-pair, as in the simple case example
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in the previous section. For each subproblem we denote the observed link counts

on the subset of links used byys, the unknown actual traffic counts of OD pairs in-

volved byxs and the sub-routing matrix comprised of the two rows corresponding

to the two links byAs, while λs andΣs are the mean and covariance matrix of the

traffic matrix respectively.

Since we have only two links per subproblem, the termAsΣsA
sT is only of di-

mension2 × 2. Thus, there is no need to invert a large matrix, which makes the

computations much faster. The complete data log likelihood of a subproblems is

ls(θ; Xs) = −τ

2
log |Σs| − 1

2

τ∑

t=1

(xs
t − λs)TΣ−1

s (xs
t − λs).

In section 3.4.4 the Q-function for the EM algorithm was given in equation (3.31)

as

Q(θ, θ(k)) = −τ

2
(log |Σ|+ Tr(Σ−1R(k)))− 1

2

τ∑

t=1

(m
(k)
t − λ)TΣ−1(m

(k)
t − λ),

For the problem divided into subproblems it is

Q(θ,θ(k)) ∝ ∑

s∈S

(
− τ(log |Σs|+ Tr(Σ−1

s Rs(k)))

+
τ∑

t=1

(m
s(k)
t − λs)TΣ−1

s (m
s(k)
t − λs)

)
,

wherems andRs are as given in section 3.4.4, only with the variables changed to

corresponding subproblem variables.

The solution of this calls for the use of Multiple-step Gradient EM algorithm. The

computational complexity of each EM step is nowO(n3.5) compared to the full

likelihood method’sO(n5). The authors report that for a small network studied the

error in estimation accuracy increases only from8% to 9% when switching from

the full likelihood to the pseudo likelihood method.

3.5 Other Methods

This section reviews methods that use ways other than gravity modelling or second

moment estimates to obtain the extra information for the problem. Linear pro-

gramming methods try to substitute the extra information by a convenient choice of
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objective function, but we will argue in the next section that this approach does not

work. The route change method increases the accuracy of a simple euclidian norm

by changing the routing so that at different times different OD pairs are isolated so

that they are observable, or at least more accurately estimated.

3.5.1 Linear Programming

Some efforts have been made to apply linear programming methods to traffic ma-

trix estimation. The problem in this approach is the selection of a suitable object

function.

Vaton et al. [29] note that a classical method to solve underdetermined linear sys-

tems is to minimize the euclidian norm

min ||x||2
with y = Ax,

which has the solution

x̂ = A∗y,

whereA∗ is the pseudo inverse ofA. They conclude that this is not a realistic

approach for the traffic matrix estimation problem, as it finds the solution on the

y = Ax subspace, that has the OD pairs as close to same size with each other as

possible, which is not a realistic criterion.

Goldschmidt [11] formulates the problem with a weighted sum objective function

max
x

∑

i

wixi (3.38)

subject to
∑

i

Alixi ≤ yl l = 1, . . . , J (3.39)

∑

l=(i,j)

ylAlk −
∑

l=(j,i)

ylAlk =





xk if j = source ofk

−xk if i = destination ofk

0 otherwise

(3.40)

where (3.39) are the link count constraints and (3.40) are the flow conservation

constraints. As we are trying to maximize (3.38), the method obviously tends to

give as much bandwidth as possible to the OD pairs that are most beneficial to the

objective function based on their weight function value and links used. Goldschmidt

concludes that constant weights such as

wi = 1 ∀i
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do not work, but suggests that weights which are determined by the length of the

path of each OD pair work quite well.

Consider again the two link example of Figure 1.1. The link counts in our example

in chapter 1 werey1 = 10, y2 = 9. We showed that the region of feasible solutions

is defined by

x1 = 10− a,

x2 = 9− a,

x3 = a a ∈ [0, 9].

The function to be maximized is thus

∑

i

wixi = w1x1 + w2x2 + w3x3

= w1(10− a) + w2(9− a) + w3a

= 10w1 + 9w2 − (w1 + w2 − w3)a.

Selecting constant weightswi = 1 yields

∑

i

wixi = 19− a.

Since the only limitation is on link capacity, and adding tox3 consumes the capacity

of two links while contributing only to one OD pair, it is obvious that the maximum

is obtained by choosinga = 0, which very likely is not the answer we are seeking.

In an attempt to overcome this problem, Goldschmidt proposed weights equalling

the path length for each OD pair. The problem of trafficx3 adding to the load of

two links is countered by giving it twice the weight in the objective function. This

yields

∑

i

wixi = 10 ∗ 1 + 9 ∗ 1− (1 + 1− 2)a

= 19.

Now the answer does not depend ona at all! As long as we are on the feasi-

ble subspace defined by the link count constraints, the result is the same. So any

point on the planey = Ax gives the same value, as the whole feasible region is

pareto-optimal. So while the real answer does yield the maximum value for the

objective function with these weights, so would any other feasible answer. We have

not gained any new knowledge about the situation by formulating it as a LP prob-

lem. By changing the weight from this equilibrium would instantly make some OD
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Figure 3.10: Examples of worst case bounds for Global Crossing’s European (left)

and North American (right) networks [12].

pairs more attractive to the objective function, and a maximum point would arise,

but this would not be the answer we wish to find.

Medina et al. find in their study [16] that the method assigns zero values to many of

the OD pairs. In [10] Eum at al. contribute the poor performance of Medina’s study

to their use of the simplex algorithm and demonstrate that the Interior point method

yields accurate results. We can understand this by the fact that the whole feasible

subspace, as mentioned above, is a pareto-optimal region. Thus, Simplex finds

an extreme point from the boundary of the pareto-optimal region, while interior

point method finds a random solution on they = Ax subspace, depending on the

initialization of the algorithm. However, as no extra information is brought in, there

is no reason why this would be a better solution than any other random point in the

middle of the feasible region.

A reasonable use for LP is given in [12], where the authors formulate worst case

bounds for OD counts. That is, they use linear programming to find bounds for

possible values of OD counts. The optimization problem is formulated as

max(min) xi

subject to y = Ax

x ≥ 0.

Obvious bounds are zero for lower bound and the lowest link count on the OD pair’s
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path for upper bound, but in many cases it is possible to find tighter bounds for some

OD pairs. The authors give examples from Global Crossing’s European and North

American backbone networks, shown in Figure 3.10, where the bounds for some

OD pairs are surprisingly close to each other.

This method, however, is quite heavy computationally, as two LP problems need to

be solved for each OD pair.

It is also possible to obtain a prior distribution from the worst case bounds by tak-

ing the average of lower bound and upper bound. This is shown in [12] to yield

surprisingly adequate estimates.

3.5.2 Route Change Method

In [23], Soule et al. propose a method that achieves accurate results by changing

routing. The idea is that in different routing scenarios different OD pairs are easier

to estimate, as the links they use might be less heavily populated by other flows in

some routing schemes than others. Each routing scheme is used for a period ofN

measurements, and a total ofK different routings are used.L denotes the number

on links andP the number of OD pairs.

The traffic is modelled as

x(k, n) = λ + w(k, n)

wherek refers to the routing, andn is a time index within that routing scheme. The

link count equation is now

y(k, n) = A(k)x(k, n) ∀k, ∀n. (3.41)

As we have stated earlier, the problem is heavily underconstrained, and it is not

possible to infer forx from the above equation. This is where the routing changes

come in. The following matrices are defined to capture the situation of different

routing matrices.

Y =




y(0, 0)
...

y(0, N − 1)

y(1, 0)
...

y(K − 1, N − 1)




W =




w(0, 0)
...

w(0, N − 1)

w(1, 0)
...

w(K − 1, N − 1)




,
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whereY is anLKN -vector capturing the link counts of each measurement pe-

riod andW is aPKN -vector of the traffic fluctuations. The traffic matrices are

collected inA as

A =




A(0)
...

A(0)

A(1)
...

A(K − 1)




,

which contains the routing matrices for each measurement period. Thus, there are

N copies of each routing matrixA(k). The dimensions ofA(k) areL×P , soA is

anLNK × P matrix. And finally

C =




A(0) 0 . . . 0

0 A(0) . . . 0
...

...
. . .

...

0 0 . . . A(K − 1)




is anLNK × PNK matrix.

Now (3.41) can be put into matrix notation

Y = Aλ + CW . (3.42)

Let R denote the covariance matrix ofW and define

R =




R(0) R(1) . . . R(T − 1)

R(1) R(0) . . . R(T − 2)
...

...
. ..

...

R(T − 1) R(T − 2) . . . R(0)




,

where

R(t) = [rp(t)] = diag(E[Wp(τ)Wp(τ + t)]).

As long as we assume that the covariance matrix is a diagonal matrix, meaning the

OD pairs are uncorrelated, we can solveR(t) based only on link count covariance

matrix. We show this in detail in section 5.2, as it is a key part of our quick method

also. For now, it suffices to assume thatR is known.

The minimum mean square error estimate forλ is now

λ̂ =
(
AT (CRCT )−1A

)−1
AT (CRCT )−1CW . (3.43)
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This reduced to the pseudo-inverse solution whenR is the identity matrix. The

fact thatR is known and that we have several different routings involved makes

the method work. The extra information that is always needed in underconstrained

problems comes from the additional routing scenarios.

For the test topology in [23]24 route changes were needed, to identify all OD pairs.

Thus, it is obvious that the whole measuring period is so long that local stationarity

will not hold. Therefore the diurnal variation has to be taken into account in the

model. So insted of

x(t) = λ + w(t),

the traffic has to modelled as

x(t) = λ(t) + w(t),

whereλ(t) is cyclo-stationary, with a24 hour period. This is done through the use

of Fourier expansion

λ(t) =
2Nb∑

h=1

θhbh(t),

where for eachh, θh is a vector of coefficients andbh is a scalar basis function

that is periodic with the same period as the traffic meanλ. x(t) is represented as a

weighted sum of2Nb + 1 basis functions. Vectorθ comprises of all the vectorsθh,

and the routing matrix is now written

A =




A′(0)

A′(1)
...

A′(T − 1)




,

where

A′(t) = ( A(k)b0(t) A(k)b1(t) . . . A(k)b2Nb
(t) ) .

So instead of (3.42) the system is now written

Y = Aθ + CW . (3.44)

This is essentially the same method, but takes into account the diurnal pattern and

estimatedθ, and henceλ.

To reduce this quite large number of changes, the authors propose to pick out only

the OD pairs with largest variance, trusting the mean-variance relation to the point

that these are more or less also the OD pairs with largest means. If only the top30%
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of OD pairs, contributing95% of traffic, are estimated, the number of route changes

needed is reduced to five.

The problem of designing the weight changes to optimally generate the different

routings is tackled by the authors in [20].

3.6 Future Directions

Finally, we take a brief look into a new direction on the field of traffic matrix estima-

tion. Two of the three methods reviewed in this section are proposed in [24], where

the authors coin the term third generation methods to describe them. The common

denominator for all these methods is that they need24 hours worth of direct mea-

surements for calibration every now and then. So Netflow, or equivalent measuring,

has to be available network-wide whenever needed. The classical Traffic matrix

estimation framework rests on the assumption that this is not the case. Even if all

routers would support Netflow, the overhead of measuring and transportation costs

might be high. On the other hand, it is obvious that adding direct measurements

improves vastly the accuracy of the estimates.

3.6.1 Fanout Method

The fanout method [21] does not use the routing matrix, but relies on measurements

alone to obtain the traffic matrix. Letf(i, j, t) denote the fraction of traffic entering

nodei at timet that is terminating at nodej.

f(i, j, t) =
x(i, j, t)∑
j x(i, j, t)

.

Nodei has then abaseline fanout

f(i, ∗, t) = {f(i, j, t) ∀j}.

The fanouts for each node are defined from the calibration measurements. As was

discussed in section 3.2.4 and found also in [21], the fanouts are surprisingly stable.

Thus the calibrated fanouts at timet can be used to estimate the fanouts at the same

time of day in subsequent days. The estimate for the traffic matrix is obtained from

x̂(i, j, t) = f̂(i, j, t)x(i, ∗, t),
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wheref̂ is the estimated fanout andx(i, ∗, t) is the total traffic incoming in nodei,

which can be obtained from SNMP measurements.

As the fanout do not remain constant forever, each node checks the validity of

current fanouts by doing direct measurements for a10 minute period only. If the

fanouts for this time slot have changed more than a preselected acceptable thresh-

old, then a new calibration is performed.

3.6.2 Principal Components Method

In [14] it was found using principal component analysis (PCA) that when consider-

ing long time scales the OD flows can be captured by a lower dimensional represen-

tation of eigenflows. In fact, so much lower, that the number of required components

is lower than the number of links. Therefore, while the traffic matrix inference is

ill-posed problem, the aforementioned components can be estimated from the link

counts, and thus the traffic matrix can be estimated as well [24].

Let X denote the time series of all OD pairs, so that its dimensions areτ×n. Using

PCA this can be decomposed as

X = USV T,

whereU is a τ × n matrix comprised of the eigenflow time series,V is n × n

with principal components as its columns, andS is ann×n diagonal matrix where

elementS(i, i) is a measure of energy captured by the principal componentsi. Cal-

ibration measurements are needed to formulate this presentation. Then it is possible

to pick out thek most important components, and the traffic matrix is approximated

by

xt ≈ V ′S′u′t t = 1, . . . , τ, (3.45)

whereV ′ is an×k matrix that includes the top principal components,S′ is the cor-

responding diagonal matrix andut comprises of thek most significant eigenflows.

Now the familiar link count equation has the form

yt = AV ′S′u′t,

which is well-posed, and we can solve forut by taking the pseudo-inverse of

AV ′S′. Then insertinĝut in (3.45) yields the estimate for the traffic matrix.
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A re-calibration is performed when the theoretical link countsAxt calculated from

the estimates differ from the observed link countsyt more than a pre-selected ac-

ceptable threshold.

3.6.3 Kalman Filtering

In the Kalman Filtering method [24, 25] the traffic evolution is modelled according

to the linear system

xt+1 = Cxt + wT ,

whereC is a state transition matrix capturing the deterministic components of the

traffic process, whilew is a noise term. The diagonal terms of the transition ma-

trix capture the temporal evolution of an OD pair, while the non-diagonal elements

correspond to cross-correlation between OD pairs, should any exist. The link count

equation is written here in the form

yt = Axt + mt,

wheremt is measurement noise.

Letting x̂t|t−1 be the prediction ofxt at timet based on information up to timet−1,

andx̂t|t is the estimation ofxt at timet that adds the most recent measurement to

the prediction. The task is to determinex̂t+1|t+1. The prediction step is

x̂t+1|t = Cx̂t|t, (3.46)

P t+1|t = CP t|tC
T + Q, (3.47)

whereP is the covariance matrix of errors andQ is the covariance matrix of the

noise termW .

The estimation step uses the prediction as well as the measurementY t+1 to update

the state and variance:

x̂t+1|t+1 = x̂t+1|t + Gt+1

[
yt+1 −Ax̂t+1|t

]
, (3.48)

P t+1|t+1 = (I −Gt+1A) P t+1|t (I −Gt+1A)T + Gt+1RGt+1, (3.49)

whereR is the covariance matrix of measurement noiseM , I is the identity ma-

trix, andG is theKalman gain matrix. Now equations (3.46) - (3.49) define the

algorithm to obtain the linear minimum variance estimator, the Kalman filter, for

the traffic matrix.
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Figure 3.11: Error as a function of measurement overhead. Left: spatial errors,

right: temporal errors [24].

Calibration measurements are needed to obtainC,Q andR as well as initial values

x̂0|0 andP 0|0. Re-calibration is performed as in the PCA method, when the theo-

retical link counts based on the estimates deviate too much from the observed link

counts.

3.6.4 Tradeoff between Error and Overhead

The more measurements are made, the more accurate the estimates are. If direct

measurements are made constantly, the error is zero but the overhead is very large.

The classical traffic matrix estimation methods on the other hand, have zero over-

head, but larger errors. The third generation methods each make a tradeoff between

these two cases. In Figure 3.11 the error of the various methods is presented as a

function of the measurement overhead. The scatter plot of a single method corre-

sponds to different values of the re-calibration thresholds. The Tomogravity method

is used to represent the classical methods. The spatial error on the left side of the

figure calculates the error for each OD pairs over the whole time period, and then

gives the average of these errors. The temporal error on the right side calculates the

error for each time slot and gives the average of these over the considered time pe-

riod. The error unit is the average relative L2 error percentage, and the measurement

cost is scaled so that the overhead of full measurement is denoted by100%.

It can be concluded that for stricter thresholds the Netflow is running half the time,

or the calibration is done every other day on average. It is obvious that such massive
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measurement amounts yield accurate estimates. However, even with a measurement

overhead of about one tenth of full measurement, the errors can be cut to half com-

pared to the Tomogravity method, with the PCA method appearing to be the most

effective. It must noted, however, that as we will see in section 4.2, the Tomograv-

ity is not the most effective of the classical methods, but the MLE yields25% more

accurate estimates on average.
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Evaluations of Estimation Methods

In this chapter we give an overview of the comparisons of the accuracy of different

methods found in the literature currently. Most papers give some simulation re-

sults or test cases, which justify why that particular proposed method makes sense.

We are, however, only interested in objective comparisons made between different

methods, preferably ones where none of the methods considered are by the authors

themselves. Although there are already a few methods proposed as we saw in Table

3.1, there are not many comprehensive comparisons.

4.1 Comparison by Medina et al. [16]

Evaluated methods

• Bayesian inference (section 3.3.1)

• Maximum Likelihood estimation (section 3.4.5)

• Linear Programming (section 3.5.1)

This is the first effort to compare the accuracy of different traffic matrix estimation

methods.

First a study with a four node toy topology is conducted. The results reveal the

breakdown of the LP method, discussed in section 3.5.1. For this reason it is not

included in the comparison with a realistic size network.
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The actual comparison is carried out using synthetic traffic simulations with a14-

node backbone-like topology. The authors create several different synthetic traffic

matrices with different OD pair distributions, including Gaussian, Poisson, uniform,

constant and bimodal. The constant traffic matrix (TM) is obtained by assigning

valuexi = 300 for each time period of each OD pair. The uniform TM is obtained

by drawing

xi ∼ U(200, 500) ∀i.
Poisson TM is obtained by first drawing the parameter valuesλi from the uniform

distribution

λi ∼ U(200, 500) ∀i,
and then the values forxi are drawn from Poisson distribution

xi ∼ Poisson(λi) ∀i.

The means for the Gaussian case are drawn similarly as in the Poisson case, and the

observed values are then drawn as

xi ∼ N(λi, 402) ∀i.

This is an interesting choice, as the mean-variance relation assumption, which is the

basis for the likelihood methods, is discarded from the start, instead using the same

variance for each OD pair regardless of its mean. Most recent studies do indicate

that there is at least a vague mean-variance relation prevailing in the traffic matrices

of IP networks. For the bimodal case the TM is generated as a mixture of two

Gaussians, with the value drawn fromN(150, 202) with probability0.8, and from

N(400, 202) with probability0.2.

The Bayesian method needs a prior distribution and even the EM algorithm needs a

starting value. Thus, priorsx′ are generated by

x′i = xi + ε,

whereε ∼ N(0, 602) for the so called "good prior" andε ∼ N(0, 1002) for the "bad

prior." These are synthetic priors which are unbiased, since the expected value is

the real value of the traffic matrix element, much like an estimate our Quick method

without projection (section 5) would yield: unbiased, yet not very efficient. The

often used gravity priors are, however, biased, even though they might be accurate.

As the Bayesian method considered uses only a one-sample snapshot of the link

counts, the network tomography is used with window length of one measurement,
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Table 4.1: Comparison results from Medina et al. [16]
Bayes(good prior) EM(good prior) Bayes(bad prior) EM(bad prior)

Constant 0.20 0.12 0.41 0.22

Uniform 0.26 0.13 0.43 0.24

Poisson 0.23 0.11 0.37 0.23

Gaussian 0.23 0.14 0.41 0.24

Bimodal 0.41 0.22 0.63 0.39

to make the comparison fair. This, of course, further hinders the use of the second

moment estimates.

The results of the simulation study are given in Table 4.1. With the good prior,

Bayesian method has an average error of27% while the network tomography by the

EM algorithm has an average error of14%. With the bad prior the average errors are

45% and26% respectively. It seems that the likelihood approach is clearly better,

even though the synthetic data did not have any relation between mean and variance.

The Bayesian method of course is only as good as the prior used.

The most surprising result is that also the accuracy of the EM depends on the prior.

In my opinion this should not be the case, since the extra information comes from

the second moment estimate, not the prior. The shape of the likelihood surface

certainly does not change if the prior is worse than before, so the maximum point

of that surface is still the same. The only reason for the worse results might be that

the algorithm converges to some local maximum. In [5], Cao et al. themselves state

that the choice of the starting point is somewhat arbitrary in the EM algorithm.

Finally, it is concluded that longer measurement intervals yield only minor gains on

the accuracy of the network tomogarphy method. This is understandable, but only

under the synthetic traffic used here. As the mean-variance relation does not hold at

all in their data, the fact that more measurements make the second moment estimate

more accurate does not help in estimating the mean, as the more accurate variance

estimator still gives no indication of the mean. If the mean-variance relation would

hold, more samples would make the estimator more accurate.
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4.2 Comparison by Medina et al. [18]

Evaluated methods

• Tomogravity (section 3.2.5)

• Maximum likelihood estimation (section 3.4.5)

The synthetic data in this evaluation is constructed from real traffic measurements,

in which, along with the link counts, the OD pair counts are available for three rows

of the traffic matrix. This data is used to determine an empirical distribution for the

fanouts, and the synthetic traffic model is constructed accordingly.

Maximum likelihood method obtained by the EM algorithm is compared with the

tomogravity method. In Figure 4.1 the target traffic matrix is depicted by the almost

solid line and the estimates by the scattered circles. It is clearly observable from

the Figure that the MLE is more accurate in this situation. In the situation of Figure

4.2 the gravity prior is replaced by an unsuitable skewed prior distribution. This is

also used for the starting point of the EM iteration. The tomogravity method suffers

from the unsuitable prior distribution, as expected. The methods relying on priors

to bring in the extra information, can be only as good as the prior allows. The MLE

is not affected, as was also expected.

The authors do not provide tables of estimate errors, but state that the MLE approach

is consistently about25% more accurate. In Figure 4.3 another kind of presentation
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Figure 4.1: Estimates with Gravity prior. Left: Tomogravity. Right: MLE [18]
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Figure 4.2: Estimates with skewed prior. Left: Tomogravity. Right: MLE [18]
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Table 4.2: Correlation coefficients for estimates with different priors

prior WLSE MLE

Skewed 0.1 0.8

Choice 0.2 0.8

Gravity 0.3 0.8

of the estimation accuracy is given, where the axis correspond to actual target value

and the estimate yielded by the method. The closer to a line with45 degree slope the

values are, the better the estimates. This accuracy can be quantified by the Pearson

correlation coefficientR between the plotted points and the line. These values are

given in Table 4.2. The authors call the tomogravity method WLSE (Weighted least

square estimation), since they use priors other than just gravity model. Inlcuding

the unsuitable skewed prior and the Choice model (section 3.2.3). The best results

are obtained by the traditional gravity model. Still the MLE is easily more accurate

than the tomogravity method.

4.3 Comparison by Gunnar et al. [12]

Evaluated methods

• Bayesian inference (section 3.3.1)

• Information theoretic approach (section 3.2.6)

• Vardi’s tomography (section 3.4.2)

This study is performed utilizing real measurements from Global Crossing’s back-

bone networks. Due to MPLS capabilites in the network, the SNMP measurements

provide the OD pair counts. A250 minute busy period, for which local stationary

more or less holds, is considered. The performance of a method is quantified by

the mean relative error of the largest OD pairs, where the largest OD pairs include

those that together comprise about90% of total traffic in the network.

Vardi’s Network tomography is found to give quite inaccurate estimates. Since the

Poisson assumption does not hold in the studied network, regularization parameter
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Table 4.3: Comparison results from Gunnar et al. [12]
Vardi Entropy Bayes

Europe 0.47 0.11 0.08

America 0.98 0.22 0.25

valueε = 1 yield results where some of the estimates are several orders of magni-

tude larger than the actual values. Withε = 0.01 the values are much better but still

not satisfactory. Mean relative errors with the sample of50 measurements is0.47

and0.98 for European and North American networks respectively. Unfortunately

the authors do not include any method relying on the general mean-variance relation

in their comparison.

The comparison between information theoretic approach, which the authors call

Entropy method, and the Bayesian approach is done using a single measurement

snapshot. The Gravity prior is used for the Bayesian method, as it is also the prior in

the Entropy method. The Results are shown in Table 4.3. A marginal improvement

is obtained for the Bayesian method by using the worst case bound prior proposed

by Gunnar et al.

Either way, the result is a tie, so to speak, as the Bayesian method is slightly better

for the European network and the Information theoretic approach for the North

American network.

4.4 Comparison by Soule et al. [24]

Evaluated methods

• Tomogravity (section 3.2.5)

• Route Change method (section 3.5.2)

This study emphasizes the so-called third generation methods that were presented

in section 3.6, where we discussed some of the results. However, in addition it does

include some evaluations of Tomogravity and the Route change method. Since this

is the only study to evaluate the latter, we conclude this chapter with a brief overview

of the results.
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The data used here are from Sprint’s European backbone, from which three weeks

worth of OD measurements were obtained in 2003 by enabling Netflow on all peer-

ing and access links.

The errors for Tomogravity method vary from20% to 33%, depending on the time

slot considered. For the Route change method the errors are between30% and50%.

The authors demonstrate that the reason for the poor performance of the method is

that it yields a perfectly cyclical pattern due to the Fourier transformation approach.

The assumption that each OD pair is cyclo-stationary is so strong, that the model

cannot capture any traffic characteristics deviating from this. Figure 4.4 shows an

example of this behavior. The lower diagram depicts the estimate of the Route

Change Method. It is clearly cyclo-stationary, thus failing to follow the traffic as

well as the Tomogravity estimate, depicted in the upper diagram.

Figure 4.4: A short sample of actual traffic (black) against estimated traffic

(grey).Top: Tomogravity, bottom: Route Change method[24]

76



Chapter 5

Quick Method Based on Link

Covariances

In this chapter we propose a novel method for traffic matrix estimation: The Quick

method based on link covariances. We presented this method first in [3], and it is

the main original contribution of the thesis.

As stated earlier some additional information other than just the link loads has

to be brought in to obtain a solution for the estimation problem. In this method

we use the link count sample covariance matrix. We propose two computationally

light-weight methods based on the covariance matrix, the projection method and

constrained minimization method. The accuracy of these methods is compared with

that of other methods using second moment estimates by simulation under synthetic

traffic scenarios.

5.1 Introduction

Typically, methods that need a prior distribution use the gravity model to obtain

one. However, the gravity assumption that the traffic volume of an OD pair is pro-

portional to the total traffic sent by the origin node and the total traffic terminating at

the destination node, does not always hold. In [12] the authors study real traffic ma-

trix of a North American backbone network and conclude that there are significant

errors concerning the estimation of the largest OD pairs, which are the most impor-

tant ones for traffic engineering purposes. Therefore, we propose another way of

obtaining prior distribution based on the link count covariances and the functional
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mean-variance relationship. Based on this, we develop two computationally light-

weight methods, similar in principle to the tomogravity method of [30], in the sense

that they incorporate a prior distribution and link count measurements to obtain an

estimate.

The approximate relationship between link count sample mean and the traffic matrix

λ was given in equation (1.4) of chapter 1 as

y = Aλ. (5.1)

We recall from chapter 3.4 that the Maximum likelihood method relies on the fact

that the system of first and second order link count statistics together make the

system identifiable with regard to the first order OD-pair statistic, using the mean-

variance relation.

But, in fact, the second order statistic for OD-pairs is identifiable based solely on

the second order statistic of the link counts, as long as we assume independence

among OD-pairs and a sensible routing scheme. This result is proven by Soule et al.

[23]. Since we can analytically solve the variance of the OD-pairs by least squares

method, and the power-law relation between variance and mean is assumed, we can

solve the traffic matrix from our variance estimate.

The benefit is that this does not call for numerical methods, and is thus extremely

quick to calculate. The problem with this approach is that it does not take into

account the link count equation (1.4), which is a stronger condition as opposed to

the mean-variance relation which is only an assumption. Therefore, we propose

two simple methods that incorporates this information into the solution obtained

through estimation of the variance, yet maintaining the computational simplicity of

the model.

5.2 Solving OD-pair Covariance Matrix from Link

Counts

The MLE relies on the fact that the system of first and second order link count

statistics together make the system identifiable with regard to the first order OD-

pair statistics, i.e. we are able to find the solution for the likelihood equations if

there exists a functional relationship between the mean and the variance of OD-

pair traffic. As presented in previous chapters, the commonly used relation is the
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power-law relation

Σ = φ · diag{λc}, (5.2)

whereΣ is a diagonal matrix, because we assume independence between OD pairs.

Let us denote the number of links bym and the number of OD-pairs byn. Then the

vector form of traffic matrixx has the dimension(n × 1) and link loadsy has the

dimension(m× 1).

In section 3.4.1 the second moment equation of the traffic volume was defined in

(3.22) as

S(y) = BS(x). (5.3)

In Vardi’s approach (3.23) the Poisson assumption makes it possible to just replace

S(x) with λ and write the first and second moment equations as a single formula.

Now we have the general power-law relation instead of the Poisson assumption, so

we cannot do that. Thus, we first solve forS(x). Typically 1
2
m(m + 1) > n and

equation (5.3) is thus overdetermined. The least square estimate (LSE) solution (see

e.g. [32]) to the equation is

S(x) = (BTB)−1BTS(y). (5.4)

5.3 Projection Method

Now that we have an estimate for the variances of each OD-pair, it is trivial to find

an estimate of the mean by using the mean-variance relation (5.2).

λ0 = (φ−1S(x))
1
c . (5.5)

The problem with this estimate is that it does not require the solution to satisfy the

link count equation (1.4), which is a stronger condition than the second moment

relation. The preliminary estimateλ0 can be improved by projecting the result to

the surface that satisfies the link count condition.1 This yields our estimate

λ = λ0 + AT(AAT)−1(y −Aλ0). (5.6)

Compared to the maximum likelihood approach, we do the moment estimation se-

quentially: First obtaining an estimate for the covariance matrix and then solving for

1Although the traffic matrixA is not necessarily of sufficient rank so that the inversion in the

below formula can be done, we can always prune the access links, so that the rank of the matrix

becomes the same as the number of links.
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the mean. This does not yield quite as accurate estimates as MLE, but calculating it

is many times faster.

The projection method works for any fixed parametersφ and c. In fact, we can

try to estimate these parameters by requiring thatλ0 comes as close as possible to

satisfying (1.4), i.e. that they minimize

f(φ, c) = (y −Aλ0)
T(y −Aλ0) (5.7)

= (y −A(φ−1S)
1
c )T(y −A(φ−1S)

1
c ).

The values ofφ andc that realize the minimum, can now be used in equation (5.5)

to yield the estimate (5.6) forλ.

5.3.1 Estimating Parametersφ and c

In Cao et al. [5] the EM algorithm is run after preselecting a value for the exponent

c in the power law relation (5.2), whileφ remains a parameter that the algorithm op-

timizes. The authors point out that convergence to a positive solution is guaranteed

for the algorithm for integer values ofc, namely1 or 2.

Gunnar et al. [12] in their study of the Global Crossing data find out that the values

for c in those particular networks are1.5 and1.6 for the European and North Ameri-

can core-networks, respectively. Thus being limited to integer values in the solution

makes sense for only computational reasons. The projection method works for any

preselectedc. In fact, we can relaxc to be a free parameter, though this means that

we will no longer be able to obtain a closed form solution.

Minimization of (5.7) with respect toφ is a simple quadratic problem. So we can

easily find the minimizing valuêφ(c). Now we can either use a preselected value

for c to yield the optimalφ value, or insert̂φ(c) back to (5.7), which yields

f(φ̂(c), c) = (y −A(φ̂(c)
−1

S)
1
c )T(y −A(φ̂(c)

−1
S)

1
c ). (5.8)

Now we have a simple one-parameter numerical minimization to find the optimal

value ofc. Expression (5.8) as a function ofc is depicted in Figure 5.1. The figure

was generated by a set of synthetic data using parameter valuec = 1.5.
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Figure 5.1: Values of the objective function (5.8) as a function of parameterc.

5.4 Constrained Minimization

Another approach is to require the conditiony = Aλ to be satisfied from the outset,

and try to satisfy the mean-variance relation in the least square sense. In general,

this has to be solved numerically. However, in the special case ofc = 1 an explicit

solution can be derived.

This approach is equivalent to Vardi’s method, if we setε very small, so that the first

moment is the dominant factor in the estimation, with the exception that we treat

φ as a parameter to be optimized, whereas in (3.23) it is fixed to1 by the Poisson

assumption.

We get a constrained minimization problem

min
λ,φ

‖S(y) −Bφλc‖ (5.9)

subject to y = Aλ.

Introducing a vector of Lagrange multipliersα, the objective function to be mini-

mized can be written as

f(λ,α, φ) = (S(y) − φBλ)T(S(y) − φBλ) + 2αT(y −Aλ)

= φ2λTBTBλ− 2φS(y)TBλ− 2αTAλ + S(y)TS(y) + 2αTy.

(5.10)

The above expression is quadratic inλ, and the minimum with respect toλ can
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easily be found,

λ = φ−2(BTB)−1(ATα + φBTS(y)). (5.11)

The Lagrange multipliersα are then determined such that the constraints are satis-

fied:

y = Aφ−2(BTB)−1(ATα + φBTS(y)), (5.12)

from which

α = (φ−2A(BTB)−1AT)−1(y − φ−1A(BTB)−1BTS(y)). (5.13)

Minimizing f(λ,α, φ) with respect toφ yields

φ = (λTBTBλ)−1S(y)TBλ. (5.14)

Substitution of (5.13) into (5.11) givesλ as a function ofφ

λ = Ky − φ−1(KA(BT B)−1BT S(y) + BT S(y)),

where we use the notation

K = (BT B)−1AT (A(BT B)−1AT )−1.

Substitutingλ further in (5.14) yields an quadratic equation forφ, which is easily

solvable. This solution can be then substituted back to (5.13) and (5.11) to obtain

the explicit expression forλ.

5.5 Comparison with the MLE Method

The accuracy of the quick methods are evaluated by comparing them against Maxi-

mum likelihood estimation, presented in section 3.4. In the subsequent sections the

results of accuracy on synthetic data test cases is presented.

5.5.1 Results

For the evaluation we use two topologies. A small six node topology, shown in

Figure 5.2, has14 one-way links, two links between each connected pair of node.

Assuming traffic from each node to all other nodes, there are30 OD pairs in the

network. In the more realistic size fictitious backbone topology shown in Figure 5.4,

there are12 nodes,38 links, and132 OD pairs. For both topologies, we generate

synthetic Gaussian data sets, where the power-law holds. Sample size is set to500

measurements for each simulation.
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A Simple Six Node Topology

In the synthetic OD pair traffic that we use, the traffic varies so that the largest OD

pairs are ten times as large as the smallest ones.

Figure 5.3 illustrates the results for the maximum likelihood estimates, projection

method, the constrained minimization, and Vardi’s method solved with the least

square method, which we call here "Quick Vardi". The synthetic data used for the

evaluations is generated with parametersc = 1, φ = 1. This is equivalent to the

Poisson-assumption made in Vardi’s method.

The OD pairs are presented in ascending order based on the traffic amount, so that

the smaller OD pairs are on the left and the largest on the right. We see that, as

expected, the MLE performs better on average, but not overwhelmingly better. The

average errors are15%, 26%, 34% and35% for the MLE, the projection method,

constrained minimization and Quick Vardi respectively.

B C

D FE

A

Figure 5.2: Six node Test topology

A 12 Node Backbone Topology

In this example we use synthetic data generated with parameter valuec = 1.5. The

traffic volumes for the OD pairs vary so that the largest are approximately hundred

times as large as the smallest ones. This creates great difficulties for the quick

methods regarding the estimation of the smaller OD pairs. The estimates of the

projection method for the smallest OD pairs are far off the real traffic amounts. Due

to the fact that the estimates for some of the smallest OD pairs have errors of several

hundred percent, the mean error is also affected greatly by these, and is59% for the

projection method and110% for the constrained optimization, while it is29% for

the MLE. The mean error for the Quick Vardi method is several hundred percent,

so it is not considered here.
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Figure 5.3: Errors for OD pairs in6-node topology in ascending order of traffic

amount for casec = 1.
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Figure 5.4: Twelve node backbone test topology
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Figure 5.5: Errors for largest OD pairs in 12-node topology in ascending order of

traffic amount

However, the most important thing is to estimate the largest OD pairs. If we con-

centrate only on the largest OD pairs that comprise90% of total traffic in volume,

the projection method is more competitive. The errors for these OD pairs are shown

in Figure 5.5. The mean errors are27% for the projection method,46% for the

constrained minimization and19% for the MLE.
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Chapter 6

Conclusion

In this chapter a summary of the thesis is given and directions for further work are

discussed. The chapter concentrates on the findings of the literature review and on

the Quick method proposed in chapter 5.

6.1 Summary

While the traffic matrix is a crucial input in many network planning and traffic engi-

neering tasks, it is usually not possible to directly measure it. Although measuring

tools such as Netflow are becoming more common, the measurements still increase

cost and overhead in the network and are thus not necessarily readily obtainable. In

the classical traffic matrix estimation framework, on which this thesis concentrated,

the only available information is considered to be the link count measurements and

the routing table.

As in any realistic network there are more OD pairs than links, the problem is highly

underconstrained and thus ill-posed. This means that exact solutions cannot be ob-

tained. To get an estimate, some extra information has to be brought in to the

situation. Based on a comprehensive literature review we found that while there are

altogether almost twenty different methods proposed for the traffic matrix estima-

tion problem, an overwhelming majority of these fall into two main categories with

regard to the nature of the extra information:

1. Gravity model based methods.
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2. Methods using second moment statistics through a mean-variance relation.

The first group of estimation methods uses the gravity model assumption to gain

the extra information. The gravity model assumes that the traffic between source

nodes and destination noded is directly proportional to the product of total traffic

sent bys and total traffic received byd. Based on this model it is possible to form

a prior estimate. This information is then combined with the link count information

to yield the final estimate.

The second group brings the extra information from the link count sample covari-

ance matrix. When a functional relation is assumed between the mean and the

variance of OD counts, it is possible to formulate a maximum likelihood problem

that becomes identifiable through the use of the sample covariance.

The accuracy of these methods depend on the validity of the assumptions. The first

group of methods make only the gravity model assumptions. This is found to be

accurate for some networks but inaccurate for others, see, e.g., [12]. The second

group makes the assumption of a functional relation existing between mean and

variance. In addition, a traffic distribution has to be assumed to formulate the max-

imum likelihood equation. Poisson distribution has been proposed, but the results

were not encouraging, and commonly the Gaussian distribution is used for this pur-

pose. We studied these two assumptions in chapter 2 and found them adequate, yet

not perfect, fits with regard to the Funet dataset used.

The lack of an extensive evaluation of estimation approaches in current literature

makes it difficult to assess the accuracy of the methods. As far as we are aware of,

there is no evaluation with real data between methods from the two different groups

of estimation methods.

A study with synthetic data concentrating on the sensitivity analysis of the assump-

tions specified above should prove beneficial for the evaluation of the methods and

overall understanding of the problem. We did a small simulation study in this area

in section 2.4.2 to explore the effects of inaccuracy in the mean-variance relation.

A more detailed analysis including the gravity model assumption and Gaussian dis-

tribution assumption is left as future work.
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6.2 On the Quick Method

In chapter 5 we proposed two techniques to obtain an estimate for traffic matrix

by explicit calculations utilizing the link count covariance matrix. We illustrated

how one can obtain the OD pair traffic variance estimates from empirical link count

covariance matrix, and developed computationally light weight methods, the pro-

jection method and the constrained minimization method, to obtain an estimate for

the traffic matrix based on the link count covariance matrix, in a way that would

still be consistent with the link counts.

The constrained minimization method was recognized, in fact, to be a special case

of Vardi’s method. We gave an explicit solution for it in the casec = 1 and also ob-

tained an estimate for the second parameterφ in the mean-variance relation. For the

projection method we have an even simpler and quicker way to compute solution.

Also in this case we get estimates of the parametersc andφ.

We evaluated the accuracy of the methods in a simulation study by comparing them

against the maximum likelihood solution by Cao et al. [5] and found that they per-

form reasonably well, considering that they are much quicker and simpler to calcu-

late than the MLE, which requires the use of an iterative numerical method, namely

the EM algorithm. In the worst case, the errors in the estimate of a traffic matrix

element for the largest components given by the quick method were three times as

large as those by the MLE method, but in many cases the difference was smaller. As

for the running time, the difference between the MLE method and quick methods

was big. With our non-optimized Mathematica code running the MLE method took

of the order of minutes, while the quick methods yielded the result in less than a

second.

All the comparisons were done with synthetic data. Evaluation with real data would

be very important to assess the true effectiveness of the methods. For now, we have

used in our evaluations a sample size of500, which may be rather large in com-

parison to what is available in reality. Accuracy of the estimated covariance matrix

with various sample sizes should be studied, as well as the effect the measurement

inaccuracies have on the subsequent traffic matrix estimates.
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Appendix A

Deriving the EM Equations

To derive equations (3.32) and (3.33) we need to use the following

Matrix inversion lemma

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1, (A.1)

y = Ax + ε ε ∼ N(0, σ2I), x ∼ N(λ,Σ).

p(x) ∝ exp[−1

2
(x− λ)TΣ−1(x− λ)]],

p(y|x) ∝ exp[− 1

2σ2
(y −Ax)T(y −Ax)],

p(x|y) ∝ p(y|x)p(x),

log p(x|y) = constant− 1

2
(x− λ)TΣ−1(x− λ)− 1

2σ2
(y −Ax)T(y −Ax)

= cnst.− 1

2
[xTΣ−1x− 2λTΣ−1x +

1

σ2
(xTATAx− 2yTAx)]

= cnst.− 1

2
[xT(Σ−1 +

1

σ2
ATA)x− 2(λTΣ−1 +

1

σ2
yTA)x] (A.2)

log p(x|y) = cnst.− 1

2
(x− µ)T(Σ−1 +

1

σ2
ATA)(x− µ). (A.3)
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Deriving Var[x|y]

So now from (A.2) and (A.3) we can pick out the variance as the term that depends

onxT x

Var[x|y] = [Σ−1 +
1

σ2
ATA]−1.

Then using the Matrix inversion lemma, with

A = Σ−1,

B = AT,

C =
1

σ2
, I

D = A.

yields

Var[x|y] = Σ−ΣAT(AΣAT + σ2I)−1AΣ

R = lim
σ→0

Var[x|y] = Σ−ΣAT(AΣAT)−1AΣ. (A.4)

Deriving E[x|y]

As in previous section we use (A.2) and (A.3) to write

µT(Σ−1 +
1

σ2
ATA)x = (λTΣ−1 +

1

σ2
yTA)x, (A.5)

µT = (λTΣ−1 +
1

σ2
yTA)(Σ−1 +

1

σ2
ATA)−1

= (λTΣ−1 +
1

σ2
yTA)(Σ−ΣAT(AΣAT + σ2I)−1AΣ

= (λT +
1

σ2
yTAΣ)(I −AT(AΣAT + σ2I)−1AΣ

= λT − (Aλ)T(AΣAT + σ2I)−1AΣ

+
1

σ2
yTAΣ(I −AT(AΣAT + σ2I)−1AΣ. (A.6)

Now using the matrix inversion lemma with

A = AΣAT,

B = σ2I,

C = D = I,
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we can write

(AΣAT + σ2I)−1 = (AΣAT)−1(I − σ2(σ2(AΣAT)−1 + I)−1(AΣAT)−1).

Then concentrating on the second term of the sum in (A.6) and using the above

result

1

σ2
yTAΣ(I −AT(AΣAT + σ2I)−1AΣ =

=
1

σ2
yT(AΣ−AΣAT(AΣAT + σ2I)−1AΣ)

=
1

σ2
yT(AΣ− (I − σ2(σ2(AΣAT)−1 + I)−1(AΣAT)−1)AΣ)

=
1

σ2
yT(σ2(I + σ2(AΣAT)−1)−1(AΣAT)−1AΣ)

= yT(I + σ2(AΣAT)−1)−1(AΣAT)−1AΣ.

And then continuing from (A.6) while inserting this to the second term of the sum

yields

µT = λT − (Aλ)T(AΣAT + σ2I)−1AΣ

+yT(I + σ2(AΣAT)−1)−1(AΣAT)−1AΣ

lim
σ→0

µT = λT − (Aλ)T(AΣAT)−1AΣ + yT(AΣAT)−1AΣ

= λT + (y −Aλ)T(AΣAT)−1AΣ

m = lim
σ→0

µ = λ + ΣAT(AΣAT)−1(y −Aλ). (A.7)
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