
BeachNet: Propagation-based Information Sharing
in Mostly Static Networks

Jörg Ott, Ari Keränen, Esa Hyytiä
Aalto University, School of Electrical Engineering

Department of Communications and Networking, Finland

ABSTRACT
Delay-tolerant and opportunistic networking are widely investigated
for information exchange in (sparse) mobile scenarios, in the eval-
uation of which numerous mobility models and traces have been
employed. These networking techniques may also be applied in
static and fairly dense scenarios for non-directed information shar-
ing, in which nodes may but need not be connected all the time. We
present different information dissemination algorithms for content
sharing, taking a network formed by mostly immobile users on a
beach as one example and evaluate them through simulations.

1. INTRODUCTION
Opportunistic or delay-tolerant networking (DTN) is one solu-

tion to overcome assumptions of traditional mobile ad-hoc net-
works that mobile nodes would generally be sufficiently dense to
form a mostly connected network in which end-to-end paths can be
established. Consequently, a lot of research has gone into investi-
gating sparse scenarios using a variety of mobility models as well
as mobility traces of humans and vehicles to study the performance
of routing and information sharing protocols for such setups. While
some efforts also went into denser scenarios and explored, e.g., the
idea of bridging traditional MANETs and mobile DTNs dynami-
cally [16, 25], static ad-hoc networks have not received much at-
tention. These are “extreme” scenarios from the perspective of op-
portunistic networking because the frequent assumptions of sparse
node population and infrequent contacts are violated.

Quite a few semi-static scenarios with fairly high node density
can be envisioned: from summer beaches with sunbathers to picnic
areas in parks to stadiums and possibly to amusement parks. All
these share three key properties: 1) Any given user is likely to have
more than one other mobile user in communication range at any
given time. 2) The non-moving users will often dominate over the
mobile ones at any given instant. 3) They have an open population
of nodes, i.e., nodes appear and disappear at random.

We are interested in understanding options for content distribu-
tion in such scenarios: A source node wants to share a piece of
content with a group of nodes, where the group members may or
may not be known to the source (unicasting is a special case).

In our semi-static scenario, nodes may form well-connected net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExtremeCom2011, September 26-30, 2011, Manaus, Brazil.
Copyright 2011 ACM XXX-X-XXXX-XXXX-X/11/09 ...$10.00.

works in large parts. But it is unpredictable when a node will be
in a such an area and whether local cues, e.g., readings from its
immediate surroundings, hold for the entire area. Moreover, not all
nodes may be connected all the time so that some notion of delay
tolerance is required for robustness. Especially, content sharing re-
quires semantics that make content wait for users yet to arrive or
become reachable. Finally, MANET-style end-to-end forwarding
is known to suffer from performance degradation as the number
of hops increases [20] making it unappealing (cf. a node in a P2P
overlay holding a content copy within an ad-hoc network).

To accommodate our target operating environment and to over-
come potential issues of end-to-end communication, we opt for
content dissemination using the store-carry-forward principles of
opportunistic networking, even though most of our nodes are not
mobile. While many approaches rely on node mobility for spread-
ing content to users across space [13, 7] or keeping content avail-
able in a limited area [10, 15, 8, 23], we require the content to
spread while the nodes are stationary.

An obvious solution is to apply epidemic spreading, which, how-
ever, requires the total content volume to fit into each node’s stor-
age. Lifting this restriction requires either coordinating which node
is responsible for which content (as in P2P overlays), or making the
content move gradually over time. We pursue the latter approach to
avoid network-wide coordination and perform content replication
solely upon local information. We present the case study of Beach-
Net as a sufficiently representative example of stationary nodes
spread out across a bounded area, which is in this case stretched out
and thus more challenging (section 3). We derive two algorithms
operating on local information (section 4), compare their perfor-
mance against epidemic spreading using simulations (section 5),
and conclude with a brief discussion (section 6).

2. RELATED WORK
BeachNet nodes form an ad-hoc network, albeit with limited mo-

bility. Standard routing protocols for ad-hoc networks, such as
AODV [19] and DSDV [18], are designed to find an end-to-end
path in order to deliver packet between given nodes [17], includ-
ing group communications [5], for time-synchronous content de-
livery. MANET protocols can deal with topology changes, but do
not support sparse or partitioned (but otherwise dense) networks
well. Moreover, wireless multi-hop communication suffers from
performance degradation with an increasing number of hops [20].
Proposals for combining MANET and DTN routing [16, 25] are
able to overcome temporary disconnections but they support only
unicasting (and they would consider the connected parts as a big
network partition, subject to multihop performance degradation).

One alternative to overcome the above limitations is construct-
ing overlays for storing replicas to achieve decoupling in space and

time. Traditional peer-to-peer (P2P) file sharing protocols, such as
BitTorrent, organize content storage among their peers and provide
structured (e.g., using DHTs) or unstructured ways of locating and
retrieving content. These protocols assume a fully connected (IP)
network with routing functionality, while also mobile P2P network-
ing has been proposed (see, e.g. [21]). In any case, the assump-
tion is that a file is stored fully or in part on one or more nodes, a
subset of which may be queried for retrieval. The risk of network
partitions and the associated search and maintenance issues make
this approach appear less favorable. BeachNet assumes smaller file
sizes, allowing contents to be moved around proactively.

Another alternative is delay-tolerant [3] or mobile opportunistic
networking from which we borrow the main concepts. Related to
BeachNet are particularly proactive content distribution via content
channels (e.g., PodNet [13]) or in geographical regions (e.g., Float-
ing Content [15]), multicasting [28], and (socio-aware) publish-
subscribe mechanisms for opportunistic networks (e.g., [27]). We
cannot rely on human mobility (as in PodNet or Floating Content),
avoid state maintenance (as needed for multicasting), and cannot
rely on social ties between users as aid for content delivery.

We focus on methods for moving a finite set of copies across
the given area so that the interested nodes obtain the information
within a reasonable time frame when, a priori, it is not known who
and where the interested users actually are. BeachNet also does not
implement any rendezvous mechanisms for data objects. We thus
create a special purpose “best effort content channel” for commu-
nication in a naturally bounded area (because a beach ends).

With largely stationary nodes, BeachNet also features elements
of sensor networks, where typical application is information gath-
ering in or monitoring of a given area and relaying the findings for
further analysis. Part of this process is often data compression and
aggregation [1, 26]. Energy saving, e.g., by means of sleep-wake
cycles [12, 4], is one important aspect for their longevity which
we apply to BeachNet. However, in BeachNet there may not be a
dedicated destination for a content, but instead the content actively
moves around restlessly seeking for nodes interested in it. Due
to battery operation, the unnecessary transmissions should still be
avoided, and hence a balance must be sought between the availabil-
ity (e.g., mean acquisition time) and the energy consumption (e.g.,
transmission frequency and fraction of sleeping time).

Numerous adaptive mechanisms for determining sleep-wake cy-
cles for (mobile) node to improve neighbor discovery were de-
veloped, including [24, 2, 9, 14]. While we envision algorithms
like those to be incorporated into BeachNet nodes for minimizing
energy usage while maximizing interactions, we have to defer in-
depth considerations of such alternatives to future work and explore
only fully synchronized or random operation in this paper.

3. BEACHNET OVERVIEW
We seek to address information sharing (one-to-one and one-to-

many communication) in environments characterized by the fol-
lowing properties that hold for beaches as representative scenario.

1. Large static node setups with minimal mobility: This im-
plies that we cannot rely on nodes being active message car-
riers but rather messages have to move actively. While some
nodes may move around (when coming and going) or pass
constantly (cf. promenades along a beach), thus making them
nice complementary message carriers, we leave such ele-
ments for further study and just focus on the fixed node setup.

2. Variable node populations both in terms of number and iden-
tities of nodes: These are nodes coming and going or being
active (awake) and inactive (asleep). As a result, network

partitions may appear and disappear unpredictably over time,
rendering a “global” view of the network difficult (if not im-
possible) to achieve and maintain.

3. A wide range from sparse to dense node populations: This
prevents us from assuming a static and well-connected net-
work in which tasks (e.g., storing a copy of a message) can be
assigned to individual nodes (cf. the above node dynamics).

Each node changes its behavior over time: between walking or
driving prior to arrival at and after departure from the beach and
being at the beach. Except for (non-)movement and relatively con-
stant device neighborhoods, no further cues are immediately avail-
able at the device to determine its operating environment.1 How-
ever, inferring the operational conditions is subject of future work.

Assume a source node S wants to share a message Mk with one
or more other receiver nodes Ri in such a setting. When originating
Mk at time tk, S does not know how many potential receivers (if
any) are around and where they are located, nor if one or more will
arrive in the future (and when and where). Also, a given receiver Ri

may not know before a time Ti that it is interested in a particular
message. For one-to-one communication with Mk addressed to
Ri, Ti is the very time Ri appears on the beach; for one-to-many
messages, Ti is when Ri declares interest in a topic matching Mk.

Considering our scenario characteristics, we do not attempt to
build up routing information (for subscriptions to content channels
or for individual nodes), but rather design data-driven dissemina-
tion mechanisms. The basic requirement is that any content item
spreads throughout the network and reaches (at least) majority of
the nodes over time, including those appearing only after the mes-
sage was spread or declaring interest in a message only very late.

Moreover, since many nodes will be permanently connected and
could thus constantly exchange messages, we need to pace inter-
actions to prevent the nodes from running out of battery quickly.
Therefore, we consider sleep-wake cycles as suggested for sensor
networks or for neighbor discovery but, as noted above, limit our
considerations to always active, synchronized, and random opera-
tion, thereby providing upper and lower bounds.

Without these dynamics, one could simply implement a one-time
flooding of each message throughout the network. If the memory
of all nodes sufficed to hold all messages (until they expire), this
epidemic-style approach would also support time shifted interest
in content, sleeping, and late arrivals. In the following section,
we present several algorithms for dealing also with memory con-
straints. An ideal routing solution achieves acceptable performance
in terms of mean acquisition time and coverage, while minimizing
the number of transmissions and energy consumption in general at
the same time. The challenge is to come up with a simple yet robust
algorithm that spreads the information in waves repeatedly

4. INFORMATION SHARING
In this section, we will introduce the information sharing algo-

rithms that will be evaluated in the next section.

4.1 Epidemic
As a simple reference, we use epidemic routing [22] as a simple

flooding protocol for opportunistic networks. Messages get repli-
cated whenever a node comes into radio range that does not yet
hold a copy of the message. When the node buffer gets full, the
messages received earlier are deleted in FIFO order.

1Geo location provides another cue and a database of all places
where BeachNet-style conditions could occur might be available
in the Internet and even downloaded with regional maps to mobile
devices, but we prefer to avoid such dependencies.

Figure 1: Game of Life overview.

4.2 Conway’s Game of Life
The beach setup described above is essentially a mostly static

setting with minor changes in the environment (nodes coming and
going). In an abstract representation, this may be viewed as a grid
of nodes—or cells in the Game of Life automaton [6]. Game of Life
simulates cells by a set of simple rules that infer the fate of a cell in
a given position X from the number of live adjacent cells: if there
are too few or too many neighbors, the cell dies; for some range of
neighbors a new cell is born; and for another range, a cell survives.
Figure 1 shows a sample grid of cells, in which cell X has eight
neighbors (according to the original definition of a neighbor): the
dark shaded cells B5 − B7, C5, C7, and D6 − D8. The rules
are applied simultaneously in rounds so that the state of cell X in
round n + 1 are solely dependent of the states of its neighbors in
round n. In the Game of Life, initially, a number of organisms
(“live cells”) are placed randomly on the grid and their evolution is
then observed when repeatedly applying the same set of rules.

For our communication scenario, each field of the grid is a node
and the “alive” state of a cell means that a copy of a message Mk

is available at this node. The radio range and the distance between
nodes (i.e., their density) define the neighborhood of each node and
the message, both of which we summarize as reach. A simplified
version is shown in figure 1: for a reach r, a node in the middle
of the area X has n(r) = (2r + 1)2 − 1 neighbors: n(1) = 8,
n(2) = 24, etc.; nodes near the edges have less (A1 just has 3
immediate neighbors, i.e., there is no wraparound). Node X senses
its neighborhood and determines how many copies of the message
are available at its neighbors and then executes a rule set similar
to the original Game of Life. The message is either replicated to
X (birth), kept at X (survival), or discarded at X (death). This
essentially yields four values to fully specify the rules for our Life
algorithm: ls, lb, ub, and us, where

ls : lower survival bound ub : upper birth bound
us : upper survival bound lb : lower birth bound

(1)

and ls ≤ lb ≤ ub ≤ us. Let Ni,k(n) be the state of node Ni with
respect to message Mk so that Ni,k(n) = 1 indicates that Ni has
a copy of Mk in round n and Ni,k = 0 otherwise. Let Ci(n) be
the number of message copies available at the cell’s neighbors. The
rules are then defined as follows:

Ni,k(n + 1)

8<
:

0 if Ci(n) < ls ∨ Ci(n) > us

1 if Ci(n) > lb ∧ Ci(n) < ub

Ni,k(n) otherwise
(2)

We first seek to find suitable parameters for our specific scenario.
One major difference from the original Game of Life is that our
starting point will be a single message copy. Hence, lb = 0, or the
message would “die out” immediately. We explore the parameter
space for different ub bounds by simulations to find a combination

that allows the message to survive while limiting the fraction of
nodes that carry a copy of the message.2 Our target is to find an up-
per bound that allows a sufficient number of message copies to sur-
vive and move around, without flooding the network unnecessarily
with message replicas. To keep the combinatorial complexity under
control, we choose ls = lb and us = ub for this paper. Assuming
that beaches will form rather long stretches and square playfields,
we choose field sizes of x×y with x = 500 and y ∈ {1, 2, ..., 10}.

Our target is to find lower and upper bounds that are suitable for
a broad range of environmental conditions.

In our initial exploration, we use a simple custom-written cell au-
tomaton (written in C). We assume a perfect grid of nodes as shown
in figure 1 with neighborhoods defined by the reach; error-free and
instant communication, i.e., messages are always fully transmit-
ted; and just a single message initially placed at a random point
inside the grid, uniformly distributed. We then observe the mes-
sage spreading behavior over time. For all the simulations in this
section, we use 1000 iterations3 and 30 random seeds. We report
on the mean number of message copies around in the end of the
simulation as an indicator for the suitability of the chosen bounds.

Initially, we assume a fully static setup and explore the impact
of different radio ranges. We model different densities by choosing
to populate only a fraction pinit ∈ {0.5, 0.8, 0.9, 1.0} of all the
grid fields with nodes, randomly spread. Figure 2 shows the mean
fraction of present nodes holding a copy of the message after 1000
rounds across all values of y for three different reaches. In addition
(not shown), we investigate the minimum and maximum number
of copies. We find that the fraction of nodes holding a copy grows
quickly for ub > 2. However, for ub = 2, we find quite many (10
out of 12) setups, in which the message disappears. Only ub > 4
yields no message losses in our runs for the dense case (reach=3),
but causes a lot of overhead in sparser scenarios. Hence, ub ∈
{3, 4} appears to work generally fine for the sparse and medium
and are equally at risk of message loss in the dense scenario. Since
ub = 3 causes less overhead, this appears preferable.

We then add “openness” to the system: starting with an initial
node population, measured as a fraction pinit of the total spots in
the grid, we allow nodes to enter and leave the beach according to
a Poisson process with mean times Ta and Td between arrivals and
departures, respectively. Nodes leave by vacating a spot in the grid;
they take the message copy they hold away. Nodes may only arrive
to vacant spots; arriving nodes naturally do not carry a copy of the
message. We investigate Ta = Td ∈ {5, 10, 20, 50} rounds for
reach=1. We find that these—fairly modest—rates of arrivals and
departures do not impact the above results qualitatively and also the
quantitative variation is low.

Finally, since we model communication between mobile devices,
we also need to take into account their energy consumption. After
all, they need to last for a day on the beach. We also conduct simu-
lations with nodes alternating between sleep state and active state.
In contrast to nodes leaving, sleeping nodes maintain their message
copy. We choose sleep and active times, Ts and Tc, evenly dis-
tributed from [0; Tmax] and choose Tmax ∈ {5, 10, 20, 50} rounds
independently for Ts and Tc. We vary pinit ∈ {0.5, 0.8, 0.9, 1.0}
and as above set reach=1.

When introducing sleep and active times with the same Tmax,
i.e., when nodes have equally long asleep and awake phases (on
average), messages get lost occasionally across all scenarios. Nev-
ertheless, for pinit ≥ 0.8, messages generally survive and the mean
fraction of nodes holding a copy remains in the same order of mag-

2We don’t yet optimize to minimize the number of transmissions.
3We found in preliminary studies that messages will have spread
throughout the 500× y area by then and reach a steady state.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 2 3 4 5 6

fr
ac

tio
n

of
 n

od
es

upper bound ub

0.5
0.8
0.9
1.0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 2 3 4 5 6
upper bound ub

0.5
0.8
0.9
1.0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 2 3 4 5 6
upper bound ub

0.5
0.8
0.9
1.0

Figure 2: Static Life simulation results: mean fraction of nodes carrying a copy of the message after the simulation period of 1000 rounds.
Left: sparse (reach = 1), center: medium (reach = 2), right: dense (reach = 3).

immunity
expires

immunity
expires

deletion
immunity immunity

custody
and

immunity
empty

custody
expires secondary

copy
deletion

transmission
custody

transmission

reception

Figure 3: State diagram of a message in a node with Wave router.

nitude as for the constantly awake nodes. For pinit = 0.5, how-
ever, the mean availability shrinks to some 2%. These findings hold
across all values for ub. Increasing the reach, however, improves
the case for E[Ts] > E[Tc] noticeably.

Extending the mean active cycle length beyond the mean sleep
cycle has a minor impact on the availability: in most cases, the
number of message copies in the system grows. In the opposite
case, message availability collapses quickly. For 2 × E[Tc] ≥
E[Ts], the availability remains in the same order of magnitude; for
4 × E[Tc] ≤ E[Ts], mean availability goes down to 2–3% and
messages continuously disappear for 10× E[Tc] = E[Ts].

Based upon these findings, we choose lb = ls = 0 and ub =
us = 3 for our simulations below. In spite of the negative results
for reach=1, we experiment with non-favorable sleep/active cycles
to obtain a lower bound. Because of their limited impact, we do not
elaborate further on nodes joining and leaving.

4.3 Wave
Wave router is a specially designed content-driven routing scheme

to realize BeachNet scenario. In Wave, each node keeps track of the
messages it has recently received. In particular, a node does not ac-
cept a message if it is found on the tracking list. The messages are
kept in the list for a certain fixed time, which we refer to as the
immunity time (node is “immune” to given message for a certain
time period). The message deletion is executed independently of
the tracking list, i.e., the node may be immune to a message even
though the message is no longer in its possession. Moreover, upon
accepting a message, the node agrees to take over the custody of
the message, which means that it will not delete the message until
it has been passed further (along with the custody) or the message’s
time-to-live expires; see figure 3.

Hence, the routing decision is a local operation suppose to ensure
that messages find their ways to areas they have not recently visited,
in accordance with the philosophy behind the BeachNet. Formally,
the Wave router is described in algorithm 1.

5. EVALUATION
For our simulation-based evaluation, we use the ONE simulator

[11] for which we have implemented special “mobility” model re-
flecting the beach scenario as well as and the aforementioned Life
and Wave routing protocols supporting the BeachNet application.

Algorithm 1 Pseudo-code of Wave router.

Upon receiving message m:
if m ∈ immunity table I, or m ∈ buffer B then

ignore the message
else

if message buffer B is full then
if buffer B has message(s) without custody flag then

delete the oldest such entry (FIFO)
else

ignore the message
end if

end if
store m to B and set a custody flag with timer 2 · t for m
add m also to immunity table I with expiration time t

end if
Regular update event:

clear expired custody and immunity flags from B and I
if buffer B is non-empty then

broadcast one message m ∈ B chosen in random
if reception of m is acknowledged then

clear the custody flag in m (local copy)
end if

end if

We also use the Epidemic router included in ONE.
We choose two different grid sizes: 100× 10 and 50× 5 nodes

both occupying the same area, with 10 m and 20 m spacing be-
tween grid points. In our basic scenario, nodes are exactly located
at the respective grid points; in a variation, they are offset from
this point for x and y uniformly distributed between 0 and 20 m.
We use two different radio ranges, 20 m and 80 m, and three types
of sleep/active cycles: 1) no sleeping; 10 s wake and 100 s sleep
cycles 2) synchronized within 10 s across nodes and 3) chosen at
random without node synchronization. This yields a total of 72 se-
tups. Nodes generate messages at a rate of 0.1 msg/node/hour and
each node can store up to 10 messages. All simulation parameters
are summarized in table 1.

We run each simulation for six hours with a time step of 1 s: this
means that connectivity and neighbor message content is evaluated
once per second and, for Life routing, a new round starts every
second. We do not use warmup times to reach steady state in order
to reflect the dynamics of the system with the number of messages
growing during the day, but we consider the different periods that
messages are available in our evaluation.

Figure 4 shows our initial coverage metric accounting for the
spread of messages across nodes. We choose 40 nodes at random
and count the number of nodes reached by each message at least
once (ignoring subsequent deletion and repeated delivery). Both
scenarios, 5 × 50 and 10 × 100, perform roughly similarly, with
slightly better coverage achieved for the former simply because the

Hardware: 10 Mbps WLAN interface, 10 MB buffer size
Messages: 1 MB each, creation 1 msg / node / 10 hour
Radio ranges: 1) 20 m, 2) 80 m

Network 1) 10 × 100 grid, inter-node distance of 10 m
topology: 2) 5 × 50 grid, inter-node distance of 20 m

optionally a random offset U(0, 20 m) added
independently to (x, y) coordinates per node

Routers: 1) Epidemic
2) Wave: 5 min immunity

10 min custody
3) Life: lb − ls = 0, ub = us = 3

Awake-sleep 1) none
cycles: 2) 10 s / 100 s, max 10 s random offset

3) 10 s / 100 s, without synchronization

Table 1: Parameters for ONE simulator.

 0

 0.2

 0.4

 0.6

 0.8

 1

Epidem
ic

Epidem
ic,sync

W
ave

W
ave,sync

Life
Life,sync

Epidem
ic

Epidem
ic,sync

W
ave

W
ave,sync

Life
Life,sync

F
ra

ct
io

n
of

 r
ef

er
en

ce
 n

od
es

radio range 20m radio range 80m

Coverage 10x100
Coverage 5x50

Figure 4: Coverage of messages without grid offset.

sampling nodes are denser. Expectedly, basic connectivity domi-
nates message spread: 80m radio range performs equally well with-
out and with grid offset, whereas a 20m range quickly leads to iso-
lation with offsets (not shown). For the sufficiently connected sce-
narios, Life and Wave achieve better coverage than Epidemic (up
to factor 2–3, reaching 75%+); in some cases, Life outperformed
Wave, in others Wave reaches more nodes than Life. However,
this initial metric does not cover all nodes, nor does it capture (re-
peated) coverage over time; a more comprehensive characterization
in these respects is subject to ongoing work.

Table 2 shows several performance indicators for the 50 × 5
nodes scenario: the number of different messages (mean, max #msg),
the number of copies per message (median, max # copies) in the
system, and the mean buffer utilization. We sample these values
every 60 s, and report mean values across five simulation runs with
different random seeds (e.g., median # copies is the mean of the
medians observed in the five simulation runs, etc.).

In this scenario, 149 messages are spread to the network. Ex-
pectedly, we find that random sleep times do not work well for the
short radio range, across all routing algorithms, simply due to lack
of connectivity; this is confirmed when investigating the overhead
for relaying messages. Yet, they prove quite workable for the long
one. We also observe that, with the short radio range, the random
offset in the node locations easily leads to disconnected networks:
most messages survive, but only with one or a few copies each,
meaning that no spreading takes place.

Comparing the three routing mechanisms, we find that Life man-
ages to keep the largest number of different messages in the system
simultaneously and occupies the least amount of buffer space, by
keeping a modest number of copies per message. We also notice
that the difference between the median and the maximum number
of messages is fairly small, indicating a balance (“fairness”) among
messages. Wave and Epidemic make full use of the buffers but lose
more messages over time, with Epidemic performing better with

Routing Grid Radio Sleep mean max median max # buf
offset range cycle #msg #msg # copies copies util.

Epid. no 20m none 27.6 30 90.8 111 0.96
Epid. no 20m sync 55.6 62 31.4 33 0.98
Epid. no 20m random 149.0 149 1.8 2 0.13
Epid. no 80m none 31.8 33 73.0 79 0.95
Epid. no 80m sync 47.2 52 53.0 58 0.98
Epid. no 80m random 59.8 64 35.2 42 0.96

Epid. 20m 20m none 135.6 142 9.0 11 0.59
Epid. 20m 20m sync 142.6 148 8.4 9 0.59
Epid. 20m 20m random 149.0 149 1.0 1 0.09
Epid. 20m 80m none 30.6 32 82.8 93 0.95
Epid. 20m 80m sync 46.6 50 50.2 57 0.98
Epid. 20m 80m random 58.8 69 35.6 44 0.97

Life no 20m none 54.0 58 41.8 43 0.84
Life no 20m sync 84.8 89 21.0 23 0.87
Life no 20m random 149.0 149 1.8 2 0.13
Life no 80m none 105.4 109 18.0 19 0.74
Life no 80m sync 114.8 117 16.6 18 0.73
Life no 80m random 83.4 92 22.2 27 0.85

Life 20m 20m none 144.2 147 7.4 9 0.49
Life 20m 20m sync 146.0 149 8.0 9 0.52
Life 20m 20m random 149.0 149 1.0 1 0.09
Life 20m 80m none 106.2 107 18.2 19 0.74
Life 20m 80m sync 114.4 118 16.4 17 0.73
Life 20m 80m random 81.0 87 25.2 27 0.85

Wave no 20m none 42.0 46 66.4 69 0.99
Wave no 20m sync 46.6 51 57.0 75 0.98
Wave no 20m random 149.0 149 1.8 2 0.13
Wave no 80m none 35.8 39 72.6 80 0.99
Wave no 80m sync 34.2 38 82.6 92 0.99
Wave no 80m random 39.4 44 77.2 82 0.97

Wave 20m 20m none 143.2 146 9.6 11 0.59
Wave 20m 20m sync 144.2 147 9.2 11 0.59
Wave 20m 20m random 149.0 149 1.0 1 0.09
Wave 20m 80m none 36.0 38 70.8 75 0.99
Wave 20m 80m sync 33.8 36 83.2 89 0.99
Wave 20m 80m random 42.4 48 74.2 81 0.97

Table 2: Results for the 50× 5 node topology.

and Wave better without synchronized sleep cycles.
The good performance of Life routing comes at the expense of

messaging overhead (not shown), especially when nodes do not
sleep. Life is in the same order of magnitude as Epidemic rout-
ing, requiring more replications for 20 m radio range and less for
80 m. Both their overheads are an order of magnitude higher than
Wave routing for the non-sleep case and 20-30% for the setups with
workable sleep cycles. This not surprising due to very nature of the
algorithm where copies are quickly deleted and regained—which
helps low buffer occupancy and message circulation. The overhead
for the Wave algorithm stays within a factor of three across all sce-
narios (from some 100K through some 300K message replications
over six hours, i.e., 65–200 messages sent per node per hour); com-
pared to up to 2.2M messages for Epidemic and Life. However, the
Life would allow for less frequent rounds and thus could be tailored
to reduce the overhead. Doing so is subject for further study, as is
understanding the impact of non-synchronized rounds and improv-
ing operation with long random sleep cycles.

We omit result details for the 100 × 10 scenario due to space
constraints. In brief, in this four times denser scenario, Life clearly
outperforms Epidemic and Wave routing across all settings, in most
cases by a factor of two or more. We also find performance to
be less uniform. Epidemic performs generally better than Wave
routing. The relative overhead of the algorithms is similar as above.

6. CONCLUSION
We have applied DTN-style information sharing using only local

state to a specific type of often (yet not necessarily) dense, largely
connected, and mostly static networking environments for which
we pick beaches as one example. We have devised two dedicated
routing algorithms: Life, based on the well-known Conway’s Game

of Life cell automaton, and Wave, and performed an evaluation
of their performance under varying conditions, comparing them to
Epidemic routing as a reference.

We find that the algorithms succeed in spreading and keeping
messages across a wide range of scenarios unless the network is
(constantly) too disconnected; obviously, if static nodes are just out
of reach in space or out of sync in time, not much can be done. Our
future work will add node dynamics such as arrivals and departures.

Life, with parameters chosen in a very idealized simple simu-
lation setup, performs best across virtually all scenarios that ap-
pear workable at all. This comes at the cost of significant messag-
ing overhead, especially in permanently connected scenarios due
to messages moving constantly back and forth between nodes—as
can easily be observed by inspecting the GUI of the ONE simulator.
Wave, on the other hand, manages to keep the number of message
transmissions down with its custody and immunity schemes, but
it does not circulate messages as well as Life. We are investigat-
ing how to integrate suitable transmission damping elements into
the Life algorithm, possibly borrowing from Wave. We also seek
to better understand why the performance of Life and Wave vary
a lot across different settings and improve them to achieve more
predictable results. To this end, future work includes more detailed
performance investigation, especially, analyzing the the mean ac-
quisition time for a node to get a message, a more comprehensive
coverage metric, and the routing efficiency.

Our beach model represents an “open” DTN system in which
nodes come and go, which has not received that much attention yet
(except implicitly when using mobility traces). Along with subtly
more mobility, we intend to study this aspect of opportunistic net-
works further and we are interested in other instances of this class
of environments, e.g., a “strip” surrounding a lake or a stadium.

Acknowledgment
This work was partly funded by the Academy of Finland in the
RESMAN project (grant no. 134363).

7. REFERENCES
[1] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and

E. Cayirci. A survey on sensor networks. Communications
Magazine, IEEE, 40(8):102–114, August 2002.

[2] P. Dutta and D. Culler. Practical asynchronous neighbor
discovery and rendezvous for mobile sensing applications. In
Proc. of ACM SenSys, 2008.

[3] Kevin Fall. A Delay-Tolerant Network Architecture for
Challenged Internets. In Proc. of ACM SIGCOMM, 2003.

[4] Chih fan Hsin and Mingyan Liu. Network Coverage Using
Low Duty-Cycled Sensors: Random & Coordinated Sleep
Algorithms. In Proc. of ACM IPSN, 2004.

[5] J. J. Garcia-Luna-Aceves and Ewerton L. Madruga. A
multicast routing protocol for ad-hoc networks. In Proc.
IEEE INFOCOM, pages 784–792, 1999.

[6] Martin Gardner. The fantastic combinations of John
Conway’s new solitaire game “life”. Scientific American,
pages 120–123, October 1970.

[7] Olafur Helgason, Emre Yavuz, Sylvia Kouyoumdjieva,
Ljubica Pajevic, and Gunnar Karlsson. A mobile
peer-to-peer system for opportunistic content-centric
networking. In Proc. of ACM MobiHeld, 2010.

[8] Esa Hyytiä, Jorma Virtamo, Pasi Lassila, Jussi Kangasharju,
and Jörg Ott. When does content float? characterizing
availability of anchored information in opportunistic content
sharing. In IEEE INFOCOM, Shanghai, China, April 2011.

[9] A. Kandhalu, K. Lakshmanan, and R.R. Rajkumar.
U-connect: a low-latency energy-efficient asynchronous
neighbor discovery protocol. In Proc. of IPSN, 2010.

[10] Jussi Kangasharju, Jörg Ott, and Ossi Karkilahti. Floating
Content: Information Availability in Urban Environments. In
Proc. of IEEE Percom 2010, Work in Progress session, 2010.

[11] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The ONE
Simulator for DTN Protocol Evaluation. In Proc. of
SIMUTools, 2009.

[12] Santosh Kumar, Ten H. Lai, and Jozsef Balogh. On
k-Coverage in a Mostly Sleeping Sensor Networka. In Proc.
of ACM MobiCom, 2004.

[13] V. Lenders, M. May, G. Karlsson, and C. Wacha. Wireless ad
hoc podcasting. ACM MC2R, Jan. 2008.

[14] Jo Agila Bitsch Link, Christoph Wollgarten, Stefan Schupp,
and Klaus Wehrle. Perfect Difference Sets for Neighbor
Discovery Energy Efficient and Fair. In Proc. of ACM
ExtremeCom, 2011.

[15] Jörg Ott, Esa Hyytiä, Pasi Lassila, Tobias Vaegs, and Jussi
Kangasharju. Floating content: Information sharing in urban
areas. In Proc. of IEEE PerCom, 2011.

[16] Jörg Ott, Dirk Kutscher, and Christoph Dwertmann.
Integrating DTN and MANET Routing. In Proc. of ACM
CHANTS workshop, 2006.

[17] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

[18] Charles Perkins and Pravin Bhagwat. Highly Dynamic
Destination-Sequences Distance-Vector Routing (DSDV) for
Mobile Computers. In Proc. of ACM SIGCOMM, 1994.

[19] Charles E. Perkins, Elizabeth M. Belding-Royer, and
Samir R. Das. Ad hoc On-Demand Distance Vector (AODV)
Routing. Experimental RFC 3561, July 2003.

[20] Marina Petrova, Lili Wu, Matthias Wellens, and Petri
Mähönen. Hop of No Return: Practical Limitations of
Wireless Multi-Hop Networking. In Proc. of RealMAN
workshop, 2005.

[21] Thomas Repantis and Vana Kalogeraki. Data dissemination
in mobile peer-to-peer networks. In Proc. of MDM, 2005.

[22] A. Vahdat and D. Becker. Epidemic routing for partially
connected ad hoc networks. Technical Report CS-200006,
Duke University, April 2000.

[23] A. Villalba Castro, G. Di Marzo Serugendo, and
D. Konstantas. Hovering information: Self-organizing
information that finds its own storage. Technical Report
BBKCS707, School of Computer Science and Information
Systems, Birkbeck College, London, UK, November 2007.

[24] Wei Wang, Vikram Srinivasan, and Mehul Motani. Adaptive
contact probing mechanisms for delay tolerant applications.
In Proc. of ACM MobiCom, September 2007.

[25] John Whitbeck and Vania Conan. HYMAD: Hybrid
DTN-MANET Routing for Dense and Highly Dynamic
Wireless Networks. In Proc. of IEEE AOC workshop, 2009.

[26] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal.
Wireless sensor network survey. Computer Networks,
52(12):2292–2330, 2008.

[27] Eiko Yoneki, Pan Hui, S. Chan, and Jon Crowcroft. A
Socio-Aware Overlay for publish/subscribe communication
in delay tolerant networks. In Proc. of ACM MSWiM, 2007.

[28] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura.
Multicasting in Delay Tolerant Networks: Semantic Models
and Routing Algorithms. In ACM SIGCOMM Workshop on
Delay-Tolerant Networking (WDTN), 2005.

