
aalto university

school of science and technology

Faculty of Electronics, Communications and Automation

Anssi Turkulainen

DELAY-TOLERANT NETWORKING FOR THE OPEN MOBILE

SOFTWARE PLATFORM: AN APPLICATION CASE STUDY

Thesis submitted for examination for the degree of Master of Science in

Technology

Espoo 25.1.2010

Thesis supervisor and instructor:

Prof. Jörg Ott

aalto university
school of science and technology

abstract of the
master’s thesis

Author: Anssi Turkulainen

Title: Delay-Tolerant Networking for the Open Mobile Software Platform:
An Application Case Study

Date: 25.1.2010 Language: English Number of pages: 8+85

Faculty: Faculty of Electronics, Communications and Automation

Professorship: Internetworking Code: S-38

Supervisor and instructor: Prof. Jörg Ott

This thesis is a study of leveraging a notion of delay-tolerant networking for chal-

lenged mobile network environments, where mobile devices face intermittent con-

nectivity. In particular, we utilize in this study the mobile phones that run on

Symbian, that is, the largest open mobile software platform in the world today.

We have implemented a novel bundle node implementation, called DTNS60, for

the Symbian S60 smartphones. The design and the architecture of DTNS60 are

described. The development of new delay-tolerant applications for DTNS60 has

been enabled by introducing a common and extensible API for the bundle protocol

service. Furthermore, we investigate the resource consumption and the through-

put capabilities of DTNS60, and validate the interoperability between DTNS60

and the DTN2 reference implementation using real mobile phones. Also, a delay-

tolerant voice application, called DT-Talkie, is studied as a case study.

In addition, critical Symbian-specific software development methods, typical mo-

bile software development characteristics, and basic DTN theory required for the

Symbian-based bundle node implementation are reviewed as a literature study.

DTNS60 is not a comprehensive implementation, instead it is more like a proof-

of-concept. Therefore, also the evolution of DTNS60 is discussed. We suggest

DTNS60 and related delay-tolerant applications to be merged with the Qt ap-

plication and GUI framework enabling cross-platform support and extending the

lifetime of the implementation also for the upcoming mobile phones.

It is feasible to implement the bundle protocol functionality for the stressed mo-

bile networks. However, the proposed DTNS60 implementation requires further

development to be more robust for the deployment into the real world.

Keywords: delay-tolerant networking, bundle protocol, DTNS60, DT-Talkie,
API, Symbian, S60, interoperability, mobile software development,
resource consumption, throughput, Qt

aalto-yliopisto
teknillinen korkeakoulu

diplomityön
tiivistelmä

Tekijä: Anssi Turkulainen

Työn nimi: Viive- ja häiriötolerantit Verkot Avoimelle
Mobiiliohjelmistoalustalle: Ohjelmistotutkimus

Päivämäärä: 25.1.2010 Kieli: Englanti Sivumäärä: 8+85

Tiedekunta: Elektroniikan, tietoliikenteen ja automaation tiedekunta

Professuuri: Tietoverkkotekniikka Koodi: S-38

Valvoja ja ohjaaja: Prof. Jörg Ott

Tämä diplomityö on tutkimus hyödyntää viive- ja häiriötoleranttien verkkojen

käsitettä haastavissa mobiileissa verkkoympäristöissä, joissa mobiililaitteet

kohtavaat epäsäännöllisiä yhteydenmuodostamismahdollisuuksia. Hyödynnämme

erityisesti Symbian matkapuhelimia. Symbian on tällä hetkellä maailman suurin

avoin mobiiliohjelmistoalusta.

Olemme kehittäneet natiivi-Symbianilla uudenlaisen viestisolmutoteutuksen

nimeltään DTNS60. Ohjelmiston arkkitehtuuri ja suunnitteluperusteet esitel-

lään. Yhteinen ja laajennettavissaoleva rajapinta viivetoleranteille ohjelmille mah-

dollistaa uusien ohjelmien kehittämisen viestisolmupalvelua vasten. Tutkimme

DTNS60:n resurssien kulutusta, läpisyöttöä, sekä yhteentoimivuutta DTN2 refe-

renssitoteuksen kanssa käyttäen mobiililaitteita. Lisäksi tutkimme käyttötapauk-

sena viive- ja häiriötolerantin puheohjelman nimeltään DT-Talkie.

Diplomityössä esitellään myös kriittiset Symbian-spesifiset ohjelmistontuotan-

tometodit, tyypilliset mobiiliohjelmistotuotannon ominaisuudet ja peruskäsitteet

viive- ja häiriötoleranttien verkkojen teoriasta tämän projektin näkökulmasta.

DTNS60 ei ole täydellinen implementaatio vaan enemmänkin konseptin todistus.

Siksi diplomityössä puhutaan myös DTNS60:n evoluutiosta. Ehdotamme, että

DTNS60 ja siihen liittyvät viivetolerantit ohjelmistot siirtyisivät käyttämään käyt-

tään Qt ohjelmisto- ja käyttöliittymäkehystä, joka mahdollistaa monialustatuen

sekä pidentää implementaation käyttöikää myös tuleville mobiililaitteille.

Viestinvälitysprotokollan toteuttaminen on mahdollista haastaviin mobiileihin

verkkoympäristöihin. DTNS60 implementaatio vaatii kuitenkin jatkokehitystä ol-

lakseen tehokkaampi ja robustimpi käytäntöön siirryttäessä.

Avainsanat: DTN, viestisolmu, viestisolmuprotokolla, DTNS60, DT-Talkie,
API, Symbian, yhteentoimivuus, mobiiliohjelmistotuotanto,
resurssien kulutus, läpisyöttö, Qt

iv

Preface

First, I want to thank Professor Jörg Ott for his kind guidance, discussions and

offering professional insights during the process of the thesis creation. He provided an

opportunity for me to work under this interesting research area in the Department of

Communications and Networking (Comnet) for the research projects CHIANTI and

REDI, and furthermore, managed the funding to attend related events supporting

the thesis work and personal development. Thank you also all the other co-workers

for offering such a nice working environment.

Then, I want to thank mobile software development and delay-tolerant network-

ing communities for offering invaluable information for the thesis work. Last year,

and the thesis-related work, has been an immense learning experience for me, and

hopefully I can contribute back for these communities more in the future.

Especial gratitude goes to my family for supporting and encouraging me throughout

my studies and life. I am grateful for my parents, Ritva and Markku, who made

all this possible. Not forgetting my brothers, grandparents and other relatives, who

have been there for me.

Last, but not least, all my friends deserve my warmest gratitude for offering me

lifelong memories in the adventures we experienced during the recent years. Those

were the salt of this study era.

Otaniemi, 25.1.2010

Anssi Turkulainen

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Acronyms viii

1 Introduction 1

2 Delay-Tolerant Networking 8

2.1 Motivation . 8

2.2 Architecture . 10

2.3 Bundle protocol . 11

2.3.1 Extensions . 13

2.4 Convergence Layer Adapters . 14

2.5 Routing protocols . 15

2.6 Challenged terrestrial mobile networks 16

2.6.1 Infrastructure-supported . 17

2.6.2 Infrastructure-less . 17

2.7 Summary . 18

3 Mobile software development 19

3.1 Constraints on software . 19

3.2 Forces for software development . 21

3.3 Mobile software platforms . 23

3.4 Symbian mobile software platform . 25

3.4.1 S60 application platform . 26

vi

3.4.2 Client-Server framework . 27

3.4.3 Active object framework . 28

3.4.4 Avkon GUI framework . 29

3.4.5 ESOCK communications framework 29

3.4.6 Multimedia framework . 30

3.4.7 Design patterns . 30

3.4.8 Test-Driven development . 32

3.4.9 Nokia Energy Profiler . 32

3.5 Component-based software engineering 33

3.6 Event-Driven Programming . 34

3.7 Summary . 35

4 Implementation 36

4.1 Legacy . 36

4.2 DTNS60 . 39

4.2.1 Design considerations . 39

4.2.2 Architecture . 40

4.2.3 Functionality . 43

4.2.4 DTN API . 47

4.2.5 Tools for testing . 51

4.3 Summary . 53

5 Validation and Evaluation 54

5.1 Verification . 54

5.2 Throughput capabilities . 54

5.3 Resource consumption . 56

5.4 Interoperability . 58

5.5 Further development . 58

5.6 Summary . 63

vii

6 Case study: Cross-platform delay-tolerant voice communication 64

6.1 DT-Talkie for S60 . 65

6.1.1 Design considerations . 65

6.1.2 Architecture . 65

6.1.3 Porting process . 65

6.1.4 Functionality . 67

6.1.5 Further development . 69

6.2 Point-to-point voice communication 70

6.3 Multihop voice communication . 71

6.4 Conclusions . 72

7 Lessons learned and conclusions 73

7.1 Conclusions . 73

7.2 Future research . 76

References 78

Appendix A 84

Appendix B 85

viii

Acronyms

AODV Ad-Hoc On-Demand Distance Vector Routing

API Application Programming Interface

AVKON AVKON GUI framework

CPU Central Processing Unit

DASM Delay-Tolerant Applications for Symbian Mobile Phones

DLL Dynamically Linked Library

DTN Delay-Tolerant Networking

DTNRG Delay-Tolerant Networkin Research Group

DTNS60 Delay-Tolerant Networking for S60 Mobile Devices

DTN2 DTN2 reference implementation

DT-Talkie Delay-Tolerant Walkie-Talkie

EID End-Point Identifier

GPS Global Positioning System

GUI Graphical User Interface

IPC Inter-Process Communication

IrDa Infrared Data Association

IRTF Internet Research Task Force

MANET Mobile Ad-hoc Network

MIME Multipurpose Internet Mail Extensions

MP3 MPEG-1 Audio Layer 3

MVC Model-View-Controller

NEP Nokia Energy Profiler

OLSR Optimized Link State Routing

OS Operating System

P.I.P.S. P.I.P.S is POSIX on Symbian

POSIX Portable Operating System Interface for Unix

SDNV Self-Delimited Numeric Value

SMS Short Message Service

S60 Series 60 application platform

RFC Request for Comments

TCP CL TCP convergence layer

TCP CLA TCP convergence layer adapter

UDP Universal Datagram Protocol

WLAN Wireless Local Area Network

1 Introduction

Mobility of systems, users, data and computing has been a world-wide success story.

Today there are billions of mobile end-devices out there. It seems that people are

carrying their mobile phones, and other mobile end-devices, everywhere they go.

Mobility is ubiquitous.

Unfortunately, problems arise when mobile communication rely only on the tradi-

tional transport-level end-to-end connections offered by, for example, mobile ad-hoc

networks, wireless local area networks or cellular networks. The coverage of the

wireless networks offering connectivity for the mobile devices is not ubiquitous to-

day nor in the near future. Technical, economical, legal and social factors restrict

the ubiquitous connectivity to become available.

The traditional end-to-end connection in the mobile device fails in challenged net-

work environment where disconnections of links and intermittent connectivity are

typical characteristics. Especially, when the mobile device is changing from one

wireless network to another, disconnections in connectivity are usual. The tradi-

tional application that relies on the traditional end-to-end communication is not

usable anymore in this kind of challenged network environment. A novel approach

is needed at the application level to cope with the intermittent connections.

For example, when a traveler is traveling on a train, her mobile phone may be con-

nected to the wireless local area network (WLAN) at the departure railway station.

But on contrary, when the train is moving between the stations in the middle of

nowhere, there is no coverage for the WLANs. To maintain the seamless connection

across the railway stations at the application level, delay-tolerant networking ap-

proach can be applied. Now, the traveler on the train is able, for example, to send

emails with her mobile phone using a delay-tolerant email application while the train

is moving, even though she is not connected to any underlying network. When the

train arrives at the next station, the traveler achieves connectivity to the WLAN,

and email is sent automatically towards the recipient using the delay-tolerant soft-

ware in a mobile phone. Thus, a notion of delay-tolerant networking offers a solution

for the intermittent and opportunistic connectivity problem in the mobile phone.

2

Background and related work

Delay-tolerant networking (DTN) is a well-studied area in the research communities

around the world, for example, in the Delay-Tolerant Networking Research Group

[14] in the Internet Research Task Force [28]. DTN was originally designed for

the interplanetary internet [29], but can be applied also for the terrestrial wireless

networks where challenged conditions for communication are evident - including

those where mobile devices operate.

Real-world applications for mobile devices using delay-tolerant and opportunis-

tic communication protocols have been introduced, for example, in Bytewalla[7],

KioskNet[25], MobiClique[51], Drive-Thru Internet [48], Haggle[26] and CHIANTI[11]

projects. Also, many other projects research the DTN concept in the different target

environments, such as, DARPA[43], SAMI network connectivity [61] and N4C[73].

A notion of using DTN-based approach for mobile ad-hoc networking [42] on the

Symbian platform [65] has been introduced using WLAN and Bluetooth as connec-

tivity technologies. Furthermore, real-world experiments for the pocket switched

networks (PSN) [50] has been already realized using these connectivity technologies

on the Windows Mobile platform [77] to study the contact opportunities with other

devices in the conference environment.

In this thesis, we take an implementation-based approach to study the delay-tolerant

networking concept. The implementations of the DTN-based architecture [10] for

the terrestrial mobile networks utilize, in this case, the experimental bundle protocol

[62] to offer delay-tolerant message-delivery functions. Convergence layer adapters,

e.g. TCP CLA [15] or UDP CLA [36], are used as an interface between the bun-

dle layer, where the bundle protocol operates, and an underlying transport layer.

The bundle protocol using the convergence layer forms the basis for the DTN func-

tionality. However, there are many advanced functionalities that are introduced

as well, such as, DTN security [70], DTN routing protocols [38, 2], and usage of

metadata[69] that can be implemented as extensions for the bundle protocol. The

Licklider Transmission Protocol [57], that can serve as a convergence layer adapter, is

not considered in the thesis because of being more convenient for the interplanetary

communication.

The development of the bundle protocol agent and the TCP convergence layer im-

plementations for the Symbian mobile phones, called DASM[41], has been started

earlier. We take DASM as an input to the thesis’ implementation work, and rename

3

it to DTNS60 to be more descriptive, and embodying also every new component of

the implementation that we have developed. The development of DTNS60 should

conform a set of design principles for opportunistic communication in constrained

computing environments [45].

The main implementation, called DTN2[18], of the delay-tolerant functionality to-

date has been developed earlier as a reference implementation by the DTNRG using

C/C++ as an implementation language. The reference implementation contains

also a set of basic delay-tolerant applications, for example, for sending and receiving

messages between bundle nodes. DTN2 is used in the interoperability testing part

of the thesis. The target devices for the reference implementation are also other

than mobile handheld devices. As of our knowledge, there is also implementation

effort for the bundle protocol (at least) in the DTNRG to develop Java, Python

and Objective-C solutions, that are targeted for the mobile devices. Furthermore,

also a port to the Android platform [7] has been developed to-date. These other

implementations can be used in conjunction with DTNS60 to offer cross-platform

bundle protocol functionality for the mobile devices.

A delay-tolerant voice application, called DT-Talkie[31], for Maemo Internet tablets

demonstrates the notion of asynchronous voice messaging [27] on the mobile devices.

It is a push-to-talk[47] application that can function in the delay-tolerant networks.

The Maemo version of DT-Talkie uses DTN2 for the bundle protocol services. In

the case study part of the thesis, we use DT-Talkie as a reference to implement a

Symbian-specific DT-Talkie implementation that uses the bundle protocol service

offered by DTNS60.

Research problem

Traditionally, mobile devices utilize mobile networks with a infrastructure network

support, or mobile ad-hoc networks, to establish communication sessions with other

devices using underlying transport-layer in an end-to-end manner. Usually, TCP/IP

is used as a communication protocol, and routing protocols such as AODV[49] or

OLSR[12] are utilized. When a mobile device loses the connectivity, most applica-

tions requiring networking capabilities (e.g. web browsers and email applications)

will not work anymore on the device.

Applying the DTN-based approach for these challenged mobile networks on the other

hand relies heavily on asynchronous communication, where the transport-level end-

4

to-end connectivity is relaxed. The DTN-based approach offers application-level

end-to-end connections using the bundle protocol to deliver messages encapsulated

as variable-sized bundles in a hop-by-hop basis from the source to the destination. It

operates in a store-carry-forward manner forming an overlay layer and abstracting

away the underlying protocol stack, i.e., the bundle layer forms an asynchronous

messaging platform. Consequently, an application running on the mobile network

that cannot maintain transport-level end-to-end connectivity can be made functional

when the bundle protocol has been taken in use in the communication protocol stack.

Now, the application can communicate with the remote application, if there is at

least one path in time from the source node to the destination node (in the hop-by-

hop basis). For example: in the rural areas a person carries in a mobile device other

person’s messages to the remote town as a “data mule”, and transmits the messages

when the contact opportunity becomes available, i.e., when arriving to the town and

meeting the other person.

Delay-tolerant applications on a mobile device must also be asynchronous by their

nature. This means that existing applications, that commonly rely on the syn-

chronous TCP/IP communication, need to be modified to support the bundle pro-

tocol layer in their protocol stack enabling asynchronous communication. Delays for

delivering an application message, or a “bundle”, may vary from a few milliseconds

to many hours, or even days or longer in the deep space communication case (space

is not our target, though).

Finally, implementing the bundle protocol service for the mobile devices introduces

several challenges that are typical for mobile computing but not for fixed infrastruc-

ture computing. For example, persistence of bundles, processing power and energy

consumption on the mobile devices may bring drawbacks due to limited memory

sizes, low-speed CPUs and limited battery-life of the mobile phones.

Objectives and scope of the thesis

The main goals of the thesis are:

• to elicit the requirements and the practices for implementing the bundle node

for the mobile software platform, focusing on the Symbian platform;

• to validate the Symbian-specific bundle protocol functionality in the laboratory

environment using real mobile phones;

5

• to evaluate the resource consumption and the throughput of DTNS60, and to

validate the interoperability between the DTNS60 and DTN2 implementations;

• to provide a common and extensible application programming interface for the

delay-tolerant application developers;

• to analyze the cross-platform delay-tolerant voice application, DT-Talkie,

using DTNS60 for the bundle protocol services in the Symbian plaform side;

• to enable further development of DTNS60 by re-architecturing, refactoring and

developing further the legacy DASM implementation;

• to gain experience about porting an application from the Linux-based platform

to the Symbian platform; and

• to release DTNS60 and DT-Talkie available for the open source community.

The goals are achieved by conducting first a literature study for the requirements

of the bundle node implementation for the mobile devices, and for the mobile soft-

ware development characteristics that are evident in the target Symbian platform.

Then, we propose a native Symbian C++ bundle node implementation. We verify

the implementation against the requirements specifications, and evaluate the im-

plementation. Furthermore, an application case study, utilizing the bundle node

implementation, is performed.

The target network type for the proposed DTNS60 implementation, introduced later

in the thesis, is a terrestrial wireless network that cannot maintain end-to-end con-

nectivity at the transport layer, i.e., those that are formed from mobile ad-hoc net-

works or mobile infrastructure-supported networks, when connectivity opportunities

are available. Hence, our target is to investigate the bundle protocol functionality

in one network (this can be extended in the future). On the other hand, these mo-

bile networks can contain heterogeneous mobile end-devices (e.g. mobile phones,

Internet tablets, laptops and desktop computers) connected to the wireless access

points or communicating in an ad-hoc manner through wireless network interfaces.

Communicating between different heterogeneous networks requires gateway imple-

mentations and is out of the scope of the thesis. Other networks where the DTN

architecture may be expanded are Interplanetary Internet [29], sensor networks,

satellite networks, and underwater acoustic networks.

Multi-platform support for the bundle protocol is an important goal since there is no

overall benefit for developing several bundle protocol implementations, if they can

6

not communicate with each other in the real world. The interoperability between the

DTN2 reference implementation and DTNS60 fulfills this requirement in the scope of

the thesis. The bigger picture is to implement a world-wide DTN testbed, including

mobile and fixed infrastructure, that is formed from many implementations using,

for example, C/C++, Objective-C, Java and Symbian implementations, that can

seamlessly communicate with each other. There are efforts towards this goal in the

DTNRG.

We choose to develop the legacy Symbian implementation further instead of porting

the DTN2 reference implementation to Symbian using Open C/C++ libraries [46].

As of our knowledge, the native environment provides a more efficient solution.

Porting the reference implementation for S60 environment instead of developing

S60-specific implementation requires further research and is out of the scope of the

thesis.

Methodology

Even though there is a heavy tussle among the different mobile software platforms -

and the winner remains to be seen - we choose to implement the bundle node on the

Symbian mobile phones because of the wide availability of the devices, due to earlier

effort with the Symbian-specific bundle protocol implementation, and keeping the

scope of the thesis reasonable choosing only one platform. Furthermore, Symbian

mobile phones offer many connectivity methods, such as, WLAN, Bluetooth and

cellular network connections. Other advanced features, such as a GPS module,

a high-quality camera and a touchscreen can also be leveraged by delay-tolerant

application development for the Symbian devices in the future. Moreover, Symbian

is still the largest open mobile software platform in the world today [65].

The proposed DTNS60 implementation has been achieved by developing DASM

further to provide more advanced functionality. In addition, we port the DT-Talkie

voice application for the Symbian platform. The porting process is introduced in

the case study chapter as porting an application for Symbian is known to be a hard

problem in the mobile software development community. We develop also Symbian-

specific implementations for the basic tools to send and receive bundles, and to ping

bundle nodes, that can be used as a basic tools in the interoperability testing and

in the throughput analysis. Analyzing the resource usage of the implementation on

the real devices has been achieved by using Nokia Energy Profiler [44].

7

Also, to continue the lifetime of the DTNS60 implementation, development of 3rd

party applications using the bundle protocol service and the further development of

the service itself must be made easy to grasp. This requires a careful consideration

for the software design and the architecture. DTNS60 provides an extensible and

common application programming interface for bundle protocol services that delay-

tolerant applications can use, and that is encouraged to be developed further.

An addition of Bluetooth, and other network interface technologies, has been made

feasible using a robust design in the software and component-based software engi-

neering. Also, good practices in software development, such as, design patterns and

test-driven development have been taken in use to lower the barrier for the further

development, and in order to produce quality software.

The underlying network for the bundle protocol in our implementation is TCP/IP at

the transport and the network layer, and IEEE 802.11 at the link layer. An option

to choose between the WLAN ad-hoc mode and the infrastructure mode has been

enabled using the native features of the Symbian phones.

An output of the thesis is a new alpha release version of the DTNS60 bundle node

implementation including DT-Talkie as an example delay-tolerant application. The

basic tools for sending and receiving bundles, and for pinging other bundle nodes,

are also provided. Furthermore, DTNS60 is released truly available for the open

source community in hope of attaining contribution, i.e., source code of the software

has been made transparent and accessible.

Outline and the structure of the thesis

The following second chapter conducts a literature study describing an overview for

the basic delay-tolerant networking characteristics, continued in the third chapter

describing typical mobile software development characteristics, and critical Symbian

programming paradigms for this project. In the fourth chapter, the design, the archi-

tecture and the functionality description of the different components of DTNS60 are

introduced. In the fifth chapter, the implementation is validated and evaluated, and

the future development ideas are discussed. In the sixth chapter, an application case

study using a novel DT-Talkie for Symbian is introduced and real world deployment

scenarios are provided. Finally, we look the lessons learnt and make conclusions

about the work done. In the end, the future research ideas are discussed.

8

2 Delay-Tolerant Networking

This chapter is a review for the basic delay-tolerant networking concepts and require-

ments. First, differences between the traditional Internet-based approach and the

DTN-based approach are revisited in the form of motivation for using DTN. Then,

the fundamental parts of DTN, that are, the architecture, the bundle protocol, con-

vergence layers, extensions (such as security), and routing protocols are reviewed.

The bundle protocol agent using the TCP convergence layer adapter forms the basis

for our implementation (keeping in mind that the not-implemented features can be

added to the solution in the future). Lastly, examples for challenged terrestrial mo-

bile networks are described. The mobile devices can use the DTN-based approach

for communication in these kind of stressed mobile networks.

2.1 Motivation

One important design principle of the traditional Internet architecture is an end-

to-end principle [60]. TCP is the most common transport protocol, and uses Inter-

net Protocol at the network layer to interconnect heterogeneous networks together.

Hence, reliability has been traditionally implemented at the transport layer using

synchronous TCP/IP communication. The connectivity offered by the traditional

TCP/IP-based Internet is usually functioning without problems, if there is a robust

underlying network infrastructure providing connectivity services and static end-

devices, for example, servers that have wired and reliable connectivity methods to

the network backbones.

When the mobility of the end-devices is evident, as it is in the current modern

societies around the world, another kind of approach is needed to cope with discon-

nections and disruptions of the mobile communication links caused by the traditional

communication paradigm. Moreover, in the developing countries, it is a common-

place that people get the first touch to the Internet via mobile devices, and the

fixed network infrastructure is lacking, i.e., mobiles devices are used at the edges

of the Internet. As mentioned before in the introduction in the example scenario,

connectivity opportunities for the mobile devices are intermittent depending on the

coverage of the access points (offering usually also a gateway to the Internet). The

traditional architecture fails in these kinds of challenged (and mobile) network en-

vironments. We can see, that mobility of the devices that communicate with each

other, is the new characteristic in networking. Therefore, it is reasonable to evolve

9

the traditional communication architecture to support delay-tolerant and mobile

characteristics as the usage habits of the architecture itself are evolving from fixed

to mobile computing.

The DTN-based approach hides the leaking abstractions, i.e. traditional connec-

tion abstractions, from the users of the mobile devices by introducing an overlay

network on top of the existing heterogeneous network infrastructure. The overlay

approach enables a seamless transformation from the delay-intolerant architecture

into the delay-tolerant architecture since both can be used in parallel (no need to

change underlying protocol stacks). The overlay network uses the bundle protocol

for passing messages as bundles from one node to the another. The bundle proto-

col forms a store-carry-and-forward overlay network on top of transport layer and

it can form conceptual end-to-end connections between delay-tolerant applications,

if the message-delivery possibilities from the sender to the receiver are available

at some point of time (which may not always be the case, though). DTN lever-

ages asynchronous communication, so the delay-tolerant applications must be also

asynchronous by their nature.

The DTN-based approach can be applied to the stressed mobile ad-hoc networks and

to the stressed infrastructure-supported mobile networks. DTN-based mobile ad-hoc

networking [42] can be applied, for example, in disaster recovery areas, mining work

sites, rural areas among indigenous people, or military battlegrounds. Common

characteristics for these application areas are that the fixed network infrastructure

is lacking, and there are delays, disruptions or re- and disconnections involved in the

communication links. End-to-end connectivity may never exist, instead hop-by-hop

connections are evident.

In the disaster recovery areas, for example when an earthquake has happened, there

is an urgent need to get rapidly a communication infrastructure operational to enable

the communication of the aid management. Bringing mobile devices to the area, and

building a mobile and delay-tolerant ad-hoc network between the devices is faster

than building a new fixed infrastructure from scratch.

In the mining sites, it is cheaper to deliver messages down in the hole carrying the

messages in the mobile devices than building an infrastructure network to cover

the whole mine. The same kind of situation is in the rural areas where it is not

economically rational to build an infrastructure network. For example, in the rural

areas helicopters can bring messages (such as news and emails) for the indigenous

people when delivering food and other supplies for them. Also, local and virtual

10

communities can be formed using the asynchronous messaging paradigm to deliver

messages among the local people.

In the military battlegrounds, it is common that the hostiles are using electronic

warfare: to jam the devices of the other party, and to disrupt the communication

links of the enemies to gain an advantage in the battle. Also, the loss of end stations

is usual. Moreover, the military operates in challenged environments, where they

may be outside of the coverage of the fixed communication infrastructure that would

provide, for example, telephony and data-delivery services. Furthermore, mobile and

delay-tolerant ad-hoc networking may enable communication in a more convenient

way (than using, e.g., satellite phones) also among platoons and squads that are on

a mission.

2.2 Architecture

The delay-tolerant networking architecture is described in RFC 4848[10]. The archi-

tecture supports intermittent connectivity, long or variable delay, and asymmetric

data rates. The purpose of the DTN architecture is to loosen the traditional TCP-

based assumptions since the end-to-end path at the transport layer may not exist

for the whole duration of the communication session. Also, because the architecture

supports interoperability between heterogeneous networks [21], all underlying net-

works do not need to support TCP/IP protocols on the communication path. This

is achieved by the overlay nature of the delay-tolerant network. The overlay net-

work layer is called a bundle layer, that is used to deliver variable-length messages

between a sender and a receiver, and it is located at the application layer in the

traditional Internet model [64]. The bundle layer is depicted in Figure 1.

The sender nodes and the receiver nodes of the bundles, bundle nodes, are identified

by a DTN-specific naming syntax, endpoint identifiers (EID), that enhances interop-

erability between the heterogeneous networks. The late binding characteristic of the

architecture enables that the binding of the identifiers does not necessarily happen

at the source bundle node since the destination EID may be re-interpreted at each

hop.

Also, the receiver bundle nodes are assumed to have some kind of persistent storage

to support store-carry-and-forward functionality over multiple paths. In other words,

the storage of the DTN network is distributed to the bundle nodes. The architecture

addresses also security mechanism, and coarse-grained classes of service. An analogy

11

for the DTN network is the postal service. DTN forms an asynchronous messaging

platform for the message-delivery operations.

The bundle layer of the architecture also affects the delay-tolerant application design.

The delay-tolerant applications should be designed keeping in mind to minimize

round-trip times, and prepare the delay-tolerant application with the ability to cope

with restarts after the failure while the network transactions remain in the pending

state. Also, the delay-tolerant applications should inform the network of the useful

lifetime and the relative importance of the data in the bundles to be delivered.

2.3 Bundle protocol

The bundle protocol is described in detail in RFC5050[62] (including the message

formats and the processing algorithms). The bundle protocol operates at the bundle

layer of the DTN architecture described in the previous section. Conceptually, the

bundle protocol builds an overlay network on top of the convergence layer adapters

that work on top of the transport layer in the Internet model, i.e., the bundle protocol

is located at the application layer.

The main goal of the proposed DTNS60 implementation is to implement a low-level

daemon service for the bundle protocol in the mobile phone. This service is able to

send, receive and forward bundle messages between bundle nodes. A bundle node

is an entity in the delay-tolerant network that has these capabilities. The concep-

tual components of the bundle node are a bundle protocol agent, convergence layers

(described in the next section), and application agents, i.e., components that com-

municate with the delay-tolerant applications, and that utilize the bundle protocol

services. DTNS60 is a proposed implementation for the bundle node for Symbian

mobile phones containing these conceptual components.

The bundle protocol agent is a node component that offers bundle protocol services

for delay-tolerant applications. It executes the procedures of the bundle protocol,

that are, bundle processing phases (e.g., bundle parsing and encapsulation) and

administrative record processing. The bundle protocol agent is tied (offers an in-

terface) to the routing engine including algorithms deciding where the bundles are

forwarded next. Also, there is an assumption in the bundle protocol that forwarding

information bases of the bundle nodes are already populated, e.g., manually in the

simplest case.

An application agent has an administrative part and an application-specific ele-

12

ments. In the proposed DTNS60 implementation, we have developed a few example

applications that communicate with the conceptual component that is considered to

be an application agent, and is located in the same application process as the the

bundle protocol service.

Key capabilities of the bundle protocol are a custody-based retransmission, an ability

to cope intermittent connectivity and an ability to take advantage of the scheduled,

predicted and opportunistic connectivity. In addition, the bundle protocol has the

ability to take an advantage of the continuous connectivity. The custody-based

retransmission means that some other bundle node than the original one has taken

the responsibility to deliver a bundle to some end-point, i.e., the bundle is delivered

in the hop-by-hop basis from the sender to the receiver. The late binding of the

overlay network endpoint identifiers to the underlying internet addresses is also a key

feature of the bundle protocol supporting the DTN architecture. The late binding

means that the end-point identifier of the recipient is not bound to the underlying

network address at the source bundle node, because the transmit time may exceed

the validity time of the binding; instead the binding is re-interpreted at each hop.

There are several ways to implement the bundle protocol architecture. Our im-

plementation is realized as a daemon process on the mobile phone, that the delay-

tolerant applications consume using inter-process communication mechanisms. Other

implementation models may be, for example, to implement the bundle protocol func-

tionality as a peer application node, as a sensor network node, or as a dedicated

router.

The bundle protocol has been designed to keep in mind security considerations from

the beginning. For example, only authorized bundle nodes should be able to send

bundles to the delay-tolerant network where resources of the mobile bundle nodes

(storage, bandwidth etc.) are scarce.

A message passing through a delay-tolerant network, that uses the bundle protocol,

is depicted in Figure 1. The underlying layers beneath the bundle layer and conver-

gence layer adapters may be TCP/IP based, but can also use other protocols. The

proposed DTNS60 implementation is also depicted in Figure 1.

The basic message blocks for a single bundle are formed from the primary and

payload blocks, but the bundle protocol message formats has been designed to keep

in mind extensibility and scalability. Therefore, the messages are encoded using self-

delimiting numeric values (SDNV)[19]. SDNVs are encoded using 7 least significant

bits and setting the last octet’s most significant bit to zero. Every other most

13

Delay-tolerant application

Bundle layer

Transport layer A

Network layer A

Bundle layer

Transport layer A/B

Network layer A/B

Delay-tolerant application

Bundle layer

Transport layer B

Network layer B

An internet An internet

DTNS60 Bundle forwarder Bundle node

Bundle layer

Transport layer A/B

Network layer A/B

Bundle forwarder

Convergence layer Convergence layer Convergence layerConvergence layer

Figure 1: Bundle protocol

significant bit in the subsequent octets is set to one. The usage of SDNVs enables

an addition of the extensions to the bundle protocol that may not be known yet.

The bundle protocol requires services from the convergence layer adapters. The

convergence layers must provide means for sending a bundle to all bundle nodes in

a minimum reception group that are reachable via a particular convergence layer

adapter. Also, delivering a bundle, that was sent by a remote bundle node via

the convergence layer protocol to the bundle protocol agent of the current node, is

provided by the convergence layer adapter.

2.3.1 Extensions

The bundle protocol has been designed so that it can be extended using extension

blocks that are all blocks other than primary and payload blocks in a bundle message.

If the bundle node is not able to process a particular extension block, it flags the

bundle to be unprocessed, and forwards it towards next recipient (that may have

the extension block specific capabilities). The extension blocks are not implemented

in DTNS60, but those may be features to implement in the future to provide more

advanced bundle protocol functionalities in a mobile phone. We introduce briefly

below four extension blocks that have been introduced today. An up-to-date list of

the available extension blocks is available from the DTNRG.

14

Security

The bundle protocol can be deployed to the environment where the typical security

challenges concerning availability, integrity and confidentiality, are apparent. The

bundle security protocol [70] offers data confidentiality and integrity options in form

of optional extensions blocks that can be added for each bundle. The security

protocol applies to the bundle payload block and other various extensions blocks

that may be used in the single bundle enabling the bundle-based communication to

be secure.

Metadata

The metadata extension block [69] is intended to provide information for the bundle

nodes as they process bundles. The metadata is related to the application-level

information, but is used in the bundle processing algorithms in the bundle protocol

agents. For example, the metadata block may contain information whether the

bundle should be forwarded to the next node, or stored in the persistent memory

for future processing.

Previous hop

The previous hop insertion block [67] is designed to include an EID of the previous

bundle node, that was added by that previous node when forwarding the bundle to

the current node. The intention of this extension block is to prevent routing loops.

Retransmission

The retransmission extension block [68] is designed to prevent duplicate bundles

in a delay-tolerant network. It uses some particular policy to delete all bundles

that are already forwarded caused by intentional or unintentional routing loops.

The custodian, i.e., the bundle node that currently holds a copy of the bundle to be

delivered and is responsible for (re-)transmitting the bundle, inserts a retransmission

block to the bundle when it is retransmitting that bundle.

2.4 Convergence Layer Adapters

A convergence layer adapter is an interface between the bundle protocol and the

underlying network protocol stack. Our proposed implementation uses the TCP

convergence layer adapter, and we look in detail, how it works. Also, UDP CLA [36]

and other convergence layers can be added later to the implementation, but is out of

the scope of the thesis. For every underlying protocol stack, own convergence layer

15

adapter implementation is required, for example, UDP and TCP requires separate

implementations. Convergence layer adapters lay also at the application layer in the

Internet model and they usually consume services offered by an underlying operating

system (e.g. Sockets API in UNIX and Symbian).

Transmission Control Protocol Convergence Layer Adapter

The TCP convergence layer protocol [15] (TCP CL) utilizes widely-used Transmis-

sion Control Protocol as an underlying transport layer protocol. The main function-

ality of the TCP CL is introduced briefly here because we use it in DTNS60.

The main functions of the TCP CL are: to specify the encapsulation and decapsu-

lation of the bundles, and to describe the procedures for TCP connection setup and

teardown. Typically, a node uses the services from the underlying operating sys-

tem to establish a TCP connection, which is required for the TCP CL connection.

A TCP CL connection is formed initially by sending contact headers between the

sender and the receiver. After the TCP CL connection has been setup between two

nodes, bundles are transmitted in one or more data segments including a header in

each data segment that tells the length of the bundle data in the variable-sized SDNV

format. The receiver acknowledges all the data segments and allows a possibility

to the reactive fragmentation. When the transmission of one or more bundles has

been ended the connection is torn down. The typical flow of the TCP CL protocol

messages are depicted in Figure 2.

A more detailed description of the TCP CL protocol is described in the specification.

For example, message formats, errors and rejections are handled in a TCP CL -

specific way.

2.5 Routing protocols

In the DTNRG, there has been designed many routing protocols that can be taken

in use in conjunction with the bundle protocol. The intention of the DTN routing

protocol is to choose best route from the sender to the receiver in challenged network

environments. In the current version of our implementation, that is introduced later

in the thesis, we use only static routes. But for the future research, implementing and

validating the DTN routing protocols and integrating those to our implementation

is an interesting area to look for. The simulation studies for the routing protocols

[2] suggest that PropHet[38] is the most appropriate routing protocol to implement

first for DTNS60. Other routing protocols are, for example, flooding, epidemic,

16

DTNS60 DTNS60

Contact headerContact header

Shutdown Shutdown

Data segment

SDNV length L1

Bundle data 0...L1

Data segment

SDNV length L2

Bundle data L1...L2

ACK segment

SDNV Length L1

Data segment

SDNV length L3

Bundle data L2...L3

ACK segment

SDNV Length L1+L2

ACK segment

SDNV Length

L1+L2+L3

T
IM

E

Figure 2: Typical flow of TCPCL protocol [15]

probabilistic, maxprop and spray-and-wait routing protocols.

2.6 Challenged terrestrial mobile networks

An objective for the implementation work of the thesis is to deploy the bundle pro-

tocol to the challenged terrestrial mobile networks. These networks are terrestrial

wireless networks that cannot ordinarily maintain end-to-end (transport-level) con-

nectivity. There are two ways to form connectivity, when available, in these kind

of networks; to use the infrastructure network support by means of using an ac-

cess point (e.g. WLAN infrastructure mode), or to form a mobile ad-hoc network

17

(MANET), where mobile devices form a network in a peer-to-peer manner in the

infrastructure-less environment.

2.6.1 Infrastructure-supported

In the infrastructure-supported mobile networks, mobile devices achieve connectivity

to the network via access point (e.g. via wlan access point or 3G tower). All traffic

in and out from the device, encapsulated by the bundle protocol, flows through

the access point that is currently in use. WLAN in the infrastructure mode is

the infrastructure-supported mode in our implementation. Figure 3 represents an

example of the challenged mobile infrastructure-supported network.

b
u
n
d
le

s

bundles

bundles

Figure 3: Challenged infrastructure-supported mobile network

2.6.2 Infrastructure-less

Conventional MANETs form an arbitrary networks structures without any help of

the infrastructure networks. The connectivity is assumed to be end-to-end and

always-connected for the lifetime of the session (like in the traditional Internet).

Compared to the conventional MANETs, challenged MANETs may achieve commu-

nication opportunities from sporadic and intermittent contacts. In the challenged

MANETs, disconnections and re-connections occur frequently and the end-to-end

principle is relaxed using the bundle protocol, like in the infrastructure-supported

case. WLAN in the ad-hoc mode is the infrastructure-less mode that our implemen-

tation supports. Figure 4 represents an example of the challenged mobile ad-hoc

network.

18

b
u
n
d
le

s

b
u
n
d
le

s

bundles

bundles

bundles

Figure 4: Challenged ad-hoc mobile network

2.7 Summary

In this chapter we reviewed the basic DTN concepts and the differences between

the DTN and the traditional Internet concepts. The chapter forms an overview

for the requirements of the bundle node implementation, even though more detailed

requirements are found from the requirements specifications. The next chapter takes

a look in the characteristics of mobile computing and in the general mobile software

development practices used in the Symbian-based project, that are needed to take in

account when implementing a bundle node for the Symbian device. In the subsequent

chapters we propose a bundle node implementation for the Symbian S60 mobile

phones, and investigate it in more detail.

19

3 Mobile software development

In this chapter, the characteristics of the mobile software development from our

implementation point of view are studied. Therefore, our focus is on the Symbian

software platform, but most of the characteristics can be applied also for the other

popular mobile software platforms, that we briefly review in this chapter. Software

development for Symbian, and especially for the S60 application platform, has some

typical characteristics and capabilities in addition to the generally good software

development practices (such as, commenting the code and the coding conventions).

The client-server framework, the active object framework, the Avkon GUI frame-

work, the ESOCK communications framework and the multimedia framework are

introduced since those are the main frameworks for implementing DTNS60. Nokia

Energy Profiler (NEP) is reviewed because we use it for measuring the resource con-

sumption of DTNS60. We describe, how NEP can offer more deeper integration to

DTNS60 in the future. In the end of the chapter, test-driven development, beneficial

design patterns, component-based software engineering and event-driven program-

ming are briefly discussed in order to create quality software, and because those

are the essential software development paradigms for the proposed implementation

introduced in the following chapter.

3.1 Constraints on software

Mobile software development generally, and especially for the mobile devices appar-

ent in the challenged mobile networks, are restricted by a set of constraints that

are distinct compared to the desktop and enterprise environment. We describe here

the typical constraints [33] in more detail keeping in mind that we are developing

delay-tolerant software for the Symbian-based devices. However, most of these con-

straints are universal for the mobile software development on every mobile software

platform.

Most importantly, mobile devices have (today) constrained hardware due to the

nature of the mobile device; the device needs to be small enough that it can be

carried always in a pocket. Also, economical reasons prevent devices from being more

powerful. More efficient hardware is more expensive. When a mobile manufacturer

ships millions of devices each month, even a small cost savings in hardware costs

add up to a large sum eventually.

The power supply of the mobile device is dependent on the battery, that is a scarce

20

resource. This is not the case in the enterprise servers and desktop computers using a

fixed electrical charge. The power usage of the device must be minimized so that the

phone can stay active as long as possible with one battery charge. The battery life

is typically the most valuable requirement for the end users, and especially valuable

for the challenged environments where charging possibilities may not be available all

the time. The goal is to minimize the activity time of the mobile phone’s hardware

and software modules, for example, activity of the screen, antennas, or daemon

processes (e.g. the bundle protocol service) running on the device. We look at the

energy usage of DTNS60 in the chapter 5.

The users of the mobile device expect high reliability of the software running on the

device. One reason for this is the capability of the mobile phone to act as a life-

saving tool, for example, by placing an emergency call, or allowing rescue services

to locate the user in case of an accident (e.g. using GPS).

Symbian OS is an open operating system. This means that the codebase is trans-

parent, but it also means that the operating system allows the software on device

to be upgraded and extended after it has been shipped from the factory. Conse-

quently, the software cannot be optimized for specific tasks, but rather the software

needs to be flexible, adaptable and allow future changes. An exception for this rule

are tailored mobile phones for one special purpose (e.g. mobile devices reporting

health information automatically to the hospitals). On the other hand, if the delay-

tolerant software is going to gain importance among the typical end-users, it should

support parallel operations and upgradings in the software and handle correctly the

consequences of these upgradings also in the delay-tolerant software.

Mobile device end users, device manufacturers, retailers, network operators and

suppliers of software, services and content expect the mobile device to be secure

against the software attacks. Mobile devices usually contain private data, that

must be secured. The risks for the Symbian mobile devices are more significant

because Symbian allows software to be installed on a mobile phone. Also, devices

and multiple communication channels of the devices support many services that are

charged from the user increasing the importance of the security to prevent usage

violations, and huge surprising costs from the users. Mobile devices in a DTN

network must be especially secure because of the scarce resources, e.g., the mobile

device should not forward by default any unwanted traffic that drains the battery.

The user interface of the mobile device suffers from the small screen sizes and min-

imal keyboards. These constraints pose restrictions for the applications, including

21

delay-tolerant ones, on a mobile device. In addition, the user interface of the delay-

tolerant application has a challenge to be more responsive, because a response for a

request may come after some arbitrary time after a request has been made, or it may

come never. It is clear that delay-tolerant applications have even more restrictions

to the user interface design than the traditional applications.

3.2 Forces for software development

Forces for the mobile software development [33] that need to be taken in account

are reviewed next. These forces are caused by the mobile device constraints that we

described in the previous section. Moreover, the forces need to be taken in account

when implementing DTNS60, and mobile software generally to provide the end-users

a pleasant user experience.

Firstly, it is reasonable to reduce the memory usage of the mobile devices due to

limited amount of read-access memory (RAM) available. Also, reducing the RAM

can result in the less power usage, since power is required to store data in RAM.

By contrast, the execution time may increase, if a lot of caching techniques (that

consume memory) are reduced, and therefore, there is a trade-off between the RAM

usage and the execution time. The three main contributors to the RAM usage are

the call stack, the heap and the code of the application (if not executed-in-place). In

addition, Symbian C++ offers the cleanupstack-mechanism that effectively prevents

memory leaks before deploying the software (and leads to more reliable software,

e.g., when a memory leak does not consume all the memory unexpectedly).

On the other hand, RAM will eventually run out (e.g. when multitasking programs),

and it is important to predict this. For example, when placing an emergency call, the

function should not fail because the software was not able to allocate enough mem-

ory due to less important other applications that were consuming all the memory.

Predicting the RAM usage will also lead to more reliable software.

The code, read-only data and persistent data are stored in the secondary storage,

i.e. in the flash disk or the hard drive. Accessing to the secondary storage is much

slower than accessing to the RAM, and the secondary storage space is also limited

compared to the desktop or enterprise computers. Therefore, this data should be

minimized on a mobile phone. On the other hand, a delay-tolerant network relies

heavily on the persistent storage available in the network. This affects to the policy

that is used to accept custody of bundles in a mobile phone, and also which mobile

22

phones are used; it does not make sense to use low-storage phones in conjunction

with the distributed storage requirements of the delay-tolerant network.

Minimal execution time for software may mean, for example, starting an application

or responding to a key press from the end user. The main concern is to execute a

particular use case in the shortest execution time as possible. A use case is limited

always by a bottleneck, and in the delay-tolerant software, the network bandwidth is

the bottleneck. Therefore, the goal is to make every other component of the software

execute efficiently and not create another bottleneck that is more severe than the

network connection. An unwanted scenario is that the connectivity opportunity is

missed because the software is processing other functions, and is not able to take

advantage of the available connection, i.e., the function to open the connection has

been blocked.

Real-time responsiveness, that is related to the minimal execution time, is important

for delay-tolerant software, even though bundles cannot meet real-time constraints

when sending or receiving those from the remote bundle node. However, software can

still be separated to real-time and non-real-time operations, where some functions

can meet real-time responsiveness requirements. For example, routing decisions in

a bundle node should work in a real-time manner.

Reliability is the ability of the software to successfully perform the required functions

in a specified period of time. The drawback for creating the reliable software is that it

is a time and resource consuming process, that turns out as increased cost and effort

for development and testing. Therefore, only a proof-of-concept implementation can

be developed in the scope of the thesis.

Security in general, in addition to the security of the bundle protocol, is important for

the delay-tolerant software. Secure software prevents unwanted actions to happen in

a mobile phone, for example, to accidentally delete important files that are required

to keep software running. Symbian has many Symbian-specific security mechanisms,

such as, data caging and signing the software. Drawbacks to bring security may be

increased development effort and more limited usability due to limited user actions.

The software should be designed to minimize the total development effort, especially

in the proof-of-concept implementation. Creating the design and the architecture

for the software, that are created early in the software development project, affect

implementing, testing and maintaining phases. Therefore, also DTNS60 must be

designed and architected carefully before starting the implementation phase. On

the other hand, DTNS60 has a legacy burden, that is described later in the thesis,

23

that restricts the designing phase (which would be more flexible if started from

scratch).

Testing is used to assess the quality of the software. It provides a level of confidence

for the software. Testing environment should be made easy to establish assurance

of the software. We introduce test-driven development method for Symbian later in

the chapter.

Maintainability is described as: “The ease with which a software product can be

modified in order to correct defects, meet new requirements, make future mainte-

nance easier or cope with a changed environment” [35]. Maintainability is especially

important for the bundle protocol implementation, that is experimental and may

change in the future.

Good encapsulation of the software provides well-defined interfaces for software ob-

jects. An object in a software is like a black-box; there is no need to see inside the

box, instead only the input and the output are important. Improving encapsulation

improves reliability, maintainability and reduces the testing cost.

3.3 Mobile software platforms

Currently, there is no efficient way of coding once and deploying for every major

software platform the same code. Therefore, platform-specific implementations are

needed. To keep the scope of the thesis reasonable, we choose to implement the bun-

dle protocol functionality in the protocol stack of Symbian, that is, the most popular

mobile software platform today. In order to achieve a bigger picture where the Sym-

bian bundle protocol implementation lies, we introduce other main alternatives for

Symbian, that are, Maemo, iPhone, Android, RIM, WinMo and Limo. A brief de-

scription of the each platform is described below from the software development

point of view. The characteristics of Symbian, and the Symbian-specific frameworks

used in our implementation, are described in more detail after this section.

Symbian is an open mobile software platform [65]. There are many implementation

language alternatives to use on the Symbian platform. This is based on the

many runtimes that Symbian offers on top of the native environment. Symbian

C++, C/C++, Python, .NET, Java ME and FlashLite applications can be

developed for Symbian phones. Also, web technologies (e.g. html and css)

can be used to develop widgets (small applications). On the other hand, it is

24

always more efficient, and a wider set of APIs are available, when developing

a native Symbian C++ solution.

Maemo platform is built largely from the open software components [40], and has

Linux as an underlying operating system. Future versions of Maemo will use

Qt as a main application and GUI framework, and this enables also cross-

platform support between Symbian and Maemo devices, i.e., the same source

code can be deployed on both platforms in the future.

Linux mobile is also built around an open operating system [37]. It offers a secure

run-time environment to support downloadable applications, and is based on

modular plug-in architecture. C and C++ are most popular implementation

languages.

iPhone is a closed source mobile platform [30]. A native implementation language

used in the iPhone platform is Objective-C.

Android is an open source mobile software platform [1]. It offers Java as means

for implementing applications.

RIM mobile platform [58] is most famous of the Blackberry mobile phones. It is

closed source. Java is used as the implementation language.

Windows Mobile mobile platform [77] intends to bring many powerful desktop

technologies, such as, Windows Presentation Foundation [78] into the mobile

devices. WinMo is a closed source mobile software platform. Visual C++ and

Visual Basic are used as the implementation languages.

As of our knowledge, Android and iPhone are gaining popularity in the mobile soft-

ware development community, but Symbian remains as the largest mobile software

platform by far [65]. Also, Symbian provides a lot of low-level accessibility and

multitasking capabilities that may not be apparent on most of the other platforms.

Furthermore, Symbian is going to have multi-core mobile devices available in the

near future, that provides means for creating more efficient ways to do multitasking

(e.g. daemon processes use separate core than other applications). Finally, being an

open mobile software platform, Symbian may enable more innovation in the future

with the delay-tolerant software.

There is a heavy tussle going on among the different mobile platforms today, but our

belief is that Symbian will live many years onwards, and is therefore a reasonable

25

platform to implement also novel technology concepts, such as, the delay-tolerant

networking concept.

The goal of the thesis is to demonstrate a proof-of-concept implementation on a

mobile phone, and therefore one platform is enough for now. However, a next step,

is to have the coverage of the bundle protocol implementations to cover more mobile

software platforms interoperating seamlessly with each other in an ad-hoc manner,

or with help of infrastructure access points. This would require many platform

specific-implementations. The generic abstraction layers in a mobile phone for the

delay-tolerant software is depicted in Figure 5.

Hardware

Mobile OS

Bundle layer

Delay-tolerant

applications

Figure 5: Abstraction layers on a mobile phone

Many implementation programming language possibilities are enabled providing

many runtimes on the mobile software platforms. On the other hand, it makes

sense to implement native implementations instead running the code binaries on a

runtime. It is a matter of future research to evaluate different implementations, i.e.,

to compare implementations that are running on a runtime and native implementa-

tions with each other.

To reduce the development effort, it should be noted, that more cross-platform soft-

ware development support is better. We discuss later about cross-platform develop-

ment using the Qt application and the UI -framework when introducing the future

development possibilities of DTNS60. Finally, we considered only the “native” plat-

forms here. There exists also Java ME [34] runtime that offers also cross-platform

development possibilities, and that is not tied to some particular manufacturer’s

phones. Drawback for Java ME is a restricted set of APIs available to access lower

level functionalities in the mobile phone.

3.4 Symbian mobile software platform

Symbian is our target platform for the proposed bundle protocol implementation,

and therefore, we will introduce in this section the S60 application framework, and

26

the main frameworks for implementing a bundle node implementation for the S60

mobile phones.

3.4.1 S60 application platform

The S60 application platform is part of the world’s leading software platform for

mobile smartphones, and it is based on Symbian OS. Consequently, it is a convenient

choice to implement delay-tolerant applications for the S60 platform because of the

widespread availability of the S60 mobile phones. S60 offers a rich set of application

programming interfaces also for the lower level services [59].

S60 provides many frameworks that ease solving particular kind of problems, e.g.,

concurrent programming and communication services related problems. Further-

more, the main release of the legacy DASM implementation has been targeted to

the S60 platform, so it is a natural path to continue development with that release

instead of doing everything from scratch.

The attractiveness of the S60 has been increased since the Qt was announced to be

merged with S60 [65], and to replace the S60 user interface layer. Qt for S60 lowers

the barrier to develop cutting-edge delay-tolerant applications on the S60 platform.

The S40 platform would also be a popular choice. But, because there has not been

any earlier development effort concerning DASM implementation on that platform,

it is ignored for now. The development on S40 must be made using Java ME so the

implementation would have to be made from scratch.

However, S40 is a good choice to keep in mind for the future, especially because

of the cheap price of the S40 phones and popularity in the developing countries,

where challenged network environment are apparent because of the lack of the basic

network infrastructure.

The first versions of DASM supported also S80 platform, but since development of

that platform has stopped entirely, also further development of S80 version of DASM

is dropped. The main focus is now on the S60 version.

The target S60 mobile phones for DTNS60 have at least Symbian OS v9.1, for

example, Nokia E90 and Nokia N95 8GB, that we use in the evaluation and testing,

are running Symbian OS v9.2. The design goal for DTNS60 is that it is written

in a way that it is directly reusable beneath the UI layer on different supported

versions of Symbian OS. At least in theory, the DTNS60 should be runnable on all

S60 phones that have Symbian OS v9.1 and onwards, but need to be tested on every

27

target phone (that is out of the scope of the thesis), if willing to use other than

the two we use. S60 3rd edition feature pack 2 software development kit is used in

the development of DTNS60, even though also newer SDKs (S60 5th edition and

N97 SDK) exist today. This is due to usage of the non-touchscreen devices that use

the older version of Symbian OS. It should be noted also that our test devices are

natively S60 3rd edition feature pack 1 devices, but that also support the feature

pack 2.

3.4.2 Client-Server framework

The purpose of the client-server framework is to provide services from the server

program to the multiple client programs [3]. The server handles resources on behalf

of the clients. These services are, for example, Windows Server, File Server, Socket

server and font and bitmap server. When the server runs in its own process it

provides modularity and protection from the ill-behaving clients.

The main purpose to adapt the client-server framework for the bundle protocol

implementation is to separate the bundle protocol layer from the delay-tolerant

application layer in the communication protocol stack. But there are also other

reasons for the client-server framework. The framework is usually chosen to be the

design principle if the management of the shared resource, asynchronous services, or

protection offered to run the server in separate process than the clients is needed.

It is the “Symbian way” to provide services to applications, i.e., it is based on the

robust microkernel operating system architecture [71].

In DTNS60, the asynchronous services are required, because of the whole nature of

the asynchronous communication in the DTN network. When several delay-tolerant

client applications are running simultaneously they share underlying communication

resources. Moreover, if the clients are just waiting for bundles, using asynchronous

server to handle receiving, the user interface does not seem like jammed and can be

shown to be more responsive for the end user.

There are four key concepts in the client-server framework that are the server, the

session, the sub-session and the message. These all have their base classes provided

by the framework.

The server is responsible for handling any requests from clients to establish con-

nections. The session and the sub-session represent the channel of communication

between the client and the server.

28

The message represents data structure passed between the client and the server. In

DTNS60 the data that is passed between the client and the server is application data

that is encapsulated as bundles in the server, and sent further to the delay-tolerant

network; or data that is decapsulated from the bundles in the server and sent to the

local destination delay-tolerant application.

Fragmentation and reassembly of the bundles are done in the server-side so that only

the whole bundle payloads are passed between processes. The basic class diagram

that must be fulfilled using the client-server framework in DTNS60 is provided in

Figure 6. This is slightly updated from the original design [41] (that was not im-

plemented in the legacy implementation). The architecture for DTNS60 supporting

the client-server framework is provided in the chapter 4.

TDtnServerRequest

RSessionBase

CActive

CServer2

+ServiceL()

CSession2

CDTNServer

+ServiceL()

CDTNServerSession

RMessage2

+Connect()

RDTNSession

Client-Side Server-Side

+Close()

RHandleBase

1

*

TIpcArgs

Figure 6: Client-Server framework for DTNS60

3.4.3 Active object framework

The active object framework [3] provides means for the asynchronous processing

of operations and simplifies it for the developer. The framework handles multiple

29

asynchronous tasks in the same thread using an active scheduler per thread. Also,

the framework encapsulates a service request and a response of the completion.

Furthermore, active objects provides means for event-driven programming, when the

framework calls the right method after the completion for the request has occurred

(e.g. a bundle has been received in the DTNServer). The active objects are favored

in concurrent programming instead of threads in a Symbian phones due to resource-

saving reasons. Also, there are only one-core processors available in the market

today, and the context-switching between threads is more expensive than using

active objects, when the context-switching is not needed.

3.4.4 Avkon GUI framework

In native Symbian, there are currently three design approaches to create application

user interfaces. Those are using of the traditional Symbian control-based architec-

ture, the dialog-based architecture or the Avkon view-switching architecture [20].

We use the last Avkon-based approach in our example delay-tolerant applications

since it allows us to create multiple views conveniently for a limited-sized mobile

device screen, even though the view-switching architecture is more complicated than

the other two.

The view-switching architecture makes application navigation between local and

external (other applications) views seamless. For example, when a user receives

a bundle from some contact that she have in her contactbook, but whose end-

point-identifier she wants to add to the contact’s details, she would need to start

the contacts application on a mobile device and add that particular contact to her

contact list. Without view-switching it would be necessary to start the contact

application manually, and manually navigate to that contact entry and then enter

the details of the end-point identifier.

The Avkon view-switching architecture uses the MVC design pattern for creating

GUI-based applications, i.e., an application logic, views and data are separated from

each other in the application structure.

3.4.5 ESOCK communications framework

ESOCK[8] provides two main services for an application developer. The first one is

the sockets API for creating connections with the remote systems and transferring

data. The other one is the connection management API for selecting, configuring

30

and monitoring connections. For example, core parts of the Bluetooth stack, most

of IrDA, most of the TCP/IP stack and the SMS stack are accessed through the

ESOCK APIs. Figure 9 depicts how ESOCK fits in the delay-tolerant software

architecture in a Symbian phone.

ESOCK

IrDABluetooth

TCP or UDP Convergence layer

IPv4/IPv6 SMS

Figure 7: ESOCK

3.4.6 Multimedia framework

The multimedia framework [59] is used for recording and playing audio in the DT-

Talkie voice application introduced later in the case study. The Symbian phones

offer different level of access for the different codecs depending if the application

developer has a partnership contracts to access lower level hardware accelerated

codecs, such as, MP3 codecs. The multimedia framework can be used also for

playing and recording video content.

3.4.7 Design patterns

Design patterns describe solutions for the common programming problems. They do

not give the actual implementation in any specific language. Using the design pat-

terns prevents reinventing the wheel in situations that many other developers have

faced before. The design patterns also increase the quality of the software. Several

design patterns are used to speed up the development of the DTNS60 implementa-

tion. Active Object, Event Mixin, Client-Server and MVC design patterns [33] are

considered to be useful in the next release of DTNS60, and we describe those briefly.

For further development of DTNS60 the investigation of using additional design

patterns should be made. For example error-handling strategies, resource lifetimes,

31

security and optimizing execution time may be the goals to choose additional design

patterns.

Active Object

Symbian OS is a heavily asynchronous operating system. When a program requests

a service, the service is performed either asynchronously or synchronously. To avoid

blocking in the user interface an asynchronous service is a more convenient way to

do the request. Symbian OS provides co-operative multitasking within a process by

using active objects. In the case of DTNS60, the active objects enable the use of

multiple client applications simultaneously, and nonblocking behavior of the GUI-

based application, when the application is, for example, waiting for the incoming

bundle. The concurrent execution is done more effectively using the active objects

instead of the threads (if there is a single-core processor in use) because there is

no need for the context-switching between threads. Furthermore, the active objects

provide memory consumption savings and battery power savings. The Symbian OS

Active Object framework, introduced earlier, eases the use of the active objects in

the applications.

Client-Server

The intent of the client-server design pattern is to securely police access to a shared

service from multiple clients. The server component defines an API and offers ser-

vices through that API to the client applications. The design pattern supports high

cohesion and low coupling. High cohesion means that subsystem includes only those

functions that are related to each other and low coupling means that interaction

between the different subsystems are kept at minimum. Changing one subsystem

should affect only that one and others stay unchanged. The client-server design

pattern is used in the Symbian OS client-server framework.

Event Mixin

The intent is to save power and decouple components by defining an interface

through which event signals are sent to another component in the same thread.

An event generator notifies any state changes of their subject to other objects, usu-

ally by calling one of their methods defined in the interface. The event mixin pattern

is used in DTNS60, for example, to notify of a received bundle or a bundle fragment

in the bundle protocol implementation’s core classes. The event mixin is also known

as observer. In general, this pattern can be applied to the event-driven programming

paradigm, described in the end of this chapter.

32

Model-View-Controller

The model-view-controller design pattern is a central part of the delay-tolerant GUI-

based applications for the S60 platform. It defines the structuring of the application

to a model, a view and a controller components. The model component contains

and manipulates the data of the program. The view defines how the model is pre-

sented to the user. The view also forwards the requested command to the controller.

The controller defines how the user interface reacts to the received commands and

requests.

3.4.8 Test-Driven development

Test-driven development is a technique for the software development, where the

development iterations are based on the pre-written tests. Each new function is

tested right away providing rapid feedback to the developer to fix errors in the early

stage. The tests also track the real progress of the development effort. Creating

well-tested software increases the quality of the software and it gives confidence of

the reliability of the software.

Symbian OS Unit [66] is an open source unit test framework for Symbian applica-

tions. Using this framework, test-driven development can be utilized in the devel-

opment of DTNS60. Therefore, the framework is integrated in DTNS60 to produce

more quality code. Also, delay-tolerant applications can be tested using the same

test component.

The goal is to test every functionality and write the tests before the implementation

of the actual function. The test project is integrated in the build system, but acts as

a separate project from DTNS60, and is not going to be in the final phone release.

3.4.9 Nokia Energy Profiler

Nokia Energy Profiler (NEP) [44] is the main tool for doing resource measurements

for DTNS60 in the validation part of the thesis. It provides tools to measure energy

consumption and other resource usage in real-time on the target mobile phones. The

measurement data can be exported for later use and plotting.

Different metrics, that can be measured using NEP are listed below.

Power - Shows the power consumption over a measurement period.

33

Current - Measures the current draw from the battery.

Processor - Shows the CPU load over a measurement period.

RAM Memory - Shows the memory usage over a measurement period.

Network Speed - Shows the download and uplink speeds through the IP stack.

WLAN - Shows received signal strength when the device is connected to the

WLAN.

Signal Levels - Shows the cellular signal levels as RX and TX levels.

Energy - Shows the cumulative energy consumed over the measurement period.

Voltage - Shows the battery-voltage levels.

3G Timers - Shows the 3G-network-data inactivity timers.

We utilize the energy and the processor usage in the validation of the resource

consumption of the implementation.

Finally, NEP provides APIs that can be used in an application to measure a real-

time resource usage. It is possible to modify the behavior of the implementation

depending on the resource usage when integrating NEP in to the implementation.

This would be convenient in the challenged environments, where resources can be

scarce and their usage should be optimized, e.g. going in the idle state when connec-

tivity opportunities are not available, and waking up when the network coverage or

ad-hoc contacts has been discovered. Therefore, it would be reasonable to add real-

time resource usage APIs in DTNS60 in the future to enable more efficient behavior

of the implementation in challenged environments. NEP also allows to developer to

create customized measurements.

3.5 Component-based software engineering

A software component is a modular, deployable, and replaceable part of the sys-

tem that encapsulates implementation and exposes a set of interfaces [52]. In other

words, the software component offers services to the other software components.

The abstraction level of the component is higher than in the object and components

do not share state as objects do. Messages are used in between the communication

of the different components. DTNS60 uses this practice and separates different parts

34

of the bundle node system to different reusable components. Those components are

roughly: The DTNServer process and delay-tolerant applications processes that use

the bundle protocol services of the server. These two component types can be further

decomposed to different library components, such as, TCP CLA dynamically linked

library. Using this kind of modular design the system can be developed more effi-

ciently and different parts can be replaced with more efficient solutions, if necessary,

or adding new functionality is possible without affecting the other components.

Four basic design principles apply when using components [52]. The Open-Closed

Principle tells that the module should be open for extension but closed for modifica-

tion. The Liskov Substitution Principle tells that subclasses should be substitutable

for their base classes. The Dependency Inversion Principle tells to depend on ab-

stractions and not depend on concretions. The Interface Segregation Principle tells

that many client-specific interfaces are better than one general purpose interface.

Applying these principles in the design and development of DTNS60, the quality of

the software increases. More about the design of DTNS60 is discussed in the next

chapter.

3.6 Event-Driven Programming

The software running on the mobile phone has a direct impact on the power con-

sumed by the CPU, because the CPU uses power for each executed CPU cycle. The

fewer the CPU cycles executed, the less power is consumed.

Polling is a mechanism where a thread periodically executes some command, e.g.,

checks whether new bundles are received in the bundle node. This is wasteful for the

CPU, and consequently may be reduce the battery-life significantly. Lengthening

the polling period reduces the CPU usage, but creates unresponsive software.

The alternative for the polling mechanism is event-driven programming [33]. It

allows the CPU and other hardware components to be used in most power-efficient

and responsive way.

Events are some significant occurrences, for example, receiving the bundle from

the remote bundle node, or keystroke in the user interface. An event signal is a

notification of the event. The event signal indicates that the event has occurred

at some software component. An event consumer is an entity that receives the

notifications for a particular events. An event generator is an entity that produces

events and sends event signals to the event consumers. Many software components

35

can act at the same time as event consumers and event generators. Also, forming

an event chain to accomplish some task is possible.

Using the event-driven programming paradigm in the delay-tolerant software is con-

sidered to be a good practice. Because the communication is asynchronous, it is

impossible to know exactly when the event occurs, for example, when the bundle is

received. Therefore, CPU or other hardware components are utilized only when an

event occurs - instead of polling - and this creates more power-saving software. The

drawback is, that one event loop is needed anyway, that has a direct impact on the

performance of the software (depending on the polling period). The event loop is

polling for new events that can be any kind of action happened in the bundle node

system.

3.7 Summary

In this chapter we reviewed the critical technologies and paradigms for the develop-

ment of the Symbian-based delay-tolerant software. We also reviewed constraints of

mobile computing and forces to the software development under these constraints.

We briefly reviewed different mobile software platforms and explained why we chose

Symbian as the target platform. The Nokia Energy Profiler tool was introduced

to provide means to measure the proposed implementation described next. NEP

can be integrated in the future to DTNS60 to offer more efficient resource-saving

behavior in the challenged environments where resources are scarce. Now, we have

have studied the main requirements for the bundle node implementation, and the

main methods to implement it on the Symbian mobile software platform.

36

4 Implementation

This chapter introduces a novel bundle node implementation, called DTNS60, for

the Symbian S60 mobile phones. DTNS60 is composed from many software compo-

nents, i.e., the implementation includes the bundle protocol service and also a few

example applications - or tools - for the end users. These tools use the common

bundle protocol service offered by the separate DTNServer daemon process. The

bundle protocol service itself consists of the bundle protocol agent [62] and the TCP

convergence layer [15] library components. We introduce the design, the architec-

ture and the functionality of the bundle protocol service and the tools. Also, the

delay-tolerant application programming interface of the bundle protocol service is

described. However, first the legacy for this software is discussed.

4.1 Legacy

The legacy for the DTNS60 implementation is originated from the implementation

called DASM[41]. The latest DASM version 0.3.0 contains a bundle protocol agent,

a TCP convergence layer adapter, and a GUI-based file transfer application for

transferring MIME messages using the bundle protocol. The MIME-message im-

plementation is custom-made for the Symbian environment, i.e, it is not provided

natively by the Symbian platform services.

This version of DASM has some fundamental flaws in the implementation that dif-

fer from the original design decisions [41]. The original intention was to develop

a client-server framework -based separation of concerns for the different concep-

tual components, but the architecture of DASM does not fulfill this decision and

is the most severe defect in this release. In other words, the bundle protocol is

not separated programmatically from the application processes. This leads to the

situation where ill-behaving clients can prevent other delay-tolerant application to

use the bundle protocol service, and the development of the 3rd party delay-tolerant

applications becomes difficult.

Indeed, all the functionality is tightly-coupled into the same component in the single

executable. This leads also to an inefficient and not scalable solution. It is, never-

theless, visible in the DASM version 0.3.0 that the implementation is not complete

(also the version number indicates that). Because DASM is only partially imple-

mented against the requirements specifications [62, 15, 10], further development is

needed to get more coverage of the requirements fulfilled, and to create the software

37

architecture more robust.

Running more than one delay-tolerant applications would facilitate to the binding

of the same bundle protocol implementation over and over again in the different

delay-tolerant applications. It is generally not a good idea to introduce duplicated

code in a memory-constrained device, and maintaining possible different copies of

the same bundle protocol service for the individual applications is overwhelming,

and not reasonable, when there is a possibility offered by the software platform

to apply the multitasking of the applications in a more convenient fashion using a

singleton[22] service in the mobile phone.

The bundle protocol agent in the legacy implementation is based on one main event-

loop. This event-loop processes bundles as those are received from the remote bundle

nodes or from the application agents to the local message queues. The polling

period for this event-loop, for which the whole bundle protocol implementation is

based on, affects to the efficiency of the implementation (as can be seen in the next

chapter in the throughput capability measurements since the next release has also

this feature originated from this release). Choosing a too long period leads to an

unresponsive software, and choosing a too small period drains battery of the mobile

device quickly. Polling is generally inherently evil in a portable battery-powered

device because it prevents the system for going to lower power modes, and hence

reduces the battery-life. Therefore, it is important to keep only the one main event-

loop and not to introduce more polling mechanisms in the future releases in other

parts of DTNS60 system. Every event for the bundle protocol should be originated

from this event-loop and message queues that it handles. There are currently three

message queues. One for received bundles from the remote bundle nodes, one for

bundles to be transmitted to the remote bundle nodes, and one queue for processing

different events, such as, receiving a bundle from the convergence layer and passing

it to the message queue that handles received bundles. The queues are processed

consecutively one after the other (that may introduce processing delays).

The bundle protocol agent provides an interface, than can be partly adapted for

the next release (for receiving and sending application data). The existing bundle

processing logic offering basic application data bundling, bundle parsing and de-

livery functions can be adapted straightforwardly for the next release. But more

advanced features, such as, registrations or reactive and proactive fragmentations

and persistence of bundles are missing from DASM.

A routing information base and a forwarding information base are statically config-

38

ured to the configuration files that must be given separately outside the program

in the mobile phone’s file system. To be more precise, the routing information base

is actually lacking since no routing protocols are implemented in this legacy imple-

mentation. Using static files is a error-prone way to do configurations for routing,

and is not scalable, and not viable if the mobile devices receive underlying addresses

dynamically from the access point. The routing configurations should be done in

a more dynamic fashion, or even automatically leveraging ad-hoc peer discovery

mechanisms. However, there is no ad-hoc peer discovery implemented in the legacy

release, i.e., a user must know beforehand all the endpoints and configure them

to the forwarding information files in a static fashion. The ad-hoc peer discovery

mechanisms and the routing protocols are features to be implemented in the future

releases.

A TCP convergence layer adapter is implemented in the legacy version. Implement-

ing Bluetooth should be an easy task since the streaming-based base classes are

implemented already. Those provide many common features for stream-based con-

vergence layers, i.e., both the WLAN and the Bluetooth implementations can use the

same base classes. Furthermore, both use the ESOCK communications framework

offered by the Symbian platform as an underlying service.

In the legacy implementation, there has been used the observer (also known as

event mixin), and the active objects design patterns in the current release in the

bundle protocol agent and the tcp convergence layer. The observer has been used to

manage events and displaying feedback for the end-user in the user interface. The

active objects are used for concurrent processing, such as, for listening incoming

bundles and sending bundles at the same time.

In spite of the shortcomings, DASM implementation offers a groundwork to continue

further development of the native delay-tolerant software for the Symbian phones

offering lot of objects that can be reused in the bundle node implementation fulfilling

the RFC5050[62].

We list a more detailed list of the features implemented in the legacy implementation

in Appendix A.

Finally, it should be noted that the DTN2 reference implementation has had an im-

pact on the legacy BPA and TCP CLA implementations, for example, in structuring

of the TCP CLA.

39

4.2 DTNS60

DTNS60 is a novel bundle node implementation for a Symbian mobile phone, and it

is a next release of DASM (and is renamed at the same time). The current version

of the DTNS60 release, as the time of writing the thesis, is 0.4.1. The remainder of

the thesis is based on this release.

DTNS60 is a suite of several software components that work in conjuction with each

other to offer the bundle protocol functionality in the communication protocol stack.

The main components are: the DTNServer daemon process and the delay-tolerant

application process(es), that are, the components supported by the Symbian-specific

client-server framework introduced in the chapter 3. The server process is a singleton

on a mobile phone, and multiple delay-tolerant applications can use the bundle

protocol service of the server at the same time. These client and server processes

load their functional engine components from the dynamically linked libraries at

runtime. A lot of additions, changes, re-architecturing and refactoring have been

made to enhance the implementation from the legacy codebase. However, the bundle

protocol agent and the TCP convergence layer components are still heavily based on

the legacy code, even though those are split into the different library components.

Thus, the architecture of DTNS60 has been completely re-architected, even though

conceptual components remain the same as in the legacy implementation. The new

architecture allows multitasking of different delay-tolerant applications, and intro-

duces a common application programming interface (API) for the bundle protocol

service. Consequently, the development of new applications against this common

DTN API has been enabled. Only the API has been exposed for a delay-tolerant

application developer, so he or she does not need to be aware of the underlying

layers utilizing the bundle protocol and traditional heterogeneous networks. The

architecture is designed so that the solution can be extended, and that the further

development of DTNS60 is enabled and encouraged.

4.2.1 Design considerations

Designing software for the mobile devices has constraints, and forces on the software

development caused by these constraints, that we described earlier in the chapter

3. Also in that chapter, the component-based software engineering principles and

event-driven programming paradigm were introduced that are essential paradigms

in the current release of DTNS60.

40

We should design delay-tolerant software to work in conjunction with the tradi-

tional software to offer seamless transformation from the traditional software to the

delay-tolerant software. In other words, the end-user should not be aware what

kind of communication paradigm has been implemented beneath the user interface

layer. Therefore, we divide the applications on a mobile phone to three categories

from the software development perspective: delay-tolerant, traditional, and hybrid

applications. These applications use delay-tolerant APIs, traditional APIs, or both

first-mentioned APIs. In the hybrid applications, changing the mode between the

traditional and the delay-tolerant mode can be seamless for the end-user.

Because we use the legacy implementation as the basis for our work, the goal is to

reuse it as much as possible. The interface for the bundle protocol agent can be

applied using an adapter class between the client-server framework classes and the

classes from the legacy implementation, and to push the bundle protocol -specific

code in to the separate library components. This design also allows us to replace

every legacy component in the future releases, if necessary.

The DTNS60 implementation should provide different conceptual layers for different

components and clear interfaces for these layers. Two layers must be provided: the

bundle protocol layer (or the DTN layer), and the delay-tolerant application layer.

Finally, we want also to make unit testing of the software easy, and encourage the

test-driven development in order to create quality software.

4.2.2 Architecture

A generic architecture for the bundle protocol agent and convergence layer adapters

is depicted in Figure 8, that has been slightly modified from the original version [42].

In Figure 8, the traditional users use the traditional applications that utilize the

services offered by the underlying operating system (usually TCP/IP communication

services).

The delay-tolerant users use the delay-tolerant applications that are developed against

the DTN API to enable delay-tolerant functionality. The delay-tolerant function-

ality has been implemented between the operating system and the delay-tolerant

applications - in the bundle layer. It is important to not involve the developer of

the bundle protocol to choose different configurations on behalf of the end-user.

Therefore, configuring the bundle protocol core logic must be enabled for the users,

if choosing the right functionality, for example, choosing the right convergence layer

41

adapter, has not been automated in the code.

The hybrid users and the hybrid applications are in-between the other two. They

choose on-demand the bundle protocol or the traditional protocols for communi-

cation. The hybrid applications have been extended from the traditional ones to

use also the DTN API, when intermittent connectivity is apparent; or from the

delay-tolerant applications to support also the traditional communication protocols,

that may be more efficient than using the bundle protocol, even though the bundle

protocol supports also the continuous connectivity. An option to choose between a

delay-tolerant mode and a conventional mode (normal socket communication) will

be enabled in the future releases of DTNS60 to create hybrid applications. More-

over, the usage of the traditional or delay-tolerant APIs should be automated, i.e.,

choosing the right API depending on the present network conditions, where the

applications is running.

More applications are available using the traditional protocols (usually TCP/IP),

and therefore, porting from the traditional APIs to use the DTN API is more conve-

nient way to develop delay-tolerant applications, and furthermore, can reduce the de-

velopment time compared to developing the delay-tolerant applications from scratch.

On contrary, the traditional applications may not support asynchronous messaging

offered by the bundle layer; instead near real-time requirements are needed.

The DTNS60-specific component model of the bundle node architecture is depicted

in Figure 9. The delay-tolerant application engine and GUI components form the

delay-tolerant application layer. The DTNServer, the bundle protocol agent and the

TCP CLA form the bundle layer in the DTN architecture.

The picture illustrates also a larger context where the implementation can reside in

the DTN testbed. The goal is to combine fixed and mobile infrastructure networks

to form an overall testbed for the delay-tolerant networks using the bundle protocol

in several software platforms. The other platforms, in addition to Symbian, may be,

for example, Maemo, Mac, or Windows platforms. The intention is that the bundle

protocol abstracts away the platform, and also mobility of the node, so applications

can seamlessly communicate with each other, in spite of in which bundle node they

reside. The picture does not show more than one delay-tolerant network, but it is also

possible to combine more than one challenged network to communicate between each

other through gateways (this was not our goal in the scope of the thesis, though).

The software architecture supports the Symbian-specific client-server framework

functionality, that is; a Symbian-specific way of implementing asynchronous ser-

42

TCP

CLA

UDP

CLA

Configurations

CLA

BPA Core Logic Routing

Logic

Delay-tolerant

application
Hybrid application

DTN API

Legacy

application

Physical layer

Link layer

Network layer

Transport layer

Underlying Network APIs (e.g. Sockets API)

Delay-tolerant user Hybrid user Legacy user

User

Figure 8: Generic architecture

vice providers [33], and conforing to the microkernel architecture structure [71].

Communication between the client delay-tolerant applications and the DTNServer

daemon process has been implemented using the Symbian-specific inter-process com-

munication mechanisms offered by the framework. Also, separating a graphical user

interface from the application logic engine as a good practice has been taken into

account. This enables the code of the applications to be more portable, for example,

for touchscreen-supported mobile devices in the future. Our goal with this kind

of architecture is to continue the evolution of the Symbian-specific delay-tolerant

software. Adding new components to this kind of architecture is more convenient

because new functionality can be developed as separate components (that can be

completely independent projects) providing only an interface to the functionality

offered by a particular component. The components of the current release, and their

functionalities are explained in more detail in the following subsection.

43

S60 smartphone

«executable»

DTNServer

«library»

Delay-Tolerant Application Engine

«executable»

Delay-Tolerant Application GUI

Symbian

OS

«library»

Bundle Protocol Agent

«library»

TCP CLA

DTN
bundles

bundles

b
u
n
d
le

s

WLAN / Bluetooth

Figure 9: DTNS60

4.2.3 Functionality

The responsibility of the each component in Figure 9 is to perform a particular

operations of the bundle node. All five components are loaded when starting a delay-

tolerant application. The application engine and GUI components are described

44

more generically, because those can be any kind of delay-tolerant applications. A

more detailed list of the features of the overall implementation has been provided in

Appendix A.

DTNServer

The DTNServer is the server, or the service, part of the client-server framework

supported application. It contains all the bundle protocol -specific logic in linked

libraries. The dynamically linked libraries are used, because then the switching

between different CLAs (or routing protocols in the future) is more flexible, and

resources (mainly memory) are used more efficiently loading only the needed com-

ponents at runtime. The communication between the client delay-tolerant appli-

cations and the service has been implemented using Symbian-specific inter-process

communication mechanisms described earlier in the chapter 3.

The Bundle protocol agent is a DLL that makes it possible to be replaced or up-

dated without affecting the rest of components. The DTNServer provides a common

interface for the client applications. A delay-tolerant application always creates a

session with the DTNServer daemon process for the lifetime of the application pro-

cess. Also, the DTNServer is started and stopped depending on if any delay-tolerant

application is using it’s services. This way also the resource consumption is reduced

as no idle processes run on the mobile phone. On the other hand, in a stressed

environment, there should be some event indicating that new contacts are in reach,

and waking up the daemon process. This is to be implemented in future releases of

the software. In this release, one application needs to be running (e.g. lightweight

DTNRecv) so the daemon is able to forward bundles even though the end-user of

the phone is not interested in using the delay-tolerent applications.

Multiple delay-tolerant applications can use the singleton DTNServer executable

component simultaneously on a mobile phone. This is accomplished by the multi-

tasking capability of Symbian OS. The DTNServer is a dispatcher for the bundles,

i.e., it dispatches the application data encapsulated in the bundles to the right ap-

plications.

In addition to the main responsibility of the DTNServer to dispatch requests origi-

nated from the delay-tolerant client applications to the bundle protocol agent and

responses to those (e.g. deliver a bundle to the right application), the DTNServer

also maintains sessions between the client and the server processes and provides

a common and extensible application programming interface to the delay-tolerant

applications.

45

The bottleneck of the server in the current release is the maximum size of the mes-

sages, that is 1MB, possible to deliver between the client and the server processes.

Sending larger messages is undefined in this release. One solution for sending larger

messages is to create delay-tolerant application layer level fragmentation and re-

assembly mechanisms.

Furthermore, the server currently contains legacy code which is originated from

the legacy implementation when loading the libraries (BPA DLL and TCP CLA

DLL). As mentioned, the new architecture allows to abandon and drop the inefficient

and buggy parts of the legacy code and introduce a new more robust solution for

the bundle protocol service components. However, the code should be investigated

before dropping it since there are objects in the legacy implementation that can be

reused efficiently also in the future releases.

Bundle Protocol Agent

The bundle protocol agent (BPA) library component contains all the logic that the

bundle protocol agent uses, and is loaded by the DTNServer process at startup. The

main services that BPA offers to the node are: registering a node to an endpoint,

terminating a registration, switching a registration between active and passive states,

transmitting a bundle to an identified bundle endpoint, canceling a transmission,

polling a registration that is in the passive state and delivering a received bundle

to the right delay-tolerant application. The bundle protocol agent uses a persistent

storage to store the information of the pending bundles. It should be noted that

the database enabling persistence is not supported in the 3rd edition feature pack

1 phones, that we use in the validating part; therefore, in this release persistence

operations has been disabled.

Depending on the configurations, the correspondent convergence layer adapter is

loaded. Also, the underlying routing information base and forwarding information

base are configured and loaded at the same time as BPA (beginning the first applica-

tion using the DTNServer). Other BPA-specific options such as delivery options can

be also configured. Currently, the BPA uses static pre-configured files to load config-

urations. The current version of the BPA DLL does not fulfill all the requirements,

and further development is needed to fulfill all the requirements for the bundle pro-

tocol agent[62]. The current version can be used, though, in the validation of the

basic functionality, and in the application case study offering interoperability with

the reference implementation. The BPA uses the services offered by the TCP CLA.

46

TCP Convergence Layer Adapter

The convergence layer adapter library is the interface between the bundle protocol

and the transport layer. In DTNS60, TCP CL has been implemented also as a

dynamically linked library, so that different adapters can be loaded as needed. For

example, TCP CLA DLL or UDP CLA DLL can be used and switched on the fly

when executing applications. However, the focus in this release of DTNS60 is on

the TCP CLA. There are two main tasks for the TCP convergence layer adapter; it

provides a service for sending bundles to all bundle nodes in the minimum reception

group that is reachable via the TCP CL, and it provides a service for delivering

received remote bundle to the bundle protocol agent. The TCP CLA DLL has been

implemented against the specification but need to be hardened and tested more

thoroughly.

Delay-Tolerant Application, GUI

A graphical user interface component is the visible part of the delay-tolerant client

application to the user of the mobile device. It uses an application engine to render

the screen, and for executing different functions. Symbian OS provides Avkon GUI

framework for creating native Symbian GUI applications (described in the chapter

3), and it is used also in the example tools and in the application implementation that

is described in the case study part of the thesis. The user interface of the delay-

tolerant application should be designed to support asynchronous communication,

i.e. it should provide some responsive elements to inform user that response for the

request to the other bundle node may not come immediately or never. The GUI

component uses the MVC design pattern. Also, it should be noted that console-based

applications can be implemented on Symbian using the bundle protocol service.

Delay-Tolerant Application, Engine

A delay-tolerant application engine component, implemented as DLL, contains the

logic of the GUI-based application. The engine provides also an application pro-

gramming interface against user interface. Decoupling the non-UI parts from the

underlying functionality makes the engine part almost entirely portable for differ-

ent supported Symbian OS phones. The inter-process communication between the

DTNServer is initiated from the engine component, when the application requests

bundle protocol services to be used. The engine uses active objects for offering the

concurrent functionality. For example, when the engine requests to receive messages

from the bundle protocol service to the application end-point identifier, it does not

jam the whole application, but allows the user to execute other functions in the

47

application at the same time.

4.2.4 DTN API

With a common and extensible delay-tolerant networking application programming

interface (DTN API) the development of new delay-tolerant applications for the S60

smartphones, using the daemon process of DTNS60 for the bundle protocol services,

has been enabled. Reusability of the bundle protocol service is the main design goal

for introducing this API. However, this API is Symbian-specific since the Symbian

platform uses the microkernel architecture, and the client-server framework for en-

abling the inter-process communication. Therefore, we loose cross-platform support

for this API (for example, Linux-based devices uses commonly DBUS architecture

[13] for providing IPC, that is, not supported in Symbian).

The current version of the API provides functions for sending and reading application-

specific data from the bundle protocol service. This API is still evolving and will

provide in the future, for example, means for sending metadata, registration in-

formation, and even functions that have not been specified in the bundle protocol

service today. Next features for the API are to enable registering and unregistering a

delay-tolerant applications for the bundle protocol agent, that further enables multi-

tasking of the delay-tolerant applications, and dispatching of the bundles to the right

recipient. This requires further development in the server component, for example,

to implement a container of active and passive sessions (registrations) between the

client and the server.

We illustrate the functionality of the DTN API at the level of methods calls us-

ing sequence diagrams. The DTNServer is an asynchronous service provider, and

therefore, only asynchronous requests have been implemented in the current release

(except when canceling an outstanding request that finishes always immediately).

Synchronous requests can be implemented in the future but, keeping in mind that

those are blocking other functionality of the application, if the response does not

come immediately - this may be of only liked one in DTNs.

We look at two scenarios how the API can be used, and these can be thought of as a

generic way of doing requests, or canceling requests that has been made earlier from

the client to the DTNServer’s bundle protocol service. Every request to the server

has a same kind of sequence flow. The particular requests that we look at are: how

to receive application data from the bundle protocol agent, and how to cancel the

48

previous read-data request from the server in case of, for example, shutting down

an application.

It should be noted in these scenarios that, before requesting to read the received

application data from the BPA, we have made beforehand a request to receive a

notification from the DTNServer that there are data to be read by this particular

application and got a response for that request. The response for this notification

request initiates the introduced read application data request, and is called again

after the data has been received to receive a next notification, that the next unit of

the application data can be read.

Making DTNServer request

In Figure 10, RequestReadData is called first when the notification for the received

bundle has been received in the client-side active object. This method calls CDt-

nRequestHandler::RequestReadData method in the active object. Then, RDtnS-

ession::RequestReadData is called from the active object, and the active object’s

iStatus property is passed to it. Also, a reference for a descriptor (Symbian-specific

data structure to store data and strings), where the received data is to be saved, is

passed to the session. The TIpcArgs object is passed to the SendReceive method

that sends a request to the server including the reference to the descriptor. It is

an asynchronous method that returns immediately. Then, the SetActive method is

called, to indicate that the active object has issued a request that is now pending.

CDtnRequestHandler::RunL method is called by the framework after the server has

completed the request.

In Figure 11, the ServiceL method is called by the client-server framework after

the client has called SendReceive method. Then, RMessage2::Function is called to

determine the request type and the request (RMessage2) is saved. If the request is

for reading the received application data, server’s GetBpaEngine method returns the

bundle protocol agent, and the application data is read in to the descriptor. This

descriptor is then written to the address, that was received in the request object, in

WriteL method. After this, the server side session calls Complete method for the

request to indicate that the request has been fulfilled.

In Figure 12, the active scheduler (in the active object framework) calls the RunL

method in response to the server completing the request. The object that implements

the observer interface is notified in the delay-tolerant application and the screen of

the device may be updated to notify the user that the application data unit has

been received. The observer can implement also other operations after this event

49

Application Engine CDtnRequestHandler RDtnSession

RequestReadData()

RequestReadData(iStatus)

SendReceive()

SetActive()

Figure 10: The sequence involved in making a request to the server

Kernel CDtnServerSession CDtnServer

Bundle Protocol Agent

ServiceL()

RMessage2

Function()

GetBpaEngine()

Pop()

WriteL()

Complete()

Figure 11: Server-side processing in making a request

signal is initiated by implementing an event chain. Then, the sequence flow has

been completed and the client calls RequestReadDataNotification again, and the

sequence starts from the beginning.

50

CDtnRequestHandler MBundleObserver

RunL()

HandleBundleReceived()

RequestReadDataNotification()

Kernel

Figure 12: After the response has been received at the client

Canceling DTNServer request

In Figure 13, CancelRequestReadData is called in response to the user initiating to

stop receiving application data, for example, when quitting the application. The

active object then calls CActive::Cancel, that calls (from the framework) the imple-

mented DoCancel method. This method instructs the session to cancel the pending

request by calling RDtnSession::CancelReadDataRequest method. The synchronous

request is now sent to the server, instructing it to cancel the pending request by call-

ing SendReceive.

In Figure 14, the ServiceL method is called by the framework after the client has

made the SendReceive call. The request is identified again by calling the RMes-

sage2::Function method. In this case, it indicated the the client wants to cancel

an outstanding request. The client waits for the completion (because of the syn-

chronous method call) so the request should complete in as short time as possible.

The server side session calls Complete method for the pending request (RMessage2),

that was stored to the server when making the original request. The server calls also

Complete method for the current cancel request. The cancellation is now complete

and the client can continue processing, e.g., exit the application cleanly. It should be

noted here that the bundle protocol agent still holds a received bundle, and we rely

on the timeout mechanisms to cancel it in the bundle protocol agent component, if

we don’t want to receive it anymore. Another way to implement this is to continue

cancellation chain further to the bundle protocol agent component.

51

Application Engine CDtnRequestHandler RDtnSession

CancelRequestReadData()

Cancel()

DoCancel()

CancelReadDataRequest()

SendReceive()

Figure 13: The sequence involved in making a cancel request to the server

4.2.5 Tools for testing

In addition to DT-Talkie, a delay-tolerant application described in the case study

later, we have developed three more basic delay-tolerant tools for the DTNS60 bun-

dle node implementation, that use the previously described DTN API. The moti-

vation for these tools is to prove the interoperability functionality on a real device.

The Linux-specific implementations of these can are included in the reference im-

plementation [18].

These three has been implemented using only the GUI-based application component,

and the architecture is similar for all three applications. These applications do

not provide more advanced functionality as DT-Talkie at the application level, and

therefore the main functions beneath the UI layer are not separated to the different

library components. If these tools are ported to differing screen devices, or to use

the Qt layer, then the engine objects of the tools can be still reused. These tools

52

Kernel CDtnServerSession

ServiceL()

aMessage:RMessage2

Function()

Complete()

iMessage:RMessage2

Complete()

Figure 14: Server-side processing in cancelling a request

are used later in the testing scenarios for sending, receiving and forwarding bundles,

and pinging other bundle nodes.

DTNReceive

DTNReceive is an application that receives bundle payload data for a particular

end-point identifier and stores it to the file system of the mobile phone. The files

to be stored are only dumped to the file, so to identify the filetype one needs to

investigate the file more thoroughly outside the bundle node implementation.

DTNSend

DTNSend is an application that sends a file from the Symbian phone to the other

remote bundle node identified by a particular end-point identifier using the bundle

protocol. The file to be sent can be selected freely from the file system of the mobile

phone.

DTNPing

DTNPing sends ping messages in bundles, that basically are echoed back from the

DTN2 implementation’s server process component that we use in the interoperability

tests. In addition to the destination EID, the values of ping bundle count, interval

sending ping bundles and expiration of a ping bundle are configurable values.

53

4.3 Summary

In this chapter we introduced the bundle node implementation for the S60 smart-

phones and the legacy for this implementation. We looked into the design, the ar-

chitecture and the functionality of the re-engineered solution. The common API for

the bundle protocol service was introduced using the sequence diagrams to show the

basic usage. Three tools, that offer the basic interoperability functions for DTNS60,

were also introduced. Next, the implementation is validated, evaluated and dis-

cussed about the future development ideas for the software. Then, we describe a

more advanced DT-Talkie application that has been developed to use the bundle

protocol service offered by DTNS60.

54

5 Validation and Evaluation

In this chapter, we first verify the implementation against the requirements specifi-

cations. Then, we stress the DTNS60 bundle node implementation for various kind

of measurements and tests. For measuring the resource consumption, we used Nokia

Energy Profiler introduced in the chapter 3. We measure also the throughput capa-

bilities of DTNS60. Then, the interoperability of the implementation is evaluated

with the other implementation on an another device being the DTN2 reference im-

plementation on a laptop computer. In these interoperability tests and throughput

measurements we use DTNPing, DTNSend and DTNRecv tools that can be found

on both implementations (correspondingly, these tools are named dtnsend, dtnrecv

and dtnping in the reference implementation). The future development ideas for the

software suite are discussed in the end of the chapter.

5.1 Verification

We verify the implementation against the requirements specifications, and describe

missing features in the current release, DTNS60 0.4.1. The current release is an

alpha release and is by no means a comprehensive implementation for the real world

deployments. Only “just enough requirements” are implemented to stress the im-

plementation to the interoperability tests and study a minimal bundle forwarder

characteristics. Our goal is also to implement extensions for the experimental bun-

dle protocol. A detailed list of the features against the requirement specifications

[62, 15] is depicted in the Appendix A. For curiosity, we depict also sloccount[75]

statistics in the Appendix B (the test framework and the duplicated code in the

legacy application agent have been excluded from stats of the current release; and

the code of the tools and DT-Talkie is included).

5.2 Throughput capabilities

In this section we stress the implementation and study the throughput capabilities

of DTNS60. We send three variable-sized messages from the reference implemen-

tation to the Symbian implementation, and measure the received throughput at

the Symbian-side. In the sender-side, the sending rate is increased using dtnsend

application of the reference implementation. In the receiver-side the DTNRecv ap-

plication is modified slightly to log the receiving times of the application data, that

55

is, a time when the application agent passes the message to the delay-tolerant appli-

cation. The clocks have been synced between the two devices manually. WLAN in

the infrastructure mode is used, and the sizes of the messages are 1KB, 64KB and

1MB (maximum message size supported in this release). The results are plotted in

Figure 15.

0

0,5

1

1,5

2

2,5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Throughput
messages / s

Offered load
messages / s

Throughput

1KB

64KB

1MB

Figure 15: Throughput at the receiver DTNS60 bundle node

It can be seen from Figure 15 that the message size does not matter; instead the

current release of the implementation has a characteristic in the main loop, that it

can handle only two messages per second stably. However, we observed that this

release becomes somewhat unstable when sending 1MB messages due to the memory

leak defect in this release. The rate of 2 messages/second is the bottleneck of the

current release of DTNS60 that may be modified using the different polling period

in the implementation’s main loop. On the other hand, changing the polling period

smaller, drains the battery more quickly since it prevents the system from going

to the low-power mode, so there is a trade-off between these two characteristics.

The polling period should be chosen in the future releases depending on the target

deployment scenarios.

In practice, two messages per second is a reasonable throughput rate especially in

the environments where the contact opportunities are scarce. For example, when

56

sending a large MP3-based music file sized 5-10MB (usually), it would take only a

few seconds to be transmitted. Drawback for this release is, that this larger music

file need to be split into the smaller messages in the sender side and reconstruct on

the receiver side. Currently, this fragmentation and reassembly mechanism must

be implemented at the delay-tolerant application level. Moreover, if the phone

communicates with multiple devices simultaneously, the throughput rate becomes a

more severe bottleneck (for example, in the urban areas where contact opportunities

are frequent). The current release of the implementation operates more stably if

transmitting small files sized only a few kilobytes, for example, messages including

only text.

5.3 Resource consumption

Resources are scarce in a mobile device compared to the desktop devices. Therefore,

the resource consumption should be minimized on a mobile phone. For measuring

the resource consumption Nokia Energy Profiler is used.

We provide an example scenario where the CPU load and the energy usage of the

device over a measurement period are measured. DTNS60 is utilized in this scenario

for the bundle forwarding purposes. The results are phone-dependent (it is not in

the scope of the thesis to test with a large set of the Symbian phones), and can not

be generalized, but the results give some direction how the current release behaves

in a somewhat modern Symbian smartphone.

The measurements have been created using Nokia N95 8GB mobile phone as a

bundle forwarder. 1KB messages encapsulated as bundles are sent between two

DTN2 processes through the DTNS60 forwarder. The message sending rate is 1

bundle per second for a duration of 68 seconds. The battery capacity of the phone is

1267mAh, and the firmware version is 31.0.015. WLAN in the infrastructure mode

is utilized. DTNRecv application is the only application process running on a phone

in addition to NEP and default operating system services.

Figure 16 depicts the CPU load. We can see that the load is over 80% when the

bundle forwarding is ongoing. In Figure 17 the cumulative energy usage is shown

over the same measurement period. It can be seen that the CPU cycles of the imple-

mentation should be minimized to not drain the battery eagerly. If the forwarding

operation would be continuous, the battery would be drained in 5-6 hours using the

characteristics of the scenario. Indeed, the current release is not capable for the real

57

0

20

40

60

80

100

0 20 40 60 80

%

seconds

CPU load

CPU load

Figure 16: The CPU load of DTNS60

world deployments if the bundles are forwarded with this rate, or even more loosely.

This also introduces the security question, that is, unwanted traffic should not be

accepted to be forwarded in the resource-constrained devices because there is cost

with the resource consumption.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 10 20 30 40 50 60 70 80

mAh

seconds

Energy

Energy

Figure 17: The energy consumption of DTNS60

58

5.4 Interoperability

In the interoperability tests we stress the DTNS60 implementation with bundle

sending, receiving and forwarding tests. The other implementation, that is used in

the tests, is the DTN2 reference implementation. We use the static pre-configured

bundle forwarding between the bundle nodes when the multihop testing is utilized,

and also static direct routes are configured in the single hop testing. In addition,

the interoperability between different devices running only DTNS60 has been also

tested. The successful testing scenarios are depicted in Figure 18. These scenarios

show the simplest interoperation scenarios, that can be extended to support more

than two hops (using static configurations), and also taking in use other devices

that are able to run DTN2, such as, internet tablets. In addition, we are confident,

that the bundle protocol implementation for Symbian S60 devices is also able to

interoperate with a wider set of implementations, because it interoperates with the

reference implementation (using TCP CL). DTNS60 was utilized also in the DTNRG

interoperability testing event [16].

5.5 Further development

In addition to get all the requirements implemented from the specifications, there

are two main paths to continue the development of the delay-tolerant software for

the Symbian platform. First one is to merge DTNS60 with the Qt application and

GUI framework, when the same source code can be used across embedded Linux,

Mac OS X, Windows, Linux/X11, Windows CE, S60 and Maemo platforms. This

”code once, deploy everywhere” vision [53] offers a cross-platform support, eases the

maintainability and shortens the development time of the delay-tolerant software

tremendously. The whole Symbian platform is going to be merged with Qt in the

future [65], so merging makes sense. We suggest to continue this path. This path

enables the evolution of the delay-tolerant software for Symbian mobile phones also

for the upcoming mobile phones. More features of Qt are introduced in a while.

The other main path is to port the DTN2 reference implementation for Symbian

smartphones using Open C/C++ libraries (on top of C/C++ compatibility layer).

This is, in theory, feasible because of the ever-increasing processing and memory

power that Symbian smartphones offer for the end-users. The porting process may

require implementing some parts from scratch, and requires further research. Fur-

thermore, DTN2 has suffered from ignoring the “keep it simple” -principle, and may

59

DTNSend, DTNRecv
dtnsend, dtnrecv

DTN2

DTNS60

DTNSend

DTNRecv

DTNSend

dtnd

DTNRecv
DTNServer

bundles
bundles

bundles bundles

bundles

Figure 18: Interoperability between DTNS60 and DTN2

not be the only implementation for the mobile device environment for which every-

one relies anymore.

Other alternatives for the implementation techniques are, for example, using PyS60,

.NET for S60, Java ME or other run-time plug-ins that are offered by the platform

[65]. These runtimes enable the possibility to implement a bundle protocol service

implementation for the Symbian smartphones. Drawback for using these runtimes,

is that the access to the lower level service APIs would be restricted, and therefore,

60

access to those services would provided by the native Symbian APIs anyway. There

are many alternative techniques to choose from, and the goal of the deployment

scenarios, and how robust and efficient the implementation should be, would act

as a requirement for choosing the right technique. For example, if one wants to

create a rapid prototype for research purposes, then PyS60 would be a convenient

choice since it offers means to implement prototypes rapidly, but a more robust

solution would be provided by the native Symbian. Implementing a novel bundle

node implementation(s) from scratch (when the legacy codebase is not a burden as in

DTNS60) using, for example, Qt, and native APIs when necessary, and to compare,

verify and test different implementation architectures is an interesting research area

to look for.

In the current release of DTNS60, the integration of the Symbian OS Unit framework

has been done, but the coverage of the tests is still very minimal. Figure 19. depicts

the coverage of the tests that is our goal for the delay-tolerant software in the

bundle node. An another integration suggestion to DTNS60 is Nokia Energy Profiler,

that can be used to provide more efficient and robust operations for the resources

management in the mobile device at runtime. Using NEP APIs the total operation

time of the bundle node can be increased if the battery-charging possibilities are

limited (as in the challenged and scarce-resourced environments). Moreover, because

the DTN operations are basing on the custodians, the bundle nodes do a lot of

additive processing and data persistence in their logic that need to be minimized

(using NEP for real-time measurements).

DTN software

DTN Application DTNServer

Symbian OS Unit

DTN Application
DTN Application

Symbian OS unit project

Figure 19: Test framework for DTNS60

To continue the evolution of DTNS60 in the future, we introduce features of the

61

Qt for Symbian application and GUI framework little bit more detail. It provides a

technical framework for the Symbian-based mobile phones to take in use. We believe

that merging the current version of DTNS60 with Qt is the most sensible path to

continue development.

As said, using the Qt framework, support for the cross-platform deployment of the

applications for different platforms using the same source code has, been enabled.

People with desktop application coding skills can seamlessly move into the mobile

and delay-tolerant software development. This would also reduce the development

time drastically when multiple platforms are targeted, and would be especially con-

venient for the research purposes, when evaluating the bundle protocol functionality

in the heterogeneous devices and networks. After all, the deployment goal for the

full-fledged bundle protocol is cross-platform.

Also, there are minimal reasons to develop a novel (delay-tolerant) software for the

mobile phones that are going to be replaced in the very near future. On the other

hand this is also a problem, because the old mobile phones are not going be replaced

all of a sudden, so a lot of legacy software and mobile phones are going to be used

still an unknown time, and requires both legacy and modern implementations.

The Qt GUI module [54] is going to replace somewhat complex way of doing user

interfaces with the Avkon GUI framework. Consequently, current example delay-

tolerant applications in DTNS60 with graphical user interfaces will not work any-

more in the upcoming phones, but on contrary, the application logic can be ported

straightforwardly. In other words, there will be a binary break when Qt replaces

Avkon, and the old binaries need to be ported to the new devices at least in the UI

layer.

Qt provides a lot of APIs (in addition to GUI APIs) [54], e.g. for networking,

multimedia and persistence capabilities that would be enough for implementing a

bundle node. A general overview of the API usage of the delay-tolerant applications

for Symbian using Qt is depicted in Figure 20.

Qt labs [55] has also an interesting research project called Qt mobility [56]. This

project researches how the cross-platform mobility capabilities can be developed

at once with Qt. For example, the bearer management API in the Qt mobility

APIs provides means for choosing the most convenient network interface optimizing

speed and cost of the underlying network connection in a cross-platform fashion.

Qt mobility provides also interesting APIs today to be used for operations, such as,

location management, contact management and multimedia operations, that can

62

Delay-tolerant Qt application

Qt APIs

Qt for Symbian Platform

(Qt & Symbian C++)

Open C and Open C++

(C/C++ compatibility layer)

Symbian Platform

DTN API

Figure 20: Merging to Qt

leverage the delay-tolerant application development.

The development of Symbian software is well-known to be complex compared, for

example, to Java. The learning curve of Symbian programming is steep. Qt eases the

development effort tremendously compared with the native Symbian development

since Qt development is known to be intuitive and developer-friendly. Merging to

Qt would also lower the barrier to grasp into the DTNS60 project, and get more

contribution from the open source community. There is no need to learn yet another

programming language if one can already practice Qt development in the desktop

environment. The transformation from the desktop software development to the

mobile and delay-tolerant software development would be seamless.

If the delay-tolerant applications are ever to be commercialized, then the applica-

tions’ user interface should also be attractive, intuitive, and give a modern look and

feel for the end users. This would also favor Qt for Symbian, that provides appealing

user interface components for the delay-tolerant application development.

Also, if everything can not be implemented using Qt, it can always be skipped and

develop parts, or components, with native Symbian, and integrate these low-level

components with the main implementation that supposedly uses Qt. Symbian and

63

Qt can work seamlessly in conjunction (Qt being an overlay layer for the Symbian

APIs).

Lastly, we suggest a roadmap for DTNS60 that is depicted in Figure 21. The

roadmap gives some direction and is by no means strict. The development should

be steered to the direction that serves the overall goals of the mobile DTN testbed

and research purposes.

DTNS60 0.4.1 Merging to Qt RFC5050Tests TestsBundle protocol ExtensionsTestsRouting protocolsTests

Figure 21: Roadmap

5.6 Summary

In this chapter, we measured and tested DTNS60 implementation. Different pa-

rameters of the resource consumption were measured and looked how the energy

consumption of DTNS60 affects to the battery life. In the interoperability testing

part, we tested interoperability with the simplest case scenarios that can be extended

to support larger scenarios. We utilized the DTNS60 bundle node to measure the

receiver throughput to receive the small and large messages, and identified the bot-

tleneck of the current release. Lastly, we looked the future development ideas, and

introduced briefly the features of Qt that can be merged to DTNS60, and further-

more, continue the evolution of the delay-tolerant software on Symbian. In the

next chapter, we study DTNS60 as means of providing a more advanced end-user

application for the voice communication in the challenged mobile networks.

64

6 Case study: Cross-platform delay-tolerant voice

communication

In this chapter, we study DTNS60 as means of providing practical voice commu-

nication between humans parties in the challenged networks [32] using the devices

of the two widely-spread mobile software platforms. The application used is DT-

Talkie, that already has an implementation instance [31] on the Maemo platform

(using Nokia N810 Internet tablets). DT-Talkie is a push-to-talk application that

sends and receives voice messages encapsulated as bundles. DT-Talkie offers means

for asynchronous voice messaging [27], and it is a delay-tolerant version of the tra-

ditional walkie-talkie application [47]. Moreover, the messages are encapsulated as

MIME messages at the application layer to add attachments for the voice messages,

such as, pictures of the users.

DT-Talkie can be utilized, for example, in the rural areas where the basic network

infrastructure is lacking, or in the military battlefields among the infantry that

communicate in an ad-hoc fashion. This kind of walkie-talkie style asynchronous

voice communication, offered by DT-Talkie, is embraced by the DTN architecture.

We introduce a novel DT-Talkie for S60 implementation. Moreover, we describe

the porting process of this delay-tolerant application to the Symbian platform, and

scenarios where DT-Talkie can be utilized.

The goals of the case study are:

• to implement a delay-tolerant voice application that uses the bundle protocol

service offered by DTNS60;

• to deliver voice messages, encapsulated by the bundle protocol and the TCP

CL protocol, between two platform-specific instances of the delay-tolerant

voice application;

• to gain experience about porting an application from the Linux platform to

the Symbian platform;

• to discuss the voice capabilities of the Symbian phones; and

• to provide a larger scenario for a delay-tolerant application for terrestrial mo-

bile delay-tolerant networks.

65

6.1 DT-Talkie for S60

In this section we introduce the design, the architecture and the functionality of

the novel Symbian-specific DT-Talkie implementation. Also, the porting process is

described, and further development ideas are discussed.

6.1.1 Design considerations

The most important design patterns are the MVC, the event mixin and the active

objects. The MVC is used for the application structure conforming the Avkon GUI

framework. The event mixin is used for handling application data unit receiving

and sending functions asynchronously to the lower layers to the bundle protocol

service. We use the DTN API for sending and receiving voice messages to and from

the other bundle node. Also, the active objects are used in conjunction with event-

driven programming to enable concurrent processing, i.e., creating the application

more responsive.

The user interface is minimalistic, and configurations are loaded at start time from

the configuration files. We want to create a proof-of-concept prototype, but at the

same time, enable further development.

6.1.2 Architecture

We have used as a good practice to separate the GUI and the engine part of the

application to enable different phone UIs to use same the engine, as in Figure 22.

The engine component uses the bundle protocol service. When the application is

ported in the future, for example, for the touchscreen phones or using Qt framework

in the UI layer, only the UI component need to be re-implemented. Furthermore,

the development of the engine and the GUI components can be done separately since

the coupling is loosed. In this version of DT-Talkie, we have used the native Avkon

GUI framework for Symbian mobile phones.

6.1.3 Porting process

There are few delay-tolerant applications written in ANSI C (e.g. contained in

DTN2) that would be also good example applications to function using the bundle

protocol services offered by DTNS60. Therefore, we introduce the porting process of

DT-Talkie from the Linux-based platform to the Symbian platform. The process can

66

«executable»

DT-Talkie GUI

«library»

DT-Talkie Engine

«executable»

DTNServer

Figure 22: The component model of DT-Talkie for S60

be thought also more generically for porting traditional applications to the Symbian

platform.

DT-Talkie was originally developed for the Maemo environment using gmime[23]

and gstreamer[24] 3rd party libraries in conjunction with the GTK+ framework

[72] that is comparable to the Qt framework. We describe briefly, how the porting

process from the Maemo platform to the Symbian platform should work, and how

it in practice turned out. As of our knowledge, this is a hard problem in the mobile

software development community in general.

The original plan was to port DT-Talkie rapidly for the Symbian platform. The

release of P.I.P.S.[74] and Open C/C++ libraries [46] has helped the migration of

desktop and Linux-based applications to Symbian OS. These provide many standard

C libraries that are commonly used in the development of the Linux applications.

Therefore, already developed programs for Linux are, in theory, portable to Symbian

OS, and even the porting without changes may be possible. However, P.I.P.S. and

Open C are not fully POSIX compliant [74], but the main functions are supported.

We thought that using a well-defined process [76] for porting the application would

ease the task. The porting process of DT-Talkie was applied using the following

non-linear steps, and related actions described (if the step is not self-evident):

Choose a project to port The chosen project was DT-Talkie.

Analyze the code The user interface was certainly needed to be re-written from

scratch due to differing UI frameworks and the difference between the Maemo

touchscreen and the Symbian non-touchscreen devices. Also, the original DT-

Talkie had 3rd party libraries (gmime and gstreamer).

Re-architect The user interface and the application logic were separated to differ-

ent components, that are, GUI executable component and dynamically linked

library containing the application logic

67

Set up the development environment Moving from the Linux-based Scratchbox[63]

environment to the Windows-based Carbide C++ environment [9].

Integrate project with build system Using Open C/C++ and basic glib libraries.

Compile

Fix problems

Run and test

Debug

Re-integrate with the original code, if desirable

After many iterations, the porting of the DT-talkie application from the Internet

Maemo platform to the Symbian platform turned out to be, in the scope of the

thesis, impossible and the development needed to be done from scratch to the native

Symbian environment. The biggest problem was that there were no support for

the 3rd party libraries, i.e., the libraries would have needed to be ported also for

Symbian. Even though there exists glib libraries for Symbian, the other two libraries

were the bottleneck. Furthermore, the differing audio codec capabilities between

Maemo devices and Symbian devices raised problems, and we needed to add the

basic PCM audio codec to the Maemo implementation to make these two platform-

specific implementations interoperate in a simple fashion providing proof-of-concept

operations.

6.1.4 Functionality

Figure 23: The user interface of DT-Talkie for S60

68

DT-Talkie application consists of the three separate navigable views. The user inter-

face of the DT-Talkie for S60 is depicted in Figure 23. We have used the Symbian-

specific view-switching architecture for implementing this multi-view application.

The design decision to split different UI areas to different views, that differs from

original Maemo version, is because of the mobile phone’s screen is smaller than in

the Internet tablet, and our target phones does not have touchscreen that would

enable different selectable UI components to be more convenient as in the Maemo

environment.

The settings for the DT-Talkie application can be configured in the configuration

files where one can configure application-specific and bundle protocol agent -specific

configurations.

The main view shows current information of the state of the DT-Talkie. The number

of incoming and the number of outgoing voice messages are shown at the top of the

view. Also, the active user contact and the local user and their end-point identifiers

and IP addresses are shown in the mainview. The active contact is an endpoint

identifier with whom we are interested to communicate with. There is a logging

component that shows useful information for the local user about the state of DT-

Talkie. This log is deleted after the process dies, but a more comprehensive log can

be found in the phone’s file system that provides more low-level information for the

developers persistently.

The pending list shows incoming and outgoing voice messages in a list. The incoming

voice messages are shown at the top of the list, and after those the outgoing voice

messages, that has not been sent yet to the delay-tolerant network, are shown.

The different icon type separates these two types of voice messages. Each voice

message contains information about the destination IP address and the end-point

identifier. The name of the message is a timestamp from the mobile phone’s system

information. The user can at anytime listen or delete these application-local voice

messages.

The contact list shows a list of contacts that are in the DT-Talkie’s persistent mem-

ory. We can use ad-hoc peer discovery option in the menu to find more contacts from

the currently connected network in the future releases. Also, if we get a new voice

message from the sender that is not yet a contact in our local store, a new contact

is added automatically, and also changed as an active user at the same time. The

local user can also add manually contacts to the persistent memory by adding their

end-point identifier and IP address with port number manually. Every contact has

69

been associated with a picture, that may have been received with a voice message.

The picture is shown as an icon beside the contact ’s end-point identifier.

The main steps for a sender and a receiver are listed below.

Sender:

1. Digitizing analog speech (record)

2. Encapsulate digitized speech as a MIME message

3. Pass the MIME message to the DTNServer

4. Encapsulate the MIME message as a bundle

5. Pass the bundle from the BPA to the TCP CLA

6. Send the bundle to the delay-tolerant network

Receiver:

1. Receive the bundle from the delay-tolerant network

2. Pass the bundle from TCP CLA to the BPA

3. Decapsulate the MIME message from the bundle at DTNServer

4. Pass the MIME message from the DTNServer to DT-Talkie

5. Decapsulate the MIME message

6. Convert digital speech to an analog signal (playback)

6.1.5 Further development

In the next release of DT-Talkie, we suggest that at least the UI layer is ported to

use the Qt framework. Also, the application logic is portable and requires further

investigation, if it is ported to use the Qt layer (enabling cross-platform support),

for example, by using an adapter between the Qt and native Symbian implementa-

tions. We could also only link the Symbian-specific application logic to the Qt-based

application GUI process.

Further investigation is needed to support more audio codecs: to use those included

in the Qt mobility project, or to use the lower level codecs offered by the Symbian

70

multimedia framework. A set of heterogeneous mobile devices have varying audio

codec capabilities, and therefore, also the mechanism to negotiate the used audio

codec between the two devices is a convenient feature to implement for the next

release. This is especially required when the peer discovery has been taken in use,

when we don’t know beforehand what devices we are going to discover.

We want also DT-Talkie to be integrated to the native contact management of the

mobile device, so the end-user does not need to manage duplicate contacts, for

example, between telephony services and the delay-tolerant voice communication

services.

User interface design need to be enhanced since the current version only provides

the simplistic user interface that is not very usable outside the research purposes.

The user interface should be more intuitive.

6.2 Point-to-point voice communication

In the simplest scenario, we utilize two devices, where other one is running DT-

Talkie for S60 using the bundle protocol service (DTN API) offered by DTNS60.

The other one is running the DTN2 reference implementation, and Linux-based DT-

Talkie implementation. Figure 24 depicts this scenario. Two persons can now com-

municate in an asynchronous manner with intermittent connectivity. For example,

when there are disruptions of the communication links, the message gets delivered

anyhow, compared to the traditional approach when the disruption hangups the cur-

rent communication session. It should be noted that, if the delays grow too large,

the voice communication is not anymore conversational, instead the communication

approaches similar behavior as in the voicemail applications.

S60

Bob

Maemo

Alice

bundles

speech

speech

Figure 24: Scenario with point-to-point communication

71

6.3 Multihop voice communication

The multihop use case scenario utilizes more than one hops in between two humans,

and can potentially be extended to a N-hop delay-tolerant network. The scenario

is depicted in Figure 25. There are one or more bundle forwarders in between a

sender and a recipient. The bundle forwarders function with the store-carry-and-

forward manner. We use also a linux bundle forwarder that can operate as a voice

message throwbox (running DTN2). Users can leave, for example, voice messages in

the rural areas to provide information about the surrounding environment for other

users that discover later the same place where this throwbox lies. An analogy to the

postal service serves well when the throwbox is in use - the traditional letters are

replaced by the digitized voice messages, and the throwbox is conceptually same as

a mailbox.

The lifetime of the bundles and the time synchronization between the devices is a

research problem to be solved in this kind of scenarios. The deployment scenario

will serve as an requirement here. For example, in the military applications lifetime

of the bundles is significantly smaller than in the rural areas where data mules, such

as helicopters or buses, bring messages, like voicemails or news as podcasts, to the

village out of reach of the Internet and other networks. Moreover, if the devices’

clocks are out-of-sync, the bundles may be dropped in an erroneous fashion.

S60
Bob

Maemo

Alice

bundles

speech

speech

Linux bundle forwarder

bundles

S60 forwarder

S60

bundles

bundles

Charlie

b
u
n
d
le

s

speech

b
u

n
d

le
s

Figure 25: Scenario with bundle forwarders

72

6.4 Conclusions

In this chapter, we introduced the DT-Talkie application using the bundle protocol

service offered by the DTNS60 bundle node implementation. The design, the ar-

chitecture and the functionality of DT-Talkie for S60 were described. We discussed

also about the porting process, and reasoned why it needed to be developed from

scratch due to the incompatibilities of the different 3rd party libraries. In the end,

the real world deployment scenarios were provided.

The user interface design for the delay-tolerant applications is more complex than for

the traditional applications. On the other hand, the client-server based communica-

tion between DT-Talkie and the bundle protocol service is a convenient design deci-

sion, when implementing delay-tolerant applications for the Symbian mobile phones.

The client-server framework enables also multitasking of the different delay-tolerant

applications that can be run at the same time. We should use more native features

of the Symbian phones, such as, contact management API. Also, an audio codec

negotiation protocol is a feature to be investigated in more detail in the future that

enables delay-tolerant voice communication between heterogeneous mobile devices.

73

7 Lessons learned and conclusions

In this chapter, we describe the lessons learned and make conclusions about imple-

menting a bundle node for the mobile devices using the Symbian mobile software

platform. We verify the thesis against the goals described in the introduction chap-

ter. We discuss also about the robustness of the current release, implementation

experiences, and future development paths of the proposed implementation. Fi-

nally, we look future research ideas where delay-tolerant networking for the Symbian

platform can be applied.

7.1 Conclusions

We started with conducting a literature study for the requirements for the bundle

node, and described the technologies for the Symbian mobile software platform that

are required to implement the bundle node. Then we proposed the novel DTNS60

bundle node implementation for Symbian S60 mobile phones, and evaluated it’s

functionality, interoperability, throughput and resource consumption capabilities.

Finally, DTNS60 was applied in the form of application case study where the imple-

mentation was used in the more advanced multi-platform environment, and devel-

oped a delay-tolerant voice application using the DTN API provided by the bundle

protocol service of DTNS60.

Implementing a bundle node for Symbian is a complex software development project.

In the scope of the thesis, only a prototype can be developed and basic proof-of-

concept scenarios demonstrated in the laboratory environment. To implement a

more robust solution, more resources (time, developers and testers) are needed,

for example, from the open source community. The current release of the DTNS60

implementation is not ready for real-world deployments being unstable and not using

resources of the device efficiently. Therefore, we have released the implementation

for a shared and public repository [17] in hope of attaining contribution to the

development. The current version of DTNS60 is 0.4.1 at the time of writing the

thesis.

We chose to continue the development of the legacy implementation instead of cre-

ating one from scratch. This is not always a good approach for creating a new

design and architecture for the solution. Firstly, almost everything in the legacy

codebase needed to be debugged anyway, which was a very time-consuming process.

Secondly, implementing a new solution from scratch may even ease the task, and

74

provide a more efficient solution when the design decisions, such as using the client-

server framework, can be applied right from the beginning. Indeed, when including

more features, such as the bundle protocol security, into the development in the

beginning of the implementation phase (if creating the solution from scratch), it is

more convenient to integrate the features into the solution than adding those to the

already-grown solution later.

On the other hand, the current and further enhanced implementation of the legacy

implementation provides now a good groundwork for the further development. It

has been developed so that every legacy part can be replaced or updated easily,

if necessasary. There are parts in the legacy implementation that should be cer-

tainly reused, such as, stream-based convergence layers and bundle related classes

for message formats. The investigation before replacing and updating the legacy

code should be made to reduce the development effort (no need to introduce dupli-

cate code).

Robust on-device debugging, such as using FineToothCamb[4], requires specific soft-

ware and hardware that is usually available only for the device manufacturers. In-

stead, we chose to use a simple file-based debugging method on the device, that is

slow to analyze and not feasible anymore when the solution grows (even though it

can be kept beside the on-device debugging). More advanced on-device debugging

methods are reasonable to take in use in next releases.

Porting the DT-Talkie application from the Linux platform to the Symbian plat-

form introduced problems due to the incompatible 3rd party libraries. As of our

knowledge, this porting problem is quite a common problem generally in the mobile

software development community. The porting should be feasible in theory, but in

reality eventually every part had to be made from scratch using the native Symbian

platform and APIs provided by the S60 application platform. The porting required

a lot of iterative development before finding out that it was not feasible (i.e. there

was a need to develop a new Symbian-specific implementation from scratch). More-

over, the audio codecs used in the original DT-Talkie were not supported in Symbian

without partnership access to the lower level hardware-accelerated audio services, so

we needed to add more codecs also for the Maemo version to achieve interoperability

between these two platform-specific implementations. The audio codec negotiation

protocol should also be implemented, when the device that an other party is using,

is unknown.

Delay-tolerant networking embraces asynchronous communication between applica-

75

tions. This kind of communication paradigm can not be applied to satisfy hard,

or even soft, real-time requirements. Therefore, critical real-time applications are

not sensible to be taken use in the challenged network environments. This limits

the scale of applications, that can be developed on top of the bundle protocol, to

applications where application messages eventually may or may not be delivered be-

tween two bundle nodes. This also affects for the voice communication when using

the DT-Talkie implementations. The communication can not be conversational with

the asynchronous communication paradigm, if the delays to deliver voice messages

between two instances grow too large.

The current release of DTNS60 is not using resources efficiently. The resource usage

can be modified by changing the polling period, which on the other hand may intro-

duce non-responsive software, or drain the battery quickly. In a scarce environment

where maximizing the battery-life is an especially important goal, the implementa-

tion should be as optimized as possible. Integrating Nokia Energy Profiler for the

real-time resource consumption measurements, and modifying the operations of the

implementation to work in a more resource-saving manner, is suggested.

DTNS60 is limited to receive, send or forward messages at maximum two messages

per second in this release. This is due to polling period used in the main loop of the

application that the whole bundle protocol service is dependent from. The maximum

message size supported in this release is limited to 1MB.

On the other hand, even though these resource consumption and throughput lim-

itations, one goal of the thesis was to made proof-of-concept tests in a laboratory

environment, that were successful.

The interoperability tests with the other DTN implementations turned out to be

successful way for finding defects and testing simple interoperability between the

other implementations. Also, the tests provided means for debugging the software

in a ways that are reasonable for intercommunication. After all, intercommunication

between different bundle nodes (that use also different implementations) is the main

goal in the end of the day.

Looking from the more general mobile software development point-of-view, we no-

ticed a bunch of problems when developing first for the emulator in a desktop com-

puter, and then afterwards deploying a build for a mobile phone. Generally, we

noticed that if the implementation works on a emulator, it is not guaranteed to

work on a mobile phone. For example, emulator environment may give wrong im-

pression about the real memory available in the real device, or give a wrong set of

76

libraries in use that are not available on the device (e.g. SQLite libraries [59] are

not available for the 3rd edition feature pack 1 devices).

It is important to choose the target mobile phones beforehand when practicing

mobile software development. In theory, Symbian-based code should work in a

many different models without need to change the source code. In practice the

implementation must be tested with every target mobile phone, that is, not feasible

within scope of the thesis. Usually, devices have, for example, different screen sizes,

different supported audio codecs and different supported libraries, even though those

are under the umbrella of the Symbian S60 devices.

We conclude that implementing the DTN functionality, and the bundle layer for

the terrestrial mobile networks that cannot maintain end-to-end connectivity, is

feasible using the traditional heteregeneous (mobile) networks and heterogeneous

mobile devices. However, the thesis-related work is not fully conclusive, but offers

groundwork implementation and tools for the future research.

7.2 Future research

DTNS60 is not yet fully compliant with the specifications of RFC5050; the available

features are interoperable, but not all features are implemented. Therefore, the next

steps are to implement the missing features, and test those thoroughly using the test

framework. More advanced and appealing features to implement in the subsequent

releases are routing protocols, security and other extensions for the bundle protocol.

After the implementation has been tested and is in a stable state, it can be deployed

into the more advanced real world scenarios, for example, in the rural areas where

the basic network infrastructure is lacking and disconnections of the communications

links are apparent due to mobility characteristics.

Comparing the DTNS60 bundle protocol implementation to the other implemen-

tations on the mobile software platforms should be done to choose the reasonable

mobile software platform(s) to take in use in the real world scenarios. The resource

consumption should be minized and throughput capabilities good enough to not

introduce bottlenecks to the basic delay-tolerant communication between the delay-

applications.

The deployment of DTNS60 into the real world requires compelling applications

that people are interested to take in everyday use. Such applications may be, for

example, delay-tolerant social networking applications [6] that can enable commu-

77

nication among the local communities in an ad-hoc manner. Deploying the bundle

protocol to the real world scenarios can offer also new insights to the applications

that are not yet known.

Hybrid solutions offer an interesting research area to implement on a real mobile

phones. Those support both the traditional synchronous communication, and the

DTN-based asynchronous communications when challenged environments are ap-

parent, and choosing between these two modes has been made seamless for the

end-user.

Designing delay-tolerant applications is a more complex task than designing conven-

tional (TCP/IP-based) applications, because the response from the other end may

not come immediately after the initial request has been made. Delay-tolerant user

interface design offers an research area to look for. The user interface should be

more intuitive for asynchronous communication. It is not an error condition if there

is no connectivity available at the moment.

Also, choosing the right network interface that favors current conditions of the envi-

ronment at particular time is something that is not clear to us. This service should

take in account cost criterias, that may be for example, monetary cost of using the

network (e.g. free WLAN vs. operator-invoiced 3g).

Implementing a peer discovery mechanisms for the bundle node excludes the problem

of configuring manually the contacts in reach beforehand. For example, Bonjour[5]

mechanism, that is implemented in DTN2, may be a good algorithm to use for peer

discovery, but is capable to work only in the IP networks.

Time synchronization between mobile devices is a research problem that has not

been solved yet for the different deployment scenarios where different accuracy in

the synchronization is needed, and where the infrastructure network is not available

to offer time synchronization.

The world is still waiting a delay-tolerant killer application [39] that could leverage

delay-tolerant networking concept to transform in to the everyday use among the

end-users using mobile devices that face disconnections and disruptions on the edges

of the Internet.

78

References

[1] Android. http://www.android.com/, January 2010.

[2] L. Arantes, A. Goldman, and M. Vinicious dos Santos. Using evolving graphs to

evaluate dtn routing protocols. In Proceedings of the ExtremeCom Workshop,

August 2009.

[3] Steve Babin. Developing Software for Symbian OS: A Beginner’s Guide to

Creating Symbian OS v9 Smartphone Applications in C++. Wiley Publishing,

2008.

[4] A. Baldwin. Exploring qt performance on arm using finetooth-

comb. http://labs.trolltech.com/blogs/2009/09/29/exploring-qt-performance-

on-arm-using-finetoothcomb/, September 2009.

[5] Bonjour. http://developer.apple.com/networking/bonjour/index.html,

January 2010.

[6] S. Buchegger. Delay-tolerant social networking. In Proceedings of the Extreme-

Com Workshop, August 2009.

[7] Bytewalla. http://www.tslab.ssvl.kth.se/csd/projects/092106/, Jan-

uary 2010.

[8] Iain Campbell. Symbian OS Communications Programming. Wiley Publishing,

2007.

[9] Carbide Integrated Development Environment. http://forum.nokia.com, Jan-

uary 2010.

[10] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and

H. Weiss. Delay-Tolerant Networking Architecture. RFC 4838 (Informational),

April 2007.

[11] CHIANTI. http://www.chianti-ict.org/, January 2010.

[12] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR).

RFC 3561, October 2003.

[13] D-Bus. http://www.freedesktop.org/wiki/Software/dbus, January 2010.

79

[14] Delay-Tolerant Networking Research Group. http://www.dtnrg.org, January

2010.

[15] M. Demmer and J. Ott. Delay-Tolerant Networking TCP Convergence Layer

Protocol draft-irtf-dtnrg-tcp-clayer-02.txt. Internet draft, November 2008.

[16] Disconnectathon. http://www.dtnrg.org/wiki/DtnBone/Disconnectathon,

July 2009.

[17] DTN for S60. http://sourceforge.net/projects/dtns60/, January 2010.

[18] DTN2 reference implementation. http://www.dtnrg.org/wiki/Code, January

2010.

[19] W. Eddy. Using Self-Delimiting Numeric Values in Protocols. Internet Draft,

January 2010.

[20] Leigh Edwards, Richard Barker, and Staff. Developing Series 60 Applications:

A Guide for Symbian OS C++ Developers (Nokia Mobile Developer Series).

Addison-Wesley Professional, March 2004.

[21] K. Fall. A delay tolerant network architecture for challenged internets, 2003.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-

fessional, illustrated edition edition, November 1994.

[23] Gmime. http://spruce.sourceforge.net/gmime/, January 2010.

[24] GStreamer. http://www.gstreamer.net/, January 2010.

[25] S. Guo, M. H. Falaki, E. A. Oliver, Ur S. Rahman, A. Seth, M. A. Zaharia, and

S. Keshav. Very low-cost internet access using kiosknet. SIGCOMM Comput.

Commun. Rev., 37(5):95–100, October 2007.

[26] Haggle. http://www.haggleproject.org/, January 2010.

[27] R.J. Honicky, O. Bakr, M. Demmer, and E. Brewer. A message oriented phone

system for low cost connectivity. HotNets workshop, 2007.

[28] Internet Research Task Force. http://www.irtf.org, January 2010.

[29] Interplanetary Internet Special Interest Group. http://www.ipnsig.org, Jan-

uary 2010.

80

[30] iPhone. http://www.apple.com/iphone/, January 2010.

[31] Md. T. Islam. Dt-talkie: Push-to-talk in challenged networks. ACM MobiCom,

2008.

[32] Md. T. Islam, A. Turkulainen, T. Kärkkäinen, M. Pitkänen, and J. Ott. Prac-

tical voice communication in challenged networks. In Proceedings of the Ex-

tremeCom Workshop, August 2009.

[33] Adrian J. Issott. Common Design Patterns for Symbian OS: The Foundations

of Smartphone Software. Wiley Publishing, 2008.

[34] Java ME. http://java.sun.com/javame/, January 2010.

[35] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring software

product quality: a survey of iso/iec 9126. Software, IEEE, 21(5):88–92, 2004.

[36] H. Kruse and S. Ostermann. UDP Convergence Layers for the DTN Bundle and

LTP Protocols draft-irtf-dtnrg-udp-clayer-00. Internet draft, November 2008.

[37] LiMo Foundation. http://www.limofoundation.org/, January 2010.

[38] A. Lindgren, A. Doria, E. Davies, and S. Grasic. Probabilistic Routing Protocol

for Intermittently Connected Networks draft-irtf-dtnrg-prophet-02.txt. Internet

draft, March 2009.

[39] Anders Lindgren and Pan Hui. The quest for a killer app for opportunistic and

delay tolerant networks: (invited paper). In CHANTS ’09: Proceedings of the

4th ACM workshop on Challenged networks, pages 59–66, New York, NY, USA,

2009. ACM.

[40] Maemo. http://maemo.org/, January 2010.

[41] O. Mukhtar. Design and Implementation of Bundle Protocol Stack for Delay-

Tolerant Networking. Master’s thesis, Helsinki University of Technology, 2006.

[42] Omar Mukhtar and Jörg Ott. Backup and bypass: introducing dtn-based ad-

hoc networking to mobile phones. In REALMAN ’06: Proceedings of the 2nd

international workshop on Multi-hop ad hoc networks: from theory to reality,

pages 107–109, New York, NY, USA, 2006. ACM.

[43] NASA - Delay-Tolerant Networking (DTN). http://www.nasa.gov/mission_

pages/station/science/experiments/DTN.html, January 2010.

81

[44] Nokia Energy Profiler. http://forum.nokia.com, January 2010.

[45] Earl A. Oliver and Srinivasan Keshav. Design principles for opportunistic com-

munication in constrained computing environments. In WiNS-DR ’08: Pro-

ceedings of the 2008 ACM workshop on Wireless networks and systems for de-

veloping regions, pages 31–36, New York, NY, USA, 2008. ACM.

[46] Open C/C++ libraries. http://forum.nokia.com, January 2010.

[47] Open Mobile Alliance. Push-to-Talk over Cellular (PoC). http://www.

openmobilealliance.org/.

[48] J. Ott and D. Kutscher. A disconnection-tolerant transport for drive-thru in-

ternet environments. In INFOCOM 2005. 24th Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings IEEE, volume 3,

pages 1849–1862 vol. 3, 2005.

[49] S. Perkins, E. Belding-Royer, and S. Das. Ad Hoc On-Demand Distance Vector

(AODV) Routing. RFC 3561, July 2003.

[50] A-K Pietiläinen and C. Diot. Experimenting with opportunistic networking. In

MobiArch’09: Proceedings of International Workshop on Mobility in the Evolv-

ing Internet Architecture, June 2009.

[51] Anna K. Pietiläinen, Earl Oliver, Jason Lebrun, George Varghese, and

Christophe Diot. MobiClique: middleware for mobile social networking. In

WOSN ’09: Proceedings of the 2nd ACM workshop on Online social networks,

pages 49–54, New York, NY, USA, August 2009. ACM.

[52] Roger Pressman and Roger Pressman. Software Engineering: A Practitioner’s

Approach. McGraw-Hill Science/Engineering/Math, 6 edition, April 2004.

[53] Qt application and GUI framework. http://qt.nokia.com/, January 2010.

[54] Qt application and GUI framework, reference documentation.

http://doc.trolltech.com/, January 2010.

[55] Qt Labs. http://labs.trolltech.com/, January 2010.

[56] Qt Mobility. http://labs.trolltech.com/page/Projects/QtMobility, January

2010.

82

[57] M. Ramadas, S. Burleigh, and S. Farrell. Licklider Transmission Protocol -

Specification. RFC 5326, September 2008.

[58] Research in Motion. http://www.rim.com/, January 2010.

[59] S60 Platform SDKs for Symbian OS. http://forum.nokia.com, January 2010.

[60] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system

design. ACM Trans. Comput. Syst., 2(4):277–288, November 1984.

[61] Sami Network Connectivity. http://www.snc.sapmi.net/, January 2010.

[62] K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050, November

2007.

[63] Scratchbox. http://www.scratchbox.org/, January 2010.

[64] T. Socolofsky and C. Kale. A TCP/IP Tutorial. RFC 1180, January 1991.

[65] Symbian Foundation. http://www.symbian.org/, January 2010.

[66] Symbian OS Unit test framework. http://www.symbianosunit.co.uk/, Jan-

uary 2010.

[67] S. Symington. Delay-Tolerant Networking Previous Hop Insertion Block draft-

irtf-dtnrg-bundle-previous-hop-block-09. Internet draft, November 2009.

[68] S. Symington. Delay-Tolerant Networking Retransmission Block draft-irtf-

dtnrg-bundle-retrans-block-06. Internet draft, October 2009.

[69] S. Symington. Delay-Tolerant Networking Metadata Extension Block draft-irtf-

dtnrg-bundle-metadata-block-06. Internet draft, November 2009.

[70] S. Symington, S. Farrell, H. Weiss, and P. Lovell. Bundle Security Protocol

Specification Bundle Security Protocol Specification. Internet draft, October

2010.

[71] Andrew S. Tanenbaum. Modern Operating Systems (2nd Edition) (GOAL Se-

ries). Prentice Hall, 2 edition, March 2001.

[72] The GTK+ Project. http://www.gtk.org/, January 2010.

[73] The Networking for Communications Challenged Communities (N4C) project.

http://www.n4c.eu/, January 2010.

83

[74] Vinod Vijayarajan. A Guide to P.I.P.S. Symbian Developer Network, 2008.

[75] D. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/, January

2010.

[76] Mark Wilcox. Porting from Linux to Symbian OS. Symbian Developer Network,

2009.

[77] Windows Mobile. http://www.microsoft.com/windowsmobile/, January

2010.

[78] Windows Presentation Foundation. http://windowsclient.net/wpf/, Jan-

uary 2010.

84

Appendix A

BUNDLE PROTOCOL REQUIREMENTS

DASM 0.3.0 DTNS60 0.4.1

RFC 5050

commencing a registration (registering a node in an endpoint) not started started

terminating a registration not started started

switching a registration between Active and Passive states not started started

transmitting a bundle to an identified bundle endpoint done done

canceling a transmission not done done

polling a registration that is in the passive state not started started

delivering a received bundle done done

bundle formats done done

bundle processing started started

administrative record processing started started

draft-irtf-dtnrg-tcp-clayer-02

Encapsulation/decapsulation of bundles done done

Procedures for connection setup and teardown done done

Transmitting a bundle to the specified EID done done

Other features

DTN API not started started

client-server architecture not started done

Routing not started not started

Security not started not started

Metadata not started not started

UPD CLA not started not started

Bluetooth started started

Persistence not started started

Qt layer not started not started

85

Appendix B

SLOCCOUNT Statistics

DASM 0.3.0 DTNS60 0.4.1

Total Physical Source Lines of Code (SLOC) 10297 17325

Development Effort Estimate, Person-Years (Person-Months) 2,31 (27,77) 4,00 (47,95)

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) 0,74 (8,84) 0,91 (10,88)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) 3,14 4,41

Total Estimated Cost to Develop $ 312,599 $ 539,819

(average salary = $56,286/year, overhead = 2.40).

