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Abstract

The joint dynamics of the instantaneous and exponentially averaged queue
length in an M/M/1/K queue is studied. A system of ordinary differential equa-
tions is derived for the joint stationary distribution of the instantaneous and the
exponentially averaged queue length. The equations are similar to those gov-
erning an MMRP driven fluid queue. An analytical solution to the equations is
obtained in a few special cases. Mean and variance of the marginal distribution
of the averaged queue length, both unconditional and conditional on the value of
the instantaneous queue length, are derived for the general case.
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1 Introduction

Congestion control and service differentiation in the Internet are central problem areas
for current teletraffic research. The goal is to develop mechanisms which, while being
scalable and easy to implement, allow providing certain level of Quality of Service
assurances for the users of the network.



Several active queue management methods have been proposed for congestion con-
trol purposes. Notably, the random early detection (RED) mechanism was suggested
by Floyd and Jacobson [5] as a means to avoid global synchronization of the TCP
sources, which may happen in an uncontrolled queue, where upon a buffer overflow all
the sources first halve their sending rates and then gradually increase the rates more
or less synchronously. In RED, some packets are dropped randomly even before the
buffer is full, thus spreading out the phases of the cycling TCP sources. In order to
make the behaviour of this mechanism smoother, not reacting too aggressively to short
time fluctuations of the instantaneous queue, it was proposed that the packet drop-
ping is controlled by an average queue. The dropping probability was chosen to be a
deterministic function of the average queue as explained in [5]. Several variants of the
RED mechanism with different refinements have also been developed, such as weighted
RED (WRED), cf. e.g. [2], RED with an in/out bit (RIO) [3], adaptive RED (ARED)
[4], stabilized RED (SRED) [13] and flow RED (FRED) [12]. The use of RED has
also been proposed in the Assured Forwarding (AF), which is one of the differentiated
services (DiffServ) traffic handling mechanisms. In fact, some of these mechanisms are
today already being deployed in routers of the Internet.

Obviously, due to these developments it is important to understand the joint dy-
namics of the instantaneous and average queues. This is the problem addressed in the
present paper. In particular, our aim is to define a specific system model, elaborate
the equations that govern the system, and give some analytical results relating to their
solution. In earlier work [9]-[11] the dynamics has been studied in terms of the behavior
of the expected values of the instantaneous and average queue lengths. In this paper
we focus on the full joint distribution of these quantities.

In our model, packet arrivals to the queue are assumed to constitute a Poisson
process. While this assumption is primarily made for the tractability of the problem, it
can be argued that the short term behaviour of a packet stream may not be too far from
a Poisson process. Thus we are led to consider an ordinary M/M/1/K queue and the
related average queue. By an average queue we mean an exponentially weighted moving
average of the instantaneous queue. For brevity, this is called either exponentially
averaged queue or just averaged queue. The averaging here refers to a time average.
This differs from the definition of the average queue in RED, where the average queue
is updated upon arrival of each new packet with no regard to the time elapsed between
the arrivals. Such an event driven average changes more slowly when there are few
arrivals, and more rapidly when the arrivals are frequent. Time average is, however,
easier to analyze and is studied here. It can also be claimed that the event based
approach has been adopted solely by implementation considerations, while the time
average is perhaps more desirable. Notably, in RED an exceptional handling of the
average queue is specified for the case of an empty queue, which makes the average
look more like the time average with an exponential weight.

The paper focuses on the study of the dynamics of the joint process of the instan-
taneous and average queues of an M/M/1/K system. Despite of the ‘classical’ nature
of this problem, it has not been analyzed before, as far as the authors are aware. The
state of the system is specified by a pair of a discrete and a continuous variable. The
setting is similar to a fluid queue driven by a Markov modulated rate process (MMRP).
Indeed, our analysis draws much on the seminal paper [1] on fluid queues; the equations



are very similar in both systems.
The stationary joint distribution of the state variables is governed by a system

of coupled ordinary differential equations (ODEs). An analytical solution to these
equations is found in a few special cases. These solutions may give some hint about
the structure of the general solution, though finding such a solution has evaded us.
In the general case, however, we can find the mean and variance of the conditional
(conditioned on the value of the instantaneous queue) as well as the unconditional
distribution of the averaged queue length. It also turns out that a direct numerical
solution of the system of ODEs is unstable and needs some special techniques. These
are not developed in this paper but the interested reader is referred to a companion
paper [8].

The rest of the paper is organized as follows. First the model for the combined sys-
tem of instantaneous and exponentially averaged queue is introduced in section 2. We
also derive a system of ordinary differential equations governing the joint distribution
of instantaneous and exponentially averaged queue length. Analytical solutions for the
joint stationary distribution function in a few specific cases are obtained in section 3. In
section 4 analytical solutions for the mean and variance of the exponentially averaged
queue length are derived. Conclusions are given in section 5.

2 Model description

We consider anM/M/1/K queueing system. Customers arrive at the system according
to a Poisson process with arrival rate λ and have exponentially distributed service times
with parameter µ. With L(t) we denote the instantaneous queue length at time t. In
addition, we define the exponentially averaged queue length S(t) at time t by,

S(t) =
∫ ∞

0

L(t− u)αe−αudu. (1)

Here, α is a weighting (or averaging) parameter and by definition L(t) = 0 for t ≤ 0.
It is readily seen that the process S(t) obeys the differential equation

d

dt
S(t) = −α(S(t)− L(t)), (2)

i.e. the rate at which S(t) changes is proportional to the difference at time t between
the instantaneous and the exponentially averaged queue length. The influence of the
instantaneous queue length process L(t) on the exponentially averaged queue length
process S(t) is illustrated in Figure 1.

From equation (2) and the definition of L(t) it is easily seen that the two-dimensional
process (L(t), S(t)) is a Markov process with state space

S = {(i, x) : i ∈ {0, . . . ,K}, x ∈ [0,K]}.

In the sequel we study the joint distribution of the process (L(t), S(t)). As already
mentioned in the introduction, the setting resembles the situation in classical Markov
modulated fluid queues: a continuous-state process S(t) regulated by a discrete-state
Markov process L(t). However, unlike as in the classical models, the rate at which the
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Figure 1: Influence of instantaneous queue on exponentially averaged queue

process S(t) changes at time t not only depends on L(t) but also on S(t) itself (see
(2)).

Define the partial cumulative distribution functions

Fi(t, x) = P{L(t) = i, S(t) ≤ x}, i = 0, . . . ,K. (3)

The time evolution of the partial cumulative distribution functions is governed by
the forward Kolmogorov equations, which can be written as the system of partial
differential equations,

∂

∂t
Fi(t, x) − α(x− i) ∂

∂x
Fi(t, x) =

λi−1Fi−1(t, x)− (λi + µi)Fi(t, x) + µi+1Fi+1(t, x), i = 0, . . . ,K, (4)

where

λi =
{
λ, 0 ≤ i ≤ K − 1,
0, i = K,

and µi =
{
µ, 1 ≤ i ≤ K,
0, i = 0. (5)

Introducing the notation

F(t, x) = (F0(t, x), F1(t, x), ..., FK(t, x))T,

D(x) = α diag(0− x, 1− x, 2− x, ...,K − x),

Q =


−λ λ 0 · · · 0
µ −(λ+ µ) λ 0
...

. . . . . . . . .
...

0 µ −(λ+ µ) λ
0 · · · 0 µ −µ

 ,



equation (4) can alternatively be written as

∂

∂t
F(t, x) + D(x)

∂

∂x
F(t, x) = QTF(t, x). (6)

In particular, we are interested in studying the stationary distribution of the process
(L(t), S(t)). Defining F(x) = limt→∞ F(t, x), and using limt→∞

∂
∂tF(t, x) = 0 we

obtain for F(x) the system of differential equations

D(x)
d

dx
F(x) = QTF(x). (7)

The boundary conditions for the differential equations are given by

Fi(0) = 0, i = 0, . . . ,K, (8)
Fi(K) = πi, i = 0, . . . ,K, (9)

where πi denotes the stationary probability of having i customers in an M/M/1/K
queue. Clearly, with ρ = λ/µ, the probabilities πi are equal to

πi =
ρi∑K
j=0 ρ

j
=

1− ρ
1− ρK+1

ρi, i = 0, 1, . . . ,K. (10)

3 Analytical solution for some special cases

In general, the solution of equation (7) together with boundary conditions (8) and (9)
is difficult to find. However, in some special cases we are able to find an analytical
solution. In section 3.1, we present the solution for the case K = 1, i.e., the situation
in which the instantaneous queue length can only be in two different states. After that,
in section 3.2, we present the solution for some special choices of the parameters α, λ
and µ in the case K = 2.

3.1 The M/M/1/1 system

In this case, the system of differential equations (7) is given by{
α(0− x) ddxF0(x) = −λF0(x) + µF1(x),

α(1− x) ddxF1(x) = λF0(x)− µF1(x).
(11)

Now, it is straightforward to check that the solution of (11) together with boundary
conditions (8) and (9) is given by

F0(x) =
µ

λ+ µ
· B(x, λ/α, µ/α+ 1)
B(λ/α, µ/α+ 1)

, 0 ≤ x ≤ 1,

F1(x) =
λ

λ+ µ
· B(x, λ/α + 1, µ/α)
B(λ/α+ 1, µ/α)

, 0 ≤ x ≤ 1,
(12)



where B(·, ·) and B(·, ·, ·) are the beta function and incomplete beta function, respec-
tively, defined by

B(z1, z2) =
∫ 1

0

yz1−1(1− y)z2−1 dy,

B(x, z1, z2) =
∫ x

0

yz1−1(1− y)z2−1 dy.

Remark that this implies that in the stationary situation, given that the instantaneous
queue length is 0, the exponentially averaged queue length has a beta distribution with
parameters λ/α and µ/α + 1. Similarly, given that the instantaneous queue length is
1, the exponentially averaged queue length has a beta distribution with parameters
λ/α+ 1 and µ/α. This result coincides with formula (4.8) in Kella and Stadje [6].

3.2 Some special cases of the M/M/1/2 system

In the case K = 2, the system of differential equations (7) is given by
α(0− x) ddxF0(x) = −λF0(x) + µF1(x),

α(1− x) ddxF1(x) = λF0(x)− (λ+ µ)F1(x) + µF2(x),

α(2− x) ddxF2(x) = λF1(x)− µF2(x).

(13)

Now, let us restrict our attention to the case λ/α = µ/α = m, where m is some
arbitrary non-negative integer. The way we proceed is that we try to find a solution
of equations (13), (8) and (9) of the form

Fi(x) =
∞∑
k=0

ak,ix
k, 0 ≤ x ≤ 2, i = 0, 1, 2. (14)

Clearly, from boundary conditions (8) we obtain a0,0 = a0,1 = a0,2 = 0. Furthermore,
substitution of (14) into (13) yields, for k ≥ 0, the following recursive relations for the
coefficients ak,i:

−kak,0 = −mak,0 +mak,1, (15)
(k + 1)ak+1,1 − kak,1 = mak,0 − 2mak,1 +mak,2, (16)

2(k + 1)ak+1,2 − kak,2 = mak,1 −mak,2. (17)

From these relations, we can obtain successively for k = 1, 2, 3, . . . all the coefficients
ak,i: first ak,2 from (17), then ak,1 from (16) and finally ak,0 from (15). The coefficients
obtained in this way satisfy:

• ak,0 = ak,1 = ak,2 = 0, for k < m;

• am,2 = am,1 = 0;

• am,0 can be chosen arbitrarily, say am,0 = c;

• ak,0 = ak,1 = ak,2 = 0, for k > 3m.



Hence, we find polynomials F0(x), F1(x) and F2(x) of degree 3m satisfying (13)
and boundary conditions (8). The question remains whether or not the functions
F0(x), F1(x) and F2(x) also satisfy boundary conditions (9).

It turns out that for m odd, indeed we can choose the value of c such that also
boundary conditions (9) are satisfied. Below we show, for the special cases m = 1 and
m = 3 the obtained solutions for fi(x) = d

dxFi(x), i = 0, 1, 2. The reason that we show
fi(x) and not Fi(x) itself is that fi(x) partly factorizes in terms x and (2− x).

m = 1 :
f0(x) = 1

8 (2− x)2, f1(x) = 1
4x(2− x), f2(x) = 1

8x
2, 0 ≤ x ≤ 2

m = 3 :
f0(x) = 105

2048x
2(2− x)4(5x2 − 8x+ 8),

f1(x) = 105
1024x

3(2− x)3(5x2 − 10x+ 8), 0 ≤ x ≤ 2

f2(x) = 105
2048x

4(2− x)2(5x2 − 12x+ 12).

Remark that the functions f0(x), f1(x) and f2(x) satisfy the relations{
f0(x) = f2(2− x), 0 ≤ x ≤ 2,

f1(x) = f1(2− x), 0 ≤ x ≤ 2,

which is, of course, due to symmetry in the case λ = µ.
For m even unfortunately we are not able to choose the value of c such that also

boundary conditions (9) are satisfied. However, in this case we make use of the
symmetry argument mentioned before to obtain the solution. Similar as before, we
construct Fi(x) as in (14) but now only for 0 ≤ x ≤ 1. For 1 ≤ x ≤ 2, we set
Fi(x) = πi − F2−i(2− x), i = 0, 1, 2. In this way, we can choose the value of c such
that also boundary conditions (9) are satisfied. We also automatically obtain conti-
nuity of the functions Fi(x) at x = 1. Below we show, for the case m = 2, again the
obtained solutions for fi(x) = d

dxFi(x).

m = 2 : 
f0(x) = 1

15x(3x
4 − 20x3 + 50x2 − 60x+ 30),

f1(x) = 2
15x

2(−3x3 + 15x2 − 25x+ 15), 0 ≤ x ≤ 1

f2(x) = 1
15x

3(3x2 − 10x+ 10),
f0(x) = 1

15 (2− x)3(3x2 − 2x+ 2),

f1(x) = 2
15 (2− x)2(3x3 − 3x2 + x+ 1), 1 ≤ x ≤ 2

f2(x) = 1
15 (2− x)(3x4 − 4x3 + 2x2 + 4x− 2).

The partial probability density functions fi(x), i = 0, 1, 2 are illustrated in Figure 2.
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Figure 2: Partial probability density functions, fi(x), i = 0, 1, 2 (small dashed line,
solid line, large dashed lined) with m = 1, 2, 3

4 Mean and variance of the averaged queue

The previous section represents our current knowledge about the exact analytical so-
lution of the joint stationary distribution of instantaneous and averaged queue length.
In this section we will derive results that are generally valid for the first two moments
of the marginal distribution of the averaged queue, both conditional and unconditional
on the value of the instantaneous queue. We consider the stationary version of the
process (L(t), S(t)), i.e. for all t ∈ (−∞,∞), F(t, x) = F(x). In the sequel 0 represents
an arbitrary point in time and so we are interested in the mean and variance of S(0).

The following notation will be used

π = (π0, π1, . . . , πK), ei = (0, . . . , 0, 1︸︷︷︸
ith position

, 0, . . . , 0), i = 0, 1, . . . ,K,

e = (1, 1, 1, . . . , 1), n = (0, 1, 2, . . . ,K),

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

0 0 1

 = diag(e), N =


0 0 . . . 0
0 1 . . . 0
...

...
. . .

0 0 K

 = diag(n).

Then it holds

n = e ·N, n ·N = N · nT = (02, 12, . . . ,K2), E[eL(t)] = π, for all t.

4.1 Unconditional mean and variance

Consider S(0), where 0 represents a random point of time. Note that the mean of S(0)
is

s = E[S(0)] = E[L(t)] = π · nT.

The variance of S(0) is

V[S(0)] = E[S(0)2]− s2.



Exploiting time reversibility [7] of L(t) we get, E[L(−u)L(−v)] = E[L(u)L(v)] and
using (1), the second moment can be calculated as follows

E[S(0)2] = α2

∫ ∞
0

du

∫ ∞
0

dv E[L(u)L(v)] e−αue−αv

= 2α2

∫ ∞
0

du

∫ ∞
u

dvE[L(u)L(v)] e−αue−αv | by symmetry

= 2α2

∫ ∞
0

du

∫ ∞
0

dvE[L(u)L(u+ v)] e−αue−α(u+v) | v ← (v + u)

= 2α2

∫ ∞
0

du e−2αu

∫ ∞
0

dvE[L(0)L(v)] e−αv | by stationarity

= α

∫ ∞
0

E[L(0)L(v)] e−αv dv. (18)

The expectation in the integrand can be calculated by conditioning

E[L(0)L(v)] = E[L(0)·E [L(v) |L(0)]].

Denote the state probability vector at time v by π(v). Conditioned on the value L(0)
of the initial queue length, i.e. on the initial state π(0) = eL(0), π(v) evolves as

π(v) = eL(0)e
Qv.

Thus,
E [L(v) |L(0)] = π(v)nT = eL(0)e

QvnT,

and
E[L(0)·E [L(v) |L(0)]] = E[L(0)eL(0)]eQvnT = E[eL(0)N]eQvnT

= πNeQvnT.

Substituting this into (18) finally yields

V[S(0)] = απN(αI−Q)−1nT − (πnT)2.

Note that in the limit α→∞ (implying S(0)→ L(0)) this correctly reduces to

V[S(0)]→ πNnT − (πnT)2 = E[L(0)2]− E[L(0)]2 = V[L(0)].

Example: K = 1

For a two-state system K = 1, with

Q =
(
−λ λ
µ −µ

)
and π =

1
1 + ρ

( 1 ρ )

we have
V[S(0)] =

ᾱ

1 + ᾱ

ρ

(1 + ρ)2
,

where ᾱ = α/(λ+ µ).



4.2 Conditional mean and variance

Now consider S(0) conditioned on the queue length at time 0, L(0) = i. Utilizing the
reversibility property of L(t) the conditional mean of S(0) is

si = E [S(0) |L(0) = i] = α

∫ ∞
0

E [L(u) |L(0) = i] e−αu du

= α

∫ ∞
0

ei eQunT e−αu du (19)

= α ei (αI−Q)−1nT.

Defining the vector s = (s0, . . . , sK) we have

sT = α (αI−Q)−1nT.

As a check, note that by unconditioning the correct unconditional mean is regained,

πsT = π(I−Q/α)−1nT = πnT,

since πQ = 0.
Similarly, again using the reversibility property of L(t) we can calculate the condi-

tional second moments

s
(2)
i = E

[
S(0)2 |L(0) = i

]
= 2α2

∫ ∞
0

du e−2αu

∫ ∞
0

dvE [L(u)L(u+ v) |L(0) = i] e−αv.

The conditional expectation is developed as before

E [L(u)L(u+ v) |L(0) = i] = E [L(u)E [L(u+ v) |L(u)] |L(0) = i]

= E
[
L(u)eL(u) |L(0) = i

]
eQvnT

= E
[
eL(u) |L(0) = i

]
NeQvnT

= eieQuNeQvnT.

Substitution into (19) yields

s
(2)
i = 2α2ei(2αI−Q)−1N(αI−Q)−1nT,

and the corresponding vector s(2),

s(2)T
= 2α2(2αI−Q)−1N(αI−Q)−1nT.

Now the conditional variances are obtained by,

vi = V[S(0) |L(0) = i] = s
(2)
i − s2

i .



Example: K = 1

For the two-state system K = 1, the vector of conditional means, s = (s0, s1), reads

s = (
λ

α+ λ+ µ
,

α+ λ

α+ λ+ µ
)

=
1

1 + ᾱ
(

ρ

1 + ρ
, ᾱ+

ρ

1 + ρ
),

and the conditional variance vector, v = (v0, v1), is

v = (
αλ(α + µ)

(α + λ+ µ)2(2α+ λ+ µ)
,

αµ(α+ λ)
(α+ λ+ µ)2(2α+ λ+ µ)

)

=
ᾱ

(1 + ᾱ)2(1 + 2ᾱ)(1 + ρ)
(ρᾱ+

ρ

1 + ρ
, ᾱ+

ρ

1 + ρ
).

Note that in the limit α→ 0 we have s→ E[S(0)](1, 1) and v → V[S(0)](1, 1), i.e.
when the averaging time is long conditioning on the current state has no effect. Note
also that when α → ∞, s → (0, 1) and the variance tends to zero, v → 1

2α( ρ
1+ρ ,

1
1+ρ ),

because conditioning on the current state makes the short time average deterministic.
The mean and variance can be easily calculated using the analytical solutions for

the distribution functions derived in section 3. In these cases it is easy to verify that
the solutions are in agreement with the mean and variance results above.

5 Conclusions

We have developed a model for the joint dynamics of the instantaneous and the ex-
ponentially averaged queue length in an M/M/1/K queue. The time evolution of the
joint distribution functions of the instantaneous and averaged queue length was de-
scribed with Kolmogorov equations. In the stationary case this leads to a system of
ordinary differential equations for the joint distribution functions.

An analytical solution for the distribution functions was found only in a few special
cases. The general formula was however derived for the conditional and unconditional
mean and variance of the exponentially averaged queue length.

Acknowledgments

This work was done during J. Resing’s visit to the Networking Laboratory of Helsinki
University of Technology. He greatly acknowledges the Networking Laboratory for
their kind hospitality and financial support. Furthermore, the authors wish to thank
S. Aalto for helpful discussions and comments on the work.

References

[1] D. Anick, D. Mitra and M.M. Sondhi, Stochastic theory of a data handling system
with multiple sources, The Bell System Technical Journal, Vol. 61 (1982), pp 1871-
1894.



[2] G. Armitage, Quality of service in IP networks, McMillan Technical Publishing,
USA (2000).

[3] D. Clark and W. Fang, Explicit allocation of best effort packet delivery service,
IEEE/ACM Transactions on Networking, Vol. 6, No. 4 (1998), pp 362-373.

[4] W. Feng, D. Kandlur, D. Saha and K. Shin, A self-configuring RED gateway,
Proceedings of INFOCOM ’99, Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, Vol. 3 (1999), pp 1320 -1328.

[5] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoid-
ance, IEEE/ACM Transactions on Networking, Vol. 1, No. 4 (1993), pp 397-413.

[6] O. Kella, and W. Stadje, Exact results for a fluid model with state-dependent flow
rates, Submitted for publication (2001).

[7] F. Kelly, Reversibility and stochastic networks, Wiley, (1979).

[8] E. Kuumola, J. Resing, J. Virtamo, Joint Distribution of Instantaneous and Av-
eraged Queue Length in an M/M/1/K System, to be presented in the 15th ITC
Specialist Seminar, July 21-24, 2002, Würzburg, Germany.

[9] P. Kuusela, P. Lassila, J. Virtamo and P. Key, Modeling RED with Idealized TCP
Sources, in Proceedings of IFIP ATM & IP 2001, June 27-29, 2001, Budapest,
Hungary, pp 155-166.

[10] P. Kuusela, P. Lassila and J. Virtamo, Stability of TCP-RED Congestion Control,
in Proceedings of ITC-17, December 2-7, 2001, Salvador da Bahia, Brazil, pp
655-666.

[11] P. Lassila and J. Virtamo, Modeling the dynamics of the RED algorithm, in Pro-
ceedings of Quality of future Internet Services, QofIS’2000, 25-26 September, 2000,
Berlin, Germany, pp 28-42.

[12] D. Lin and R. Morris, Dynamics of random early detection, Proceedings of ACM
SIGCOMM97, Cannes, France (1997), pp 127-137.

[13] T. Ott, T. Lakshman and H. Wong, SRED: stabilized RED, Proceedings of IN-
FOCOM ’99, Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, Vol. 3 (1999), pp 1346 -1355.


