Date: January 20, 1997 COST257TD(97)15
Issue: 1

Remarks on the effectiveness of
dynamic VP bandwidth management

Jorma Virtamo, Helsinki University of Technology

Samuli Aalto, VI'T Information Technology

1 Introduction

In report [1] we considered the technical problem of calculating the time dependent blocking
probabilities for the dynamic VP bandwidth management scheme developed by Mocci et
al. [2]-[5]. In this scheme, the bandwidth allocation for various VP’s are updated at regular
time intervals. At the beginning of an interval the system occupancy is observed and new
VP capacity allocation is done in such a way that the expected time average of the blocking
probability in the ensuing interval will be less than a predefined limit. In this report we
assess the advantages and disadvantages of the scheme trying also to give a quantitative
idea about the savings that can be achieved.

2 Comparisons

In the VP management scheme referred to one tries to find an optimal setting between two
extreme cases:

e Static allocation where a constant bandwidth is reserved for each VP such that the
average blocking probability is below the prescribed level ¢, i.e. the capacity is deter-
mined from the Erlang’s formula.

e Dynamic call-by-call allocation, where VP’s are not used at all, or, if used, their
capacities are adjusted at every call set-up and tear-down to accommodate precisely
the number of calls offered (as far as capacity is available).

The static allocation is simple from the management point of view. The VP’s are set up
once and for all, and at the call set-up phase one only has to check the available capacity
in a VP in order to decide whether a call can be accepted or not. Its disadvantage is that
some capacity is wasted as statistical multiplexing is allowed only within the VP. Also it is
unresponsive to the variations in the offered traffic level; uncertainties in this respect will
necessitate the reservation of an even larger capacity for each VP.

The call-by-call allocation makes full use of statistical multiplexing and requires the least
total capacity in average for a given e. However, this is achieved only at the cost of complex
call processing: for each new offered call one has to check the available capacity on each
link along the route of the call. In addition, VP management load becomes dependent on
the call arrival rate: the more traffic, the more frequent reallocation is needed.

The VP management scheme of Mocci et al. balances between these trends: the VP band-
width allocations are updated only at regular intervals, chosen to be long in comparison with
the mean interarrival time, in order to relieve the call processing load. Some capacity saving
will be obtained in comparison with the static allocation but not as much as in the case of
call-by-call allocation. Another advantage comes from the fact that the VP management
load becomes independent of the traffic load.

Let us consider a VP with an offered traffic intensity of a (for simplicity let us assume that
all the calls belong to the same class and have equal effective bandwidths). The saving that
can be achieved is upper bounded by the difference in capacity allocations in the worst case
(static allocation) and the best case call-by-call allocation with an infinite reservoir. The
former is given by the Erlang capacity, i.e., least N such that Erl(V,a) < ¢, and for the
latter the mean allocated capacity is a. The Erlang capacities for € = 0.01 are given for a
few traffic intensities in the following table:

a N
100 | 117
1000 | 1029

In relative terms, the potential saving is of course bigger for smaller systems. For a system
with @ = 1000 the attainable saving of less than 3 % can hardly justify the complexities
of a dynamic bandwidth management. (Another issue is that some degree of flexibility in
the bandwidth allocation is needed in order to cope with the uncertainty related to the
estimation of a. However, the associated time scale is much longer than the time scale of
some multiple of interarrival times we are concerned here).

As mentioned, the above values indicate an upper bound to the saving. In practice, the
capacity saving is smaller because

e The resource pool is finite and the statistical multiplexing between different VP’s is
not perfect.

e The periodic VP allocation scheme is less efficient than call-by-call handling.

2.1 Statistical multiplexing between different VP’s

As to the statistical multiplexing between the VP’s note that capacity released by one VP
may not be immediately utilizable by another VP. Conversely, if temporarily deallocated
capacity is taken by another VP, the capacity may not be available for the original VP
when needed, leading to a higher call blocking unless specific allowance is made for it. For
instance, if the offered traffic in a VP is @ = 10 and we wish to carry 10 such VP’s, then a
capacity of n = 117 is needed, at the minimum, and the saving per VP is at most 18 — 11.7
and not 18 — 10.

2.2 Efficiency of the periodic bandwidth allocation

The main point we wish to study is the efficiency of the proposed VP management scheme
vs. those of static allocation and call-by-call allocation. In order to separate this from the
effect of mutual statistical multiplexing of different VP’s we assume now that the resource
pool is infinite and gauge the efficiency of a method by the mean value of the reserved
bandwidth.

In a careful implementation of the method by Mocci et al., the capacity allocated for a VP at
the update instant is such as to make the expected blocking probability in the next interval
precisely equal to €. The required capacity depends on many parameters: desired overall
blocking probability €, offered traffic intensity a, current occupancy n and the update interval
A. The method presented in [1] allows one to determine the required capacity. However, the
calculations are rather involved and real-time computation is out of question. Precalculated
tables or approximations are needed, but even then the number of parameters makes the
task rather complex.

Moreover, one of the parameters, a, is not known exactly. A separate estimation algorithm is
needed. Full reliance on an estimated value, however, may make the whole method sensitive
to the estimation errors. For the sake of robustness, it would be preferrable to have a method
which does not at all depend on a. Here we propose one simple allocation function:

N(n) = n+ ke, A,n)n/2, (1)

The rationale behind this function is that the for a given a the occupancy distribution in
an infinite system is Poisson(a) which has mean a and standard deviation /a and most of
the time n ~ a. (In the same spirit, Mocci et al. use n as an estimate for a.) The safety
factor k depends obviously on € and A. We let it additionally depend on n in order to
achieve a nearly constant blocking probability of € over a wide range of values of a. (An
interesting question is whether there is a unique function N, a(n) which for a given A makes
the blocking probability strictly constant (e) for all values of a).

Using the method of [1] we can now calculate the average blocking probability b(n,a) for
offered traffic intensity a in an interval A given that the system occupancy was n in the
beginning of the interval and that the bandwidth reservation is made according to (1).

Assuming that blocking is anyway small we can take the distribution of the initial state n
to be Poisson(a), i.e.,
—a

pn<a> = Ee) (2)

and get the overall blocking probability
B(a) =Y pula)b(n, a). (3)
=0
Similarly we get the mean reserved capacity

BN =Y pala)N(n). (@)

In figure 1 we study a system with offered traffic a = 10. The figure shows how the mean
reserved capacity depends on the updating interval (mean holding time of a call is used as
the unit of time) when coefficient k in (1) was chosen so that (3) yields a blocking probability
of 0.01. The bottom of the figure represents a, i.e., the mean capacity in the call-by-call
allocation and the top corresponds to the static allocation by Erlang’s formula. We see that
the studied scheme is clearly less efficient than the call-by-call allocation. However some
saving can be obtained with respect to the static allocation. Unfortunately, this saving
diminishes as the updating interval becomes longer. Note that when aA = 1 there is no
gain in the VP management work. Similar results for a system with a = 100 are shown in
figure 2. In this case, an update interval of 0.1 might be a reasonable choice, giving about
10% saving in the mean capacity in comparison with static allocation and reducing the call
processing load by a factor of 10 in comparison with the call-by-call allocation.

In the previous examples we still let k& depend on a. For instance with A = 0.1 we had
to choose k£ = 0.971 for a = 10 and k£ = 0.748 for a = 100 in order to obtain ¢ = 0.01.
Replacing once again a by n and assuming the dependence of k£ on n be of the power law
form we arrive at an approximation k(0.01,0.1,n) &~ 1.26n %11, Substitution into (1) gives
the allocation formula (¢ = 0.01, A =0.1)

N(n) =n+ 1.26n"*. (5)

We have checked by simulations that this allocation function (to be precise, the least integer
larger or equal to N(n) was used) indeed leads to an almost constant blocking probability
over a wide range of traffic intensities. This is demonstrated in the following table.

a | B(a) | E[N]
3 |1.4%| 5.2

10 [0.8% | 13.4
30 | 0.8% | 34.5
100 | 1.0% | 107.5
300 | 1.1% | 308.1

References

[1] J. Virtamo and S. Aalto, Blocking probabilities in a transient system, COST257TD(96).

(2] C.Bruni, P. D’Andrea, U. Mocci and C. Scoglio, Optimal capacity assignment of virtual
paths in ATM networks, Globecom’94, San Francisco, (1994) pp. 207-11.

[3] C. Bruni, U. Mocci, P. Pannunzi and C. Scoglio, Efficient capacity assignment for ATM
virtual paths, in Hot Topics on traffic and Performance from RACE to ACTS, Milano,
June 14th-15th (1995), paper 14.

[4] U. Mocci, P. Perfetti and C. Scoglio, VP capacity management in ATM networks for
short and long term traffic variations, COST 242 TD(95)59.

[5] U. Mocci, , P. Pannunzi and C. Scoglio, Adaptive capacity management of virtual path
networks, to be presented at Globecom’96, London (1996).

18
17
16
15
14

13 /
12
11
10

0.2 0.4 0.6 0.8 1

Figure 1: Average resource allocation (4) as a function of the update interval for a system
with a = 10.

115

112
//
109
/

106

/

103

100

0.2 04 0.6 0.8 1

Figure 2: Average resource allocation (4) as a function of the update interval for a system
with a = 100.

