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Abstract

Tra�c model based on the fractional Brownian motion (fBm) contains three

parameters: the mean rate m, variance parameter a and the Hurst parameter H.

The estimation of these parameters by the maximum likelihood (ML) method is

studied. Explicit expressions for the ML estimates m̂ and â in terms of H are given,

as well as the expression for the log-likelihood function from which the estimate Ĥ

is obtained as the minimizing argument. A geometric sequence of sampling points,

ti = �
i, is introduced in order to see the scaling behaviour of the tra�c with fewer

samples. It is shown that by a proper `descaling' the tra�c process is stationary

on this grid leading to a Toeplitz-type covariance matrix. Approximations for the
inverted covariance matrix and its determinant are introduced. The accuracy of

the estimation algorithm is studied by simulations. Comparisons with correspond-

ing estimates obtained with linear grid show that the geometrical sampling indeed

improves the accuracy of the estimate Ĥ with a given number of samples.

1 Introduction

One of the simplest and most studied models for aggregated data tra�c is the fractional
Brownian motion (fBm) model [7], which is a model for truly self-similar Gaussian tra�c.
Though the model has its limitations and, in particular, breaks down at small time scales,
it has gained popularity because of its simplicity allowing e.g. the queueing behaviour to
be studied analytically by making use of the scaling properties [4, 6]. Furthermore, an
important feature of the fBm model is its parsimonity [3]: in its basic form the model
contains only three parameters, the mean rate m, the variance parameter a and the
Hurst parameter H describing the scaling behaviour of the tra�c. A small number of
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tra�c parameters is a very desirable feature from the point of view of the applicability
of the model for tra�c engineering purposes. The estimation of even a small number
of parameters poses a problem for long range dependent tra�c. Some early work [7]
suggested that to obtain a reasonable accuracy a very large number of sample points may
be required. The problem arises e.g. in the estimation of the Hurst parameter H. As H
describes the scaling behaviour of the tra�c variability, the sample points have to cover
several time scales in order to determine H reliably, i.e., the total time range must be
several orders of magnitude greater than the �nest time resolution in the measurement.

In this paper we show that by an appropriate choice of the sampling instants, the
number of sampling points can be considerably reduced. In particular, we will introduce
a grid of geometrically distributed sampling points ti = �i�1, i = 1; : : : ; n where � is some
constant (< 1). The idea here is that such sampling grid covers several time scales with
fewer points. The second point is that the geometrical grid, being \self-similar" �ts well
with the tra�c process and gives rise to a simple structure in the covariance matrix.

Throughout this work we apply the maximum likelihood estimation (MLE) method
[1]. MLE method has previously been applied to this problem by Deriche and Tew�k [2]
and Ninness [5] using ordinary linear sampling. Explicit formulas for the estimators of m
and a are given along with the log-likelihood function for determining the estimator for
H. A major di�culty in this method is the calculation of the inverse and determinant of
the covariance matrix appearing in the likelihood function. An approximate calculation
is facilitated if the process is stationary whence the matrix is of Toeplitz type. For the
original fBm process the increment process is stationary. We show that another stationary
process is obtained from the fBm process by `descaling' and changing the process' index to
logarithmic time, i.e., on the geometrical sampling grid the descaled process is stationary.
It turns out that the elements of the inverse matrix far from the diagonal are small,
enabling us to derive a simple approximation for the inverse matrix directly without
using e.g. Whittle's method [1] based on the spectral analysis.

We compare the e�ectiveness of the MLE estimator based on ordinary evenly spaced
sampling grid with that obtained with a geometrical grid by simulations. In the com-
parison the total time range covered by the sample points was kept constant while the
total range is always chosen to be [0; 1] (the actual upper limit is immaterial because of
the self-similarity). The simulations indicate that in the estimation of H the geometrical
grid gives an advantage, whereas for the estimation of a alone it still gives satisfactory
results although the linear sampling is slightly better. The estimation of mean rate m de-
pends very little on the method and is always essentially given by the total tra�c arrived
between the �rst and last sample points.

The rest of this paper is organized as follows. In section 2 we review the fractional
Brownian motion tra�c model with its three parameters. The general problem of the
estimation of these parameters by the maximum likelihood method is considered in section
3. The idea of geometrical sampling and the descaled process, along with an approximate
form of the MLE, are introduced in section 4. For comparison, in section 5 we present the
MLE method for the case of ordinary linear sampling. In section 6, we present results for
estimating the fBm parameters with the described methods from simulated realizations
of the process. Section 7 concludes the paper.
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2 Fractional Brownian tra�c

A normalized fractional Brownian motion with Hurst-parameter H 2 [0:5; 1), denoted by
Z(t), (t 2 IR), is characterized by the following properties [6]:

1. Z(t) has stationary increments;

2. Z(0) = 0, and E [Z(t)] = 0 for all t;

3. Var [Z(t)] = E [Z(t)2] = jtj2H for all t;

4. Z(t) has continuous paths;

5. Z(t) is a Gaussian process, i.e., all its �nite-dimensional marginal distributions are
Gaussian.

In the special case H = 0:5, Z(t) is the standard Brownian motion. It follows from the
above properties that Z(t) is a self-similar process whose scaling behaviour is de�ned by
the Hurst-parameter H as follows

Z(�t) � �HZ(t): (1)

The covariance structure of the process is given by

Cov [Z(t1); Z(t2)] =
1

2

n
t2H1 + t2H2 � jt2 � t1j2H

o
: (2)

Furthermore, in the case H > 0:5 the strongly correlated stationary sequence Z(n+ 1)�
Z(n), the increment process of Z(t), (often called fractional Gaussian noise) is ergodic
[6].

Fractional Brownian motion is a popular model for long-range dependent tra�c. Nor-
ros [6] has suggested the following model

X(t) = mt +
p
aZ(t); (3)

where Xt represents the amount of tra�c arrived in (0; t). The model has three param-
eters, m, a and H with the following interpretations and intervals for allowed values:
m > 0 is the mean input rate, a > 0 is a variance parameter, and H 2 [0:5; 1) is the
self-similarity parameter of Z(t).

3 Exact Gaussian MLE

We use the notation of Beran [1]. Assume the tra�c has been observed at n time instants
forming the vector t = (t1; : : : ; tn)

t where (�)t denotes the transpose. And let X =
(X(t1); : : : ; X(tn))

t be the vector of observed tra�c values at these instants. Since X(t)
is Gaussian, the joint probability density function of X is

h(x) = (2�)�
n

2 j�j� 1

2 e�
1

2
(x�m)t��1(x�m); (4)
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where x = (x1; : : : ; xn)
t 2 IRn, m = mt, and j�j is the determinant of the covariance

matrix
� = Cov

h
X;Xt

i
= E

h
XXt

i
� E [X] E

h
Xt
i
: (5)

The MLE for m is obtained by maximizing logh(X;m) with respect to m, resulting
in the estimator

m̂ = m̂(H) =
tt ��1X

tt ��1 t
: (6)

Note, that the estimate is unbiased, irrespective whether our estimate for H is correct
or not. The variance of m̂ can also be calculated with the assumption that H is known
exactly, Ĥ = H. With straightforward calculations we get

Var [m̂] =
a

tt ��1 t
(7)

The variance of our estimator is smaller than the estimator based on the total sample
mean, by the factor in the denominator (which is close to 1).

Next, consider the estimator for a. � is a simple linear function of a, � = a�H , where
�H is independent of a and is given by

�H = E
h
ZZt

i
=
h
Cov [Z(ti); Z(tj)]

i
i;j=1;:::;n

: (8)

The MLE of a is obtained by maximizing the log-likelihood function log h(X; a) with
respect to a, and from that we get

â = â(m;H) =
1

n
(X�m)t ��1

H (X�m): (9)

If we don't know the mean input rate m in advance, m in Eq.(9) should be replaced by
m̂t. Using Eq.(6) and Eq.(9) we get

â(H) =
1

n

(Xt��1
H X)(tt��1

H t)� (tt��1
H X)2

tt ��1
H t

: (10)

Again, assuming for the time being thatH is known correctly the expectation and variance
of â can be calculated. Using E

h
Zt��1

H Z
i
= E [NtN] = n since Z � �

1=2
H N where N is a

vector of independent standard Gaussian variables, �nally we have

E [â] =
n� 1

n
a; Var

�
n

n� 1
â
�
=

2a2(n� 1)

n2
: (11)

Thus â has the \normal" (n� 1)=n bias.
Finally, we are left with the maximization of theH-dependent part of the log-likelihood

function, i.e., essentially we have to minimize

~L(X;H) = log j�H j+ n log
(Xt ��1

H X)(tt ��1
H t)� (tt ��1

H X)2

tt ��1
H t

: (12)

The �rst term is a decreasing function of H, and the second term is an increasing function
of H. The minimum is obtained for some value Ĥ which is the MLE estimate; the
corresponding MLE estimates for m and a are m̂ = m(Ĥ) and â = a(Ĥ).
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4 Geometrical sampling

The Hurst parameter H describes the scaling behaviour of the tra�c. Therefore, in order
to determine its value from measured tra�c, the sample points have to cover several time
scales, i.e. the total time range of the measurements has to be many orders of magnitude
greater than the �nest resolution (smallest interval between the sampling points). With
the ordinary linear sampling, i.e. sampling points at constant intervals, this leads to
the requirement of very large number of sampling points. Obviously, because of the
correlations, there is a lot of redundancy in measured tra�c values at these points. In
order to use the measurements more e�ciently we introduce a geometric sequence of
sampling points, ti = �i, i = 1; : : : ; n, with some 0 < � < 1. The vector of observed
tra�c values at the sampling points is denoted by X = (X(t1); X(t2); : : : ; X(tn))

t.
In addition to distributing the sampling points in a better way on di�erent time scales,

geometric sampling �ts neatly with the self-similar behaviour of the fBm tra�c. We show
�rst that by a simple transformation we can obtain from the fBm process another process
which is a stationary process of logarithmic time. As a geometric sequence corresponds to
equidistant points in logarithmic time, it follows that the samples of the modi�ed process
constitute a stationary sequence. This leads to a simple Toeplitz-type structure of the
covariance matrix and allows us to develop approximations to the inverse and determinant
of the covariance matrix.

4.1 Descaled process

Z(t) has the self-similar property Z(�t) � �HZ(t). Now consider the `descaled' process
�Z(t)

d
= t�HZ(t) which has the scaling property

�Z(�t) � (�t)�HZ(�t) = t�HZ(t) = �Z(t): (13)

Further let us take a new time variable u = � log t and denote ~Z(u)
d
= �Z(e�u) = �Z(t):

Now we have

~Z(u� log�) = �Z(e�u+log�) = �Z(�e�u) = �Z(�t) � �Z(t) = ~Z(u): (14)

Thus the process ~Z(u) is stationary and has the following covariance structure:

Cov
h
~Z(u1); ~Z(u2)

i
=

1

2
eH(u2�u1)

�
1 + e�2H(u2�u1) �

�
1� e�(u2�u1)

�2H�
; (15)

so the descaled process ~Z(u) is short range dependent.
If we `descale' the process X(t) by the factor t�H and use u as the process index, we

�nally have
~X(u)

d
= me(H�1)u +

p
a ~Z(u): (16)

The covariance matrix ~� of the descaled samples ~X = ( ~X(u1); ~X(u2); : : : ; ~X(un))
t with

ui = � log ti = (1� i) log� can be written as

~� = E
h
~X ~Xt

i
= a � E

h
~Z~Zt

i
: (17)
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Note, that our geometrical grid is now equally spaced with regard to u. Thus, if we
use the notation ~Zi = ~Z(ui) the process ~Z = ( ~Z1; ~Z2; : : : ; ~Zn) is a stationary process in
discrete time with zero mean and unit variance and its auto-correlation function �(k) can
be de�ned as

�(i� j) =
1

2
��Hji�jj

�
1 + �2Hji�jj �

�
1� �ji�jj

�2H�
: (18)

and thus
~�ij = a�(i� j); i; j = 1; 2; : : : ; n: (19)

4.2 Descaled MLE

When doing the maximum likelihood estimation of the model parametersm, a and H, one
can utilize the stationarity and short range dependent properties of the descaled process.
Using the `descaling matrix'D = diag(t�H

1 ; : : : ; t�H
n ) we can easily derive ~� = D�D, and

from this we get
��1
H = D~��1

H D: (20)

The determinant j�H j can be also calculated as

j�H j = �Hn(n�1)j~�H j: (21)

4.3 Approximate MLE

In practice, the exact MLE poses computational problems. And this is not just because
of the computation time needed in case of large data sets, but because of the evaluation
of the inverse and the determinant of the covariance matrix may be numerically unstable.
To avoid these problems, one can use approximate methods to calculate the estimates.
In [1], several possible approaches to approximating the Gaussian likelihood function are
discussed, among them the well known Whittle's approximate MLE.

In our case we focus on the properties of the covariance matrix �H , trying to take
advantage of its special structure and to �nd e�cient approximations for its inverse and
determinant.

Using the notations � = ��H and

g(x) =
1

2
(1 + x2H � (1� x)2H); (22)

the elements of the autocorrelation matrix ~�H can be written as (~�H)i;j = � ji�jjg(�ji�jj),
i; j = 1; 2; : : : ; n. It is interesting to note, that g(x) is nearly completely linear for x 2
(0; 1). Figure 1 shows the di�erence of g(x)� x for di�erent values of H. It can be seen
from the plot that the largest absolute di�erence is less than 0.02 for each value of H.
This observation gives us the idea to use the approximation g(x) � x. So ~�H can be
approximated as ~�H � R, where R is a Toeplitz-type matrix of the form [R]ij = ji�jj,
i; j = 1; 2; : : : n, with  = �1�H .
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Figure 1: Error of approximation g(x) � x for H = 0:6, 0.7, 0.8 and 0.9.

The inverse of R can be easily calculated as [8]

R�1 =
1

1


� 

0
BBBBBBBBBBBBBBB@

1


�1 0 � � � 0

�1  +
1


�1 . . .

...

0 �1  +
1



. . . 0

...
. . . . . . . . . �1

0 � � � 0 �1 1



1
CCCCCCCCCCCCCCCA

; (23)

and the determinant of R is given by [8]

jRj = (�1)n�1
n�1Y
i=1

����� 
1�i i�1

�i i

����� � n�1 = (1� 2)n�1: (24)

Using the fact that ttDR�1Dt = 1 and ttDR�1D = (1; 0; : : : ; 0), we get

m̂(H) = X1; (25)

so using the above approximation the MLE estimate for m reduces simply to the sample
mean. As for the estimate for a we get

â(H) =
1

n

�
XtDR�1DX�X2

1

�
: (26)

Finally, to get an estimate for H we have to minimize the function

L(X;H) =
n� 1

n
log

�
�nH(1� �2�2H)

�
+ log

�
XtDR�1DX�X2

1

�
: (27)
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It should be noted that though the linear approximation to g(x) is rather accurate,
the resulting inverse matrix R�1 of Eq.(23) is rather poor an approximation to ~��1 for
large n. Nevertheless, the use of R�1 in the log-likelihood function (27), as we will see,
yields a good estimate for H, while the accuracy of the estimate â(H) su�ers more from
this approximation.

4.4 Improved approximation for ��1

Since the matrix ~� is a Toeplitz-type matrix with decreasing elements as we go farther
from the diagonal, we expect that its inverse can be well approximated with a band matrix
whose elements are zero starting from a given distance from the diagonal. Let ~��1

H � C

so that the approximate inverse has the following structure:

C =

0
BBBBBBBBBBBBBBB@

c1 c2 � � � cp 0 � � � 0

c2 c1 c2 � � � cp
. . .

...
... c2 c1 c2

...
. . . 0

cp
... c2 c1 c2 � � � cp

0 cp � � � c2 c1
. . .

...
...

. . .
. . .

...
. . .

. . . c2
0 � � � 0 cp � � � c2 c1

1
CCCCCCCCCCCCCCCA

: (28)

Our aim is to set the p parameters c1; : : : ; cp to get C~�H � E. For example, this can
be achieved by solving the equation

(cp; : : : ; c2; c1; c2; : : : ; cp) �G = (0; : : : ; 0; 1; 0; : : : ; 0); (29)

where G = (~�H)(2p�1)�(2p�1) and from this we have

ci = G�1
p(p+i�1); i = 1; 2; : : : ; p: (30)

With this approximation we only need to calculate the inverse of a (2p� 1)-by-(2p� 1)
matrix.1 To improve the approximate inverse, its elements in the upper-left and lower-
right corners can be corrected, for example, by solving

(ĉ11; ĉ12; : : : ; ĉ1(p�1); c1p) � (~�H)(p�1)�p = (1; 0; : : : ; 0); (31)

and
(ĉ21; ĉ22; c23; : : : ; c2p) � (~�H)2�p = (0; 1): (32)

And because of the symmetric structure, cij = cji = c(n�i+1)(n�j+1), i; j = 1; : : : ; n.

1To be more exact, because of the symmetric structure we only need to calculate the inverse of a
p-by-p matrix using slightly more complicated formulas.
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5 Linear sampling

Let X = (X(t1); X(t2); : : : ; X(tn))
t be the vector of observed tra�c values at instances

ti =
i

n
; i = 1; 2; : : : ; n: (33)

The increment sequence (Y1; Y2; : : :) with Yi = X(ti)�X(ti�1) (substituting X(t0) �
X(0) = 0) is a strongly correlated stationary sequence with

Cov [Yi; Yj] =
1

2
an�2H

�
ji� j + 1j2H + ji� j � 1j2H � 2ji� jj2H

�
; i; j = 1; 2; : : : ; n:

(34)
The formulas for the exact Gaussian MLE for this increment process are nearly

the same as in Section 3, we only need to replace the covariance matrix � with � =
[Cov [Yi; Yj]]i;j=1;2;:::;n, and the vector t with the vector (1=n; 1=n; : : : ; 1=n)t. After some
minor simpli�cations we get an estimate for m

m̂ = m̂(H) =
1t��1Y

1t��1 1
� n (35)

where 1 is a vector of ones, and � = a�H . For a we have the estimator

â(H) =
1

n

 
Yt��1

H Y � (1t��1Y)
2

1t��1 1

!
: (36)

Again, �nally we have to minimize

~L(Y;H) = log j�H j+ n log

 
Yt��1

H Y � (1t��1Y)
2

1t��1 1

!
: (37)

The minimum is obtained for some value Ĥ which is the MLE estimate.
However, to calculate the inverse and the determinant of �H the same problems arise

as in the case of geometrical sampling with the covariant matrix ~�H . Since �H is also
a Toeplitz type matrix, the same method as described in section 4.4 can be used to
approximate ��1

H with C of Eq.(28). The only di�erence is that we need the determinant
j�H j, or at least an approximation of it, to calculate the estimate of H using Eq.(37).
Fortunately, the determinant of C can be calculated (see Appendix A), and we get j�H j �
jCj�1.

6 Simulation results

The fBm samples were generated using the fact Z � �
1=2
H N (or, correspondingly, Z �

�
1=2
H N for the linear sampling) where N is a vector of independent standard Gaussian

variables.
In all the simulation presented here the model parameters were set as m = 1, a = 1

and H = 0:8 as an example, but similar results were obtained using di�erent values

9



of the parameters. The parameter � for the geometrical grid was chosen so that the
di�erence between the nearest two measurement time instants (the `resolution' of the
measurement) was 10�6. Figure 2 shows the results of H estimates as a function of the
number of sample points using both geometrical and linear sampling. In the geometrical
case Eq.(27) was minimized while for the linear sampling we used the formula Eq.(37)
where the inverse of �H was approximated with a band matrix of Eq.(28) with p = 2
and the determinant of the correlation matrix was approximated by Eq.(44). Assuming
Gaussianity, the 95% con�dence interval was obtained by repeating the simulations 100
times and calculating the sample variance of the estimates. The results show that the

25 50 100 200 400 800
0.5

0.6

0.7

0.8

0.9

1

: linear sampling

: geometrical sampling

n

^ H

Figure 2: Estimates of H using geometrical and linear sampling.

estimates using geometrical sampling have much smaller variance and are unbiased for
sample sizes larger than 25. As for the linear sampling, the bias is considerably larger
although the estimates converge to the proper value of H as the sample size increases.
However, the variance of the estimates is always higher than in the geometrical case. For
example, the variance for 800 samples using linear sampling is nearly the same as for only
50 geometrically sampled points.

The next question was how the two di�erent sampling methods a�ect the estimates
for the variance parameter a. Figure 3 displays the results, assuming that H is known (or,
equivalently, can be estimated exactly). These simulations were useful to test whether
our approximations in calculating the inverse and determinant of the covariance matrices
are adequate or not. Figure 2 presents two di�erent approximations for the geometrical
sampling. First, we used the simple approximate inverse covariance matrix of Eq.(23) in
Eq.(10) using Eq.(20) (denoted by light gray dots and labeled `linear approximation' in
the �gure). As can be seen, the estimates of a are strongly biased and the bias is getting
larger as the number of samples increases. So this estimate is clearly inadequate, the
approximation of Eq.(23) had to be re�ned. Next, we used the approximation of Eq.(28)
for ~��1

H with �ve parameters (p = 5). As we see from Figure 2, the strong bias from the
â estimates disappeared and the variance of the estimates is only slightly higher than the
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25 50 100 200 400 800

0.2

0.4

0.6

0.8

1

1.2

1.4

: linear sampling : geometrical sampling

: theoretical : geometrical (lin. approx.)

n

^a
(
^ H
�

H
)

Figure 3: Estimates of a (when H is also estimated) using geometrical and linear sampling
and di�erent approximations, assuming H is known.

theoretical value that can be calculated using Eq.(11). (Note, however, that the bias for
sample sizes of 400 and 800 seems to be slightly increased.) Finally, the linear sampling
method was used. Its estimates are asymptotically unbiased and have approximately the
same variance as expected. The approximate inverse matrix used was as in Eq.(28) with
only two parameters (p = 2).

25 50 100 200 400 800

0

1

2

3 : linear sampling

: geometrical sampling

n

^a

Figure 4: Estimates of a using geometrical and linear sampling and di�erent approxima-
tions.

Figure 4 shows the MLE â estimates without any a priori knowledge about the model
parameters. All the approximations used here were the same as in the previous cases.
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Since H is not known and can only be estimated with a given variance, the estimates
of a have larger variances than in the previous simulations. The question is how robust
those estimates are when Ĥ can have a slight bias (see Figure 2). As for the geometrical
sampling, the bias of â gets smaller and its variance is also decreasing rapidly as the
sample size increases. On the other hand, for the linear sampling case the estimates seem
to be biased for larger sample sizes and their variance does not seem to decrease. The
reason for this behaviour lies in the fact that the linear sampling for estimating H is less
accurate than the geometrical sampling. The bias in Ĥ together with its higher variance
is responsible for the bias and variance of â, even if the linear sampling seems to be a
better choice to estimate a than the geometrical one for known H (see Figure 3).

As for the MLE estimates for m the geometrical sampling does not give any extra
advantage or disadvantage compared to the linear sampling. In fact, the MLE estimate
gives almost negligible reduction in the variance of m̂ when compared to the sample mean
as an estimate for m, i.e., X(1) in our case that corresponds to the last sample in both
geometrical and linear sampling [1].

7 Conclusion

In this paper we have introduced the idea of using geometrical sampling for the ML esti-
mation of the parameters of fractional Brownian tra�c. The intention with this sampling
is to reduce the number of sampling points required for a given prede�ned con�dence level.
Intuitively, the geometrical sampling distributes the sampling points advantageously at
di�erent time scales, whereas linear sampling stresses the �nest time scale and contains
redundant information.

We have derived expressions for the estimators of m and a and the log-likelihood func-
tion from which the estimator of H can be derived, both for the linear sampling and the
geometrical sampling. Approximations were developed for the inverse and the determi-
nant of the covariance matrix, needed for the calculation of the estimates. With these
approximations the evaluation of the log-likelihood function is fast and the maximization
with respect to H can easily be made. In this paper, however, we did not speci�cally
address the question of what is the best numerical way of doing the maximization.

The experiments with simulated tra�c showed that the geometrical sampling does
indeed give a better estimate for H leading to a reduction of sample points. In one
example the number of required points was reduced from 800 to 50. For the estimation
of a the geometrical sampling does not give any direct advantage, with a known H, but
as the estimator â actually depends on the estimator Ĥ, the overall accuracy obtained
with geometrical sampling is better. For the estimation of m, di�erent sampling schemes
give essentially the same result, i.e., the estimate is basically the observed average rate.
It should, however, be noted that the experiments were made only with simulated tra�c
with exact `measurements'. If the measured values are noisy then the descaling factor
may amplify the noise of the points near the origin.

Though the geometrical sampling has been shown to give better results than the
linear sampling, it is not claimed that it constitutes the optimal sampling scheme. So
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there remains the theoretical question what is the best way of locating a given number
of sampling points in the interval [0; 1] with the constraint that the smallest distance
between any pair of points is greater than or equal to a given minimum resolution.

A Appendix

Consider a symmetrically partitioned hypermatrix of the second order (see Eq.(38)) where
the diagonal submatrices Cq�q and Br�r are square. Assume further, that we know its
inverse which can be similarly partitioned, i.e., Sr�r and Lq�q are square.

r) A B

q) C D

�1

=
U L (q

S V (r

(38)

The determinant of the C submatrix can be calculated if we know the determinant of
the hypermatrix as well as the determinant of the lower-left submatrix of the inverse:

jCj = (�1)rq
����� A B

C D

����� � jSj (39)

Our aim is to calculate the determinant of the correlation matrix. An approximate of
this determinant can be given as the reciprocal of the determinant of the approximate
inverse C of the form Eq.(28). Since C is a band matrix, the idea is to construct the
hypermatrix in Eq.(38) to be a lower-triangular matrix, and as a result, its inverse will
be also lower-triangular and its determinant can be easily calculated.

In the following we consider the case p = 2 when the matrix elements only in the
diagonal and co-diagonals are nonzero. We do it just for simplicity, but the similar
method can be used for di�erent values of p. For p = 2, C is symmetric and co-diagonal:

C =

0
BBBBBBBB@

a1 b1 0 � � � 0

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . . . . . . . . bn�1

0 � � � 0 bn�1 an

1
CCCCCCCCA

(40)

with bi 6= 0. Note, that here we let the elements vary in the diagonal lines so this
assumption makes it possible to incorporate any re�nements such as the corner correction
used in section 4.4. Adding one extra row to the top and one extra column to the right,
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we get:

0
BBBBBBBBBBB@

1 0 0 � � � 0 0
a1 b1 0 � � � 0 0

b1 a2 b2
. . .

...
...

0 b2 a3
. . . 0 0

...
. . . . . . . . . bn�1 0

0 � � � 0 bn�1 an 1

1
CCCCCCCCCCCA

�1

=

0
BBBBBBB@

u1 0 � � � 0 0

u2 l21
. . .

...
...

...
...

. . . 0 0
un ln1 � � � ln(n�1) 0
s v1 � � � vn�1 vn

1
CCCCCCCA

(41)

(For the general case p extra rows and columns should be added.) To determine s (or
S(p�1)�(p�1) in the general case) we need to solve

 
et1 0
C en

!
�
 
u

s

!
=

 
e1
0

!
; (42)

where ei denotes a vector of length n with all its elements being zero except the ith which
is 1. To do this, s can be calculated using the following recursive equations:

u1 = 1; (43)

u2 = � 1

b1
a1;

ui+1 = � 1

bi
(aiui + bi�1ui�1); i = 2; 3; : : : ; n� 1;

s = anun + bn�1un�1:

Since the determinant of a triangular matrix is equal to the products of its diagonal
elements, the determinant of C can be calculated as

jCj = (�1)n � s �
n�1Y
i

bi: (44)

(Again, in the general case the determinant jSj has to be calculated and used in the
formula instead of s.)

Finally, we should note that only in the case p = 2 and for the case when C approx-
imates the inverse of ~�H the determinant can be accurately approximated by the rather
simple formula

jCj �
n�1Y
i

jbij: (45)
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