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Blocking probabilities in a transient system
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Samuli Aalto, VI'T Information Technology

Abstract. The dynamic VP bandwidth management scheme developed by Mocci et al. in a series
of papers calls for the calculation of the average blocking probability over a finite time interval of a
system in a transient state. We develop a “precision weapon” which allows one to find the temporal
evolution of the probability of the blocking state without the need to solve the probabilities of all the
other states or to find the eigenvalues and eigenvectors of a very large matriz corresponding to the
full system.

1 Introduction

In the dynamic VP bandwidth management scheme developed by Mocci et al. [1]-[4] the
bandwidth allocation for a VP in an ATM network is adjusted at regular time intervals.
At the beginning of an interval the system occupancy is observed and new VP capacity
allocation is done in such a way that the expected time average of the blocking probability in
the interval will be less than a predefined limit. In the simplest case of full traffic segregation,
each VP carries only one type of traffic and the problem within a VP is one-dimensional.

Thus one is led to consider the following problem. New calls arrive according to a Poisson
process with rate A to a loss system with n trunks. Exponential holding time with mean
1/p is assumed. Given the number of calls 7 in progress at time 0 the task is to find the time
dependent probability P,;(t) of state n. The average blocking probability in an interval of

length 7T is then (1/7) fOT Pji(t)dt.
The time dependent state probabilities are determined by the system of equations

Po(t) = APy_1(t) — nuP,(t)
Bo(t) = uPu(t) = AP(t)

with the initial conditions F;(0) = 1 and F,(0) = 0 for k& # i. Equivalently, one can
consider the above system as a vector equation P(t) = AP(¢) and solve it with the aid
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of the eigenvectors of A. Both of these methods become impracticable as n becomes very
large.

Our aim is to develop a method which allows the calculation P,;(t) separately without
the need to consider the evolution of all the other states. The computational effort of our
method is essentially independent of the size of the system, thus enabling us to calculate
the time dependent blocking probabilities even for very large systems. We start by first
considering an infinite system.

2 Infinite system

In an infinite system (n = oo) we can easily derive a good approximation for the time
dependent state probabilities. The number of calls N(¢|i) in progress at time ¢ is the sum
of two independent random variables: the number of calls Ny(¢|i) surviving from the initial
set of ¢ calls and the number N;(t) of those calls arrived in (0,¢) that still survive at time
t. For each call from the initial set the survival probability at ¢ is

pr =t (2)

Thus Ny(t|7) is binomially distributed, Ny(¢|i) ~ Bin(,p;). Similarly, taking into account
the survival probabilities, we reason that Ny(t) is the number of arrivals in (0,¢) from an
inhomogeneous Poisson process with intensity A(#') = Ae #("*) with ¢’ € (0,¢). Thus N (t)
is Poisson distributed with mean a(1 — p;), N;(t) ~ Poisson(a(l — p;)), where a = A\/p is
the offered traffic intensity.

The time dependent probability of any state & in the infinite system, P;lj(t), can be obtained
in two different ways: by the numerical convolution of the binomial and Poisson distributions
(see Appendix) or by the approximate inversion of the generating function (probability shift
method). With the above observations we can immediately write the generating function
of the distribution of N(t|i),

N(z,ti) = (1 — p, + pyz)'elzDlpa, (3)
The shifted mean and variance of the distribution are
N _ 1Pt 2
m(z,t|z) = a(l pt)Z + W,
(4)

ipt(l —pt)Z

v(z,tlt) = a(l—p)z+ .
( |) ( pT) (1_pt+pt2)2

In order to estimate F;(t) we determine z = zy;(¢) such that m(z,¢[i) = k. This leads to

o V@l =p)? (= F)p)? + daip (1 = p)? = (a(l = p)* + (0 = k)pr)
2i(t) = 2ol —p1) . (5




The probability shift argument finally gives (cf. [5], (5.4.5))

2 FN(z,t]i)

Po(t) =~
i) 2mv(z, t|i)

z = 2p(t) |

3 Finite system

The analysis of the finite system can be based on a few observations. First, the finite system
(k =0,...,n) differs from the infinite one only in that the terms representing transitions
between states n and n + 1 in the first of equations (1) are missing. Second, the system of
equations (1) is linear (both in the case of an infinite and a finite system). Thus we can try to
construct a solution to the finite case by superimposing solutions for the infinite system, with
appropriate initial conditions, in such a way that the superposed system satisfies equations
(1). There are at least two ways to do this.

In the first we add an external source injecting probability mass to the state n at a rate s(t)
chosen to exactly compensate for the net probability flow from state n to state n + 1. The
total probability mass in the whole infinite system is not any more conserved but the mass
in the states (k =0,...,n) remains constant (equal to 1).

The second has a similar idea. In this case we add an external source injecting probability
mass to the state n + 1 in such a way that the probability of state n + 1 keeps a fixed
relation to that of state n in order to guarantee zero net flow of probability between these
states, i.e., the probability flow associated with upward transitions is reflected back by the
corresponding downward transitions.

3.1 First approach

Let us analyse these alternative approaches in more detail. In both cases, what we actually
solve are infinite systems. In the first approach we modify equation n of the infinite system
by adding a source term as follows,

Bult) = APy 1 (1) = (A ) Palt) + (n + 1Py (1) + s(1) (7)
Now, choosing s(t) to be
s(t) = APu(t) = (n+ 1) Py (t) (8)
this equation reduces to that of the finite system. The only problem here is that the P(t)
represent the state probabilities of the modified system, which in turn depend on s(t). But
as the system is linear we can express these probabilities as a superposition of solutions for
the infinite system with different initial conditions. Emphasizing again the dependence on
the initial states and noting that Py (¢ —u) is the “impulse response” or “Green’s function”
for an addition of probability mass 1 at time u to the state n, we have

Pri(t) = Pgi(t) +/0 s(u) Py, (t — u)du. 9)
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Thus the condition (8) for s(¢) becomes

s(t) = RS (1) + / ()R (t — u)du, (10)

where

ni(t) = AB(E) — (n+ P (1) (11)
is the net leak rate from state n to state n + 1 at time ¢ in an infinite system starting
from the initial state ¢ at time 0. With the approximation (6) the leak rates are easily
calculable functions, equation (10) can be solved numerically, and finally the evolution of
state probabilities, e.g. that of the blocking state n, are obtained from (9).

3.2 Second approach

In the second approach we add the source term s(t) to the equation of state n + 1 of an
infinite system. Then the state probabilities can be written in an analogous fashion,

Pya(t) = Pi(t) + /0/ (1) Py (t — u)du (12)

the only difference being that now the impulse response function is Pg (¢ — u). The

condition for determining s(¢) in this case reads

i.e., the probability flows between states n and n + 1 are required to cancel, whence the
equation for state n again reduces to that of the finite system. By substituting (12) into
(13) the latter can be rewritten as

(1) = — / ()R 4 (1 — u)d. (14)

4 Numerical considerations

We outline a simple numerical scheme for the solution of equations of type (10) or (14).
Formally they are integral equations, but the fact that the equations at time ¢ only depend
on values of s(u) for u < t enables us to solve the values of s(t) sequentially. To be more
specific, we consider equation (14) as an example. Let us discretize the time

t;=jAt, j=01,... (15)

and use a piecewise linear representation for s(t)

s(t) ~ Z sjw(t — jAL) (16)
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with s; = s(jA?) and

[ 1— 1<t<1
w(t) = { 0 otherwise (17)

The right hand side of (14) at time ¢t = kAt can now be written as Z?:o s;Ag—j, where

+1
—At/ w(u) Ry, ((k +u) At)du, k>0,

1

A= (18)
+1
—At/ w(u) Ry, 1 (uAt) du, k=0.
0
Denoting further
by = Ry (kAt) (19)
equation (14) at time kAt becomes
k
b, = Z Sj Ak (20)
=0
from which we can solve
1 k-1
sk = A—O<bk - jzo sidig) k=01, (21)

In the figure below the evolution of the blocking probability Pii7105(t) is depicted for a
system of size n = 117 starting from the state ¢ = 105 with an offered traffic intensity of
a = 100. For this system the stationary Erlang blocking probability is just below 1 %. Note
the “overshooting” of the probability which is due to an initial state being well above the
mean a.

The curve was obtained with a direct numerical solution of the set of 118 equations (1).
The solution provided by the above simplified scheme, which directly calculates Pi17p105(2),
was virtually indistinguishable when the time step pAt = 0.05 was used.
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Appendix: convolution algorithm

Though approximation (6) is quite accurate, one may wish to calculate the probabilities
and leak rates of an infinite system exactly by a numerical convolution of the binomial and
Poisson distribution. Since the terms in both of these distributions can be calculated recur-
sively, one can evaluate the convolution also recursively, in “one sweep”, without having to
save the whole distributions. For instance, in Mathematica language the required expression
is

cnv[i_,a_,p_,k_] :=
If[ p==0, ((1-p)a)-k/k! Expl[-(i-p)al,
Module[ {trm=p~i*Exp[-(1-p)al,ii=i,j=0,sum},
While[ii>k, ii--; trmx=(ii+1)/(i-ii)(1/p-1)1;
While[j<k-ii, j++; trm*x=(1-p)a/jl;
sum=trm;
While[ii-->0, sum+=(trm*=(ii+1)/(i-ii) (1/p-1) (1-pla/(k-ii))1;
sum ] ]

where the input parameters are

= offered traffic intensity
survival probability e
= state of the system at t =0
= the index of the state the probability of which is being calculated
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Note, however, that while the computational effort of (6) is constant that of the convolution
algorithm is proportional to k.



