PRACTICAL ALGORITHM FOR CALCULATING BLOCKING
PROBABILITIES IN MULTICAST NETWORKS

SAMULI AALTO AND JORMA VIRTAMO

ABSTRACT. We consider a multicast network model, where a single server node is connected
with a collection of user sites by a transport network with tree topology. A predefined set of
dynamic multicast (i.e. point-to-multipoint) connections use this transport network, with
the server acting as the source for all these connections and the receivers located at the user
sites. Earlier analytic results concerning the calculation of blocking probabilities in this kind
of multicast setting have been applicable, due to the so called state space explosion, only
for networks with few multicast connections. In this paper we show that, by making certain
restrictive assumptions, the exact calculation of the end-to-end blocking probability becomes
feasible even for large networks with many multicast connections. The main assumptions
are as follows: (i) all receivers have a uniform preference distribution when making a choice
(to join) between the multicast connections, (ii) the mean holding time for any receiver to
be joined to any connection is the same, and (iii) the capacity needed to carry any multicast
connection on any link is the same.

1. INTRODUCTION

Consider the following model of a multicast network. There is a single server node connected
with a collection of user sites by a transport network with tree topology. A predefined set
of dynamic multicast connections use this transport network, with the server acting as the
source for all these connections and the receivers located at the user sites. All the multicast
connections are available for all receivers. As an example, one can think of the delivery
of TV or radio channels by a multicast capable telecommunication network, each channel
requiring its own multicast connection. Requests from the receivers to join these multicast
connections arrive randomly. If, upon the arrival of such a request, there are not enough
resources available to establish a new leg from the receiver to the nearest node that already
carries this connection, the request is blocked and lost. Otherwise the new leg is established,
in which case we say that the corresponding multicast connection becomes active on the
links belonging to this leg. Whenever a receiver disconnects, the branch of the connection
tree dedicated to this specific receiver is dropped, i.e. the connection becomes inactive on
the links belonging to this branch, and the corresponding resources are released.

It is clear that one interesting performance measure for this kind of systems is the call
blocking probability, which in this dynamic multicast setting refers to the probability that
an arbitrary request from a certain receiver to join a certain multicast connection is blocked
and lost. Note that the blocking probability is both connection-specific and receiver-specific.
Further we remark that the traditional results from the theory of loss networks are not
applicable as such in our case of dynamic multicast connections (in contrast to the case of
static multicast connections).

Only recently there has been some progress in the analysis of the blocking probability in
this dynamic multicast setting. The first results concerned the case where new connection
requests arrive according to a Poisson process. In [1] it was shown how to calculate the call

Date: May 16, 2000.

1991 Mathematics Subject Classification. 60K25, 60K30, 68M10.

Key words and phrases. Blocking, multicast, point-to-multipoint connection.
1

2 S. AALTO, J. VIRTAMO

blocking probability for any of the multicast connections in a specific link with finite capac-
ity assuming that all the other links have infinite capacity. The idea was to transform this
problem to the problem of calculating the call blocking probability in a so called generalized
Engset system, the solution of which is known. The general case with any number of finite
capacity links was first treated in [2], where the end-to-end blocking probabilities were esti-
mated by applying the (known) Reduced Load Approximation (RLA) method. The accuracy
of the approximation was investigated by simulations. However, the simulations were ex-
tremly processing-intensive allowing only the evaluation of rather small networks. An exact
algorithm for calculating the end-to-end blocking probabilities in the general case with any
number of finite capacity links was presented in [3]. The algorithm was later [4] extended
to cover the case where the connection requests are generated by finite user populations
(resulting, thus, in a non-Poissonian arrival process).

Let us briefly consider the algorithms presented in [3, 4]. The purpose is to calculate
the end-to-end call blocking probability for any receiver of any multicast connection. As in
the case of ordinary loss models, the blocking probability can be defined by means of the
stationary distribution of the state of the system. In this multicast setting, the state of the
system is described by a collection of vectors, each of them consisting of two-state elements.
Element 7 of vector u tells whether any of the receivers located at user site u is connected to
multicast connection i, or not. (Note that the state space grows exponentially as a function
of the number of multicast connections.) It is observed in the papers that the stationary
distribution of the state of the system is just a truncated form of the corresponding distrib-
ution in a system with infinite link capacities. However, calculating blocking probabilities in
the resulting closed form expression is practically possible only for extremely small networks
with very few multicast connections. The main result of the papers is therefore the develop-
ment of a faster algorithm for the calculation of exact blocking probabilities. The algorithm
is similar to the known convolution algorithm used for calculating blocking probabilities of
ordinary point-to-point connections in hierarchial multiservice access networks. The mod-
ification required is the use of a new type of convolution, the so called OR-convolution.
However, the main problem remaining is that even these algorithms are only applicable to
networks with few multicast connections (due to the state space explosion).

In this paper we show that, by making certain assumptions, the exact calculation of the
end-to-end blocking probability becomes feasible even for large networks with many multicast
connections. The main assumptions are as follows: (i) all receivers have a uniform preference
distribution when making a choice (to join) between the multicast connections, (ii) the mean
holding time for any receiver to be joined to any connection is the same, and (iii) the capacity
needed to carry any multicast connection on any link is the same. The key point is that,
due to these assumptions, it is not necessary to keep track of the state of each individual
connection separately (as in the general case) but just the number of active connections on
each link, which yields a huge reduction in dimensionality and, therefore, in complexity of
the analysis.

The structure of the paper is as follows. In section 2 the notation and the mathematical
model are introduced. An efficient algorithm to calculate the time blocking probabilities
is developed in section 3. The (more interesting) call blocking probabilities are considered
in section 4, where three different user population models, together with the corresponding
efficient algorithms to calculate the call blocking probabilities, are presented. Section 5
contains some numerical experiments. The results are summarized and some conclusions are
drawn in section 6.

CALCULATION OF BLOCKING PROBABILITIES IN MULTICAST NETWORKS 3

2. PRELIMINARIES

Consider the tree-structured multicast network model introduced in the previous section.
Let J denote the whole set of links j. The subset of leaf links u is denoted by U. The
server is located at the root node, which is connected with the rest of the network via a
single link indexed by J. Each leaf link u connects a group of users (which is also called
user population u) to the network. The set of links on the route from user population u
to the server (including link J) is denoted by R,,. The set of multicast connections i (e.g.
TV channels) is denoted by Z = {1,2,... ,I}. Each connection needs one capacity unit on
any link. The links may have different capacities (typically the more capacity the nearer the
server the link resides), C; denoting the capacity of link j.

For each link j, we further need the following notation. Let M; denote the set of all links
downstream link j (including link j). Let N; denote the set of neighbouring links downstream
link j (excluding link j), and U; the set of leaf links downstream link j (including just link
j if it is a leaf link). Note that, for any 7 and j, connection 7 is active on link j if and only
if connection ¢ is active on (at least) one of the leaf links v € U;. On the other hand, when
this happens, connection i is also active on any link k& upstream link j (i.e. k s.t. j € My).

Throughout the paper we need the following two assumptions.

Assumption 2.1. User populations u € U behave independently of each other.

Assumption 2.2. Whenever there are n connections active on any leaf link uw € U, each
possible index combination {i1,... ,in} is equally probable.

In the rest of this section, we further assume that all the link capacities are infinite.

The state of connection ¢ on link j is denoted by Yj;, being 1 (0) whenever active (inactive).
The detailed state of link j is denoted by Y},

Y; = (Yjii €1).
As explained in (3, 4],
Yii= D Yri= P Yu, (2.1)
JEN; u€ld;

where @ refers to the OR-operation. The following two corollaries follow easily from (2.1)
and Assumptions 2.1 and 2.2.

Corollary 2.3. For any links j,j" € J such that MjNMj =0, the detailed link states are
independent of each other.

Corollary 2.4. Whenever there are n connections active on any link j € J, each possible
index combination {i1,... ,i,} is equally probable.
The detailed state X of the whole network depends on the detailed states of the leaf links,
X=WYusucl,icI) e,

where := {0, 1}¥*7 denotes the network state space.
Let then N; denote the number of active connections on link j,

Nj = Z Y}Z S S,
i€l
where § :={0,1,...,I}. In the present paper this is called the state of link j. The stationary
link state probabilities are denoted by 7;(n), n € S,

mj(n) == P{N; = n} = P{}_ Yy =n}. (2.2)

i€

4 S. AALTO, J. VIRTAMO

Next we show how these probabilities can be calculated recursively when the leaf link state
probabilites m,(n) are known for all v € U; and n € S. Note that the leaf link state
probabilites 7, (n) depend on the chosen user population model. Three different models are
considered later in section 4.

1° Assume first that A consists of two links, Nj = {s,t}. It is easy to see that
max{ Ny, Ny} < N; < min{N, + N;, I} (2.3)

Let then Ny = k and N; = [, and assume, for a while, that £ > [(implying that N; > k). Due
to Corollaries 2.3 and 2.4, the event {N; = k + m} can be interpreted as follows. Consider
random sampling without replacement from the population of all connections (the size of
which is I) including k& “marked” (i.e. active on link s) and I — k “unmarked” (i.e. inactive
on link s) connections. Now the event given above corresponds to such a result of random

sampling that there are m “unmarked” connections in a sample of size [. Therefore, for
m € {0,1,... ,min{l, I —k}},

k I—-k
l—m m
P{Nj=k+m|Ns=k,N, =1} = .

(1)

A corresponding result is, of course, valid if [> k. Therefore, we have generally, for m €
{0,1,... ,min{min{k,}, I — max{k,l}},

(max{k, [}) (I — max{k, 1})
min{k,l} —m m
P{N; = max{k,I} +m | Ny = k, N, = I} = .

I
min{k, [}

This can be written as follows. For n € {max{k,l}, max{k,l} +1,... ,min{k +1,1}},
P{N;j=n|Ns=k,N; =1} =s(n|k,I),

where s(n | k,1) is defined as follows:
max{k,l} I — max{k,l}
E+1—-n n — max{k,l}
S(TL | kvl) = .

1
min{k, [}

On the other hand, if N; = n is fixed, then the pair (Ns, N;) shall belong to the set
{k,) |0<k<nn—k<Il<n}

(2.4)

in order that inequation (2.3) be fulfilled. It follows that

P{Nj=n}=>_>" s(n|k)P{N,=k}P{N, =1}.

k=0 l=n—k
Thus,

mj(n) = [ms ® m](n), (2.5)

CALCULATION OF BLOCKING PROBABILITIES IN MULTICAST NETWORKS 5

where the operator ® is defined as

[f ®@gl(n ZZ (n | k,0)f(k)g(1) (2.6)

k=01l=n—k

for all real valued functions f,g : S — R. Note that this is not the OR-convolution operator
defined in [3, 4] but a related operator operating on a different (reduced) space. We further
remark that the operator ® is associative, i.e. (f®g)®@h=f® (g ® h).

2° Consider then the general case with N consisting of any number of links. When calculat-
ing the state probabilities 7;(n), these links (in N;) can be taken into account one-by-one in
the same manner as above. Since the operator ® is associative, we can write the final result
in the following form:

mi(n), jeu,
(2.7)

mi(n) =

() myl(n), jeT\U.

J'eN;

3. PRACTICAL ALGORITHM FOR TIME BLOCKING

In this section we consider the general case with any number of finite capacity links. Let X
denote the (detailed) state of the network in this case. The network state space €2 is now
truncated according to the capacity restrictions on each link j, resulting in

Q::{X€Q|Zyﬁ§0j, jEJ},
icT
which is called the truncated state space. In this section we assume that the stationary state
probabilities can be calculated using the so called Truncation Principle, i.e. for all x € €2,

P{X =x}
P{XeQ}

Whether this principle applies or not, depends on the chosen user population model as
discussed in the following section.

Consider now a request originating from user population u to join connection ¢. Our
ultimate purpose is to calculate the probability that this request is rejected, i.e. the call
blocking probability denoted by B;,;. However, this depends essentially on the chosen user
population model. Therefore we postpone the discussion on this subject until the next
section, where different user population models are introduced. Instead, we concentrate, in
this section, on the time blocking probability B.;, which, as usually, refers to the stationary
probability of such network states in which a new request originating from user population
u to join connection ¢ cannot be accepted due to lack of link capacity. The complement of
this set of states is denoted by (Zm',

Qui = {x € Q> yjir + (i ® Lier,) < Cj, j € T},
i

P{X =x}= (3.1)

Due to (3.1),
P{X € Qu;}
P{XecQ}

Next we present efficient recursive algorithms to calculate the denominator (see subsection
3.1) and the numerator (see subsection 3.2) of the above equation.

B, =1-P{XecQu}=1- (3.2)

6 S. AALTO, J. VIRTAMO

3.1. Denominator

Define, for j € J,

QJ<TL) = P{Nj =n; Nj/ < Cj/,j/ € MJ} (3.3)
A key observation is that
Cy
P{X e} => Q). (3.4)
n=0

What remains, is to find an efficient method to calculate probabilities ;(n). Such a method
is presented in the following proposition. However, before that we define, for each real-valued
function f : S — R, a truncation operator T} by

T3/ (n) = f(n)nscy.
Proposition 3.1. Probabilities Qj(n) can be calculated recursively as follows: for j € J,
Tjﬂ'j (n), JEU,

Qj(n) = (3.5)

T Q) Qyl(n), jeT\U.

JEN;

Proof. The derivation of (3.5) is almost identical to the derivation of (2.7) presented in the
previous section. The only amendment concerns the introduction of the truncation operator
T; that quarantees the condition N; < Cj to be valid. Recursively, all truncation operators
together guarantee that Ny < Cy for all j* € M, as required. O

3.2. Numerator

Let i be the index of the connection the blocking of which we are interested in. Let N
denote the number active connections on link j excluding connection i (whether it is active

or not),
@ _ y
N =D Vi
i'#i
In addition, define, for all n € S,
7 (n) == P{NY" = n} = P{}_ Yy = n}. (3.6)
i i
Note that 7rj(.i) (I)=0.

Assume for a while that N; = {s,t}, and let N = k and Nt(i) = [. Similarly as in
the previous section (see 1° there), we can deduce that, for n € {max{k,(}, max{k,l} +
1,...,min{k + 1,1 — 1}},

PN =n | N =k, N =1} = s°(n | k1), (3.7)

where s°(n | k,1) is defined as follows:
max{k, [} I —1— max{k,!}
E+1l—n n — max{k,(}
s°(n| k1) := .

I-1
min{k, [}

(3.8)

CALCULATION OF BLOCKING PROBABILITIES IN MULTICAST NETWORKS 7

For future purposes (see Proposition 3.2 below) we need the following operator defined for
all real valued functions f,g: S — R. Let [f ® g](I) = 0, and, for n < I,

[f @gl(n ZZ °(n | k1) f(k)[(1 = p(1)g(l) + p(l + 1)g(l + 1)], (3.9)

k=01l=n—k

where p(n) :=n/I.
Now let u be the index of the user population the blocking of which we are interested in.
Define, for j € R,

Q¥(n) = P{N{" = n;N§) < Cp — 1, € M; N Ry; Ny < Gy, ' € Mj\ Ry} (3.10)

A key observation is that
Cy—1

P{XeQu}= > Q%(n (3.11)

n=0

The following proposition shows how to calculate the probabilities Q}”(n) efficiently. In this
case we need another truncation operator. For each real-valued function f : & — R, define
an operator T by

17 f(n) == f(n)la<c; 1

In addition, for each j € Ry \ {u}, we denote by D, (j) the link downstream link j along
route R,. Note that Nj NR, = {Dy(j)}.

Proposition 3.2. Probabilities Q’”(n) can be calculated recursively as follows: for j € Ry,

Tord (n), j=u,
Ui(n) = (3.12)
J :
D(g) © ® Qil(n), j € Ru\{u}.
J'EN\Ru
Proof. For j = wu, the result is clear by definition. Therefore, we can assume that

Jj € Ry \ {u}. For brevity, we denote D, (j) = d. In addition, let
= Z @ }/}"i’ and M(d) == U Mj’
1'€Z j'eNj\Ru J'EN\Ru
It is easy to see that (by Corollaries 2.3 and 2.4)

P{N(g =n; Ny < Cy,j’ € Mg} = | ® Qj](n)
J'ENj\Ru

Nop= > D v

' €T\{i} 'EN;\Ru

Let then

It is again easy to see that (by Corollaries 2.3 and 2.4)
+p(n+1)P{N(d) =n+ 1Ny < C'/ j, eM d)}

= ® Qjl(n) +p(n+1) ® Qj(),

JEN\Ru J'EN\Ru

8 S. AALTO, J. VIRTAMO
where p(n) =n/I (as in (3.9)). Note further that (cf. (3.7))
PN =n | N{ =k, N = 1} = 5°(n | b, 1),
Thus, forn < C; -1
Yn) = PN =N < Cp—1,7' € MjNRy; Ny < Cp,j' € M; \ Ru}
_ i i PN =n | N{) =k, N} =1}

k=0l=n—k
x PN = kNP < Cp — 1,5 € MgNRy; Ny < Cyj' € Ma\ R}
xP{N“ = [; Ny < Cyr, 5 € M@y}

= iz °(n | k,1)

k=01=n—k
x Qg (k)
x{(1=—p)[Q) QO +pl+1[@ Qll+1)}
J'EN\Ru JEN\Ru
= Qio @ @il
F'EN\Ru
Since Q;“(n) = 0 for all n > C; by definition, equation (3.12) follows. O

4. PRACTICAL ALGORITHM FOR CALL BLOCKING

In the previous section we found an efficient method to calculate the time blocking probabil-
ities (under Assumptions 2.1 and 2.2) in the general case with any number of finite capacity
links in the multicast network. In this section we continue the considertions with regard to
this general case. Our purpose is now to find an efficient method to calculate the call blocking
probabilities. These probabilities depend on the chosen user population model, which has
first to be specified. We will present three different user population models (which already
appeared in [4]). They all guarantee Assumption 2.2 to be valid. In addition, as shown in [4],
they allow the Truncation Principle (3.1) to be applied as required in the previous section.
Each user population model and the corresponding call blocking algorithm is treated in its
own subsection below.

4.1. Infinite user population model

The first user population model is as follows. Assume that new requests from user site u to
join connection ¢ arrive according to a Poisson process with intensity v,a;, where v, refers
to the total arrival rate (from user site u) and «; to the probability to choose channel .
The latter probabilities together are called the preference distribution. The corresponding
holding times are assumed to be generally distributed with a connection-specific (but not
user-specific) mean 1/p;.

It is shown in [3, 4] that for this model the detailed leaf link state probabilities are as
follows:

P{YU = y’} — H(l _ e—aui)yi (e—aui)l—yi’
el
where
Vi Ol

g

Aoy +—

CALCULATION OF BLOCKING PROBABILITIES IN MULTICAST NETWORKS 9

In order that Assumption 2.2 be valid, it is required that a,; be constant for all 4, i.e.
i = Ay
This will be the case, for example, if

(i) the preference distribution is uniform, i.e. o; = 1/1I, and
(ii) the mean holding times for different connections are equal, i.e. 1/u; = 1/p.

In this case we have, for n =0,1,...,1,

1
n

mu(n) == P{N, =n} = () (1 —e) (e @)l (4.1)
In other words, N, ~ Bin(Z,1 —e™%).

Due to Poisson arrivals, the call blocking probability B;; is equal to the time blocking
probability BY,. Therefore, the algorithm presented in the previous section does not need to
be modified in any way.

4.2. Single user model

The second user population model is as follows. Assume that each user site comprises of just
one user, which is able to join any connection (but just one at a time). The behaviour of this
user is modelled by a semi-Markov process with I + 1 states {0,1,...,1}. State 0 refers to
idleness, and the other states to active connections. Idle periods are assumed to be generally
distributed with a user-specific mean 1/\,. After an idle period the user generates a request
to join connection ¢ with probability ;. The corresponding holding times are assumed to
be generally distributed with a connection-specific (but not user-specific) mean 1/u;. After
each active period, the user starts a new idle period.

It is shown in [4] that for this model the detailed leaf link state probabilities are as follows:
P{Y,=y}=0if >, .7y > 1, and otherwise

P{Yy=y}= (pu)ziez Yi(l— pu)lizig’ v H(ﬁl)yla
icT
where
Pu = D ez Ot/ 1 i/ i .
U/ A+ X irer o/ D et it [bt
In order that Assumption 2.2 be valid, it is required that there is y such that

and f;:=

(07 1
pi I
This will be the case, for example, if

(i) the preference distribution is uniform, i.e. o; = 1/1I, and
(ii) the mean holding times for different connections are equal, i.e. 1/u; = 1/p.

In this case we have m,(n) = 0 for n > 1, and, for n =0, 1,

Tu(n) == P{N, = n} = (pu)"(1 — p)* " (4.2)
In other words, N,, ~ Bernoulli(p,), where p, = Aj}ru'

As stated in [4], call blocking for user u is equal to time blocking in a modified network
where user u is removed. In other words, for leaf link u, the probabilities m,(n) should be
replaced by the probabilities 7, (n), where

o (n) = ly=o. (4.3)

10 S. AALTO, J. VIRTAMO

This results in the following recursive algorithm:

Ojfl Ui
By =1~ —Z”E.O Qi) (4.4)
ZTLJZO QJ(”)
where, for all j € 7,
(Ty (n), j=u,
T Q) Qyl(n), jeT\U.
| e
and, for all j € Ry,
Toms(n), j=u,
“(n) = (4.6)

TRy © & Qiln), jeRu\{u}

JEN)\R

4.3. Connection specific user model

The third user population model is as follows. Assume that each user site comprises of
exactly I users, each corresponding to a specific connection. The behaviour of any user (u, 1)
is modelled by a two-state semi-Markov process with state space {0,1}. State 0 refers to
idleness, and state 1 to activity (w.r.t. corresponding connection 7). Idle periods are assumed
to be generally distributed with a user-specific mean 1/, and active periods are assumed
to be generally distributed with a connection-specific mean 1/ ;.

It is shown in [4] that for this model the detailed leaf link state probabilities are as follows:

P{Y, =y} = H(pui)yi(l —pui) Y,
icT
where
Pui = &
Aui +
In order that Assumption 2.2 be valid, it is required that p,; be constant for all 4, i.e.

Pui = Pu-
This will be the case, for example, if

(i) the mean idle times for each (connection specific) user at the same user site are equal,
ie. 1/ =1/Ay, and
(ii) the mean holding times for different connections are equal, i.e. 1/u; = 1/p.

In this case we have, for n =0,1,...,1,

7"'u(n) = P{Nu = n} = (TIL) (pu)n(l _pu)I_n- (47)

In other words, Ny, ~ Bin(I, p,,).

CALCULATION OF BLOCKING PROBABILITIES IN MULTICAST NETWORKS 11

As stated in [4], call blocking for user (u,%) is equal to time blocking in a modified network
where user (u,7) is removed. In other words, for leaf link w, the probabilities m,(n) should
be replaced by the probabilities 75 (n), where

n

70(n) = (=1) (p)"(1 = pu)l 1™ (4.8)

Formally, the algorithm for this model is equal to the algorithm presented in the previous
subsection, see formulas (4.4)—(4.6).

5. NUMERICAL RESULTS

To get some idea about the efficiency of the new algorithm, we made numerical experiments
with two example networks. The first one was already introduced in [3] and the second
one in [4]. We implemented both the original algorithm (called here exact) presented in
[3, 4] and the new algorithm (called here pract) presented in this paper with Mathematica
(version 3) using similar programming style. The computations were run on a PC equipped
with a Pentium Celeron 330 MHz processor. The purpose was to study the time consumed
by these algorithms (to compute the blocking probability) as a function of the total number
I of multicast connections.

5.1. Example 1

First we considered the network depicted in figure 2 of [3]. It was, however, assumed that (i)
all receivers have a uniform preference distribution when making a choice (to join) between
the multicast connections, (ii) the mean holding time for any receiver to be joined to any
connection is the same, and (iii) the capacity needed to carry any multicast connection on
any link is the same. Under these assumptions, both algorithms produce, of course, the same
results as regards the blocking probabilities themselves. What differs is the time needed to
compute these values.

Below in figures 5.1 — 5.3 we have plotted the processing time for both algorithms as a
function of I for I = 2,3,...,8. In figure 5.1 the scaling is normal, whereas in figures 5.2
and 5.3 we have used logarithmic and log-log scales, respectively.

The three figures demonstrate clearly the effectiveness of the new algorithm pract (as
compared to the original one exact). Since the curve corresponding to the original algorithm
exact is almost linear in the logaritmic scale (see figure 5.2), the processing time for that
algorithm grows exponentially as a function of I. As regards the curve corresponding to the
new algorithm pract, it seems to be strictly concave in the logarithmic scale (see figure 5.2)
and almost linear in the log-log scale (see figure 5.3). Consequently, the processing time for
the new algorithm seems to grow according to some power law. As estimated from figure
5.3, the processing time is approximately proportional to the square of I.

With the new algorithm (exact) we were able to consider higher values of I. Below in
figures 5.4 — 5.6 we have plotted the processing time for the new algorithm as a function of
I for I =23,...,50. The three figures correspond to the same three scalings as before.

With the exteneded range, the curve corresponding the new algorithm is still strictly
concave in the logarithmic scale (see figure 5.5) but maybe only asymptotic linear in the
log-log scale (see figure 5.6). As estimated from figure 5.6, the processing time of the new
algorithm seems to be proportional to the cube (rather than the square) of I. Of course, the
range of I should still be extended to justify the last statement. This is left for future work.

5.2. Example 2

Then we considered the network depicted in figure 5 of [4]. As above in Example 1, we
considered the case with the conditions (i) — (iii) satisfied.

12 S. AALTO, J. VIRTAMO

40

35
30

25 !

20 !

15

10

3 4 5 6 7 8

FIGURE 5.1. Processing time 7' (in seconds) vs. I for I = 2,3,...,8 in ex-
ample 1. Normal scaling: z-axis = I, y-axis = T'. Curves: dotted = exact,
continuous = pract.

2

1.5

1
0.5
0

-0.5

-1

-1.5 -

3 4 5 6 7 8

FIGURE 5.2. Processing time T' (in seconds) vs. [for [= 2,3,...,8 in ex-
ample 1. Logarithmic scaling: x-axis = I, y-axis = logT. Curves: dotted =
exact, continuous = pract.

2
1.5
/
1 o4
7/
0.5 4
Ve
0 _<
-0.5 —F
-1 - -
// /
-1.5
P———

0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 5.3. Processing time 7' (in seconds) vs. I for I = 2,3,...,8 in ex-
ample 1. Log-log scaling: x-axis = log I, y-axis = logT. Curves: dotted =
exact, continuous = pract.

CALCULATION OF BLOCKING PROBABILITIES IN MULTICAST NETWORKS

40

35
30

25

20

15

10
5

10 20 30 40 50

FIGURE 5.4. Processing time 7' (in seconds) vs. I for I = 2,3,...,50 in
example 1. Normal scaling: z-axis = I, y-axis = T. Curve: continuous =
pract.

2

1.5

1

0.5

0

-0.5
-1

-1.5

10 20 30 40 50
FIGURE 5.5. Processing time 7' (in seconds) vs. I for I = 2,3,...,50 in ex-

ample 1. Logarithmic scaling: z-axis = I, y-axis = logT". Curve: continuous
= pract.

2
1.5
1
0.5
0
-0.5
-1

L5

0.6 0.8 1 1.2 1.4 1.6
FIGURE 5.6. Processing time 7' (in seconds) vs. I for I = 2,3,...,50 in

example 1. Log-log scaling: z-axis = log I, y-axis = logT'. Curve: continuous
= pract.

13

14 S. AALTO, J. VIRTAMO

Below in figures 5.7 — 5.9 we have plotted the processing time for both algorithms as a
function of I for I = 2,3, ... ,8. As before, the three figures correspond to the three different
scalings. Furthermore, in figures 5.10 — 5.12 we have plotted the processing time for the new
algorithm as a function of I for I = 2,3,... ,50. The three figures correspond again to the
three different scalings.

The conclusions in this second example do not differ from those of the first one. The
processing time for the original algorithm exact seems to grow exponentially as a function
of I (corresponding to the linear growth in the logaritmic scale as demonstrated in figure
5.8), whereas the processing time of the new algorithm pract seems to be proportional to
the cube of I (as estimated from figure 5.12). However, as mentioned already above, the
range of I should still be extended to justify the last statement.

6. SUMMARY

In this paper we considered a multicast network model, where a single server node is con-
nected with a collection of user sites by a transport network with tree topology. A predefined
set of dynamic multicast connections use this transport network, with the server acting as
the source for all these connections and the receivers located at the user sites. The purpose
was to develop a practical algorithm for calculating blocking probabilities in this setting. The
original algorithm presented in earlier papers [3, 4] had been found to be applicable, due
to the state space explosion, only for networks with few multicast connections. Essentially,
under the following three assumptions

(i) all receivers have a uniform preference distribution when making a choice (to join)
between the multicast connections,

(ii) the mean holding time for any receiver to be joined to any connection is the same, and

(ii) the capacity needed to carry any multicast connection on any link is the same,

we were able to develop such an algorithm. The key point was that, due to these assumptions,
it is not necessary to keep track of the state of each individual connection separately (as in
the general case) but just the number of active connections on each link, which yielded
a huge reduction in dimensionality. The efficiency of the new algorithm compared to the
original one was demonstrated by numerical examples. While the processing time of the
original algorithm proved out to be exponentially dependent on the total number of multicast
connections, the new algorithm seemed to follow a power law.

REFERENCES

[1] J. Karvo, J. Virtamo, S. Aalto, and O. Martikainen, Blocking of dynamic multicast connections in a
single link, in Proc. of Fourth International Conference on Broadband Communications (BC’98), Broad-
band Communications, The future of telecommunications, P.J. Kuhn and R. Ulrich (eds.), Chapman &
Hall, London, 1998, pp. 473-483.

[2] J. Karvo, J. Virtamo, S. Aalto, and O. Martikainen, Blocking of dynamic multicast connections, to
appear in a special issue of Telecommunication Systems (Select Proceedings of the Fourth INFORMS
Telecommunications Conference).

[3] E. Nyberg, J. Virtamo and S. Aalto, An exact algorithm for calculating blocking probabilities in mul-
ticast networks, to appear in Proc. of Networking 2000, Paris, France, 14-19 May 2000.

[4] E. Nyberg, J. Virtamo and S. Aalto, An exact end-to-end blocking probability algorithm for multicast
networks, submitted.

(Samuli Aalto) HELSINKI UNIVERSITY OF TECHNOLOGY, LABORATORY OF TELECOMMUNICATIONS TECH-
NoLogy, P.O. Box 3000, FIN-02015 HUT, FINLAND
E-mail address: samuli.aalto@hut.fi

(Jorma Virtamo) HELSINKI UNIVERSITY OF TECHNOLOGY, LABORATORY OF TELECOMMUNICATIONS TECH-
NOLOGY, P.O. Box 3000, FIN-02015 HUT, FINLAND
E-mail address: jorma.virtamo@hut.fi

CALCULATION OF BLOCKING PROBABILITIES IN MULTICAST NETWORKS

100

80 ,

60

40

20

3 4 5 6 7 8

FIGURE 5.7. Processing time 7' (in seconds) vs. I for I = 2,3,...,8 in ex-
ample 2. Normal scaling: z-axis = I, y-axis = T. Curves: dotted = exact,
continuous = pract.

2 Z

1.5

1
0.5 ==
0

-0.5

-1 _
-1.5—==

3 4 5 6 7 8

FIGURE 5.8. Processing time T' (in seconds) vs. [for [= 2,3,...,8 in ex-
ample 2. Logarithmic scaling: x-axis = I, y-axis = logT. Curves: dotted =
exact, continuous = pract.

2
/
1.5 -
7/
1
e
0.5 /
7
0 =
-0.5 ad
~ - - /
-1 >
/
-1.5———=—
0.3 0.4 0.5 0.6 0.7 0.8 0.9
FIGURE 5.9. Processing time 7' (in seconds) vs. I for I = 2,3,...,8 in ex-

ample 2. Log-log scaling: x-axis = log I, y-axis = logT. Curves: dotted =
exact, continuous = pract.

15

16 S. AALTO, J. VIRTAMO

100
80
60
40
10 20 30 40 50
FIGURE 5.10. Processing time 7' (in seconds) vs. I for I = 2,3,...,50 in
example 2. Normal scaling: z-axis = I, y-axis = T. Curve: continuous =
pract.
2
1.5
1
0.5
0
-0.5
-1
-1.5
10 20 30 40 50
FIGURE 5.11. Processing time T' (in seconds) vs. I for I = 2,3,...,50 in ex-
ample 2. Logarithmic scaling: z-axis = I, y-axis = logT". Curve: continuous
= pract.
2
1.5
1
0.5
0
-0.5
-1
-1.5
0.6 0.8 1 1.2 1.4 1.6
FIGURE 5.12. Processing time 7' (in seconds) vs. I for I = 2,3,...,50 in

example 2. Log-log scaling: z-axis = log I, y-axis = logT'. Curve: continuous
= pract.

