
Date: January 17, 2000

Issue: 1

COST257TD(00)

Nearly Optimal Importance Sampling for
Monte Carlo Simulation of Loss Systems

Pasi Lassila 1 and Jorma Virtamo 2

Helsinki University of Technology

Abstract

In this paper we consider the problem of estimating blocking probabilities in the
multiservice loss system via simulation, applying the static Monte Carlo method with
importance sampling. Earlier approaches to this problem include the use of either a
single exponentially twisted version of the steady state distribution of the system or a
composite of individual exponentially twisted distributions. Here, a different approach
is introduced, where the original estimation problem is first decomposed into indepen-
dent simpler sub-problems, each roughly corresponding to estimating the blocking
probability contribution from a single link. Then two importance sampling distrib-
utions are presented, which very closely approximate the ideal importance sampling
distribution for each sub-problem. In both methods, the idea is to try to generate
samples directly into the blocking state region. The difference between the methods
is that the first method, the inverse convolution method, achieves this exactly, while
the second one, using a fitted Gaussian distribution, only approximately. The in-
verse convolution algorithm, however, has a higher memory requirement. Finally, a
dynamic control algorithm is given for optimally allocating the samples between dif-
ferent sub-problems. The numerical results demonstrate that the variance reduction
obtained with the methods, especially with the inverse convolution method, is truly
remarkable, between 400 and 500 000 in the considered examples.

Keywords: Loss systems, simulation, Monte Carlo methods, variance reduction,
importance sampling.

1Pasi.Lassila@hut.fi
2Jorma.Virtamo@hut.fi

1

1 Introduction

Modern broadband networks have been designed to integrate several service types into the
same network. On the call scale, the process describing the number of calls present in
the network can be modeled by a loss system, see e.g. [4]. One of the basic tasks is to
calculate the steady state blocking probability for each traffic class in the system. The
steady state distribution of the system has the well known product form, from which it is
easy to write down analytic expressions also for the blocking probabilities. A problem with
the exact solution, however, is that it cannot be computed for realistic size networks due
to the prohibitive size of the state space. Recursive methods can be used to alleviate the
problem, but they are applicable only in the case of a small number of links.

In such a situation there are two alternatives: to use analytical approximations or to simulate
the problem to a desired level of accuracy. In this paper we will be dealing with the latter
approach. Then, as the form of the stationary distribution is known, the static Monte Carlo
(MC) method can be used to perform the simulation. In order to make the simulation
more efficient, it is possible to use importance sampling (IS), where one uses an alternative
sampling distribution, which makes the interesting samples more likely than under the
original distribution. The twist in the distribution is then corrected for by weighting the
samples with the so called likelihood ratio.

In this paper two efficient IS distributions are derived aiming at approximating the properties
of the ideal IS distribution as closely as possible. Previous work on estimating the blocking
probabilities via the static Monte Carlo method includes the works of Ross [4, chap. 6] and
Mandjes [3]. Ross has presented heuristics which attempt to increase the likelihood of the
blocking states while, at the same, trying to limit the likelihood of generating misses from
the allowed state space, resulting in a rather conservative twist. Mandjes has proposed to
use an importance sampling distribution which is an exponentially twisted version of the
stationary distribution of the system that shifts the mean of the sampling distribution to
match the most probable blocking state in the network. In [2], we presented an approach
based on using a similar technique with exponentially twisted distributions, but we extended
the approach with ideas suggested by the large deviation results obtained by Sadowsky and
Bucklew in [6]. They have shown that for estimating the probability of sets having a similar
shape as the set of the blocking states, the asymptotically optimal IS distribution is of a
composite form.

Here we take on a slightly different approach. The basic idea is the same as in [2], to
effectively sample the blocking states lying on the boundary of each active link contraint.
Instead of using a composite form distribution for this, the problem is first decomposed into
separate sub-problems. The decomposition corresponds to breaking the blocking probability
down to components each of which essentially gives the blocking probability contribution
from a single link. Then we give two effective IS methods to solve each sub-problem.
In these methods the earlier used exponentially twisted distributions are replaced with a
more accurate approximation of the ideal IS distribution. In both methods the idea is to
generate samples directly into the set of blocking states of a given link, assuming solely

2

that link to have a finite capacity. The first method, based on using an inverse convolution,
achieves this objective exactly. The second one is an approximation of the first method,
where a Gaussian approximation of the original distribution is used. The trade-off in the
two methods is between the better performance of the first method and the lower memory
consumption of the second method. The two methods drastically improve the performance
of the IS sampling. In the examples considered, the reduction of the standard deviation
obtained by the inverse convolution method varied from 20 to 700, using the direct Monte
Carlo method as a reference. In terms of the required number of samples for a given accuracy
this translates to a reduction by a factor of the order from 400 to 500 000.

The paper is organized as follows. Section 2 presents briefly the multiservice loss system.
The simulation of the blocking probabilities and the IS method together with the properties
of a proper IS distribution for estimating the blocking probabilities are discussed in section 3.
Sections 4 and 5 contain the main results of the paper and describe the inverse convolution
method and the Gaussian IS method, respectively. In section 6 we describe the dynamic
method for optimally allocating the number of samples to be used for each sub-problem and
give some numerical examples demonstrating the effectiveness of the two methods. Section
7 contains our conclusions.

2 The multiservice loss system

Consider a network consisting of J links, indexed with j = 1, . . . , J , link j having a capacity
of Cj resource units. The network supports K classes of calls. Associated with a class-k call,
k = 1, . . . , K, is an offered load ρk and a bandwidth requirement of bj

k units on link j. Note
that bj

k = 0 when class-k call does not use link j. Let the vector bj = (bj
1, . . . , b

j
K) denote

the required bandwidths of different classes on link j. Also, we assume that the calls in
each class arrive according to a Poisson process, a call is always accepted if there is enough
capacity available, and that the blocked calls are cleared. Let X = (X1, . . . , XK) denote the
state of the system, with Xk giving the number of class-k calls in progress. Consider first
the case where the capacities of the links are infinite. The system behaves as K independent
Poisson processes. The state space is then

I = {x | x ≥ 0},

where xk ∈ N with N denoting the set of natural numbers {0, 1, , 2, . . .}. The steady state
distribution, P , of X is of the product form

f(x) = P{X = x} =
K∏

k=1

fk(xk), x ∈ I, (1)

where fk(x) = (ρx
k/x) e−ρk is the one-dimensional Poisson distribution.

Also, let Y j
k denote the random variable for the occupancy of link j due to the traffic of

3

class k, i.e Y j
k = bj

kXk. The distribution of Y j
k is then

mj
k(y) = P{Y j

k = y} =

{
fk(x), ∃x ∈ N : y = bj

kx,
0, otherwise.

(2)

For the finite capacity system, the set of allowed states, S, can be described as

S =
{
x ∈ I | ∀ j : bj · x ≤ Cj

}
,

where the scalar product is defined as bj ·x =
∑

k bj
kxk. The steady state distribution, π, is

given by the truncation of (1) to the allowed state space, S,

π(x) = P{X = x |X ∈ S} =
P{X = x}
P{X ∈ S} , x ∈ S.

The set of blocking states for a class-k call, Bk, is

Bk =
{
x ∈ S | ∃ j : bj · (x + ek) > Cj

}
,

where ek is a K-component vector with 1 in the kth component and zeros elsewhere. The
blocking probability of a class-k call, Bk, can then be expressed in the form of a ratio of two
state sums

Bk =
∑
x∈Bk

π(x) =

∑
x∈Bk

f(x)∑
x∈S f(x)

=
P{X ∈ Bk}
P{X ∈ S} =

βk

γ
. (3)

We can note here that, instead of having the state space I for X, we could consider any
Cartesian product space enclosing S.

For later purposes, we introduce some additional notation. Let Dj
k denote the set of blocking

states for link j consisting of the points

Dj
k =

{
x ∈ I | Cj − bj

k + 1 ≤ bj · x ≤ Cj

}
.

Also, we denote by Rk the set of links that the traffic class k uses, i.e.

Rk = {j ∈ J | bj
k > 0},

where J = {1, 2, . . . , J} denotes the set of link indexes.

3 Efficient importance sampling for loss systems

In what follows we discuss the estimation of the blocking probabilities via the importance
sampling simulation method. Then, as the form of the stationary distribution π(x) is known,
a natural choice for the simulation method is the static Monte Carlo method. The main
problem in the simulation is to quickly get a good estimate for βk, i.e. the numerator in

4

(3), especially in the case, when the Bk are very small. For completeness, we note that
the blocking probability Bk does not only depend on βk, but also on the state sum γ given
by the denominator of (3). The direct Monte Carlo method for estimating γ consists of
generating samples from the distribution f(·), which is easy to do, and for each sample
checking whether it is in the allowed state space or not. The estimate for γ corresponds
then simply to the probability of generating hits into S. This probability is usually close
to 1 and is, therefore, easy to estimate. It is only in the rather unrealistic case where the
traffic in the system is extremely heavy such that the main mass of the distribution f(x)
lies far outside S, when the direct estimation of γ may become a problem and importance
sampling may be needed for that, too. Therefore, in the rest of this paper we concentrate
on efficient methods for estimating βk.

In the following, we suppress from the notation the index k of the class for which the state
sum βk (and the blocking probability) is to be estimated. Let X∗ ∈ I be another random
variable with distribution

P ∗ : p∗(x) = P{X∗ = x} > 0 ∀ X∗ ∈ B. (4)

Note that the above requirement allows p∗(x) to be positive also outside B. Then β can be
written as an expectation

β =
∑
x∈B

f(x)

p∗(x)
p∗(x) = E[1X∗∈B w(X∗)], (5)

where w(·) = f(·)/p∗(·) is the so called likelihood ratio. Thus, we have the following
estimator

β̂ =
1

N

N∑
n=1

1X∗
n∈B w(X∗

n), (6)

where N is the number of generated samples of X∗.

The relation (5) and the resulting estimator show the basic principle of a simulation method
known as importance sampling, where the idea is to choose the sampling distribution P ∗

satisfying (4) such that the variance of (6) is minimized. In [2] it was shown that the variance
of the observed variable 1X∗∈B w(X∗) under the distribution P ∗ can be expressed as

V [1X∗∈B w(X∗)] =
β2

β∗ − β2 + β∗σ∗2, (7)

where β∗ is the blocking probability under P ∗, β∗ = E[1X∗∈B], and σ∗2 is the variance of the
observed variable in the set of the blocking states under P ∗, σ∗2 = V[w(X∗) |X∗ ∈ B]. From
this we can note that the ideal IS distribution has the following properties: each generated
sample is in the set B and the likelihood ratio w(x) has a constant value in the set B.
However, the ideal IS distribution implies knowledge of the estimated quantity itself and is,
hence, impractical. An efficient realizable IS distribution, however, tries to approximate it
as closely as possible.

5

Earlier approaches to obtaining an efficient IS distribution for estimating the blocking prob-
abilities, see [3] or [4], suggested the use of an exponentially twisted IS distribution that
moves the main probability mass closer to one of the link constraints or, as in [3] to be
centered around the most probable blocking state. However, in a well engineered loss sys-
tem, the blocking probability of class-k calls, is not dominated by a single bottleneck link.
Instead, on the boundaries of all the link constraints, there are states that contribute signifi-
cantly to the blocking probability, implying that an efficient IS distribution must be capable
of producing samples lying on the boundaries of all the links that the traffic class uses.

In [2] we approximated this by using a composite distribution, consisting of a weighted
combination of several exponentially twisted distributions, one for each link in R. Each
distribution was centered around the most probable blocking state on link j and could,
hence, be used to sample predominantly the blocking states of link constraint j. These
exponentially twisted distributions are also Poisson distributions and thus the generation of
samples is very easy. Then we only needed one parameter to completely define each twisted
distribution making the control over where the samples get generated and the variance of
w(·) for each link j in the set B somewhat limited. Here our aim is again to be able to sample
the blocking states on each link constraint, but we will not use a composite distribution for
this. Instead, the problem will be decomposed into separate simpler sub-problems. Then,
we can easily derive an IS distribution very closely approximating the properties of the ideal
IS distribution for each particular sub-problem.

3.1 Decomposition and importance sampling

The decomposition is based on the following observation. The set of blocking states (for
traffic class k) can be expressed as

B = S ∩
⋃
j∈R

Dj.

This is illustrated in Figure 1 on the left hand side, which shows a two traffic class example
with three links. The grey areas represent the blocking state regions Dj of some traffic class
for each link. The whole set of blocking states B is then the area between the continuous
black lines. Now, β is an expectation of the form E[h(X)] with h(·) being the indicator
function of the set B. Based on the above we can decompose h(·) as

h(x) = 1x∈B =
∑
j∈R

1

ν(x)
1x∈S 1x∈Dj ,

=
∑
j∈R

hj(x),

where

hj(x) =
1

ν(x)
1x∈S 1x∈Dj ,

6

and ν(x) is a function giving the number of sets Dj the point x belongs to, i.e. it takes
care of weighting those points appropriately that lie in the intersection of two or more
Dj sets. Thus, the computation of the original expectation decomposes into independent
sub-problems, i.e E[h(X)] =

∑
j∈R E[hj(X)]. The value of one of the hj(·) functions is

illustrated in Figure 1 on the right hand side. Note that with slight modification we could
also decompose the set B into non-overlapping regions and, whence there would not appear
any 1/ν(x) term in the hj(x) function.

[2

[1

'2

'3

%

'1 [2

[1

K1([)=1

K1([)=1/2

K1([)=0

'2

'3

'1

Figure 1: Decomposition of the set B into three subsets in a network with two traffic classes
and three link constraints (left figure) and the values of one of the hj(·) functions in different
parts of Dj (right figure).

To estimate each ηj = E[hj(x)] efficiently we apply importance sampling. Let p∗j (·) denote
the corresponding IS distribution. Then we have the IS estimator

η̂j =
1

Nj

Nj∑
n=1

1

ν(X∗
n)

1X∗
n∈S 1X∗

n∈Dj w(X∗
n), (8)

where w(x) = f(x)/p∗j(x). Then the final estimator for β is simply

β̂ =
∑
j∈R

η̂j.

Now, given the total number of samples N to be used for the estimator, the number of
samples Nj allocated to each sub problem are free parameters. In section 6 we show how to

choose the Nj to minimize the variance of β̂.

We will next present two new methods that try to approximate the ideal IS distribution for
estimating ηj as closely as possible without making the computational effort of generating
samples excessive. For estimator (8) the ideal IS distribution would always generate points
that lie in Dj and are always inside the allowed state space S, i.e. points that are in B, with
a distribution proportional to f(x)/ν(x). Consequently, the value of the observed variable
w(·)/ν(·) would be a constant. In both new methods we approximate this by deriving a

7

distribution for which the value of w(·) is (almost) constant and from which we can generate
samples (almost) directly into Dj, i.e. the region of states corresponding to blocking states
on link j. Then the only sources of variance in the estimator (8) are due to the fact that
some of the samples in Dj are not in the allowed state space S and due to the inverse
of the multiplicity factor 1/ν(·). With the exponentially twisted distributions used earlier
such control was not possible. Hence, we get a much better approximation of the ideal
distribution with the new methods.

4 The inverse convolution method

As we are now only considering the estimation of ηj for a fixed j ∈ R we omit the link
index j from the notation. This implies that Cj, bj

k and Dj
k are denoted here by C, b and

D, respectively (remember that dependence on the traffic class k being under inspection
was suppressed earlier). To further simplify the notation, we also assume, without loss of
generality, that the traffic classes which use link j have the indexes 1, . . . , L. The following
method is based on the observation that it is relatively easy to generate points X ∈ D
exactly obeying the distribution P , i.e. from conditional distribution P{X = x |X ∈ D} by
reversing the steps used to calculate the occupancy distribution of the considered link by
convolutions.

Recall that the occupancy due to the traffic of class-k calls on the link under consideration
is denoted by Yk with the distribution mk(·) as defined in (2). Let Sl, with l = 1, . . . , L,
denote the occupancy distribution on the considered link caused by the superposition of the
first l classes, i.e.

Sl =
∑
l′≤l

Yl′, l = 1, . . . , L.

We can also express Sl = Sl−1+Yl, where both Sl−1 and Yl are independent. The distribution
of Sl, ql(x) = P{Sl = x}, can be obtained recursively from the convolution

ql(x) =

x∑
y=0

ql−1(x − y)ml(y). (9)

Note that the event Sl = x is the union of the events {Yl = y, Sl−1 = x − y}, y = 0, . . . , x
with the probabilities ml(y)ql−1(x−y). Conversely, given Sl = x the conditional probability
of the event Yl = y is ml(y)ql−1(x− y)/ql(x), for y = 0, 1, . . . , x. These probabilities can be
precomputed and stored. Then, given Sl = x, using these probabilities it is easy to draw a
value, say y, for Yl and consequently for Sl−1 = x − y. In fact, it is advantageous to store
directly the values of the cdf

P{Yl ≤ y |Sl = x} =

y∑
y′=0

ml(y
′)ql−1(x − y′)/ql(x). (10)

Then the value of Yl ≤ y can be drawn by finding the smallest y such that P{Yl ≤ y |Sl =
x} ≥ U , where U is a random variable drawn from the uniform distribution in (0, 1).

8

Now, SL is the occupancy of the link, and the set D corresponds to C − b + 1 ≤ SL ≤ C.
A point in D can be generated by first drawing a value for SL using the distribution qL(·)
conditioned on C− b+1 ≤ SL ≤ C, which is also precomputed and stored. This is shown in
Figure 2 on the left hand side. Then, as described above, (YL, SL−1) can be drawn. This is
shown in Figure 2 in the middle. Once the value of SL−1 is fixed, we can draw (YL−1, SL−2).
This process is continued until the value of the last component Y1 has been drawn. The
most important thing here is to note that the distributions of the conditional sets (Yl, Sl−1)
for a fixed value of Sj

l are easily precomputed and, hence, each component Yl is generated
as an outcome from a simple table lookup. The other classes not using the link, i.e. classes
L + 1 to K, are independent from classes 1, . . . , L and from each other. Hence, their values
are drawn independently from the distributions fk(·), k =, L + 1, . . . , K.

The generation of samples is as fast as in a standard MC method, once the conditional
distributions have been computed. Furthermore, the memory requirements of the algorithm,
i.e. the number of elements in the arrays, are not prohibitive. The number of array elements
to be stored can be seen to be 1

2
KC(C + 1). It should be noted that the dependence on K

is only linear whereas the size of the state space grows exponentially with K. However, if
this memory requirement grows too large, the minimum requirement is that the ql and ml

distributions have been precomputed. Then the conditional distribution P{Yl ≤ y |Sl = x},
given by (10), must be constructed on the fly, making the sample generation somewhat
slower.

<
/

&-E+1

&

6
/

6
/�� 6

/��

<
/��

Figure 2: Sample generation into the set D with the inverse convolution method.

The samples X∗
n generated with the above method and to be used in the IS estimator (8)

obey the conditional distribution

p∗(x) = P{X = x |X ∈ D} =
P{X = x}
P{X ∈ D} =

f(x)

v
,

where v is the probability mass of the set D, i.e.

v = P{X ∈ D} = P{C − b + 1 ≤ SL ≤ C} =

C∑
i=C−b−+1

qL(i).

9

Then the estimator for η becomes

η̂ =
1

N

N∑
n=1

1

ν(X∗
n)

1X∗
n∈S 1X∗

n∈D
f(X∗

n)

f(X∗
n)/v

=
v

N

N∑
n=1

1

ν(X∗
n)

1X∗
n∈S ,

where we have omitted the indicator 1X∗
n∈D since with the inverse convolution method the

generated samples are always inside D. In practice the samples are not generated in the
infinite space I but in some smaller Cartesian product space enclosing S, which further
increases the hit ratio of the method. Also, note that with this method simulation is needed
only to determine which part of the probability mass of D is actually inside S (factor 1X∗∈S)
and to compensate for double (or multiple) counting for such points x that belong to more
than one of the sets D (factor 1/ν(X∗).

5 Gaussian IS distribution for loss systems

In this section we present another IS distribution for estimating ηj
k. However, now the p∗j(x)

will only approximately represent the conditional distribution P{X = x | X ∈ Dk
j }. On

the other hand, the generation of samples from this distribution can be done without the
precomputation and storage of a large number of probability tables as required in the inverse
convolution method. Again, for ease of notation, we omit the dependence on the traffic class
k for which we are estimating ηj

k and the link j ∈ Rk under consideration.

The idea of the method is briefly as follows. First we find the point x∗ maximizing f(x)
on the constraining hyperplane b · x = C. Then, at that most important point x∗ we fit a
Gaussian function g(x) to f(x) (considered as a continuous function of x). This Gaussian
function is used as an approximation to f(x). The distribution P{X = x | X ∈ D} can
now be approximated by a conditional multinormal distribution. Sample points in D can be
generated by first generating a value for the link occupancy from its marginal distribution in
the strip C−b+1 ≤ b ·X ≤ C and then generating the other coordinates from a conditional
multinormal distribution. As the normal distribution is a continuous distribution, we finally
have to discretize the values by rounding them to the closest integers.

There is, however, a small technical problem in the method. As will be explained, in order
to be able to make the calculation of the likelihood ratio practical, we have to enlarge the
strip C − b + 1 ≤ b ·X ≤ C somewhat, i.e. we use limits r ≤ b ·X ≤ s, where r < C − b +1
and s > C. Unfortunately, this small problem turns out to have a rather big impact on the
performance of the method in terms of the miss ratio.

So, we start by considering the fitting of a Gaussian function g(x) to f(x) at x∗. The fitting
procedure is described in more detail in the Appendix. Since f(x) is of the product form

10

∏
k fk(x), the fitting reduces to k one-dimensional problems of fitting a Gaussian function

gk(x) =
ck√
2π

1

σk

e−(x−mk)2/2σ2
k

to a given function fk(x) at a given point x∗
k. As there are three parameters ck, mk and σk

available, we can require the 0th, 1st and 2nd derivatives of fk(·) to match those of gk(·) at
x∗

k. The fitting results in a Gaussian function

g(x) =
a

(
√

2π)K |Γ| e−
1
2
(x−m)T Γ−1(x−m),

where a =
∏

k ck and the covariance matrix Γ is a diagonal matrix with Γkk = σ2
k. Note that

g(x) is a times the density function of the multinormal distribution N(m,Γ). Indeed, the
fitted function need not be the density of a distribution. Now the conditional distribution
P{X = x |X ∈ D} can be approximated by the (discretized version of) N(m,Γ) distribution
conditioned on r ≤ x · b ≤ s (recall that b denotes implicitly the vector bj and bk, to be
used later, is the kth component of bj).

To further simplify the notation in the following we assume, without loss of generality, that
the traffic class k ∈ {1, . . . , L} for which we are estimating η is class K. We now make a
linear transformation of variables by replacing XK with the occupancy of the link

∑
k bkxk.

This transformation and its inverse transformation are

z1 = x1,
...

zK−1 = xK−1,

zK =

K∑
k=1

bkxk,

and



x1 = z1,
...

xK−1 = zK−1,

xK =
1

bK

(
xK −

K−1∑
k=1

bkxk

)
.

The above equations can be expressed in matrix notation as{
z = A−1x,
x = Az.

Now it is easy to verify that if X is a random variable with distribution N(m,Γ) then

Z = A−1X is a random variable with distribution N(m̃, Γ̃), where{
m̃ = A−1m,

Γ̃−1 = ATΓ−1A (⇒ Γ̃ = A−1Γ(A−1)T).
(11)

In general, Γ̃ is no longer diagonal, i.e. the components of Z are not independent.

The conditional distribution of X ∼ N(m,Γ) conditioned on r ≤ X · b ≤ s corresponds

to the conditional distribution of Z ∼ N(m̃, Γ̃) conditioned on r ≤ ZK ≤ s. It is easy to
generate Z from this distribution, and then we get X from X = AZ.

11

To generate Z, we observe that ZK obeys a univariate normal distribution ZK ∼ N(m̃K , Γ̃KK),
and its value in the range r ≤ ZK ≤ s can be generated by any of the standard methods (e.g.
by inversion of the cumulative distribution function, or, more efficiently, by the acceptance
rejection method using an exponential majorizing function, see [5, chap. 2], also Appendix
2). Second, given the value of ZK , the other components of Z, i.e. Z(1) = [Z1, . . . , ZK−1]
again obey a multinormal distribution by Theorem 10.2 in [1, p. 324]

Z(1) ∼ N(m̃(1) − B−1
11 B12(ZK − m̃K),B−1

11),

where m̃(1) denotes the first K − 1 components of m̃ and the Bij, i, j = 1, 2, represent

components in the partitioning of Γ̃

Γ̃ =

K−1︷︸︸︷ 1︷︸︸︷(
B11 B12

B21 B22

)
}K − 1

} 1
.

Note that B22 = Γ̃KK. Thus

Z(1) ∼ m̃(1) −B−1
11 B12(ZK − m̃K) + B

−1/2
11 · N(1), (12)

where N(1) is a vector of K − 1 independent N(0, 1) distributed random variables. For a
fixed ZK , the expression on the right hand side is obviously a multinormal variable with
mean E[Z(1)] = m̃(1) −B−1

11 B12(ZK − m̃K) and covariance

E
[(

Z(1) − E
[
Z(1)

]) (
Z(1) − E

[
Z(1)

])T]
= B

−1/2
11 E

[
N(1)(N(1))T

]
B

−1/2
11 = B−1

11 .

In summary, the procedure for generating samples into D can be described as follows. First
we have the preparatory steps

1. Obtain m and Γ from the fitting procedure.

2. Calculate m̃ and Γ̃ from (11).

3. Determine the submatrices Bij and calculate B−1
11 B12 and B

−1/2
11 , needed in (12).

Then for each sample we perform the following

1. Generate ZK from N(m̃K , Γ̃KK) in the interval (r, s) (see Appendix 2).

2. Generate Z(1) using (12).

3. X = AZ, where Z = [Z(1), ZK].

4. Round the components of X to closest integers.

12

5.1 Likelihood ratio

Let us denote here with X∗
n the samples obtained in the above described manner. In order

to use the samples in the estimator (8), we have to be able to calculate the likelihood ratio
and therefore the probability of the generated samples, i.e. the integer lattice points in D.
Note that, because of the rounding operation, the probability of a sample X∗

n equals the
probability mass of the conditional normal distribution within the K-dimensional unit cube
with the center X∗

n. If the cube is totally embedded in the strip defined by the condition
r ≤ ZK ≤ s, then the calculation is easy. Even though we made a change of variables in
order to control the values of ZK , the density in the strip r ≤ ZK ≤ s still is the product of
Gaussian densities. Thus, the probability mass in the cube can be expressed as the product
of probabilities of respective intervals of normal variables. On the other hand, if the cube
is not wholly embedded in the strip r ≤ ZK ≤ s, then the calculation of the probability is
complicated.

Thus we have to ensure that for each integer lattice point in D the surrounding unit cube
is wholly embedded in the strip r ≤ ZK ≤ s. This means that we must enlarge the strip by
choosing r = Cj − b + 1 − ∆, s = C + ∆, where ∆ = 1

2

∑
k bk. This is illustrated in Figure

3, where the grey area corresponds to D. Note that ∆ = [1
2
, . . . , 1

2
] · b, where [1

2
, . . . , 1

2
] is

the vector distance of the corner of the cube from the center. By enlarging the strip we
inevitably generate misses from the set D and to some extent deteriorate the performance
of the sampling method.

=.�= & - E + 1 - ∆

=.
�= & - E + 1

=.
�= & + ∆

=.
�= &

'

Figure 3: Enlargement of the generation interval of ZK .

Remember that we fitted the Gaussian function g(·) such that it approximates the distrib-
ution f(·) as closely as possible at the point x∗, i.e.

f(x) ≈ g(x) = a fN(m,Γ)(x),

where fN(m,Γ) denotes the pdf of a normal distribution with mean m and covariance Γ.
Then, to be explicit, our IS distribution p∗(x) approximating the conditional probability

13

P{X = x |X ∈ D} is given by

p∗(x) =

∏K
k=1

(
Q(x′

k − 1
2
) − Q(x′

k + 1
2
)
)

v
, x ∈ D,

where v is the total probability of the extended strip v = Q(r′k)−Q(s′), the primes refer to
the normalized variables

x′
k =

xk − mk

σk
, r′k =

rk − m̃k√
Γ̃KK

, s′ =
s − m̃k√

Γ̃KK

,

and Q(·) denotes the tail probability function of the standard N(0, 1) distribution

Q(x) =

∫ ∞

x

1√
2π

e−y2/2 dy =
1

2
erfc(x/

√
2).

Finally, the estimator for η becomes

η̂ =
1

N

N∑
n=1

1

ν(X∗
n)

1X∗
n∈S 1X∗

n∈D
f(X∗

n)

p∗(X∗
n)

=
v

N

N∑
n=1

1

ν(X∗
n)

1X∗
n∈S 1X∗

n∈D
f(X∗

n)∏K
k=1

(
Q(X ′

k − 1
2
) − Q(X ′

k + 1
2
)
) ,

where the X∗
n denote samples obtained with the above described procedure and generated

into the enlarged strip.

6 Numerical results

6.1 Allocation of the sample points

Here we reintroduce the dependence on the link index j explicitly in the notation. Above we
have decomposed the problem of estimating the expectation β = E[h(X)] into J independent
problems of estimating the expectations η(j) = E[hj(X)], j = 1, . . . , J , with β =

∑
j η(j),

and correspondingly β̂ =
∑

j η̂(j). Each of the estimators η̂(j),

η̂(j) =
1

Nj

Nj∑
n=1

h(j)(X(j)
n),

where X(j) is a random vector obeying the distribution p∗j(·), gives an unbiased estimate for

η(j), irrespective of the number of samples Nj used. The allocation of the total number of
samples N between different subproblems, N = N1 + · · · + NJ , should be made based on

14

the minimization of the variance of the final estimator β̂. Because the estimators β̂j are
independent we have

V[β̂] =
∑

j

V[η̂(j)] =
∑

j

s2
j

Nj

,

where we have denoted s2
j = V[hj(X(j))]. Now the minimization of this expression with

respect to the Nj under the constraint
∑

j Nj = N readily leads to the optimal allocation

Nj =
sj∑J
i=1 si

N, j = 1, . . . , J. (13)

Of course, the sj are not known before the simulation. Therefore a dynamic sample alloca-
tion scheme is needed. One practical solution is to make the simulation in batches, using
J ∗ M samples per batch, where M is a suitable integer, for instance M = 100. In the first
batch, all the samples are distributed evenly for different links, i.e., M samples are used
per link. Then initial estimates for the sj are obtained. Using these estimates, the optimal
sample sizes after the second batch, i.e. for N = 2J ∗M , can be calculated from (13). If the
calculated Nj is less than the number of samples already used (M samples in the first batch)
no samples of the new batch are allocated for that link. Otherwise, the available J ∗ M
new samples are distributed between the links in proportion to the deficiencies (deficiency
being the difference between the calculated optimal value after the new batch and the actual
number of samples used so far). Real numbers are appropriately rounded to integers. After
the new batch, new estimators are calculated for the sj and the procedure is repeated.

6.2 Numerical examples

Here some numerical examples are presented in order to illustrate the efficiency of the
presented methods in Monte Carlo simulation of the blocking probabilities. First we consider
a simple two traffic class network with three links. The parameters of the network are:
Cj = [100, 120, 170],b(1) = (2, 0),b(2) = (0, 3) and b(3) = (2, 3). We consider the blocking
probability of traffic class 1 with two different loads such that the blocking probabilities are
of the order 1.03 · 10−2 and 1.22 · 10−4 (Cases 1 and 2 in Table 1, respectively). The offered
loads were ρ = (35, 22) (Case 1) and ρ = (27, 18) (Case 2). The two new methods (labeled
with “Convolution” and “Gaussian” in the table) are compared against results obtained
with the composite method (“Composite”) from [2], the standard MC and the methods
proposed by Mandjes (“Single twist” in Table 1) in [3] and Ross in [4, chap. 6], which both
correspond to the use of a single twisted IS distribution. To this end, we estimated the
relative deviation of the estimator, given by (V[β̂k])

1/2/β̂k, for 104 samples (Case 1) and 105

samples (Case 2). Our second example is the large network example from [7] for the scaling
factor N = 25. The example network is a lightly loaded network with blocking probabilities
of the order 10−3 for each traffic class. There are 10 traffic classes and 13 links with large
capacities (several hundreds of capacity units). Again, we estimated the relative deviation

of β̂k for traffic classes 6 (Case 3) and 8 (Case 4) with 105 samples.

15

Table 1: The relative deviation of the estimates β̂k for the examples.

Case Convolution Gaussian Composite Single twist Ross MC
1 0.0036 0.019 0.051 0.060 0.066 0.099
2 0.0004 0.006 0.017 0.027 0.076 0.302
3 0.0007 0.010 0.031 0.031 0.071 0.095
4 0.0022 0.008 0.017 0.020 0.029 0.037

As can be seen, the variance reductions obtained with the Gaussian method and the inverse
convolution method are remarkable. For example, in Case 2, the ratio between the deviations
of the standard MC and the inverse convolution method is about 700 and even in the large
network examples the ratio is about 100 in Case 3 and 20 in Case 4. As expected, the
performance of the Gaussian method is worse than that of the inverse convolution method.
However, the results even for this method are much better than for any of the IS methods
using exponentially twisted distributions.

7 Conclusions

In this paper we have presented a new approach to the problem of estimating blocking prob-
abilities in a multiservice loss system by using the static Monte Carlo simulation method and
importance sampling. First we observed that the estimation problem can be decomposed
into separate simpler sub-problems each roughly corresponding to the estimation of the
blocking probability contribution from a single link. For the solution of the sub-problems,
we presented two methods, which very closely approximate the generation of samples with
the ideal IS distribution. In both methods the idea is to generate samples directly into the
set of blocking states of a given link in the system, where all the other links are assumed to
have an infinite capacity. This set of course extends beyond the allowed state space of the
system. Then, simulation is essentially only needed to determine which part of this set is
actually inside the allowed state space. The first method, the inverse convolution method,
achieves this objective exactly, and the second one, the Gaussian method, approximately. In
terms of the obtained variance reduction, the inverse convolution method by far surpasses
all previously reported results. The excellent results of the inverse convolution method,
however, are obtained at the cost of high, though manageable, memory requirements. The
Gaussian method does not require high memory usage, but the performance, while remark-
ably good, is less optimal. Finally, it can be noted that the memory requirements of the
inverse convolution algorithm can be significantly reduced by constructing the conditional
distributions on the fly for each sample with the trade-off of making the sample generation
process somewhat more time consuming.

16

Appendix 1

Here we describe how to obtain the parameters of the Gaussian function g(·) to be used as an
approximation to the Poisson distribution f(·) when estimating ηj

k. Again we assume from
this point on that the dependence on j and k is implicit. The first problem is to identify the
point around which we will approximate f(·). A natural choice for this point is the most
probable blocking state in D, denoted by x∗. This problem involves the maximization of
f(·) on a given hyperplane representing the link constraint under consideration. In [2] we
showed how the solution to this problem can be obtained numerically in a straight forward
way.

Once the most probable blocking state x∗ is known, the Gaussian function g(x) is fitted
to the distribution f(x) to at the point x∗. In particular, we require the 0th, 1st and 2nd

derivatives of f(·) to match those of g(·). Since f(·) has a product form the fitting problem
reduces to a simple componentwise fitting of

gk(x
∗
k) = fk(x

∗
k),

∂

∂x
gk(x

∗
k) =

∂

∂x
fk(x

∗
k),

∂2

∂x2
gk(x

∗
k) =

∂2

∂x2
fk(x

∗
k),

, ∀ k = 1, . . . , K, (14)

where
gk(x) =

ck√
2πσk

e−(x−mk)2/2σ2
k .

Equations (14) can be solved analytically to get the parameters ck, mk and σk. To this end,
let a1 = fk(x

∗
k), a2 = f ′

k(x
∗
k) and a3 = f ′′

k (x∗
k). After some straightforward manipulation one

can obtain 

σ2
k =

a2
1

a2
2 − a1a3

,

mk = x∗
k +

a1a2

a2
2 − a1a3

,

ck = a1

√
2πσk ea2

2σ2
k/2a2

1 .

(15)

To illustrate the fitting, let us consider an example, where g(x) = c/(
√

2πσ) e−(x−m)/2σ2

is fitted at the point x∗ = 10 to the Poisson distribution f(x) = (ρx/x!) e−ρ with ρ =
5. The fitting gives c = 2.66, m = 2.20 and σ2 = 10.51. In Figure 4 we have plotted
the probability density function (pdf) of the original discrete Poisson distribution and the
continuous Gaussian function. As can be seen from the figure, the fitting is, indeed, very
good around the point x∗ = 10. Also, note that the fitted Gaussian function is equal to c
times the pdf of the N(m, σ2) distribution.

17

0 2.5 5 7.5 10 12.5 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4: Point probabilities of a Poisson(5) distribution and the Gaussian function fitted
at the point x∗ = 10.

Appendix 2

Here we briefly describe how to efficiently generate samples from the N(0, 1) distribution in
an interval (a, b), where 0 ≤ a ≤ b, i.e samples X obeying the distribution

f(x) =
1√
2π

e−x2/2,

conditioned on X ∈ (a, b). We use an exponential majorizing function g(x), which touches
f(x) at x = a,

g(x) = f(a) · e−a(x−a).

With this function we have f(x)/g(x) = e−(x−a)2/2. Now, desired samples can be generated
by first drawing a sample X from Exp(a) distribution conditioned on X ∈ (a, b) and then
accepting the result with probability e−(X−a)2/2. In summary, the algorithm is the following:

1. Compute X = − log (1 − αU) /a, where α = 1 − (1 − e−a(b−a)
)
,

2. If e−X2/2 ≥ U , then return X + a, else go to 1,

where each instance of U denotes an independent uniformly distributed random variable
in the interval (0, 1). In the tail region, for a small interval (a, b), the method is very
efficient in terms of the acceptance ratio. For given a the worst case is b = ∞, i.e. when
the interval is not small. Then the acceptance ratio is 0.66, 0.84 or 0.91 for a = 1, 2, 3,
respectively. However, the acceptance ratios are much closer to 1, when we are considering
small intervals, as is the case in our application.

Acknowledgement

The authors thank Jouni Karvo for useful discussions which led them to consider IS distri-
butions outside the family of exponentially twisted Poisson distributions.

18

References

[1] S. M. Kay, “Fundamentals of Statistical Signal Processing: Estimation Theory”,
Prentice-Hall, 1993.

[2] P. E. Lassila and J. T. Virtamo, ”Efficient Importance Sampling for Monte Carlo
Simulation of Loss Systems”, Proceedings of the ITC-16, Edinburgh, 7-11 June, 1999,
Teletraffic Engineering in a Competitive World, Elsevier, 1999, pp. 787-796.

[3] M. Mandjes, “Fast simulation of blocking probabilities in loss networks”, European
Journal of Operations Research, Vol. 101, 1997, pp. 393-405.

[4] K. W. Ross, “Multiservice Loss Models for Broadband Telecommunication Networks”,
Springer-Verlag, London, 1995.

[5] R. Y. Rubinstein, B. Melamed, “Modern Simulation and Modeling”, John Wiley &
Sons, 1998.

[6] J. S. Sadowsky, J. A. Bucklew, “On Large Deviations Theory and Asymptotically
Efficient Monte Carlo Estimation”, IEEE Transactions on Information Theory, vol. 36,
no. 3, 1990, pp. 579–588.

[7] A. Simonian, J. W. Roberts, F. Theberge, R. Mazumdar, “Asymptotic Estimates for
Blocking Probabilities in a Large Multi-rate Loss Network”, Advances in Applied Prob-
ability, vol. 29, 1997, pp. 806–829.

19

