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Abstract

Caches provide an important means for reducing latency times experienced by
the users. This paper gives a short review of the most important arrival models and
some basic results related to these. The three arrival models are the Independent
Reference Model (IRM), the Least Recently Used (LRU) stack model and the re-
newal model. We also discuss the problem of good replacement algorithm and, more
specifically, study the performance of a set of algorithms by simulation, assuming
renewal arrival process.
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1 Introduction

WWW caches provide an important means for reducing network traffic and latency times
experienced by the users. Accordingly, modeling the cache behavior has recently become
an active field of research. A cache is basically defined by three factors: the cache size,
the arrival process of document requests and the cache replacement algorithm.

Arrival models were studied already in the 1960’s and 1970’s in the context of program
behavior. In these studies an arrival model described how the program referenced the
pages in its memory. The two basic arrival models are the IRM (Independent Reference
Model) and the LRU (Least Recently Used) stack model. IRM describes the request string
as a sequence of i.i.d. random variables whereas the LRU-stack model assumes that when
the pages are ordered in a stack according to their last reference times, the most recently
referenced page being on the top of the stack, then the stack depths of the references
form a sequence of i.i.d. random variables. The LRU model has the important property
of locality: a recently referenced page is more likely to be referenced again in the near
future. On the other hand, in this model, all the pages are statistically indistinguishable.

The third arrival model, renewal model, has not been studied as extensively as the
two earlier ones. It tries to combine the features of the other models: locality and page
differentiation. The renewal model assumes that interreference times to a page ¢ are i.i.d.
variables (different for different pages) and that the renewal processes for all the pages
are independent. The IRM is obtained as a special case with exponentially distributed
intervals.



Because of the complexity of the renewal model no optimal replacement algorithm
is known for it. In this paper we use simulation to examine the question of the best
replacement algorithm for reference strings created by the renewal model.

The next two sections present the central notations and concepts. The following
sections give a short review of the most important arrival models and some basic results
related to these. Finally we address the problem of good replacement algorithm, assuming
renewal arrival process. Specifically, the performance of a set of algorithms in studied by
simulation.

2 Definitions

The arrival of requests is expressed as a request string Ry = rqy,79,73,... ,7, Where r;
denotes the page requested at time t. There exists a given set of pages X =1,2,... .n
and a cache memory able to accommodate m pages. If r, = i, it is understood that page
1 is requested at time £. A cache miss occurs if at the time of the request the page is not
in the cache.

A locality set is defined as a subset of pages which has the property that if they are
kept in the cache the frequency of misses remains relatively low. The locality set varies in
time, and it is therefore desirable for a replacement algorithm to have the following two
properties, which are in part contradictory: The replacement algorithm should retain in
the cache the pages of the locality set, and it should rapidly update memory when the
locality set is changed.

A sequence of LRU (least recently used) stacks sg, s1,...,s; can be associated with
the reference string 71,79, ..., [5]. The stack s; is the n-tuple (D1, Ds, ..., D,) in which
D; is the ith most recently referenced page at time ¢. If d; is the position of the requested
page r; in the stack s; 1, then, associated with the request string, there exists the distance
string 6; = dy,ds, . .. , d;.

3 Replacement algorithms

In addition to the parameter of cache memory size, an important design factor is the
replacement algorithm. A replacement algorithm defines the set of pages in the cache. In
particular, it determines which pages are to be replaced, when necessary, in order to make
room for an incoming page. The efficiency of the cache is determined by the number of
requests it can satisfy and depends thus heavily on the chosen replacement algorithm.

With a fixed size cache, the minimum number of cache misses is achieved by an
algorithm that always replaces that page in the cache which will not be requested for
the longest period of time [2]. However, such an algorithm is unrealizable, since advance
information is normally not available on future page requests. So, the problem is the
identification of algorithms that will give an acceptably high frequency of references to
the cache for the greatest variety of user behavior.

A demand replacement algorithm brings pages into the cache only when they are
requested. Once in memory, a page remains there until the replacement algorithm decides
to remove it. Once removed, it will not reenter the cache until it is next requested.

A wide variety of possible demand replacement algorithms exists. The physically
realizable ones use the observed historical information, either the history of the most recent



use or the history of their absence and presence in memory. There are also algorithms
that do not use any information about memory usage.

Optimal replacement algorithm can be defined as the one that minimizes the expected
frequency of requests to the original sources. A heuristic criterion, the expected forward
distance criterion, is a rule which chooses for replacement the page in the cache having
the longest expected time until the next request. Using this rule does not necessarily
constitute an optimal replacement algorithm but for some basic models it does.

4 Independent Reference Model (IRM)

The independent reference model [1] is the simplest arrival model. It describes the request
string Ry = r1,79,73,..., as a sequence of independent, identically distributed random
variables with the probability distribution

P(ry=i)=, fori=12.n with Y #=1, (1)
i=1

where the pages are indexed 1,2,... ,n .

As the request string is a discrete parameter independent process, it is clear that the
interval between two successive requests to page 7, or interreference interval X of page 1,
is geometrically distributed with parameter §; and mean 1/(;,

P(X =k)=8(1—-6)"" fork=1,2,... (2)

The optimal replacement policy for IRM is to keep in the cache the m pages with the
highest referencing probabilities [1]. This is the same set of pages as the one with the
shortest expected times until next reference.

The most natural counterpart of the IRM in continuos time is given by the superposi-

tion of n independent Poisson processes, one for each page, with parameters \j, Ag, ..., \,.
The arrival rate \; corresponds to the request probability
s
B = == (3)

Dl A

Notably, one would find it logical to assume that the referencing of a page becomes
less probable as the time since last reference grows. Since exponential distribution is
memoryless, this property can not be described with this model.

5 Least Recently Used (LRU) Stack Model

The second commonly used arrival model is the LRU stack model. This section presents
the model and some analytical results for it.

A sequence of LRU stacks sg, s1, ..., s and the distance string é; = dy,ds, ... ,ds, . ..
can be associated with a reference string r1,79,... ,. The LRU-stack model [8] assumes
that the distance string is a sequence of independent identically distributed random vari-
ables with the probability mass function {a;}

P(dy =i)=a;, fori=12...,n with » a;=1 (4)
i=1



Figure 1: A LRU stack update: the page at distance 4 from the top is referenced and
brought to the topmost position.

The distribution function is then

P(dy <i)=Ai=) a;, fori=12. n (5)

=1

While the distance string is an independent process in the LRU stack model, the
corresponding request string is a dependent process. In some cases a locality condition
a; > as > ... > a, has been added to the model. When this condition is in force, the
recently referenced pages have a higher probability of being referenced again.

The movement of a tagged page through the LRU stack is a discrete parameter Markov
chain. The position of the page in stack s; 1 is determined by the next request ;1 and the
position of the page in stack s;, but not its position in previous stacks. The distribution
of the time X between successive requests for the tagged page can be calculated based on
the transition probabilities. One way is to use generating functions in an iterative manner
on the Markov chain (the details are omitted here). The probability distribution is

P(X =1)=a, (6)

w=1w##1i
i—1 7
b
= Saalla-an > Ay 0
j=1 w=1 by 4 by—i—j—1

The first form, Eq. (7), is computationally impractical (and equivalent to the convo-
lution form presented in [7]) since the denominator consists of a product of many small
numbers. The second form, Eq. (8), is intuitively understandable and represents the sum
over all possible paths such that the page on the top of the stack at time ¢=0 is referenced
next at time ¢ = ¢. The first sum is over those positions which are possible returning
points to the position 1. The second part is the probability of reaching the return point
and the third part is the probability of the necessary loops, that bring the length of path
to <.

While the form presented in Eq. (8) represents a practical way to calculate the dis-
tribution, the easiest way of calculating the interreference distribution is with a matrix
formulation. Consider the following partition of the transition probability matrix P of



Figure 2: Figurative description of equation (13).

the position of the tagged page

. aq bT
p=ln 0
with
V'=[(1-4) 00 -~ 0], (10)
A 1-4, 0 0 |
0 A, 1-—A; 0
B=1] 0 0 Az 0 |, (11)
L O 0 0 Anfl_
aT:[ag as aqg --- an], (12)

with the aid of these the solution for 7 > 1 can be written as
P(X =i)=0b"B"2a, i>1. (13)

In Eq. (13) bT represents the step of exiting position 1, B 2 represents the i — 2 steps
between the other positions and a the return to position 1 (see Figure 2).

In [9] a simple expression for the expected time until the next request for a page
currently in a given stack position ¢ is given as

_n—i—i—l

0 =T

for 1 <i<n, with Ay =0. (14)
Thus the expectation for the interreference interval is 7'(1) = n.

Generally the interreference distribution is not geometric. The locality condition a; >
as > ... > a, is reflected in a sharper peak for short intervals and heavier tail for
longer intervals. A notable feature of the LRU model is that all pages are statistically
indistinguishable. The interreference time distribution is the same for all the pages and
the probability distribution of each page in the stack is uniform. Indeed, the IRM with
identical reference probabilities, 3; = ([, is equivalent to a LRU model with uniform
distance distribution.

The optimal replacement algorithm for the LRU stack model is LRU itself [3]. The
algorithm keeps the set of pages cached that have the highest reference probabilities but
also implements the heuristic of the expected forward distance criterion when the locality
condition is satisfied. That is to say, this is also the set of pages with the shortest expected
times until next reference.



6 Renewal model

In the previous sections we saw that the LRU stack model has the desirable property of
locality but, unrealistically, the model does not make any distinction between different
pages., i.e. in the long run each page is referenced with equal frequency. On the other
hand, in the IRM different pages have different reference probabilities but there is no
locality effect. As an alternative to these models, the renewal model, was introduced in
[6] and suggested in [9]). The renewal model attempts to combine best features of the
IRM and LRU stack model: the locality property and the different behavior of different
pages.

The renewal model is best introduced in the context of continuous time. It can be
viewed as a simple generalization of the IRM obtained by replacing the Poisson arrival
processes for each page by a more general independent renewal processes. For page ¢
the interreference time is assumed to obey distribution F;(t) (with pdf f;(¢)) and to be
independent of other interreference times of page ¢ or those of other pages.

For the continuos IRM, the probability of referencing some page ¢ during the small
time interval At is constant and equal to §;At. In renewal theory (; is known as the
instantaneous renewal rate, in the present case the term immediate reference density (ird)
is logical. With exponentially distributed interreference intervals the ird 3; is independent
of the current backward distance of page 7, that is, the time interval between the last
reference to page ¢ and the current time. The principle of locality implies that the larger
the current backward distance of page i, the smaller its reference probability. The ird j;
should not be constant but a decreasing function of the backward distance.

By defining the form of (3;(¢) the probability density function f;(¢) and the cumulative
distribution Fj(t) are uniquely determined.

G(1) = lim P(T<t+At|T >1) ~ im F(t+ At) — F(t)
At—0 At At—0 AtR(t)
fO) R@)  d

RO - RO " —— InR(). (15)

where R(t) =1 — F(t). Thus defining

B() = [ e (16)
we have
fi(t) = Bi(t)e PO and Fy(t) =1 — e B0, (17)

The expected length of the interreference interval is

i — / (1 Fy(t))dt = / B gt (18)
0 0
The expected time until next reference when time ¢ has passed since the last reference
is (see, e.g. [4])
m;(1+ B(t)) — t. (19)

If page i is assumed to have time t; since the last reference and a known form of
immediate reference density (;(¢;) or its integral B;(¢;) the expected time until next ref-
erence can be calculated. The pages can be ordered accordingly. Alternatively, the pages



could be ordered by their immediate reference density. Both orders depend on the form
of the immediate reference densities as well as on the updated times, so the order of the
unreferenced pages is not necessarily conserved. This makes it difficult to determine an
optimal replacement policy.

Using the first ranking of expected time until next reference emulates the popular
heuristic of replacing the page with the longest time till next reference. The second
ranking, ordering the pages according to their reference probabilities, is analogous to the
optimal policy of the IRM model. In [1] this was recognized as a reasonable approxima-
tion to optimality when the respective order of the page reference probabilities is slowly
varying.

7 Replacement algorithm and simulation
In the following we will construct a possible way of utilizing the renewal model. After

constructing a replacement algorithm its efficiency is tested by a simple simulation. In
particular, we assume that the interreference times obey the Weibull distribution

Fi(t) =1— e (20)
with mean
'(1-2L
N Gt (1)
o7

The corresponding probability density function f;(¢) and immediate reference density 3;(t)
are

filt) = ayt?rem " and  Bi(t) = aiyt” T (22)

The exponential distribution can be viewed as a special case of the Weibull distribution
for which 8; = 1/m; and ~; = 1.
By assuming that 7; has the same value for all pages,y; = v , a; can be estimated with
the maximal likelihood method as
6= =, (23)
2ima b

where the page ¢ has been referenced k£ times with the observed interreference times
t1,t9, ... ,tr. With this estimate and an estimate of the mean (the average of interreference
times) we can calculate the reference probability and expected time until next reference
needed for the implementation of the two stack algorithms suggested earlier.

0. INITIALIZATION
Select universal value for ~
Initialize for each page
- number of references so far k) = 0,

- Oé(()i)a

- the average of interreference intervals so far Téi)

- time of last reference t,\9) = 0



UPON A REFERENCE FOR PAGE ¢ AT TIME t

1. UPDATE

@ k41

17 _«& (2)
" @ Tt

-

k
@ KT )
T =~
-1, =1¢
2. REARRANGCE

Rearrange list with the chosen key
A: expected time until next reference
B: reference probability

3. REMOVE

If necessary remove the page ! with
A: the longest expected time until next reference
B: the smallest reference probability

In order to examine the question of the near optimal stack algorithm a simulated cache
with a request string corresponding to the renewal model was created. In the simulated
case each of the n pages had a Weibull distributed interreference times with a common
parameter y. The means were chosen from a uniform distribution (since 7 is a constant,
this also sets the values of the «;). The initial values ap® and To(i) were chosen as
the average of the parameter values of the created page population. The times of first
references were generated from the forward recurrence time distribution.

The page population size used was 100 and the length of the request string 3000.
Cache sizes ranged from 5 to 30 pages. Each of the algorithms compared used a different
key to arrange the pages into a stack. The keys compared were

e number of references

e time since last reference (real time not virtual)

e mean of interreference times

e reference probability 3; calculated with the actual o

e expected time until next reference calculated with the mean and actual o
e average of interreference times

e reference probability 3; calculated with the estimated «;

expected time until next reference calculated with the average and estimated «;

The results of the simulations were not quite what was expected. Figure 3 shows a
representative example. Hit rates for the keys "time since last reference” and "reference
probability” are so close to each other as to be indistinguishable. Next best is the key
"expected time” and the order of the rest is dependent on the cache size.

!This can be the incoming page which is really not cached at all.
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Figure 3: Results of a simulation with renewal model request strings and six different
cache sizes and eight different keys: [ time since last reference, * reference probability
0 calculated with the actual a, V expected time until next reference calculated with the
mean and actual a, o reference probability § calculated with the estimated «a, * average
of interreference times, x number of references, + expected time until next reference
calculated with the average and estimated «, ) mean of interreference times

With the probabilistic keys that used the actual parameter values reference probability
achieves clearly better results than the alternative expected time until next reference. The
results obtained with the estimated reference probability are also fairly good. However
time since last reference, which requires no estimation or prior knowledge performs better
or as well as all of these.

If indeed the renewal model and Weibull distribution are descriptive of the traffic,
these results imply that instead of using the specific keys, equally good results can be
achieved with a simpler model.

In the simulation the data was updated and gathered for all the pages, whether they
were in the cache or outside. This is not a option in reality. Notably the hit rates for
the three best keys were high even for the smallest cache, indicating that references were
concentrated to a small part of the pages.

8 Conclusions

Statistical arrival models provide the only way to examine the performance of caches
analytically. In this paper we have reviewed three basic models. With simple models such
as IRM and LRU stack model, some aspects of reality are not modeled but analytical
results can be derived. The renewal model, which is more flexible, is too complicated for
this. The simulation study presented in this paper shows that it does not follow the same
rules that the more basic models do. The heuristic of keeping in the cache the pages with
the highest reference probabilities performs better than the heuristic of longest expected
times until next reference.
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