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Abstract

With wavelength division multiplexing (WDM) several optical signals can be
transferred in a single optical �ber [6][7]. This technology allows more e�cient use
of the huge capacity of an optical �ber but also poses new network design and
management problems, especially when wavelength conversion is not possible in the
nodes. In this paper we consider the routing and wavelength assignment problem
in such networks. Once routes are �xed the wavelength assignment is essentially
a graph coloring problem. Several heuristic methods for coloring a given graph
are studied. Also an iterative algorithm for �nding a reasonably good routing and
wavelength assignment is represented and tested with fully connected networks.

1 Introduction

The ever increasing demand of higher transmission bandwidth requires new solutions.
One promising concept for increasing the capacity is wavelength division multiplexing
(WDM). In WDM several optical signals using di�erent wavelengths are transferred in a
single optical �ber. Thus the huge capacity of the optical �ber can be used more e�ciently.
The solution can also be cost e�ective as the existing physical network can be used.

The main characteristics of WDM can concisely be summarized as follows:

� fully photonic network where �ber ampli�ers are used

� several channels are transmitted simultaneously in each �ber

� the capacity of network is great (tens of Gb/s)

� the network forms a wide backbone-network

� routing in nodes is based on wavelengths

In this paper we concentrate on routing and wavelength assignment problem in WDM
networks. When several signals share the same �ber they must use di�erent wavelengths.
The available technology sets an upper limit to the number of wavelengths. Thus we are



led to consider the problem of creating a given set of connections in the network with the
minimum number of wavelengths. The formulation of the optimization problem depends
on whether wavelength conversion is possible in the nodes or not. If the wavelength
conversion is possible the optimal solution just minimizes the maximum number of used
channels over the links. The routing problem is the same as in normal circuit-switched
networks where the only limiting factor is the number of channels on each link.

On the other hand, if wavelength conversion cannot be done in the nodes, this sets
new constraints to the optimization problem. Each connection uses the same wavelength
on all links along its route. A feasible solution uses less or equal number of wavelengths
on each link than there are available and no two connections sharing a common link have
the same wavelength.

There can be also networks with limited possibility to wavelength conversion. Such
networks are not discussed in this paper, though. So from now on we assume that wave-
length conversion cannot be done in any node. We also assume that there is no need for
dynamical recon�guration of the network, i.e. the set of connections is static.

The routing and wavelength assignment problems are tightly linked together. The
problem has been discussed in several recently published papers [8][9][11][12]. In the
approach discussed here, we �rst determine the routes for each connection and then try
to assign the wavelengths with minimum number of used wavelengths. This is done
iteratively so that the routing is changed slightly after the coloring with the aim to �nd
a con�guration which can be colored with an even smaller number of colors. In practice
it is enough to �nd a solution which does not use more wavelengths than the available
technology allows.
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Figure 1: Example network and it is optimal con�guration.

The process of routing and wavelength assignment is represented in �gure 1. On the
left is a physical network. In the middle the routing is �xed and wavelengths are assigned.
The graph on the right is the graph which we must color, i.e. nodes of the graph represent
connections, denoted by origin destination pairs, and nodes are neighbors (connected by
an edge) if and only if corresponding connections share some common link. In order to
avoid wavelength con�icts in the network the graph has to be colored in such a way that
neighbor nodes always have di�erent colors.

The number of di�erent wavelengths required depends greatly on the used routing.
Without considering the wavelength assignment problem more closely at this point one
can still draw some conclusions about routing:

� Short routes which use only one link can use any free wavelength as the decision
made has no e�ect elsewhere.

� Usually the long routes which have many hops are tricky as they reserve the wave-
length from several links. Thus one usually should prefer short paths whenever
available.



� The number of connections on any link clearly sets a lower limit for the total number
of required wavelengths.

� The number of connections which share some link with a point-to-point connection
set an upper limit to the number of required wavelengths.1

� When the network is cut in two subsets some number of links cross the border. The
number of connection between two sets divided by the number of available links sets
a lower bound for the number of required wavelengths [10].

The shortest path between two nodes can be obtained by using e.g. the Dijkstra
algorithm or the Floyd algorithm. Both algorithms have same complexity O(v3) if the
paths between each node pair are searched. In practice the Floyd algorithm is usually a
bit better due smaller constant coe�cients [13].

Once the routing is �xed the problem is to minimize the number of used wavelengths.
As discussed above, the wavelength allocation can be mapped to a graph node coloring
problem, which is a well-known NP-complete problem. In the next chapter several graph
coloring algorithms are discussed and tested. This is the main topic of the paper. Then
in chapter 3 we return to the joint routing and wavelength assignment problem. Finally,
in chapter 4, we present some conclusions.

2 Wavelength assignment

When the routing is �xed, our task is to minimize the number of used wavelengths. The
problem can be represented as a graph node coloring problem. In coloring graph each
node represents one point-to-point connection (see �gure 1). Those connections which
share some common link are neighbors in the coloring graph, i.e. are connected by an
edge, and thus must be colored with di�erent colors. We assume here that links are
alike, i.e. capacities of links are same. So our only objective is to minimize the number of
di�erent wavelengths required.

As the graph node coloring problem is NP-complete heuristic methods must be used
for a practical solution. A number of di�erent heuristic methods have been proposed.
Some of them are based on well-known generic methods such as simulated annealing (SA)
and genetic algorithms (GA). A more recent heuristic algorithm which works very well
with graph coloring problems is the tabu search (TS) [3]. The light weight end of coloring
algorithms are representd by greedy algorithms [4][5]. These, as well as the exhaustive
search, will be discussed in more detail in the following.

2.1 Greedy algorithms

Greedy algorithms work in some prede�ned order through all the nodes and assign some
free color to them. So the basic step in these algorithms is that they assign such a color to
next node that does not cause violation within the subgraph already given colors. There
are many variants of greedy algorithms. The one we used tries to color next node �rst with
color 1, then with color 2 etc. The order in which nodes are given a color is determined by
their degree, i.e. the number of neighbors. The node which has most neighbors is colored

1Graphs' chromatic number � is the minimum number of colors needed to color its nodes. For any
graph holds inequality �(G) � �+ 1 where � is maximal degree (number of neighbors) of the graph.



�rst. Another variant of greedy algorithms, called DSATUR [5], dynamically chooses the
next node according to number of possible colors per node.

2.2 Exhaustive search

The algorithm which always �nds the optimum coloring of given graph is represented in
�gure 2. The algorithm divides the possible colorings to two di�erent cases in each step
until the graph is perfect, i.e. each node is a neighbor of all the other nodes. In each step
a pair of nodes which are not neighbors are searched. Now these nodes can be colored
with the same color or with di�erent colors. If the nodes are given the same color, we
can clearly merge them into one node inheriting all the neighbors of the merged nodes.
Otherwise, if di�erent colors are given to the nodes we can draw an edge between them
(right subtree in �gure 2). At the end, we pick the one among all the perfect graphs
obtained which has the smallest number of nodes.
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Figure 2: Coloring the graph with exhaustive search.

The search tree clearly becomes too large to handle as the number of nodes increases.
One way to get a little bit further is to prune the search tree. If at each stage we drop
those candidates which do not look promising the algorithm can handle considerably
larger graphs. The greedy algorithm can be used to assess whether a graph is promising.
Furthermore it holds for any graph G that

�(G) �
�2

�2 � 2�
;

where �(G) is the graph's chromatic number, i.e. the smallest number of colors needed to
color the graph, � is the number of nodes and � is the number of edges. The inequality
can be used here to avoid searching of such subtrees which cannot contain better solutions
than the best one found so far.

2.3 Simulated annealing

Simulated annealing (SA) is a standard technique for hard combinatorial optimization
problems [1][2]. The idea is to simulate annealing of some object. The objective function



represents the energy of the system and the control variable T represents its temperature.
The higher the temperature the greater is the probability of acceptance of a move which
leads to a higher energy state. The algorithm itself is very simple and easy to adapt to
di�erent kinds of problems, which is one of main reasons for its success.

The node coloring problem can also be solved with SA:

1. In the beginning assign each node a unique color.
2. Set the temperature T = T0 (e.g. T0 = 1).
3. The energy E of the system is the number of used colors.
4. Choose a random node and a random new color for it. Make sure that the new color

does not lead to an illegal con�guration.
5. Compute the change of energy �E.
6. If �E < 0 or e��E=T > rnd(0; 1) accept the change.
7. If there has been at least M changes or N trials, then set T = � � T (� is a small

constant, eg. 0.95).
8. If T > T1 go back 4.

Also other kinds of formulations have been suggested for energy function [1]. A draw-
back with this formulation is that energy can only have discrete values and it makes hard
for the algorithm to �nd the right direction to advance.

2.4 Genetic algorithms

Genetic algorithm (GA) is another widely used standard method for hard combinatorial
problems. In GA the idea is to simulate evolution. Here vectors represent genotypes and
the aim is to �nd as good an individual as possible. Also the node coloring problem can
be solved with GA [1]. In this case the vectors de�ne the order in which the nodes are
colored. So basically we try to �nd the best ordering to color the nodes with the greedy
algorithm. The choice of crossover operation for permutations is not straightforward and
several di�erent schemes have been proposed. Here we used the following operation:

1. Let A and B be the parents. A is chosen randomly but favoring those who give a
good coloring. B is chosen randomly from the whole population. The length of both
vectors is N .

2. Set indeces iA = iB = 1 and set the child C to null.
3. Choose vector A with probability of 0:75 and vector B with probability of 0:25.
4. Add the next element, pointed by iA or iB , of the chosen vector to the child vector C

if it is not already there.
5. Increment the value of index by one so that it points to the next element of parent

vector.
6. Repeat this until the child C contains all the values 1 : : : N .

So basicly the order of both parents is combined to the child. On each step the next
element of randomly chosen parent is copied to the child if it is not there yet. Index iA
points to the next element of parent A and iB vice versa. As a mutation operator we
simply exchange the place of two random nodes in the vector.



2.5 Tabu-search

Tabu search (TS) is a relatively new heurictic method [3][1][2]. It is basically a random
local search, but some movements are forbidden, i.e. tabu. Usually a move leading back to
previous point is classi�ed as a tabu move for certain number of rounds. This should make
it possible to get away from local minima. The search is ended when the cost function
reaches a certain prede�ned value or a certain number of rounds has elapsed.

For the graph node coloring problem the tabu search works very well. This algorithm
di�ers from all the previous ones in that it does not try to �nd the minimum coloring but
a legal k-coloring for the given graph, i.e. it tries to choose for each node one of the k

colors in such a way that no neighboring nodes get the same color.
Let s = (V1; : : : ; Vk) be a partition of graph G, where subset Vi of nodes represents

those nodes having color i. De�ne a cost function as

f(s) =
X

i

jE(Vi)j;

where jE(Vi)j is the number of edges in subgraph Vi. If there is an edge in some subgraph
it means there are neighbors sharing the same color. So when f(s) = 0 we have a legal
k-coloring for the graph.

1. We are given: graph G, target number of colors k, length of tabu list jT j, number of
neighbors rep, and maximum number of iterations nbmax.

2. Set some initial con�guration s = (V1; : : : ; Vk).
3. Set nbiter = 0.
4. Initialize tabu list T .
5. As long as f(s) > 0 and nbiter < nbmax

(a) Find nrep neighbors si for which s! si 62 T or f(si) � A � f(s).

(b) Choose the best among them (or the �rst for which f(si) < f(s)).

(c) Update tabu list T .

(d) Set s = s0 and nbiter = nbiter + 1.

6. If f(s) = 0 we have �nd a legal k-coloring for given graph. Otherwise we can increase
k and try again.

As a neighborhood for given partition we de�ne partitions where one node is moved
to another subset. Aspiration level A is used to accept even tabu moves if the result leads
considerably better result.

In order to �nd the minimum k for which the algorithm �nds a legal coloring, we must
run the algorithm several times with decreasing values of k and iterate until the algorithm
fails. On the other hand, if we are only interested in �nding a feasible k-coloring the
iteration is not required. This can be the case with WDM.

2.6 Some results of graph coloring algorithms

All the presented algorithms were coded in C language and tested with random graphs
where the nodes were neighbors with probability of 0:5. Figure 3 shows the average
running time of each algorithm. It should be noted that the used parameters have a great
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Figure 3: Running times of graph coloring algorithms.
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Figure 4: Number of used colors with di�erent algorithms.

e�ect on the running times and the �nal results of certain algorithms. So these �gures
should be considered as examples only.

The algorithms can be grouped into three classes according to their running times (see
�gure 3). Greedy algorithms are clearly the fastest, then come heuristic algorithms SA,
GA and TS. The exhaustive search (full and pruned) belong to third class. With regard
to the optimization result (see �gure 4) the tabu search was clearly the best. GA was
also successful, but our implementation of SA gave worse results than greedy algorithms
when the number of nodes was large.

3 Routing and wavelength assignment

When the routing is not �xed yet the optimization problem becomes naturally even harder.
It is clear that usually short routes lead to better solutions than longer ones. So it makes
sense to limit the search space to those paths which minimize the total number of hops.
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Figure 5: Hypothetical WDM-network in Finland.

The algorithm tries di�erent sets of routes iteratively. Each set of routes is colored
with greedy algorithm and the result is used as an estimate for the goodness of the choice.
The change in routing (one point-to-point connection is routed in a di�erent path) is made
randomly and only the good changes, which lead to less or equal number of colors, are
accepted. Thus, the route selection algorithm is essentially a local random search. It is
probably worth trying to use some sophisticated heuristic on this higher level also.

In �gure 5 there are two hypothetical physical networks residing in Finland. The
smaller one is quite easy and our algorithm �nds the optimal solution (it is easy to see that
there cannot be a better con�guration). The second one, on the other hand, represents a
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Figure 6: Route length and link usage distributions of �rst network.

harder problem. The algorithm �nds a reasonably good solution for it but, as can be seen
from link usage diagram, if just few connections could be handled with other colors the
total number of colors would be signi�cantly smaller. So increasing the number of links
would probably lead to better solution (i.e. a better link usage distribution).

Overall one could assume that a better heuristic algorithm in selecting the routes could
probably lead to both quicker and better solutions. The e�ect of better coloring algorithm
seems to have no e�ect on the results, and this suggests that actual graphs to be colored
are 'easy' problems. Or possibly the used estimate (greedy algorithm) drives the route
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Figure 7: Route length and link usage distributions of second network.

selection to one which is the best possible for it, but not necessarily to other algorithms.
Also, by allowing a little longer routes than the shortest routes could in some cases lead
to better results.

4 Conclusions

The routing and wavelength assignment in WDM networks is not a straightforward task.
The problem is NP-complete and heuristic algorithms must be used to �nd a practical
solution. The problem can be divided to two phases: �rst one determines the used routes
and then assigns wavelengths to the connections. This can be even done iteratively so
that di�erent route choices can be compared.

From the represented algorithms for wavelength assignment greedy algorithms and
tabu search look most promising. However, if we are using some iterative method to �nd
both the routing and coloring, like the one presented in this paper, greedy algorithms seem
to be the only possible choice. The running time of tabu search (like all the other more
sophisticated heuristics) increases much faster than the running time of greedy algorithms
as a function of the number of nodes. The route selection algorithm used in this paper
is very preliminary and leaves much room for improvement. This is a subject for future
study.
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