An Exact Algorithm for Calculating Blocking
Probabilities in Multicast Networks

Eeva Nyberg, Jorma Virtamo, and Samuli Aalto
Laboratory of Telecommunications Technology
Helsinki University of Technology
P.O.Box 3000, FIN-02015 HUT, Finland

Hth October 1999

Abstract The paper deals with tree-structured point-to-multipoint networks, where
users from infinite user populations at the leaf nodes subscribe to a variety of channels,
offered by one source. The users joining the network form dynamic multicast connec-
tions that share the network resources. An exact algorithm for calculating end-to-end call
blocking probabilities for dynamic connections is devised for this multicast model. The
algorithm is based on the well-known algorithm for calculating blocking probabilities in
hierarchical multiservice access networks, where link occupancy distributions are alter-
nately convolved and truncated. The resource sharing of multicast connections requires
the modification of the algorithm by using a new type of convolution, the OR-convolution.
The exact algorithm for end-to-end call blocking probabilities enables us to study the ac-
curacy of earlier results based on Reduced Load Approximation. The model is further
extended to include background traffic, allowing the analysis of networks carrying mixed
traffic e.g. multicast and unicast traffic.
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1 Introduction

A multicast transmission originates at a source and, opposed to a unicast transmission, is
replicated at various network nodes to form a tree-and-branch structure. The transmission
reaches many different end-users without a separate transmission required for each user.
A multicast connection has therefore a bandwidth saving nature. Blocking occurs in a
network when, due to limited capacity, at least one link on the route is not able to admit
a new call. Traditional mathematical models to calculate blocking probabilities in tree-
structured networks exist for unicast traffic. Due to different resource usage, these models
cannot directly be used for multicast networks where requests from different users arrive
dynamically. Only recently, have mathematical models to calculate blocking probabilities
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in multicast networks been studied.

The research has mainly been focused on blocking probabilities in multicast capable
switches. Kim [7] studied blocking probabilities in a multirate multicast switch. Three
stage switches are studied by Yang and Wang [12] and Listanti and Veltri [8]. Stasiak
and Zwierzykowski [11] studied blocking in an ATM node with multicast switching nodes
carrying different multi-rate traffic (unicast and multicast), using Kaufman-Roberts re-
cursion and Reduced Load Approximation. Admission control algorithms are studied in
[10]. Almeroth and Ammar [1] investigated Multicast group behavior in the Multicast
Backbone (MBone). From this data, they concluded that interarrival times are exponen-
tially distributed while membership duration times are exponentially distributed for small
networks and Zipf distributed for larger networks. The study of intersession data suggests
that simultaneous sessions, where a user subscribes to more than one channel, occur, but
not frequently.

Chan and Geraniotis [2] have studied blocking due to finite capacity in network links.
They formulated a closed form expression for time blocking probabilities in a network
transmitting layered video signals. The model is a multipoint-to-multipoint model. The
network consists of several video sources, where each source node can also act as a receiver.
The video signals are coded into different layers defining the quality of the video signal
received by the user. The traffic class is defined by the triplet: physical path, source node,
and class of video quality. The behavior of each user is modeled as a two state Markov
chain, with unique transition rates defined for each traffic class triplet.

Karvo et al. [4] and [5] studied blocking in a point-to-multipoint network with only one
source node. The source is called the service center and it can offer a variety of channels,
e.g. TV-channels. The users subscribing to the network may join and leave the channel
at any time. The behavior of the user population defines the state probabilities at the
links of the tree-structured network. The user population is assumed infinite and the
requests to join the network arrive as from a Poisson process. The model studied in [4]
considered the model in a simplified case where all but one link in a network have infinite
capacity. They derived an exact algorithm to calculate both the channel and call blocking
probability in this simplified case. Extending the model to the whole network was done
only approximately in [5], where end-to-end blocking probabilities are estimated using the
Reduced Load Approximation (RLA) approach.

The present study extends the single link case discussed in [4] and [5] to a mathematical
model for a multicast network with any number of finite links. The network model
remains as a point-to-multipoint model, allowing the formulation of an exact algorithm,
which in the case of multiple sources would be too complex. The exact algorithm is
based on the well-known algorithm for calculating blocking probabilities in hierarchical
multiservice access networks, where link occupancy distributions are alternately convolved
and truncated. The resource sharing of multicast connections requires the modification
of the algorithm by using a new type of convolution, the OR~convolution. The exact
algorithm for end-to-end call blocking probabilities enables us to study the accuracy of
earlier results based on RLA. The model is further extended to include background traffic,
allowing the analysis of networks carrying mixed traffic e.g. multicast and unicast traffic.
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This paper continues by presenting, in section 2, the single link model of Karvo et al.
Some of the expressions given in the paper [4] are formulated in a new way. The main
results of this paper are presented in section 3, which is divided into five parts. First, the
notation is presented. Secondly, the model for a network with infinite link capacities is
presented and thirdly, the OR-convolution used to convolve multicast state distributions
in tree networks is introduced. Then, an expression for the call blocking probability in
a network with any number of finite links is given and finally, the algorithm to calculate
the call blocking probability is introduced. In section 4, comparisons between the exact
solution and Reduced Load Approximation are carried through. The network model is
extended to include non-multicast traffic as background traffic in section 5. The paper is
concluded in section 6.

2 Single link model

In this section, we review the point-to-multipoint model for a dynamic multicast network
with an infinite user population presented in [4]. A single source offers a variety of
channels, belonging to the set Z. Subscriptions to channel ¢ € 7 arrive according to a
Poisson process with intensity \;. The channel i is chosen independently according to a
preference probability «;. The offered traffic intensity for a multicast channel 7 is then
a; = N/ i = a;\/ 1y, where 1/p; is the average holding time of channel 7 and is generally
distributed. It is shown in [4] that in a multicast network with all links having infinite
capacity, the distribution of the number of users simultaneously connected to channel ¢
is the distribution of the number of customers in an M/G /oo queue. The probability of
having channel 7 on is the probability that at least one user subscribes to channel 7 and
is therefore,

pi=1—e". (1)

When the link capacity is restricted, blocking occurs. To calculate these blocking prob-
abilities, Karvo et al. [4] considered the case where only one link has finite capacity and
all other links in the network have infinite capacity. The blocking probability is divided
into three types: channel blocking B¢, call blocking b¢, and time blocking b:. The channel
blocking probability is the probability that an attempt to turn channel ¢ on fails due to
the capacity restriction of the link. Channel blocking can therefore occur only, if the
channel is idle. Call blocking occurs when a user is not able to subscribe to channel .
Call and channel blocking are different as a subscription to a channel is always accepted
if the channel is already active. Time blocking probability of channel 7 is defined as the
probability that at an arbitrary instant the link is not able to accept a request for channel
1, i.e. the channel is off and at least C'—d; 41 capacity units are occupied. Here d; denotes
the capacity requirement of channel %.

Karvo et al. deduce that when the capacity of the link is restricted, the mean length of

an off-period of channel 7 is
1

Ai(1 = Bf)

and the average time the channel is on is the same as the average on-period for a link

ﬂ,off =
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with infinite capacity

Di
T;',,on 7T\
(1 - pi)/\i

Karvo et al. give an expression for the call blocking in a finite link, which by inserting
equation (1) into the original expression given in [4] can be rewritten as

(1 —pi)Bf
pe = — L 2
The equation confirms that channel blocking probability equals call blocking probability
upon condition that the channel is off, as in the finite system the probability that the
channel is off is )
T off X, (1—B?) L —p;

= i 1 - c’
TLion+Tiot @oom Ty 1~ Pl

Karvo et al. [4] proceed in deriving an expression for the channel blocking probability By
of channel 7. They observe that channel blocking in the one finite link case is equal to
the call blocking in a certain generalized Engset system, that is a M/G/C/C/I queue.
Thus, the channel blocking probability B¢ is equal to the time blocking probability b! in
a system where channel ¢ is removed,

B¢ = Z?:C—dﬁ-l ﬂ-j(i) (3)
' Z?:O m®

where 7r](-j’) is the link occupancy distribution of a system with channel i removed.

An alternative way of calculating the call blocking probability is calculating the time
blocking probability of the whole system,

¢ (7i=0)
bt — ijcfdiﬂ T

7 C ’
225=0T;

(4)

where 7; is the link occupancy distribution for an infinite system and wémi:o) is the link
occupancy distribution restricted to the states with channel 7 off,

m 0= 3wk = (1 —p)m, (5)

x-d=j,z;=0

where d = (d;,i € Z). The last expression stems from the product form of the link
occupancy distribution 7;. Similarly, the link occupancy distribution 7; in terms of the
(i)

link occupancy distribution 7" is

= (1- pi)ﬂ'](-i) —l—pmﬁdi. (6)

Because of Poisson arrivals, the time blocking and the call blocking probabilities for the
whole system are equal. This can also be verified by investigating equations (2) through
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(4) and rewriting the expressions for 7_(_;.7:7;:0) and 7; with the help of equations (5) and (6),

b cho a1 T30 (1- p7>2300 a1 75"
' Zg 07 (1—171)2] 0773 +p7 ZJC Od 71(1)

(1 Pi) S g ™
(1—]77)2] =075 +pz(250ﬂ-(l E?;Cfdi+lﬂ-§l))

(1 —Pi)Bf _ (1 _pz’)Bf — e
1 —pi+pi(1—Bf) 1 —piBs "

Equation (4) is computationally more convenient when calculating blocking probabilities
for different traffic classes, as the denominator does not have to be calculated anew for
each traffic class.

3 Network model

This section is divided into five parts: the notation used, the model for the network with
infinite link capacities, the OR-convolution, the expression for blocking probabilities, and
the algorithm to calculate call blocking probabilities in a network.

3.1 Notation

The notation used throughout this paper is as follows. The set of all links is denoted by
J. Let U C J denote the set of leaf links. The leaf link and user population behind the
leaf link is denoted by v € U = {1,...,U}. The set of links on the route from leaf link u to
the source is denoted by R,. The set of links downstream link 5 € 7 including link j is
denoted by M, while the set of downstream links terminating at link j € J are denoted
by Nj. The set of user populations downstream link j is denoted by U;. The set of
channels offered by the source is Z, with channel i = 1,..,I. Let d = {d;;7 € I}, where d;
is the capacity requirement of channel ¢. Here we assume that the capacity requirements
depend only on the channel, but link dependencies could also be included into the model.
The capacity of the link j is denoted by C;. The different sets are shown in figure 1.

3.2 Network with infinite link capacities

We first consider a network with all links having infinite capacity. Subscriptions to channel
7 behind leaf link u arrive from an infinite user population as from a Poisson process with
intensity A, ; = a;\,, where a; is generated from a preference distribution for channel :
and )\, is the arrival intensity for user population u. The channel holding time is assumed
to be generally distributed with mean 1/p;. In addition we denote the traffic intensity
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Figure 1: An example network to show the notation used.

Qy; = ;N /1. Let the pair (u,i) € U x Z denote a traffic class also called a connection.
The connection state, which may be off or on, is denoted by X,,; € {0,1}. The state
probability for a connection, according to the M/G /oo model, is

i (mu,i) = P(Xu,f = Tu,z) = (pu,f)xu’l(l - pu,i)limu’iv

where p,; =1 —e % .

In the infinite link capacity case, all connections are independent of each other. For leaf
link u, the state probability has a product form and is

7T71,(X71,> = P(Xu = Xu) = H 77—71,,71(1771,77?)7
€T
where X, = (X,,;;1 € Z) € § is the state vector for the leaf link, and S = {0, 1} denotes
the link state space.

The leaf link states jointly define the network state X,
X=Xgyueld)=(Xysuecld,iel)e, (7)

where Q = {0,1}Y*! denotes the network state space. For the whole network, the state
probability is
m(x) = P(X =x) = [] mu(xu),
uel
as each user population is independent of each other.

3.3 OR-convolution

The leaf link state distributions jointly define the network state distribution, as was
shown in the previous section. In order to calculate the link state distributions in a tree-
structured network a convolution operation is needed. The resource sharing characteristic
of multicast traffic requires a new type of convolution, the OR-convolution. Consider two
downstream links s,7 € N, terminating at link v, where s,t,v € J. Channel i is idle in
link v if it is idle in both links s and ¢ and active in all other cases, which is equivalent to
the binary OR-operation. In other words, for ys,y: € S

yq;:ys@yte‘gv (8)
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where the vector operator & denotes the OR~operation taken componentwise. The OR-
convolution, denoted by ®, is then the operation,

[fs®ft](YU) - Z fs(YS)ft(yt)

Ys@Yt=Yv

defined for any distributions f, and f;.

In a multicast link, the link state depends on the user states downstream the link. If
a channel is idle in all links downstream link j it is off in link j and in all other cases
the channel is active. The OR-operation on the network state gives the link state Y, =
(Y;i;i€I)eS,jeJ as a function of the network state,

Y; =g;(X) = @ X
keld;

Similarly, the OR~convolution on the network state distribution gives the link state dis-
tribution. Thus, the state probability, denoted by ¢;(y;), for y; € S, is equal to

7Tj(yj> s lfj ceu
oi(y;) = P(Y; =y;) = [;fegu)j el (y;) = [kg oil(y;) . otherwise .

When X = x the occupied capacity on the link j is d - g;(x).

3.4 Blocking probabilities in a network with finite link capaci-
ties

When the capacities of one or more links in the network are finite, the state spaces defined
above are truncated according to the capacity restrictions. The network state X defined
in equation (7) is replaced by the truncated network state X € Q, where Q denotes the
truncated state space

Q={xeQ|d gix)<C;VjeT}

The insensitivity [6] and truncation principles [3] apply for this product form network,
and for the truncated system the state probabilities of the network differ only by the

normalization constant G(2) = Y, q7(x). The state probabilities of the truncated

system are therefore
~ TIX ~
7(x) = P(X=x)= (—N), for x € Q.
G(Q)
When the capacity on the links is finite, blocking occurs. Due to Poisson arrivals, the
call blocking probability is equal to the time blocking probability of the system. A call in
traffic class (u,7) is blocked if there is not enough capacity in the network to set up the
connection. Note that, once the channel is active on all links belonging to the route R,
of user population u, no extra capacity is required for a new connection. Let us define
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another truncated set QW C Q with a tighter capacity restriction for links with channel
1 idle, .
Qui={xeQ|d-(g;(x) & (eiljer,)) < C},Vj € T},

where e; is the [-dimensional vector consisting of only zeroes except for a one in the
ith component and 1cx, is the indicator function equal to one for j € R, and zero
otherwise. This set defines the states where blocking does not occur when user u requests
a connection to channel i. The call blocking probability b¢ for traffic class (u,) is thus,

b1 - PR e, =1 G ()
’ 7 G(Q)

This approach requires calculating two sets of state probabilities: the set of non-blocking
states appearing in the numerator and the set of allowed states appearing in the denom-
inator of equation (9).

A multicast network is a tree-type network, and much of the theory in calculating blocking
probabilities in hierarchical multiservice access networks [9] can be used to formulate the
end-to-end blocking probability in a multicast network as well.

3.5 The algorithm

As in the case of access networks, the blocking probability can be calculated by recursively
convolving the state probabilities of individual links from the leaf links to the origin link.
At each step, the state probabilities are truncated according to the capacity restriction of
the link.

In order to calculate the denominator of equation (9), let us define a new subset Sj of set
S, )
S={yesSld-y<C} forjed.

The corresponding truncation operator acting on any distribution f is

Jify €S,
nﬂw:{f”) Ve (10)

0 , otherwise.
Let 3
It follows that the Q);(y)’s can be calculated recursively,
Timi(y) Jifjeld
QY= T ® Qu(y) , otherwise.
keEN;

Note that, if the capacity constraint of link j € M; is relaxed, then the branches termi-
nating at link j are independent, and the jointly requested channel state can be obtained
by the OR-convolution. The effect of the finite capacity C; of link j is then just the

8
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truncation of the distribution to the states for which the requested capacity is no more

than Cj.

The state sum G(£2) needed to calculate the blocking probability in equation (9) is equal

to
G(Q) = Z Qs(Y),

YES

where @ is the probability (11) related to the common link j = J.

Similarly for the numerator of equation (9), let S]u ' C S’j be defined as the set of states on
link j that do not prevent user u from connecting to multicast channel 7. In other words

S ={yeS|d (y®(eljer,)) < Cj}, for je Jiel

The truncation operator is then

. f ,ify e S}
TJ””‘f(y)z{ vy (12)

0 , otherwise.
The non-blocking probability of link j is
QY (y;) =P(Y;=y;; Y, €S/ Vk € M;), fory; € S. (13)

Similarly, as above, it follows that

@IV @ Qi) otherwise,
keN;

The state sum in the numerator of equation (9) is then

G(ui) = Q7' (),

yeS
where Q%" is the probability (13) related to the common link j = .J.

The blocking probability in equation (9) is therefore

Zyes Q?}77(Y>
ZyGS QJ(y) ‘

The single link model by Karvo et al. is a special case of the network model presented,
hence the same results can be obtained using the network algorithm.

bfm =1-

The complexity of the algorithm increases exponentially with the number of channels, as
the number of states in the distributions to be convolved is 2/. Therefore the use of RLA
as a computationally simpler method is studied.
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4 Comparisons between the exact model and RLA

The calculation of end-to-end blocking probabilities for multicast networks was done ap-
proximately in [5] using the RLA-algorithm. The fixed point equation used treats each
link as an independent link with finite capacity. The fixed point equation is based on
equation (4) derived for the single link case,

L; = 05(s;,d,C;), fori € Z and j € J, (14)
where s; is the thinned traffic intensity vector s; = (s;,,7 € Z),

sii= Y aw; [ (1-1Lp). (15)

wEU; keRw—{j}

Writing equation (14) in matrix form gives a fixed point equation T'(L) = L for L = (L%).
For a multiservice network, the solution is not always unique see [9]. Solving the fixed
point equation gives the call blocking probability for each individual link in the network.
Under the independence assumption, the blocking of the traffic class (u, ) is

b=1- 11 =L

kERY

The exact algorithm derived in the previous section allows us to study the accuracy of
RLA. To this end, we consider the example network depicted in figure 2. The figure

u=2 u=1
s
7 6 6 _
D LI Lf Qu_l
\60 \60
u=2 u=1

Figure 2: The example network used to compare the exact result with the result given by
the RLA-algorithm.

shows the two possible routes in the network and the capacities of the links. The links
are numbered in the following way. The leaf links of user one have w, 7 = 1, the leaf links
of user two have u,j = 2, the middle link has j = 3, and the common link has j = 4.
Comparisons were made between the exact solution and the RLA-algorithm. The number
of channels offered is eight. Each channel requires one unit of capacity. The common link
in the network has a capacity of seven units. All other links have a capacity of six units.
The blocking probabilities are calculated for the least used channel using a truncated
geometric distribution for the channel preference

_p(d—p)"
2 1 _ (1 o p)I7
with parameter p = 0.2. The mean holding time is the same for all channels, 1/p = 1.
In addition, the arrival intensity is the same for both user populations, A, = A\ and

consequently, the traffic intensity a = \/pu is the same for both user populations.

10
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The results are given in table 1. The comparison was also done for multiservice traffic,
where the capacity requirement is one for odd channels and two for even channel numbers.
The capacity of the common link was eleven units and those of the other links were nine
units. The results are given in table 2.

Table 1: Call blocking probabilities for the network in figure 2.

Routel (u=1)

Route2 (u = 2)

a || Exact | RLA | error | Exact | RLA | error
1.0 || 0.0056 | 0.0064 | 14 % 0.0027 | 0.0028 | 4 %
1.1 || 0.0084 | 0.0098 | 17 % 0.0041 | 0.0044 | 7 %
1.2 | 0.0121 | 0.0141 | 17 %] 0.0060 | 0.0064 | 8 %
1.3 | 0.0166 | 0.0195 | 17 %| 0.0083 | 0.0090 | 8 %
1.4 | 0.0220 | 0.0260 | 18 %| 0.0112 | 0.0121 | 8 %
1.5 || 0.0282 | 0.0336 | 19 % 0.0146 | 0.0157 | 8 %
2.0 | 0.0715 | 0.0868 | 21 %| 0.0382 | 0.0416 | 9 %

Table 2: Call blocking probabilities for the network in figure 2, with capacity requirements

Coda = 1 and cepen = 2.

| Routel (u=1)

Route2 (u = 2)

Channel | a | Exact | RLA | error || Exact | RLA | error
7 1.0 || 0.0051 | 0.0058 | 14 %| 0.0019 | 0.0022 | 16 %
8 1.0 || 0.0127 | 0.0139 | 9 %] 0.0028 | 0.0029 | 4 %
7 1.1 | 0.0074 | 0.0086 | 16 %| 0.0029 | 0.0034 | 17 %
8 1.1 || 0.0179 | 0.0198 | 11 % 0.0042 | 0.0045 | 7 %
7 1.2 | 0.0103 | 0.0120 | 17 %| 0.0042 | 0.0049 | 17 %
8 1.2 || 0.0243 | 0.0270 | 11 %|| 0.0062 | 0.0066 | 6 %
7 1.3 ] 0.0138 | 0.0162 | 17 %| 0.0058 | 0.0068 | 17 %
8 1.3 || 0.0318 | 0.0355 | 12 %l 0.0086 | 0.0092 | 7 %
7 1.4 | 0.0179 | 0.0211 | 18 %| 0.0077 | 0.0091 | 18 %
8 1.4 || 0.0403 | 0.0454 | 13 %|| 0.0116 | 0.0124 | 7 %
7 1.5 | 0.0226 | 0.0268 | 19 %| 0.0100 | 0.0118 | 18 %
8 1.5 || 0.0499 | 0.0566 | 13 % 0.0151 | 0.0162 | 7 %
7 2.0 || 0.0536 | 0.0645 | 20 %| 0.0255 | 0.0299 | 17 %
8 2.0 || 0.1101 | 0.1276 | 16 %)| 0.0400 | 0.0431 8 %

The results confirm the comparisons made in [5]. RLA-algorithm yields blocking proba-
bilities of the same magnitude as the exact method. As a rule, RLA gives larger blocking
values for both routes. For route 2, RLA gives good results. This is because the route is
very short, and the assumption of independence between the links is not violated severely.

11
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5 Including background traffic

The networks considered until now were assumed to transfer only multicast traffic. The
model can, however, be extended to cover networks with mixed traffic. In this case, the
network transfers, in addition to multicast traffic, non-multicast traffic that is assumed
independent on each link. The distribution does not depend on the multicast traffic in
the link and the traffic in the other links. The non-multicast traffic in link j is assumed
to be Poisson with a traffic intensity A;. The capacity requirement is equal to one unit
of capacity. The link occupancy distribution of the non-multicast traffic in a link with
infinite capacity is thus, i

qi(z) = %Q_Aj. (16)
The inclusion of non-multicast traffic affects only the truncation step of the algorithm
presented in section 3.5. The state probabilities are defined as in section 3. The state
probabilities of the link states that require more capacity than available on the link are set
to zero as before. However, the state probabilities of the states that satisfy the capacity
restriction of the link are altered, as the available capacity on the link depends on the
amount of non-multicast traffic on the link. Another way of describing the relationship
between the two different types of traffic, is to consider them as two traffic classes in a
two dimensional link occupancy state space as is shown in figure 3. The traffic classes
are independent of each other. The capacity of the link is the linear constraint of this
state space. We notice that the marginal distribution of the capacity occupancy of the

Figure 3: Shaping of the marginal distribution of the capacity occupancy when back-
ground traffic is included in the model.

multicast traffic is weighted by the sums over the columns of the occupancy probabilities
of the background traffic. If the multicast traffic occupies ¢ = d - y; units of capacity,
and the link capacity is C}, then possible non-multicast traffic states on the link are those
with z < C; — ¢, where z is the number of non-multicast calls. Therefore, the truncation

12
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functions presented in equations (10) and (12) must be replaced by the operators

ijd-y ~
: L) ity es;
Tif(y) = X:% ! ’
0 , otherwise
Ci—d-(y®(eiljer,)) .
G(2)f(y) . ify €S
iy - 2:% i(2)f(y) ;
0 , otherwise.

The algorithm differs therefore only by the truncation function used,

Tym(y) yifgeu
GO =Y 11 ® Quy) . otherwise.
kEN;
Similarly, .
T;"'7i(y) Jifjeu
QW)=Y 7 ® Qril(y) . otherwise.
kEN;

The blocking probability in equation (9) is again obtained by two series of convolutions
and truncations from the leaf links to the common link J. The call blocking probability
of the network is

I;C 1 ZyES Q}?Y(Y)
o ZyGS QJ(y)

5.1 Numerical results

The end-to-end call blocking probability was calculated using the same network as in
section 4, figure 2. The intensity of the non-multicast traffic was set to A; = 0.1 for
all links. Table 3 shows the end-to-end call blocking probability for a network with only
multicast traffic and for a network transferring multicast and non-multicast traffic. Table 4
shows the end-to-end call blocking probabilities when the multicast traffic requires double
the capacity compared to the non-multicast traffic.

The intensity of non-multicast traffic stays the same, as the intensity of the multicast
traffic increases. Clearly, the blocking probabilities are affected less, as the intensity of
the multicast traffic increases. This can also be seen by studying the relative change in
blocking probabilities shown in tables 3 and 4. The effect of the non-multicast traffic to
the blocking probability is of the same magnitude on both routes. From table 3 we see
that an inclusion of unicast traffic with one tenth the intensity a = 1.0 of the multicast
traffic almost doubles the blocking probability. From table 1 the blocking probability
increases by a factor of 1.5, when the traffic intensity a is increased from 1.0 to 1.1.
These two cases are not equivalent as the background traffic is assumed independent of
the multicast traffic, but give a good reference to the effect background traffic has on
end-to-end blocking probabilities.

13
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Table 3: Blocking probabilities for the network in figure 2 with background traffic and

multicast traffic.

Routel (u =1)

Route2 (u = 2)

a || Multicast | Background | Rel. change | Multicast | Background | Rel. change
1.0 || 0.0056 0.0109 1.95 0.0027 0.0053 1.96
1.2 || 0.0121 0.0206 1.70 0.0060 0.0105 1.75
1.4 || 0.0220 0.0341 1.55 0.0112 0.0177 1.58
2.0 || 0.0715 0.0927 1.30 0.0382 0.0501 1.31

Table 4: Blocking probabilities for the network in figure 2 with background traffic requiring

one unit and multicast traffic requiring two units of capacity.

Routel (u=1)

Route2 (u = 2)

a || Multicast | Background | Rel. change | Multicast | Background | Rel. change
1.0 || 0.0056 0.01 1.79 0.0027 0.0049 1.81
1.2 || 0.0121 0.0195 1.61 0.0060 0.0099 1.65
1.4 || 0.0220 0.0328 1.49 0.0112 0.0171 1.53
2.0 | 0.0715 0.0914 1.28 0.0382 0.0495 1.30

6 Conclusions

The paper presented a new algorithm for exactly calculating blocking probabilities in
tree-structured multicast networks. The algorithm is based on the well-known algorithm
for calculating blocking probabilities in hierarchical multiservice access networks. The
multicast traffic characteristics were taken into account in the convolution step of the
algorithm, using the new OR-convolution. Calculating the exact solution for the end-
to-end call blocking probability, however, becomes infeasible as the number of channels
increases. In contrast to ordinary access networks the aggregate one dimensional link
occupancy description is not sufficient, since in the multicast network it is essential to
do all calculations in the link state space, with 2! states. This is due to the resource
sharing property of multicast traffic, namely the capacity in use on a link increases only
if a channel is requested when the channel is idle. The use of RLA was studied, as the
complexity of the RLA-algorithm does not depend critically on the number of channels in
the network. RLA method used in [5], however, gives larger blocking probabilities. Even
for small networks, the errors are around 15 %. The network model and the algorithm
for calculating call blocking probabilities were further broadened to include background
traffic in addition to multicast traffic.

We leave for further research the study of new approximation methods for calculating
blocking probabilities. The acceleration of the exact algorithm presented should also be
investigated. At present, the model also assumes an infinite user population behind each
leaf link. The model can be generalized to allow a finite user population behind a leaf
link and is a subject for further study.
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