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Using Gibbs Sampler in Simulating
Multiservice Loss Systems
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Abstract. In this article we consider the problem of calculating the blocking probabilities of calls in
a multiservice network by using simulation. The traditional approaches suffer from the fact that the
state space explosion inherent in the system causes their efficiency to decrease correspondingly. We
develop a method that alleviates the effect of the state space explosion. The method is based on using
the so called Gibbs sampler to generate a Markov chain with the desired stationary distribution.
In particular, by making an additional “virtual” step from each state and calculating the expected
contribution from this step analytically, we are able to collect information from a subset of the
whole state space for each generated sample. This leads to a smaller variance of the estimate for
a given computational effort.

1 Introduction

Modern broadband networks have been designed to integrate several service types into the
same network. On the call scale, the process describing the number of calls present in the
network can be modelled by a loss system. Associated with each call is the route through
the network and the bandwidth requirements on the links. When the call is offered but
there is not enough bandwidth on all the links along the requested route, the call is blocked
and lost. The specific quantities we are interested in are the blocking probabilities for each
call.

This is a natural extension of the model for the traditional single service telephone network.
The steady state distribution of the system has a well known product form. A problem with
the exact solution is, however, that it requires the calculation of a so called normalization

TPasi.Lassila@hut.fi
2 Jorma. Virtamo@hut.fi



constant, which entails the calculation of a sum over the complete allowed state space of the
system. In a practical size network with possibly hundreds of classes and high speed links,
the state space very rapidly becomes astronomical. In fact, it is known that the calculation
of the normalization constant is an NP complete problem [4, p. 230].

In such a situation we have two alternatives: to use analytical approximations or to simulate
the problem to a desired level of accuracy. In this paper we will be dealing with efficient
methods for doing the simulation. Traditionally the simulation approaches have focused on
either Monte Carlo (MC) summation techniques or the Markov chain simulation techniques.
MC summation has been extensively studied by Ross [4, chap. 6]. Markov chain simulation
methods include the regenerative method, developed by Crane and Iglehart [1, 2], which
has been lately used in the context of rare event simulation in loss networks by Heegaard

3].

The problem with the aforementioned methods is that they become computationally very
intensive as the state space grows. The reason is that they collect information about the
state space on a state-per-state basis and when the sheer size of the state space is the source
of the problem, the methods are bound to fail at some point. What is actually needed is
a method that would allow the aggregation of state space information, such that it would
be possible to collect more information with each sample than just the information of the
sample itself.

In this article, we will present a method that is based on a family of simulation methods
called Markov Chain Monte Carlo (MCMC) methods using the Gibbs sampler [5]. This
method enables us to exploit the product form solution of the system, and we are able
to calculate part of the problem analytically while the simulation is being carried out. In
practice, this means that with each generated sample we can collect information of not just
the current sample state, but a large number of other surrounding states. However, it will
be shown that actually the MCMC method for the sample generation is not crucial for the
application of our improved sampling method and it can be used in the connection of the
normal MC summation method as well.

The rest of the paper is organized as follows. Chapter 2 introduces the basic stochastic model
of the problem. Chapter 3 describes the Gibbs sampling method for loss networks. Chapter
4 contains the main results of this paper with methods for improving the performance of the
Gibbs sampler. Efficient implementation of the improved method is discussed in chapter 5
and the numerical results are presented in chapter 6 and the conclusions in chapter 7.

2 Model Description

Consider a network consisting of .J links, indexed with j = 1,...,.J, each having a capacity
of C; resource units. The network supports K classes of calls. Associated with a class-k
call, kK =1,..., K, is an offered load p; and a bandwidth requirement of b, ; units on link j.

Note that b;j, = 0 when class-k call does not use link j. Let the vector b; = (b;1,...,b; k)



denote the required bandwidths of the classes in the system on link j. Also, we assume
that a call is always accepted if there is enough capacity left and that the blocked calls are
cleared. The state of the system is described by the vector x = (z1,..., %), where element
2 is the number of class-k calls present in the network.

The set of allowed states S can be described as
S:{Xb]XSC], ]:1,,J} y

where the scalar product is defined, as usual, as b; - x =" b;,;z;.

This system has the well known product form stationary distribution

k=1

where fi(x) = pi¥/xi!, and f(x) denotes the unnormalized state probability and G is the
so called normalization constant

G=) fx). (2)

The set of blocking states for a class-k call, B, is
BF={x:C;—bj-e,<b; - x<Cj, j=1,...,J},

where e, is a K component vector with 1 in the k** component and zeros elsewhere. The
blocking probability of a class-k call, By, is then

By=)Y m(x)=) m(x)lep - (3)

In the remainder of this paper we will be dealing with efficient simulation methods for
calculating the blocking probabilities as defined in this model.

3 Gibbs Sampling for Loss Systems

Our problem is now of the following type. We want to evaluate some quantity H defined as
a sum over the allowed state space S,

H=> h(x). (4)

XES
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In general, the MC method solves the problem by generating i.i.d. samples X,, € § with
some distribution p(x) = Pr[X,, = x| such that p(x) # 0, ¥x € S. With respect to this
distribution H can be written as an expectation

=3 M) = B, (X0 /p(X))

x€eS p(X)

The estimator for H when N samples have been drawn is

L1 h(Xa)
=% ; p(Xn) &)

Estimator (5) has the correct expectation when each X,, has the distribution 7, irrespec-
tive of whether the X,, are independent or not. Positive correlation between the samples,
however, makes the estimator less efficient from the point of view of its variance.

In our case we are interested in calculating the blocking probabilities as given by eq. (3) with
h(x) = w(x)14eps. Then a natural choice is to let p(x) = 7(x), and we get the estimator

1 N
By = N Z 1XneBk . (6)
n=1

One approach for generating the samples is by Markov chain simulation. This relies on
the fact that, assuming the holding times are exponentially distributed, our system itself
is defined by a Markov chain, e.g. the embedded discrete time Markov chain (jump chain)
associated with the arrival and departure epochs. The points in the full jump chain, when
weighted with the expected life time of each state, have the stationary distribution 7 and,
as noted above, can be used as samples in the summation of eq. (6) despite the fact that
they are not independent. Alternatively, one can pick the subchain consisting of the states
prior to an arrival or the subchain consisting of the states preceeded by a departure; both
of these subchains directly have the stationary distribution 7.

In MCMC methods the idea is the same — to simulate some Markov chain for constructing
the distribution 7. The question is only: are there other Markov chains that have the same
steady state distribution 77 The answer is yes and, in fact, many of them [5]. The Gibbs
sampler introduced later in this chapter is just one of them, but its properties allow us to
exploit the product form solution of the steady state distribution in order to gain significant
simulation efficiency increases, as will be discussed in chapter 4.

3.1 General Theory

Let X = (Xj,...,Xk) denote the vector random variable for the state of the loss network
with the steady state distribution 7(x) as in (1). We are now interested in ways of construct-
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ing a Markov chain X7 having the invariant distribution 7. One way is to use transition
probabilities based on conditioning, as defined in the following theorem (taken with slight
modification from [5]).

Theorem 1: Let sets Ay, ..., A; form a partition of the state space S and let i(x) denote
the index of the set to which a state x in & belongs to. Let X be a random variable with
distribution 7. The Markov chain X with the transition probability

PriXi, =y |X,=x|=Pr[X=y|X € 4] (7)

has the invariant distribution 7.

Proof:
Pr[ Z+1ZY} = ZPr[X:‘lH:y|X:,:X}Pr[X:,:X]

XES

= ZZPr[X;H:y|X:‘l:X}Pr[XfL:X]
i xXEA;

= ) ) PriX=y|XeAPr[X;=x]
i xXEA;

= ZPr[X:y|X€Ai]ZPr[X:‘l:x]
i XEA;

= ZPr[X:y|XEA¢]Pr[X;’;€Ai] :

If X} has the distribution m, so does X, ; because then

Pr([X:,, =y] :ZPr[X:y|XeAi]Pr[XeAi]:Pr[X:y]:w(y) .

Let P denote the probability matrix with transition probabilities as in eq. (7). The Markov
chain produced by this is not irreducible, because there are no transitions between different
sets. However, by defining several partitions 1,...,M we can construct an irreducible
Markov chain X7 . Let P m =1,..., M, denote the corresponding transition matrices.
Then, with a suitable choice of the partitions, the Markov chain X} corresponding to the
compound transition matrix P = PM ... PM) will be irreducible. Since each P has the
invariant distribution 7 also the compound matrix P will have the invariant distribution ,
and because X is now irreducible, 7 is also its unique stationary distribution.

3.2 Gibbs Sampler and its Application to Loss Networks

In our case we have a product form solution 7 and it is natural to define the sets in a
partition to consist of points in coordinate directions. This leads to the so called Gibbs
sampler.



We define K partitions. The sets in partition k, k = 1,..., K, are denoted with A¥. As
before, the index of the set in partition k to which a state x belongs is defined as i*(x).
This set consists of the states

A?k(x):{y:(Il,...,xk_l,l,fk+1,...,.CL’K)2l€I,bj'Y§Cj i jzl,,J} )

where 7 is the set of non-negative integers. For the sequel, we denote by L*(x) the largest
value of the component % (variable [) of the points in the above set Af’k (x)"

To illustrate the concept consider the simple network of Fig. 1, with the state space depicted
in the same figure.

Figure 1: Example network and its state space.

In this case we have two traffic classes, K = 2, and we use two different partitions with the
“rows” corresponding to partition 1 and the “columns” to partition 2 (see Fig. 2).

Figure 2: The state space partitions 1 and 2 (left and right).

Associated with each partition, there is a transition matrix P*) with the transition prob-
abilities (7). Then we construct a compound transition matrix P = P®) ... PU5) The
corresponding Markov chain X7 is irreducible since it is possible to move from any state x
in the coordinate convex state space S to any other state y with at most K transitions.

The simulation of the Markov chain X7 consists of making transitions with the transition
matrices P in cyclical order. In transitions generated with P%), the state remains in one



of the sets .Afk (X1 ) i.e. only the component z; changes. Starting from the state X the value
of z;, of the next state is obtained by drawing it from the distribution fi(x)/Gr(L*(X3)),

where the normalizing function Gi(-) is defined by

Along the generated path, we collect information about the number of visits to the blocking
states of class-k calls in order to form the estimator (6), i.e.

| X
By, = N; Ixzenn -

Figure (3) shows a sample path for the previously presented example network. The circled
state is the initial state and the six transitions correspond to three full cycles, i.e. three
series of transitions in each dimension. As can be seen, the path consists of transitions in
the different coordinate directions of the state space. Also, two blocking states of traffic
class 2 are visited: states (2,3) and (3, 3).

Figure 3: MCMC simulation example

How does this technique differ from the Monte Carlo summation or embedded discrete time
Markov chain techniques? In the traditional (or most straight forward) MC summation
technique, i.i.d. samples are generated into the state space limited by the maximum number
of allowed class-k calls, and the samples that fall outside the real allowed state space S
are rejected. The Gibbs sampler provides a way of generating Monte Carlo samples from
the state space S, which is simple requiring only the generation of random variables from
univariate truncated Poisson distributions for each transition. The advantage it has is that
it manages to eliminate the problem of generating “misses” from the state space S. On
the other hand the generation of transitions from the Markov chain of the Gibbs sampler
is almost as easy as for generating them from the embedded Markov chain associated with
the arrival and departure epochs of the process. The samples generated from the MCMC
method are, however, much less correlated than the samples from the embedded Markov
chain.



3.3 Uniform Sampling with Gibbs Sampler

This idea of partitioning the state space can also be used to generate a uniform distribution
over the complete allowed state space S. In general, if we want to take uniformly distributed
samples from the state space we will have p(x) = 1/S in estimator (5), where S denotes
the size of the state space §. The uniform distribution is trivially of the product form and
the Gibbs sampler is applicable. Now starting from the state X the transitions generated
with P®) are obtained by drawing zj, of the next state from the uniform distribution in the
range 0, ..., L*(X*). The estimator from (5) for the blocking probability of a class-k call is
then

. IS .
B, = N;ﬂXn)lX;eBk
S L
= D X g (8)

n=1

Now, GG is unknown in (8), but similarly from (2) and (5) we can estimate G' by

=l

g N
G=52 X)) (9)
n=1
Using this in (8) we get another estimator

Bk _ Zg:l f(XZ)lX;;eBk _ %
| >y f(X3) G

, (10)

where G is the estimator for GF = 3 . f(x).

This ratio estimator is no longer unbiased. It is strongly consistent though, i.e. E[B%] —
By, I — oo, since both G — G and G} — G} with probability 1 as I — oo by the law of
large numbers. Then the ratio of G /G approaches GE /G as I — oo.

The uniform sampling may not be a very effective way to do the sampling, because it often
“wastes” time on sampling every part of the state space with equal probability, when some
parts of the state space are actually more important than the others. In particular, in our
case when the distribution 7(x) is concentrated in a small part of the state space S, the
uniform sampling does not necessarily produce very good results.



4 Improved Gibbs Sampling Method

The method as described in the previous chapter does not yet give any significant improve-
ment over the known techniques. We can, however, improve the efficiency of the method
considerably by utilizing a priori knowledge about the conditional distributions of the sets.

4.1 Improved Poisson Sampling

The idea is simple: At each step of the chain, starting from the current state X7, we make
a “virtual” transition with transition matrix P*) to the state Y. Since in stationary state
X* has the distribution 7 and P®*) has the invariance property, the state Y* after the virtual
transition also has the distribution 7.

We can then use Y} as a sample point instead of X} and get the estimator

N
A 1
By, = N ; 1Y;§GB’< : (11)

Now it is possible to take into account the effect of the extra step analytically by calculating
the expectation of (11) conditioned on the X! (see Appendix for a formal explanation on
this step). This is easy to do since

E [1Y;;e[s‘k‘ | X:} =

where LE = L¥(X?) is the largest value of z;, in the set A%, (x:)- Then our estimator becomes

| X

b= Z (12)
In effect, by this method we have included transitions to all states in A h(x): In particular,
a contrlbutlon from a blocking state is obtained for every point X7 in the Markov chain.
Furthermore, note that the function fi(-)/G(-) can be precomputed for all k£ and all required
values of the argument. Note also that our improvement method does not require the use
of the Gibbs sampler to generate the samples X*. Actually, they can be generated by any
means provided that the X* have the distribution 7. Thus using traditional MC summation
techniques to generate the X is also possible.

In Fig. 4 we have the same example as in the previous chapter. The figure on the left
indicates the sets that would be covered by this particular realization and the figure on the
right indicates the order in which the different blocking states would be sampled along the
simulation. The simulation starts from the state (0,0) and moves to state (2,0). Blocking



state (5,0) will then be sampled first for class-1 and state (2,3) as the second sample for
class-2. Then the process moves to state (2,3). Now state (3,4) will be the third sample
for a blocking state for class-1 and state (2,3) will be the fourth sample for the blocking
state for class-2. This completes the first simulation cycle. The figure shows a realization
of three complete cycles.

My 10,12 2,4

Figure 4: Improved MCMC simulation example

4.2 Improved Uniform Sampling

The improvements described in the previous chapter can also be used when sampling the
state space with a uniform distribution. Again, let Y denote the state after making a
virtual transition from the state X! having the stationary distribution and consider using
Y for the estimator

N
By= = 3 F(Yi) v

n=1

Calculating analytically the expectation of this extra virtual step conditioned on X gives
* * 1 *
ELf(Y)ysen | X5] = ﬁf(’“)(Xn)fk(Lﬁ) :

where f*)(X) = 12 fi(Xi), and, as before, LF = [¥(X7) is the largest value of x;, in the
set A%, x2)-

The estimator then becomes

) 1 X1
B = g 3 7/ VKA (13)

¢

where the unknown G can similarly be estimated using the extra “virtual” step,
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G—iﬁ:if(k)(x*)f:f (1)—izN:Lf(k)(X*>G (L’“) (14
_anl Lﬁ, n - k _Nn:1 Lﬁ/ n) Gl ) -

Combining (13) and (14) gives the following ratio estimator for the blocking probabilities

B — 2 SU) S LR/ L
Dy SO (X5)Gr(LE) /L

(15)

Again, the functions fi(-) and G(-) can be separately precalculated and stored into arrays
before the actual simulation run.

5 Implementation Aspects

When developing methods for simulation one consideration is the computational complexity
of the method . Here we show that the method is actually very simple to implement and
does not consume memory excessively either. The following issues determine the efficiency
of our method:

1. To collect the samples, when considering the “virtual step” from P%), we must evaluate
fe(LE)/Gr(LF).  As mentioned before, the values of this ratio can be calculated in
advance and stored into arrays. This requires for each class-k one array of length
N denoting the maximum number of allowed class-k calls. For uniform sampling
we must store two arrays: one containing the f,(LF) values and one containing the
sums G, (LF). Thus we note that, actually, the use of the extra analytical step does
not increase the computational complexity of the simulation at all.

2. To increase efficiency we note that at each state X} we can do the “virtual step” for
all directions, k =1,..., K, of the system.

3. To generate the actual transitions from P®*) in the Poisson sampling case we need
to generate random variables having the truncated Poisson distribution in the range
0,...,L* with the offered load p;. For this we also need one truncated Poisson dis-
tribution for each traffic class-k with maximum length N;"*”. In the implementation
of the algorithm several techniques can then be used for increasing the look-up speed
using appropriate data structures. Note that the generation of the transitions in the
uniform sampling case is easier, i.e. we only need to generate a uniformly distributed
random variable over the range 0, ..., L¥, but on the other hand we must calculate an
extra term f*)(X*) for each sample.
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6 Numerical Results

Our numerical example consists of the star network studied by Ross [4, p. 240] for the mod-
erate traffic case and we compare our results to the results obtained using the importance
sampling heuristics in [4, chap. 6]. The network is a star network with 4 links of capacity
around 100 units and there are two service types requiring 1 or 5 bandwidth units. Routes
are established between all the leaves of the network for both traffic classes giving a total of
12 classes. The load has been dimensioned such that the blocking probabilities are around
107°...1072.

The table below shows the results we obtained from using the improved Poisson sampling
and uniform sampling and the results of Ross [4, p. 243]. As can be seen our results
show very good matching between Ross’ results. Note that the results are expressed as
percentages.

Class | Ross’ heuristic | Improved MCMC (Poisson) | Improved MCMC (Uniform)
T | (0312, 0.359) (0.347, 0.350) (0.333, 0.360)
2 | (0.261, 0.305) (0.297, 0.300) (0.288, 0.318)
3 (0.253, 0.297) (0.289, 0.292) (0.273, 0.293)
4 (0.063, 0.081) (0.068, 0.069) (0.067, 0.073)
5 | (0.055, 0.072) (0.060, 0.061) (0.060, 0.067)
6 | (0.008, 0.013) (0.010, 0.011) (0.010, 0.011)
7 (2.200, 2.340) (2.286, 2.296) (2.190, 2.322)
8 (1.870, 2.000) (1.960, 1.969) (1.906, 2.039)
9 | (1.820, 1.950) (1.901, 1.920) (1.855, 1.983)
10 | (0.463, 0.513) (0.491, 0.494) (0.483, 0.520)
11 | (0.414, 0.462) (0.431, 0.434) (0.434, 0.469)
12 (0.065, 0.080) (0.080, 0.081) (0.081, 0.087)

However, Ross obtained his results by generating 100000 i.i.d. MC samples and we used 50
independent runs of simulations with 50000 cycles (each roughly corresponding to one MC
sample). In order to make the results comparable, we have scaled our results by multiplying
the confidence intervals by +/25. The table below shows the lengths of the confidence
intervals for each method after the scaling. As expected, the uniform sampling method
does not give particularly good results, but the Poisson sampling method gives confidence
intervals approximately half of those of Ross’ results indicating clear variance reduction.
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Class | Ross’ heuristic | Improved MCMC (Poisson) | Improved MCMC (Uniform)
1 0.047 0.016 0.134
2 0.044 0.016 0.153
3 0.044 0.016 0.104
4 0.018 0.006 0.030
5) 0.017 0.006 0.033
6 0.005 0.002 0.005
7 0.140 0.050 0.659
8 0.130 0.043 0.663
9 0.130 0.052 0.639
10 0.050 0.018 0.183
11 0.048 0.018 0.174
12 0.015 0.006 0.031

We also made tests on the rare event example of Heegaard [3], but noticed a tendency to
underestimate the probabilities. The reason is that when performing rare event simulation
the Markov chain of the Gibbs sampler is confined to move only within a very small part
of the whole state space. Then it does not necessarily sample the most important blocking
states for all traffic classes. Therefore, when dealing with rare event simulation our improved
method needs to be combined with importance sampling methods to shift the probability
mass from very close to the origin of the state space closer to the state space boundaries.

7 Conclusions

In this article we have presented an efficient simulation method for calculating the blocking
probabilities for calls in a multiservice loss system. The method is based on the use of
the Gibbs sampler with an appropriate partition of the state space. We are then able to
exploit the product form solution by calculating analytically the effect of using as samples
not the current state X} of the simulation of the Markov chain, but a “virtual” sample
generated from the current state with a transition matrix P*). It is then possible to calculate
analytically the probability of this new sample hitting the blocking state of a class-k call.
Thus for each state in the chain we get a contribution from the blocking state for class-
k call within the current set. Furthermore, this can be done in each of the K directions
of the system giving a blocking sample for each traffic class. The inclusion of this extra
analytical step in the simulation gives clear reduction in the variance over the traditional
MC summation techniques as shown by our numerical results. Also, it was shown that the
improved method does not cause excessive computational complexity.
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Appendix

Consider the sum

where X is a random variable with the distribution p(x), and the corresponding estimator

| X
H=2=> nX,
FYh0x)
where X,, are samples of the random variable X.

Let P be any transition matrix with invariant distribution p(x). Then Y which is obtained
from X with this matrix also has the distribution p(x). H may then be written as

H = E[h(Y)]



Assume now that E[h(Y) | X] can be calculated analytically. Then a new estimator for H
can be written

- 1

HZN;EWY)IX:XW,] ,

which for each sample X,, includes all the points reachable from X, with the transition
matrix P.
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