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Abstract

In this paper we consider the use of traditional Monte Carlo simulation techniques
for estimating very small blocking probabilities in multiservice loss systems. We derive
an efficient sampling distribution, which has a composite form consisting of a weighted
combination of exponentially twisted distributions. In the literature the composite
distribution has been shown to be asymptotically efficient in systems such as the
multiservice loss system. However, the asymptotic theory leaves open the question of
how to choose the weights. For that we give heuristics to minimize the variance of
the estimator by making the likelihood ratio as constant as possible in the set of the
blocking states.

1 Introduction

Modern broadband networks have been designed to integrate several service types into the
same network. On the call scale, the process describing the number of calls present in the
network can be modeled by a loss system, see e.g. [5]. We are interested in calculating the
steady state blocking probability for each traffic class in the system. Specifically, we are
studying systems where the blocking probabilities are very small, i.e. we are dealing with
probabilities of so called rare events. The steady state distribution of the system has the
well known product form, from which it is easy to write down analytic expressions also for
the blocking probabilities. A problem with the exact solution, however, is that it requires
the calculation of a so called normalization constant, which entails the calculation of a sum
over the complete allowed state space of the system. In a network of realistic size the state
space very rapidly becomes astronomical.
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In such a situation we have two alternatives: to use analytical approximations or to simulate
the problem to a desired level of accuracy. In this paper we will be dealing with the latter.
Then, as the form of the stationary distribution is known, the traditional Monte Carlo (MC)
method is an efficient way to perform the simulation. Alternatively, one can utilize the fact
that the system can also be represented by a Markov chain and simulate that.

Since we are assuming that the blocking probabilities are very small, using direct simulation
becomes inefficient because the required number of samples to be drawn increases expo-
nentially as the estimated probability becomes smaller. To overcome this, it is possible to
use importance sampling (IS), whereby one uses an alternative sampling distribution, which
essentially makes the interesting samples more likely than under the original distribution.
The bias in the samples caused by this is then corrected with the so called likelihood ratio.

Furthermore, we limit ourselves to studying IS distributions, which belong in the family of
so called exponentially twisted distributions. Previously this has been studied by Ross in
[5, chap. 6] and Mandjes in [4]. When using the traditional MC, the simulation consists
of estimating two independent probabilities: the probability of hitting the blocking states
and the probability of being in the allowed state space. Ross proposes heuristics based on
an observation that when using the traditional MC method and the same IS distribution
for both probabilities, then with the optimal, i.e. minimum variance, IS distribution half of
the samples will fall within the allowed state space and half of the samples will fall within
the blocking states. Based on this observation Ross has presented heuristics which attempt
to increase the likelihood of the blocking states, while, at the same, it tries to limit the
likelihood of generating misses from the allowed state space. However, Mandjes has noted
that it is not advantageous in the rare event context to estimate the two probabilities at the
same time using the same sampling distribution. Instead, it is only the probability of hitting
the blocking states that requires importance sampling. Mandjes’ method is motivated by
large deviation results for rare events of sums of independent Poisson variables and he
proposes to use an importance sampling distribution which shifts the mean of the sampling
distribution to match the most probable blocking state. Essentially the method assumes
that to estimate the blocking probability it is enough to identify the most probable blocking
state, which also identifies the link where the blocking will occur, and to twist the sampling
distribution such that its probability mass will be concentrated around the most probable
blocking state.

Our approach is based on using a similar technique as proposed by Mandjes, but we extend
the ideas based on the large deviation results obtained by Sadowsky et al. in [6]. There it is
shown that sometimes, depending on the shape of the “interesting” set, it is not sufficient to
use one twisted distribution to satisfy the conditions of asymptotical optimality for the IS
distribution. Instead, one needs to use a composite distribution, which is a weighted convex
combination of several exponentially twisted distributions. In this paper we illustrate that
the blocking probability estimation problem has the same properties as studied in [6] and we
present an IS distribution for estimating the blocking probabilities, which is of the composite
form. However, the results in [6] leave open the question about the choice of the weights
in the composite distribution. We propose heuristics for that, which also have a sound



theoretical motivation. The slight increase in computational complexity when compared
with just using a single twisted distribution appears to be well justified by the gains in the
variance reduction and accuracy obtained in our numerical experiments.

This paper is organized as follows. Section 2 describes briefly the multiservice loss system
and the associated simulation problem is characterized in section 3. Section 4 contains the
main results of this paper, which is the derivation of the composite distribution. Numerical
examples are given in section 6 and the conclusions are presented in section 7.

2 The multiservice loss system

Consider a network consisting of .J links, indexed with j = 1,...,J, link 7 having a capacity
of C; resource units. The network supports K classes of calls. Associated with a class-k
call, kK =1,..., K, is an offered load p;, and a bandwidth requirement of b, ; units on link j.
Note that b;; = 0 when class-k call does not use link j. Let the vector b; = (b;1,...,b, k)
denote the required bandwidths of different classes on link j. Also, we assume that the
calls in each class arrive according to a Poisson process, a call is always accepted if there
is enough capacity left, and that the blocked calls are cleared. The state of the system is
described by the vector X = (X7, ..., Xf), where element X}, is the number of class-k calls
in progress.

The set of allowed states S can be described as
S:{X|\V/jibj‘XSCj},

where the scalar product is defined as b; - x = >, b; 2. This system has the well known
product form stationary distribution

Lypee 1
m(x) = 5}}_[1 x—k, = Eﬂf(xmpk)? (1)

where f(zx, pr) = p*/x! and G is the normalization constant

a=Y H%.

xeS k=1
The set of blocking states for a class-k call, B, is
B*={xeS|3j:b; (x+e) >},

where e;, is a K-component vector with 1 in the k& component and zeros elsewhere. The
blocking probability of a class-k call, By, is then

By= Y ) = 3 7(x) L = B [lxern] 8]
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It should be noted that the distribution 7 given by (1) represents the truncation of a K
dimensional independent Poisson type distribution to the state space S. Then, by defining
another state space S such that S D S and a random vector X € S with the same product

form distribution, P[X = %] ~ [ v—1 PiFJxi!, we can express the blocking probability as
~ | 1
Bsz[1X€Bk |Xe$} _ Ellgem] (3)
EDXES]

3 The traditional Monte Carlo method

Let us consider a general problem of estimating the expectation
H = E[hX)]

of some function A(-) of a vector random variable X € S with some state space S and having
a distribution P. The traditional Monte Carlo method consists of drawing N independent
samples X,,, n=1,..., N, from the distribution P yielding an unbiased estimate

1 Y
=N ; h(X,). (4)

The blocking probabilities in the multiservice loss system, given by (3), are of the above
form, and we have the following estimator

B, — 1/N Zgﬂ 15<neBk
1/N 27]:[:1 15<nes

To generate independent identically distributed samples X,, € S, it is desirable that the
components of X,, be independent to make the generation of the samples easy. Then a
suitable choice for S is the Cartesian product space limited by the maximum number of
allowed class-k calls N* . Formally this state space is defined as

max*

S=1{0,...,N. }x---x{0,...,NE 1.

We call this sampling distribution as the independent truncated Poisson distribution:

. L 71 0% 5
= —= —_— X € 8, 5
p(x) G}ka, (5)
where
K NE. P
5 k
G=11 >
k=1 n=0



4 Importance sampling for multiservice loss systems

The Monte Carlo estimate (4) for the expectation E[h(X)] is not very efficient in cases where
the main contribution to this expectation comes from values of X which are rare under the
distribution P : p(X) = P[X = x] defined in the state space S. In such cases the variance
can be reduced by making the sampling from another distribution, so called importance
sampling distribution, P* : p*(x) = P[X* = x| > 0 for X* € S. With respect to this
distribution the expectation becomes

H = E[h(X)] = E, [h(X*)w(X*)],

where w(X*) = p(X*)/p*(X*) is the likelihood ratio. This leads to the Monte Carlo esti-
mator

. 1 X
H=— xX* X*).
N;h( Dw(X5)

A well known result is that the optimal choice for the IS distribution in this case would
be p*(x) = p(x)h(x)/H for x € S, i.e. it has the property that it makes each sample
w(XE)h(X%) a constant and hence the variance of the estimator zero, see e.g. [2]. This
sampling distribution is, however, impractical, since it requires explicit information about
the estimated quantity itself.

For calculating the blocking probabilities, we can use the form (3) where X is defined in S.
We can now apply the importance sampling both for the numerator and denominator by
defining a new distribution p*(x) in the space S. This results in

b Ej. [1X*€Bkw(>~<*>} o

and the corresponding estimator

N 2
. L w(Xr ) 1.
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However, the blocking probability is a ratio of two independent expectations and thus they
can be can be estimated separately in (7). By observing that as we are interested in
estimating potentially very small blocking probabilities, the denominator, i.e. the probability
of hitting the allowed state space S, does not involve rare event estimation under the original
distribution p(-). Hence to estimate E[1s] we do not need to apply importance sampling.
In fact, under the original distribution p(-), when the network is very lightly loaded as is
the case when the blocking probabilities are very small, the expectation E[lg.¢] = P[X €
S| ~ 1. However, for the numerator, we can apply importance sampling and thus we are



trying to find an efficient importance sampling distribution for estimating the numerator in

(7)

N
H= Z w(X;ﬂX;eBk?

n=1

where the samples X* € S have distribution p*(X).

What is a “good” IS distribution in this case 7 When using the distribution p*(-) the only
parameters to be defined are the load parameters in the twisted distribution. When a single
link is the bottleneck for each traffic class, then the idea would be basically to choose the
parameters such that the probability mass of the sampling distribution is shifted to the
most likely blocking state, as suggested e.g. in [4]. We consider here a more realistic setting,
where for each traffic class the probability of blocking is not dominated by a single link in the
network but it can be roughly equal on many of the links the traffic class uses in the network.
The described situation would in reality correspond to a well engineered system, where each
link in the network would be roughly equally loaded. This situation is dealt with in [4] only
for the case when there exists several maximizers for the optimization problem (10), which
give the same maximum value for the objective function. This can happen when for example
the network has some symmetric structure. This is handled by approximating the blocking
probabilities to be independent on each link and then using twisted distributions to estimate
the blocking probability on each link separately. Then, by the assumed independence, the
total blocking probability is the sum of individual link blocking probabilities. However, this
is only an approximation, which is somewhat in contradiction with what we want in the
first place when doing simulations. What we actually want is an accurate estimate for the
real blocking probability B; and not an estimate for an approximation of By.

4.1 Motivational Arguments

Let us consider a general problem of estimating the probability of event B
f=P[X € B] = E[lxes],

where X € § has some distribution p(x) and B C §. Now we wish to get insight into how
the IS distribution should be chosen. By denoting with p*(x) the IS distribution, we can
express the expectation as

B =Ep [w(X)], (8)
where
~ p(X)
w(X) = p—* X) Ixes.

Also, let 8* = E,+ [1xeg] be the probability of event B with respect to the distribution p*(x).
By conditioning on the value of the random variable I = 1xc5 we can express (8) as

B = Ep[w(X)]
= Ep [Ep [w(X)[1]]
= B, (Xl

1.
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Thus we have E,« [w(X)|I = 1] = §/F*. The variance of w(X) is then

Vi [w(x)] = Vi [Ep [w(X)|]] + Eps [V [w0(X) 1]
= Ep [Ep* [w(X)’[]Q] — Ep [Epr [UJ(X)HHQ + 0™
— %_52 +ﬁ*0'*2, (9)

where 0*? = V. [w(X)|I = 1] is the variance of w(X) in B under p*(x). From this formu-
lation we are able to get insight into the effect of the IS distribution.

When no twisting is used and p*(x) = p(x) then also 3* = 3 and ¢*? = 0. In this case

Vplw(X)] = 6(1 = 8) = 6.

By increasing the probability 8* of B under p*(x), the first and most important term in
(9) can be reduced. Ideally, if one can make §* = 1, the first and second term completely
cancel. If the probability of B can be increased uniformly, i.e. with w(x) constant in B, then
0?2 = 0 and the estimator would have a zero variance.

In practice one is limited to a family of twisted distributions, and one has to compromise
between the two factors. It is important to increase the probability of B but at the same

time it is important to keep w(x) as constant as possible in B in order to minimize o*2.

4.2 Derivation of the IS distribution

The basic idea is to search all dominating points (most probable blocking states) on all
the links of the network, which gives us an importance sampling distribution for effectively
sampling the blocking states on each link j. This is illustrated in Fig. 1, which shows an
example with two traffic classes. Now we can choose one of these points and twist the original
distribution such that the main mass of the distribution is centered around that point. In
this way we can maximize $*. However, if we use only one point then the distribution of
w(x) in B will be uneven giving rise to a large o*?. Therefore, it is more advantageous
to use a composite distribution which is a weighted combination of the individual twisted
distributions such that w(x) will be more uniform in the whole 5.

This approach is supported by the results of [6], which show that so called asymptotically
optimal twisting distribution for B indeed is of this composite form. A failure to include
all the dominating points means that the sampling distribution can be asymptotically very
inefficient. The asymptotic theory, however, leaves the weights in the composite distribution
open. We will fix them by the heuristics of maximal uniformity of w(x) in B.

The most probable blocking states are found as a result of a simple maximization problem
of a Poisson-type distribution on a given linear constraint. To search the dominating point
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Figure 1: Most probable blocking states in a two traffic example with two link constraints.

on each link we need to solve the following optimization problem for all j =1,... J:
. K P K
k
max = || =% = They
ax G}ka! kl_Ilf(kpk-)

subject to x-b; = Cj.

This problem has been considered elsewhere in the literature (e.g. [3] and [4]) and usually
it has been solved by using first the Stirling’s approximation for the factorial term and
then solving the constrained optimization problem by standard techniques. However, the
optimal solution can be found easily even without using the Stirling’s approximation. The
expression can then be solved effectively by using standard numerical techniques. For this,
consider the following equivalent optimization problem (the term 1/ G is just a constant and
has been omitted)

K
max ) log f(x, pr)
k=1 (10)

subject to x-b; = C}.

Introducing the Lagrange multiplier 6 for the linear constraint, we are lead to the uncon-
strained maximization of the following objective function

K
m}e{xxz log f(xk, pr) — Oxb, k] — 6C;. (11)
k=1

Let us denote by
0
h(x, pr) = a—xklog f (@, pr)-

Maximization of (11) with respect to the zy, leads to the solution

xk:hfl(ébm,pk), k=1,....K, (12)
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where h~1(-, p) denotes the inverse function of h(-, p). It is easy to check that h(-,-) is a
monotonously decreasing function of x; and hence the inverse function is also well defined.
The Lagrange multiplier 0 is determined simply by requiring that the solution must satisfy
the constraint of (10), i.e

K
> biuh™ (0bj s, pi) = C. (13)
k=1

Hence, the solution to (10) is obtained by first solving (13) and then evaluating (12) for

k=1,..., K. Let us now denote by xj the solution for link j. This solution represents the

“most likely” blocking state on the link j.

At this point we restrict ourselves to only consider IS distributions belonging in the family
of exponentially twisted distributions. In case of the Poisson distributions these are also
Poisson distributions but with different load parameters =, instead of p. Now the main mass
of the sampling distribution can be moved to the point x; by selecting «; = xj. Then, let
us denote by p7(x) a truncated Poisson density of the form (5), where the load parameter
of each class ;5 = 2,. To be precise, each distribution j7(X) is given by

Hf xlm’y‘]k’

Jkl

where G;f is the normalization constant

K k
= H E xk773k
k=1

n=0

These distributions will effectively move the probability mass of the sampling distribution
close to the capacity constraint of link j giving an efficient sampling distribution for the
blocking states resulting from link j. In fact, if these parameters were used in sampling
from independent infinite dimensional Poisson distributions, the twisting would correspond
to moving the mean of the distribution to the most probable blocking state. This is again
illustrated in Fig. 2, which shows the sampling distributions of a two traffic class example
with two link constraints.

However, a traffic class uses only a subset of all the links in the network. Thus, when
estimating the blocking probability of traffic class k, we only need to sample on those links,
which the traffic class k actually uses and the complete sampling distribution for traffic class
k is then a weighted combination of those distributions. For this let us denote by Rj the
set of links the traffic class k£ uses. Formally we have that

Re={j€l,....J by >0}

Also, let J; denote the number of links in the set Rj. Then the sampling distribution for

traffic class k is expressed as
(%) =) P pi(%), (14)

JER
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Figure 2: The twisted distributions in a two traffic example with two link constraints.

where P; is the probability of using the distribution p3(-) for generating the sample. What
remains is to find a method to obtain these weights. Again, the used heuristics is based on
attempting to keep the likelihood ratio as constant as possible in B*. With .J, parameters
P; available, we cannot make w(x) constant in the whole B*. Instead, we choose to require
w(x) to be constant, 7, at the dominating points x7. This requirement leads to a set of
linear equations

ST P = np(x]), Vi=1,.... (15)

1€ERy

where the constant 7 is chosen such that >, P, = 1.

5 Numerical examples

Here we illustrate the efficiency of using the presented composite distributions for evaluating
blocking probabilities in a multiservice loss system by considering the numerical example
from [1], where Heegaard uses an adaptive importance sampling scheme in a Markov chain
simulation setting. The example corresponds to a network where usually the blocking prob-
ability of a class is not dominated by a single link constraint. The network has 11 links and
10 traffic classes. However, the link sizes are small enough to permit the calculation of the
exact solution. We selected as examples three traffic classes (2, 4 and 6) to illustrate the
differences in accuracy when using just one twisted distribution and the composite distri-
bution. Using just a single twisted distribution for sampling corresponds to the simulation
method given in [4]. In this case the load parameters are chosen to be the components of
x; giving the overall largest value for (10) over j € Ry. Also, the method of Ross [5, chap.
6] corresponds to the use of a single twisted distribution. However, the method suffers from
being too conservative and e.g. in the examples here the method is not able to produce
any estimate even after 1 000 000 samples. To compare the results we compute the relative
difference of the estimate, given by (Bj,— By)/ By, and its estimated 95% confidence interval.
For each example we give the results when using N = 10 000 or N = 100 000 samples in
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the simulation.

class By, N Single twist | Composite distribution
2 [0.587-1077 [ 10 000 | —0.329 4 0.020 —0.014 £ 0.032
2 05871079 | 100 000 | —0.317 4 0.026 —0.015 £ 0.020
6 |0.244-107° | 10 000 | —0.184 4+ 0.013 —0.086 £+ 0.051
6 |0.244-107° | 100 000 | —0.111 4 0.054 0.025 £ 0.089
4 10.186-1077 | 10 000 | —0.051 4 0.031 —0.043 £ 0.032
4 10.186-1072 | 100 000 | 0.016 + 0.039 —0.019 £ 0.027

Table 1: The relative difference for the estimates and the estimated 95% confidence intervals.

From the results we can clearly see the better accuracy of using the composite distribution,
see especially the results of traffic class 2. However, for traffic class 4 it could be seen from
the results of the likelihood maximization problem that there is basically only a single link
where the main contribution to the blocking probability comes. Then, as the results in the
table show, it is sufficient to use only a single twisted distribution.

For the cases covered here Heegaard obtained results with a relative accuracy of approxi-
mately 10% — 20%, but the estimated confidence intervals were wide enough to include also
the correct values. However, to obtain the results the simulation required 15 replicas of 300
000 so called regenerative cycles (paths starting from an empty system and ending there).

The results also reveal another interesting phenomenon which appears when using IS: the
variances are heavily under estimated. When using IS and a very heavily twisted distribu-
tion, it appears that the value of the estimated variance is usually quite far from the correct
value and hence the estimated confidence intervals can be very far from the truth. The
estimated results appear to be very accurate judging by the estimated variance, but, as can
be seen, the known correct value does not even lie within the confidence intervals. This is
again a manifestation of the observation made earlier that in a “good” IS distribution also
the variance of the likelihood ratio in the “interesting set” should be minimized. When using
just a single twisted distribution the problem is that the likelihood ratio can have a huge
value in some points in the state space, but under the twisted distribution these points have
a very small probability. Then during the simulation we can never observe these significant
points even though they would give a huge contribution, and hence also the estimates are
not accurate. The composite method is not totally immune to this either, since by compar-
ing the reduction in the variance of the estimator when increasing the number of samples
from 10 000 to 100 000, the variance is not reduced correspondingly by the factor 10. In
fact, from the results of traffic class 6, we can see that although the relative accuracy got
better when increasing the number of the samples the estimated variance actually became
worse.
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6 Conclusions

In this paper we considered the efficient simulation of very small blocking probabilities in a
multiservice loss system when using the traditional Monte Carlo method for the simulation.
Previous research on efficient IS distributions for simulating loss systems has considered
the use of only one exponentially twisted distribution. We derived an IS distribution for
estimating the blocking probabilities, which has the form of a composite distribution. The
distribution is a weighted combination of several exponentially twisted distributions, each of
which corresponds to a distribution for effectively sampling the blocking states on a single
link. In [6] the composite form has, in fact, been shown to be asymptotically optimal in
the case of e.g. the loss system. However, the asymptotic theory leaves open the choice of
the weights. For this, we have also presented heuristics, which try to minimize the variance
of the samples within the set of the blocking states. This is done by choosing the weights
such that the likelihood ratio in the most probable blocking states is a constant. The
numerical results confirm the accuracy of this method, when compared with just using a
single exponentially twisted distribution.
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